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1. IntroductionThe high applicability of numerical methods based on interpolation from spaces thatcontain polynomials, such as the �nite element method, has lead to a large literaturedealing with the error in such schemes. The main contribution of this paper is an errorformula for interpolation to function values at a set of points from a space that includes thelinear polynomials. Since the formula covers the much studied case of linear interpolationat the vertices of a triangle (Courant's `original' �nite element [Co43]), it allows us toaddress some fundamental questions about the representation of errors in multivariatepolynomial interpolation in this simple setting. Some questions are answered, while otherperhaps suprising issues are raised.The paper is set out as follows. In the remainder of this section we give necessaryde�nitions. The maps of interest are cases of so-called Lagrange maps. We discuss the linearfunctional f 7! R� f , and some of its relevant properties. This linear functional is provingto be the appropriate notation in which to express multivariate polynomial interpolantsand their errors (see, e.g., de Boor [B95]). In Section 2, the error formula is given andcompared with others. In Sections 3, 4 and 5, Lp-error bounds for linear interpolation,which are sharp for p = 1, are obtained from the formula by using a multivariate formof Hardy's inequality. These bounds are compared with others in the literature, includingrecent work of Handscomb [H95] and Subbotin [Su901], [Su902].Lagrange mapsWe say that Lagrange interpolation from a space of functions P to a set of points� � IRn is correct if for each function f (de�ned at least on �) there is a unique p 2 Pwith p(v) = f(v); 8v 2 �:The associated linear projector f 7! p is called the Lagrange map (given by the space ofinterpolants P and points of interpolation �), and it is denoted byLP;� : f 7! p:The Lagrange form of a Lagrange map LP;� is given byLP;�f = Xv2� f(v) `v ; (1:1)where (1.1) uniquely de�nes `v := `v;P;� 2 P;the Lagrange function for v 2 �.Lagrange maps with a space of interpolants that contains �k (the polynomials ofdegree � k) are frequently used to interpolate to scattered data. Particular examplesreceiving much attention lately are maps where the interpolants include radial basis func-tions. 1



The linear functional f 7! R� fTo describe the error in a Lagrange map it is often convenient to use the followinglinear functional called the divided di�erence functional on IRn by Micchelli in [M80]and analysed there and in [M79].De�nition 1.2. For � the sequence [�0; : : : �k] of k + 1 points in IRn, letf 7! Z� f := Z 10 Z s10 :::Z sk�10 f(�0 + s1(�1��0) + � � �+ sk(�k��k�1)) dsk � � � ds2 ds1;with the convention that R[ ] f := 0.The value of R� f does not depend on the ordering of the points in �. The nature ofR� f becomes more apparent by observing thatZ� f = 1k! Zconv�M(�j�) f; (1:3)where M(�j�) is the simplex spline with knots � (which is supported on conv�, theconvex hull of the points in �). The class of functions for which R� f is de�ned can bedetermined from (1.3).Crucial to the arguments of the paper is the following form of the fundamental theoremof calculus, that Z[�;v] f � Z[�;w] f = Z[�;v;w]Dv�wf: (1:4)This is a form of the di�erence identity for simplex splines (see [M80:Th.6]) which pervadesthe multivariate spline literature.We will also use the di�erentiation rule, thatZ[x1;:::;xk+1]Dz1Dz2 � � �Dzk Z[�;�] f = Z[x1;:::;xk+1;�]Dz1Dz2 � � �Dzkf; (1:5)where Dz denotes the derivative in the direction z, and � is a �nite sequence of points.The rules (1.4) and (1.5) are the basis for a multivariate divided di�erence theory thatis currently being developed (see, e.g., de Boor [B95]). In this regard, notice that theHermite-Genocchi formula can be written as[�0; : : : ; �k]f = Z[�0;:::;�k]Dkf; (1:6)where [�0; : : : ; �k]f is the univariate divided di�erence of f at the points �0; : : : ; �k in IR.Other properties, including a discussion of the continuity of the map� 7! Z� f;2



can be found in Waldron [W961].The special cases of f 7! R� f used in the paperWe will only consider f 7! R� f for � consisting of one, two, or three points. For asingle point we simply have point evaluationZ[u] f = f(u): (1:7)If � consists of two distinct points, then R� f is the average of f over the line segmentjoining them Z[u;v] f = Z 10 f(u + t(v � u)) dt;while if � consists of two points that are the same, then we again have point evaluationZ[u;u] f = f(u):If � consists of three points which are the vertices of a triangle T := convfu; v;wg witharea A, then R� f is half of the average of f over TZ[u;v;w] f = 12 1A ZT f: (1:8)If � consists of three points which are collinear but not all the same, then R� f is a lineintegral of f over the line segment conv� against the B-spline with knots �.u v w u v = wFig 1.1 The B-splines corresponding to three collinear pointsIf � consists of three points all the same, then we have point evaluation divided by 2Z[u;u;u] f = f(u)2 :2. The error formulaIn this section we give an error formula for a Lagrange map whose space of interpolantscontains �1 (the linear polynomials). This formula involves only second order derivativesof the function interpolated (the form desired by numerical analysts). The idea of theproof below is to use the `di�erence identity' (1.4) in just the right way so as to introducethese second order derivatives. Let Dyf denote the derivative of f in the direction y.3



Theorem 2.1. Suppose that �
 (the closure of 
) is starshaped with respect to �. If LP;�is a Lagrange map with �1 � P � C(�
);then for all f 2 C2(�
)f(x) � LP;�f(x) = Xfv;wg��v 6=w `v(x)`w(x)Z[x;v;w]Dv�wDw�vf; 8x 2 �
: (2:2)where the sum is taken over all 2-element subsets of �.Proof: Since P contains �0 (the constants), it follows from (1.1) thatXv2� `v = 1: (2:3)This, together with (1.7) and the `di�erence identity' (1.4), givesf(x) � LP;�f(x) =Xv2��Z[x] f � Z[v] f� `v(x) = Xv2��Z[x;v]Dx�vf� `v(x): (2:4)Since P contains �1 (the linear polynomials), and each coordinate of (� � v) is a linearpolynomial, it follows from (1.1) thatx � v = Xw2�(w � v)`w(x): (2:5)Substituting (2.5) into (2.4), and using the linearity of y 7! Dy givesf(x) � LP;�f(x) = Xv2� Xw2� `v(x)`w(x)Z[x;v]Dw�vf: (2:6)The double summation in (2.6) is over all ordered pairs (v;w) where v 6= w (the terms forv = w are zero). By summing the pairs (v;w) and (w; v) �rst, we obtain the following sumover the unordered pairs fv;wgf(x) �LP;�f(x) = Xfv;wg��v 6=w `v(x)`w(x)�Z[x;v]Dw�vf � Z[x;w]Dw�vf�: (2:7)Finally, by the `di�erence identity' (1.4) again,Z[x;v]Dw�vf � Z[x;w]Dw�vf = Z[x;v;w]Dv�wDw�vf;which gives the result. 4



This error formula re
ects the geometry in a particularly appealing way. The errorat any point x not lying on a line connecting points in � is the sum over distinct pointsv;w 2 � of 1=2 the average of the second order derivative Dv�wDw�vf over the triangleconv[x; v;w] multiplied by the function `v`w which vanishes at all of the points in �.
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Fig 2.1 The region of integration for the derivative Dv�wDw�vfoccuring in the error formula (2.2)The special case of this formula when P = �1 is the �rst in a family of error formul� forChung-Yao interpolation from �k recently obtained by de Boor [B95]. In Chung-Yaointerpolation, see [CY77] for more details, the points of interpolation are the intersectionsof certain sets of hyperplanes. Interpolation from �1 (the linear polynomials) is oftenreferred to as linear interpolation (for obvious reasons), a term which is also used (bysome) for any interpolation scheme where the interpolation operator is linear (for equallyobvious reasons). In this paper we will always mean the former.For the special case of linear interpolation at u; v;w the vertices of a triangle in IR2,there are many formul� which express the error in terms of second order derivatives.Most of these formul� require the points u; v;w to lie in some special position, and do nottransform in a simple way under an a�ne change of variables. For example, Gregory [G75]gives a formula for when the points are (0; 0), (1; 0), (0; 1) that involves four line integralsand �ve area integrals of the partial derivatives D21f , D1D2f , and D22f . More recently,Sauer and Xu [SX95] have given the formulaf(x) � L�;�1f(x) = `v(x)Z[x;u;v]Dx�vDv�uf + `w(x)Z[x;u;w]Dx�wDw�uf; (2:8)and similar ones for Lagrange interpolation from �k. The formula (2.8), though of similarform to (2.2), has the disadvantage that it is not symmetric in the points u; v;w, that is,it depends on some ordering of them. 5



Besides (2.2), there is one other formula for the error in a Lagrange map whose spaceof interpolants contains the linear polynomials. Like (2.2), this formula, the multipointTaylor formula given below, is symmetric in the points of �.Multipoint Taylor formula ([CW71]) 2.9. Suppose that �
 is starshaped with respectto �. If LP;� is a Lagrange map with�1 � P � C(�
);then for all f 2 C2(�
)f(x) � LP;�f(x) = �Xv2� `v(x)Z[x;x;v]D2v�xf; 8x 2 �
: (2:10)
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Fig 2.2 The region of integration for the derivative D2v�xfoccuring in the multipoint Taylor formula (2.10)The multipoint Taylor formula (2.10) is the multivariate form of Kowalewski's re-mainder (see [K32:p21-24], or Davis's book [D75:p71]). Recently, it has been shown in[W96�] that (2.2) and (2.10) are special cases of a family of error formul� indexed bycertain real measures of unit mass.There exists a version of the multipoint Taylor formula for the derivative of the er-ror, but it is not clear whether there is such a formula for (2.2). For example, simplydi�erentiating (2.2) using the `di�erentiation rule' (1.5) givesDy�f � LP;�f�(x) = Xfv;wg��v 6=w `v(x)`w(x)Z[x;x;v;w]DyDv�wDw�vf+ Xfv;wg��v 6=w �Dy`v(x)`w(x) + `v(x)Dy`w(x)� Z[x;v;w]Dv�wDw�vf;6



which has third order derivatives of f (in addition to the desired second order derivatives).Comparison of the relative merits of (2.2) and the multipoint Taylor formula (2.10)turns out to involve a complex set of issues. Ultimately, it is seen that in some situationsone formula is to be favoured over the other, while in other situations it is the reverse.First consider the case when L is the map of linear interpolation to the points v;w 2 IR.In this case, using the Hermite-Genocchi formula (1.6) to change to divided di�erencenotation, our error formula (2.2) is the standard formulaf(x) �Lf(x) = (x � v)(x �w) [x; v;w]f; (2:11)while the multipoint Taylor formula (2.10) is Kowalewski's remainderf(x) �Lf(x) = (x �w)(v � w) (v � x)2 [x; x; v]f + (x � v)(w � v) (w � x)2 [x; x;w]f: (2:12)Here, for standard applications, such as obtaining Lp-bounds on the error (see, e.g.,[W962]), the error formula (2.2) is to be preferred, as is indicated by the relative obscurityof Kowalewski's formula.For linear interpolation in IRn when n > 1, the question of which is the best formulabecomes more complicated. If n = 2, then both formul� have 3 terms, while for n > 2our error formula has n(n+1)=2 terms which is more than the multipoint Taylor formulawhich has only n + 1 terms. However, from a structural point of view our formula isperhaps a little more pleasing, since (like the standard univariate formula) it involvesquadratic polynomials multiplying averages of derivatives (over triangles), as opposed tocubic polynomials multiplying averages of derivatives This form makes obvious certainfeatures of linear interpolation, such as the fact that the error in approximation to aquadratic polynomial is a quadratic polynomial.More substantive di�erences between the formul� become apparent when they areused to obtain Lp-error bounds. These questions are considered in the remaining sections,and ultimately lead to a number of open problems (see Research Problems Section of thisissue) whose solution will provide the answers (or raise a whole new set of questions).3. Preliminary facts and some notationIn this section we outline those techniques and notations needed to obtain Lp-errorbounds in Sections 4 (sharp L1-bounds) and 5.The multivariate form of Hardy's inequalityThe following inequality is extremely useful for obtaining Lp-bounds from many ofthe error formul� for multivariate polynomial interpolation schemes, such as the formula(2.2) and the multipoint Taylor formula. Let(a)n := (a)(a + 1)(a + 2) � � � (a + n� 1);the shifted factorial function, and denote the cardinality of � by #�.7



Multivariate form of Hardy's inequality ([W961]) 3.1. Let � be a �nite sequencein IRn, and let 
 be an open set in IRn for which �
 is starshaped with respect to �. Ifm� n=p > 0, then the rule Hm;�f(x) := Z[x;:::;x| {z }m ;�] finduces a positive bounded linear map Hm;� : Lp(
)! Lp(
) with normkHm;�k � 1(m� 1)!(m� n=p)#� !1 as m� n=p! 0+: (3:2)This upper bound for kHm;�k is sharp when � involves only one point, i.e., when� = [v; : : : ; v];and when p =1 (with the norm taken on only for the constant functions).The inequality given by (3.2) was used to obtain Lp-error bounds from a wide varietyof formul� in [W961]. There it is referred to as the multivariate form of Hardy's inequality,since in the univariate case when m = 1, � = f0g, and 
 = (0;1), it reduces to Hardy'sinequality.We will need only the special cases that: for 1� n=p > 0


x 7! Z[x;v;w] f 


Lp(T ) � 1(1� n=p)(2 � n=p)kfkLp(T ); 8f 2 Lp(T ); (3:3)and for 2� n=p > 0


x 7! Z[x;x;v] f 


Lp(T ) � 1(2� n=p)kfkLp(T ); 8f 2 Lp(T ); (3:4)where T = �
 is starshaped with respect to v;w (respectively v). In particular, to inves-tigate the extremal functions for the sharp inequalities given in Section 4, we need theconsequence of (3.3) that, for all x 2 T :��� Z[x;v;w] f ���� 12kfkL1(T ); 8f 2 C(T ); (3:5)for which there is equality only when f is constant on convfx; v;wg with the size of thatconstant value equal to kfkL1(T ). This inequality also follows (immediately) from themean value theorem (for positive measures).Norming W kpMany Lp-error bounds can be conveniently described by using the co-ordinate inde-pendent seminorms f 7! f k;p;T8



de�ned as follows. LetW kp (T ) be the Sobolev space of functions with derivatives of order upto k in Lp(T ). To each f 2W kp (T ) associate the function jDkf j 2 Lp(T ), which measuresthe size of its k-th derivative, and is given by the rulejDkf j(x) := supu1;:::;uk2IRnkuik�1 jDu1 � � �Dukf(x)j = supu2IRnkuk=1 jDkuf(x)j; (3:6)where the derivatives Du1 � � �Dukf are computed from any (�xed) choice of representativesfor the k-th order partial derivatives of f . Here k � k denotes the Euclidean norm. Theequality of the two suprema follows from a classical result of Banach on the norm of asymmetric multilinear mapping (see, e.g., Harris [Har96]). This de�nition of jDkf j isconsistent with its standard univariate interpretation. From (3.6), it is easy to see thatjDkf j is well-de�ned and satis�esjDu1 � � �Dukf j � jDkf j ku1k � � � kukk a:e: (3:7)for all u1; : : : ; uk 2 IRn. For k = 1 and 2, jDkf j relates to the usual notions of �rst andsecond derivative as follows: jDf j is the norm of the gradient of fjDf j = kgradfk =p(D1f)2 + � � �+ (Dnf)2; (3:8)and jD2f j is the spectral radius of the Hessian of f , which in the bivariate case can becomputed by jD2f j = jD21f +D22f j+q(D21f �D22f) + 4D1D2f : (3:9)The Lp(T )-norm of jDkf j gives a seminorm on W kp (T )f 7! f k;p;T := k jDkf j kLp(T ); (3:10)with f 0;p;T = kfkLp(T ):4. Sharp pointwise L1-error bounds for linear interpolationThe main result of this section is a sharp pointwise L1-error bound for linear inter-polation. By linear interpolation we mean interpolation by linear polynomials to functionvalues at n+ 1 points in IRn. These n+ 1 points are necessarily a�nely independent, i.e.,the vertices of a simplex in IRn. This simplex will be denotedT := conv�;its diameter by h := diam� = maxv;w2� kv �wk;and the map of linear interpolation by L�. 9



Theorem 4.1. Suppose that L� is the map of linear interpolation at �. Let c be thecentre and R the radius of the (unique) sphere containing �. Then, for each x 2 T , thereis the sharp inequalityjf(x) � L�f(x)j � 12(R2 � kx� ck2) f 2;1;T ; 8f 2W 21(T ): (4:2)Equality in (4.2) occurs when f 2 Q := spanfqg ��1; (4:3)where q is the quadratic polynomial obtained by taking the square of the Euclidean norm,i.e., q := k � k2 : (x1; : : : ; xn) 7! x21 + x22 + � � �+ x2n; (4:4)and these are the only C2(T ) functions giving equality in (4.2) for x 2 T n�.In particular, there is the sharp inequalitykf � L�fkL1(T ) � 12(R2 � d2) f 2;1;T ; 8f; (4:5)where d is the distance of c from T , i.e.,d := dist(c; T ) = minx2T kx � ck:Special cases of (4.5) of interest include the following:(a) If c 2 T , then there is the sharp inequalitykf � L�fkL1(T ) � 12R2 f 2;1;T ; 8f: (4:6)(b) For the bivariate case (n = 2), if c 62 T , then there is the sharp inequalitykf �L�fkL1(T ) � 18h2 f 2;1;T ; 8f: (4:7)The inequalities (4.5), (4.6) and (4.7) are sharp when f 2 Q.Proof: In the interests of simplicity (2.2) was stated for f 2 C2(�
). However, asits proof indicates, it also holds (more generally) for f 2 W 21(�
). The details of this factare a little technical, involving such things as the use of the multivariate form of Hardy'sinequality 3.1 to show that the divided di�erence functionals that appear in (2.2) and itsproof remain well de�ned for f 2W 21(T ).For a general f 2W 21(T ) the functionx 7! `v(x)`w(x)Z[x;v;w]Dv�wDw�vf (4:8)10



occuring in (2.2) is only de�ned a.e. To (4.8) apply (3.3) (with p =1), followed by (3.7)(with u1 = v � w, u2 = w � v) to obtain���`v(x)`w(x)Z[x;v;w]Dv�wDw�vf ��� � `v(x)`w(x)


Z[�;v;w]Dv�wDw�vf


L1(T )� 12`v(x)`w(x)kDv�wDw�vfkL1(T )� 12`v(x)`w(x)kv � wk2 f 2;1;T ; (4:9)for a.e. x, which gives:jf(x) �L�f(x)j � 12 Xv 6=w `v(x)`w(x)kv � wk2 f 2;1;T ; 8f 2W12 (T ): (4:10)Here the fact that the Lagrange polynomials `v are non-negative on T was used.The next part of the proof relies on the fact thatx = Xv2� v`v(x); 1 =Xv2� `v(x); (4:11)which follows from (1.1), and is e�ectively the observation that (`v(x) : v 2 �) are thebarycentric co-ordinates of x with respect to �. With h�; �i denoting the Euclidean innerproduct, the quadratic polynomial (of x) occurring in (4.10) can be expanded and simpli�edusing (4.11) in the following way.12 Xv 6=w `v(x)`w(x)kv � wk2= 14Xv Xw `v(x)`w(x)kv � wk2= 14Xv Xw `v(x)`w(x)(kvk2 � 2hv;wi + kwk2)= 14Xv `v(x)kvk2 � 12Xv `v(x)hv;Xw w`w(x)i + 14Xw `w(x)kwk2= 12  Xv kvk2`v(x) � hXv v`v(x); xi!= 12  Xv kvk2`v(x) � kxk2! : (4:12)
Since x 7!Xv kvk2`v(x) � kxk2 (4:13)11



is the unique quadratic polynomial which is zero at the points in � and has the quadraticpart of its Taylor series at the origin equal to �q = �k � k2, it must be equal toR2 � k � �ck2:This gives (4.2) with equality for f 2 Q. It is shown at the end of this section that whenf 2 C2(T ) (and x 62 �) these are the only cases of equality.The sharp inequalitykf � L�fkL1(T ) � 12 maxx2T (R2 � kx� ck2) f 2;1;T ; 8f;follows immediately from (4.2), and the constantmaxx2T (R2 � kx � ck2) = R2 �minx2T kx� ck2 = R2 � d2;giving (4.5). Finally the special cases.Case (a). If c 2 T , then R2 � d2 = R2.Case (b). If c 62 T , then x� the (unique) choice of x 2 T which minimises kx�ck mustlie in some facet F of T , since when x is in the interior of T it may be moved closer to c(thereby reducing kx � ck). In the bivariate case (n = 2), T is an obtuse angled trianglewith F its largest side and x� is the midpoint of F (see Fig. 4.1.). Since the line segmentfrom c to x� is orthogonal to the facet F which has length h, Pythagoras's theorem givesd2 + (h=2)2 = R2;and so 12(R2 � d2) = 18h2:12



x� Rdh=2 c
Fig. 4.1. The situation for an obtuse angled triangle: showing the triangle T (shaded),the facet F (thick side), and x� the closest point to the center cRemark 4.14. It is interesting to observe that Theorem 4.1 can also be obtained fromthe multipoint Taylor formula as follows. Using (3.4) in place of (3.3), the argument usedfor (4.10) can be applied to the multipoint Taylor formula (2.10) to obtainjf(x) � L�f(x)j � 12Xv `v(x)kv � xk2 f 2;1;T 8f: (4:15)The polynomialPv `vkv� �k2 occurring in (4.15) appears to be cubic (which may explainwhy Theorem 4.1 was not obtained earlier). But, it is infact a quadratic giving the sharpbound (4.2) as is shown by the expansion:12Xv `v(x)kv � xk2 = 12Xv `v(x)(kvk2 � 2hx; vi + kxk2)= 12Xv kvk2`v(x) � hx;Xv v`v(x)i + 12kxk2= 12Xv kvk2`v(x) � hx; xi + 12kxk2= 12  Xv kvk2`v(x) � kxk2! ;13



which is similar to (4.12). Theorem 4.1 can also be obtained from Sauer and Xu's formula(2.8), but the proof is more involved.Comparison with the sharp L1-bounds of Handscomb and SubbotinThe inequality (4.2) is well-known in the univariate case (see, e.g., Davis [D75:p57]),but is not known for n > 1.The inequalities (4.6) and (4.7) were recently proved by Handscomb [H95] for thebivariate case, i.e., when T is a triangle. His proof uses bounds for the error in univariateinterpolation in a clever way, and in the case of (4.6) could be extended to the multivariatecase n > 2. There the condition c 2 T (respectively c 62 T ) is stated in the equivalent waythat the triangle T be acute angled (respectively obtuse angled).The inequality (4.7) does not extend to n > 2, since in this case for given h;R thereis an interval of possible values for d (depending on the geometry of the points �). Forexample, when n = 3 the constant 12 (R2 � d2) occurring in (4.5) can as small as h2=8(exactly two of the points are a distance h from each other), or as large as h2=6 (exactlythree of the points are a distance h from each other).In the bivariate case (when T is a triangle)supfR2=h2 : T acute angledg = 1=3;with the supremum attained (only) when T is an equilateral triangle. Thus from (4.6) and(4.7) it follows that for all triangleskf � L�fkL1(T ) � 16h2 f 2;1;T ; 8f; (4:16)which is sharp if and only if T is an equilateral triangle. The inequality (4.16) was provedin Subbotin [Su901] using an argument similar to that of Handscomb. Suprisingly theargument involves a claim that there is sharpness in (4.16) not for some f 2 Q, but for acertain cubic polynomial (Example 1 of [Su901]). At the end of this section, it is shownthat when f 2 C2(T ) there is (nontrivial) equality in (4.2) for x 62 � only for f 2 Q, andit is pointed out why Subbotin's calculation is in error.More generally, for n � 1 it can be shown thatsupfR2=h2 : c 2 Tg = n2(n + 1) ;with the supremum attained (only) when the points in � are equidistant from each other.In this way one obtains the n > 2 analogue of (4.16) thatkf � L�fkL1(T ) � 14 nn+ 1h2 f 2;1;T ; 8f; (4:17)14



which is sharp when the points in � are equal distances from each other. This inequality(4.17) was proved by Subbotin [Su902:Th.1] where, this time correctly, the sharpness wasdemonstrated by considering an appropriate quadratic polynomial f 2 Q, namelyf = 12h2 Xfv;wg��v 6=w `v`w;which we recognise as the polynomial given by (4.12), with each occurence of kv � wkreplaced by h. Geometric interpretation of the result,the optimal recovery of functions and envelope theoremsSuppose that the following information about f 2W 21(T ) is known:f(v); v 2 � (its values at the points �) (4:18)and jD2f j � K on T (i.e., f 2;1;T � K): (4:19)If � is any continuous linear functional on W 21(T ), then it follows from an observation ofGolomb and Weinberger [GW59] that the possible values of �(f) form a bounded intervalL � �(f) � U;where the values of the endpoints may or may not be attained. The reason for this, is thatthe set of f satisfying (4.18) and (4.19) is bounded with respect to the normf 7! f 2;1;T +Xv2� jf(v)j(which is equivalent to any of the usual norms for W 21(T )), and so its image under thebounded linear map � (the set of possible values for �(f)) is a bounded convex set, i.e.,an interval.In particular, considering the (continuous) linear functional of point evaluation at x,there exist functions L; U for whichL(x) � f(x) � U(x); 8x 2 T;and these bounds cannot be improved in the sense that there exists an f taking any valuestrictly between them. For obvious reasons, some authors refer to these functions L and Uthat enclose f as (lower and upper) envelopes for f .15
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UfLFig. 4.2. The lower and upper envelopes L; U bounding the (shaded) region where theunivariate function f must lie, given that its values at a; b are known andits second derivative is bounded by some (known) constant on [a : : b].Theorem 4.1 provides the solution of the optimal recovery problem of determining Land U as follows. Since f satis�es (4.19), inequality (4.2) givesjf(x) � L�f(x)j � 12K (R2 � kx� ck2);which can be rewritten asL�f(x) � 12K(R2 � kx� ck2) � f(x) � L�f(x) + 12K (R2 � kx� ck2): (4:20)Since (4.20) is sharp for those f 2 Q with f 2;1;T = K (which is nonempty for any givendata f(v), v 2 �), it provides the envelopes for f , which we now state as a corollary.Corollary (Envelope Theorem) 4.21. Suppose that the de�nitions of Theorem 4.1hold. If the value of f 2W 21(T ) is known at the points �, and jD2f j � K on T , thenL(x) � f(x) � U(x); 8x 2 T; (4:22)where L(x) := L�f(x) � 12K (R2 � kx� ck2);U(x) := L�f(x) + 12K (R2 � kx� ck2); (4:23)16



and there exists a function f taking any of the values allowed by (4.22). In particular, thequadratic functions L; U match f at � and satisfy jD2Lj; jD2Uj = K on T .Notice that the envelope functions L; U given by (4.23) can be computed from � andthe values given for f(v), v 2 �.
x� R

Ru vw
u vw

c
cFig. 4.3. Examples of the upper envelopes for a bivariate function f which is zeroat � = fu; v;wg and has jD2f j � K on the triangle T (shaded), showingthe circle containing the points �. The �rst example is an acute angledtriangle and the second an obtuse angled triangle.Perhaps the best known `envelope theorem' is the result of Ga�ney{Powell [GP76]and Micchelli{Rivlin{Winograd [MRW76] which shows that if the values of a univariatefunction f is known at m + k points in [a : : b] and jDkf j � K on [a : : b], then f mustlie between two perfect splines of degree k. Corollary 4.21 is a multivariate generalisationof the case k = 2 (with m = n � 1). Though a trivial generalisation in the sense thatthe envelope functions are such simple multivariate splines (quadratic polynomials), it isimportant in view of the lack of results on the optimal recovery of multivariate functionsfrom such information, and the possibility that it may lead towards more signi�cant results.In this regard, it is worth mentioning a related result of Shvartsman (see [B94]) whichhas a geometric form similar to (4.2). Let � be the centre of a ball of radius � containing17



�. Then, using Jensen's inequality, Shvartsman proves that for all x 2 Tjf(x) �L�f(x)j �p�2 � kx � �k2 f 1;1;T ; 8f 2W 11(T );and so, in particular,jf(x) � L�f(x)j �pR2 � kx� ck2 f 1;1;T 8f:These inequalities are not sharp for general x 2 T .Extremal functionsFor a general f 2W 21(T ) the function (4.8) used in the proof of (4.2) is only de�neda.e., and so (for �xed x 2 T ) it does not make sense to ask what conditions on f giveequality in (4.9). However, if f 2 C2(T ), then (4.8) de�nes a continuous function, and theconditions giving equality in (4.9) are known. In this way, it is now shown that the set Eof C2(T ) functions giving equality in (4.2) for a �xed x 2 T n� is exactly Q.By (3.5), there is equality in (4.9) only ifDv�wDw�vf is constant on convfx; v;wg; (4:24)and jD2v�wf(x)j = kv �wk2jD2f j(x) = kv �wk2 f 2;1;T : (4:25)The condition (4.25) is a statement about the quadratic form given byy 7! D2yf(x) = yTHywhere H is the Hessian matrix of f evaluated at x. It says precisely that each vector v�wis an eigenvector of H with eigenvalue of maximum modulus � = jD2f j(x) = f 2;1;T .All of these eigenvectors correspond to one of the two possible eigenvalues ��, since foru; v;w 2 � two of the vectors v � u;w � v; u� w correspond to the same eigenvalue, andso the third, being a di�erence of the other two, must also. This implies H is a scalarmultiple of the identity matrix, i.e.,D2yf(x) = � f 2;1;Tkyk2: (4:26)Since the (n+2)-dimensional space Q is contained in E, to prove that E = Q it is su�cientto show that the only function from E that is annihilated by some n+2 linear functionalswhich are linearly independent over Q is the zero function. We now show this for the n+2linear functionals consisting of point evaluation at each v 2 � together withf 7! D2yf(x);for some y. If D2yf(x) = 0 for f 2 E, then (4.26) implies f 2;1;T = 0, and so f is a linearpolynomial. But the only linear polynomial which is zero at each point in � is the zeropolynomial, and we conclude E = Q. 18



An immediate consequence of this is that the only functions f 2 C2(T ) giving equalityin (4.16), for T an equilateral triangle, are f 2 Q. In Subbotin [Su901:Ex.1] it is claimedthat for the equilateral triangle with vertices� := f(0; 0); (h; 0); (h=2;p3h=2)gthere is equality in (4.16) for the cubic polynomial given byf(x; y) := 12M �y(h0 � y) + h0 � yh0 (h� x)x� ; h0 := p32 h;(which vanishes at �). There it is supposed that f 2;1;T =M , and it is observed thatf(c) = 16Mh2; c = (h=2;p3h=6);giving the sharpness. However, it is not true that f 2;1;T =M . Indeed, with � = (�1; �2)one has that D2�f(0; 0) = �M ��21 + �22 + h�1�2� ; (4:27)and so f 2;1;T �M(1 + h=2).5. The corresponding Lp-boundsIn this section the multivariate form of Hardy's inequality is applied to (2.2) to obtainLp-error bounds for linear interpolation for 1 � p � 1. For small p the results obtained inthis way are not a signi�cant improvement over those already in the literature. As before,let T := conv�.Proposition 5.1. Suppose L� is the map of linear interpolation at �, and 1 � p � 1.Then, the best constant in the inequalitykf �L�fkLp(T ) � C Xfv;wg��v 6=w kDv�wDw�vfkLp(T ); 8f 2W 2p (T ); (5:2)depends only on n and p. This best constant, which will be denoted by Cn;p, satis�esCn;p � 14(1 � n=p)(2 � n=p) ; p > n; (5:3)which is sharp when p =1, i.e., Cn;1 = 1=8: (5:4)Proof: Inequalities of the form (5.2) with the seminormf 7! Xv 6=w kDv�wDw�vfkLp(T ) (5:5)19



replaced by other equivalent seminorms such as � 2;p;T , and C a constant depending on Talso, are well-known (see, e.g., Ciarlet [C78:Th.3.1.4]). Thus, (5.2) holds with a constantwhich depends on T in addition to n and p. An a�ne change of variables shows thisconstant to work for all T , and so in particular we may choose the best possible constantCn;p, which depends only on n and p.It follows from the multivariate form of Hardy's inequality 3.1 that (2.2) holds for8f 2W 2p (T ) when p > n. It can easily be shown that:k`v`wkL1(T ) = 1=4;with the maximum taken at the midpoint of the line segment with endpoints v and w.Using this fact, together with (3.3), one obtains from (2.2) thatkf � L�fkLp(T ) � 14 Xfv;wg��v 6=w 


x 7! Z[x;v;w]Dv�wDw�vf


Lp(T )� 14(1 � n=p)(2� n=p) Xfv;wg��v 6=w kDv�wDw�vfkLp(T ):Finally, we prove the sharpness asserted in (5.4). Let f be a quadratic polynomialwith all the derivatives that occur in (2.2) zero except for Dv�wDw�vf . Then, by (1.8)Z[x;v;w]Dv�wDw�vf = 12Dv�wDw�vf;so (2.2) reduces to f �L�f = 12`v`w=2Dv�wDw�vf:Taking the Lp(T )-norm of this gives the lower boundCn;p � 12 k`v`wkLp(T )k1kLp(T ) ;which is sharp when p =1.The seminorm (5.5), though convenient for our purposes, is not usually used. Instead,for the purposes of comparison, we give a result using the more usual f 2;p;T .From (3.7) it follows thatkDv�wDw�vfkLp(T ) � kv � wk2 f 2;p;T ;and so by Proposition 5.1 we have, that for p > nkf � L�fkLp(T ) � n(n+ 1)8(1� n=p)(2 � n=p)h2 f 2;p;T ; 8f 2W 2p (T ); (5:6)20
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