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ABSTRACT
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From it sharp pointwise Lo.-bounds for the error in linear interpolation (interpolation by
linear polynomials) to (function values at) the vertices of a simplex are obtained. The
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1. Introduction

The high applicability of numerical methods based on interpolation from spaces that
contain polynomials, such as the finite element method, has lead to a large literature
dealing with the error in such schemes. The main contribution of this paper is an error
formula for interpolation to function values at a set of points from a space that includes the
linear polynomials. Since the formula covers the much studied case of linear interpolation
at the vertices of a triangle (Courant’s ‘original’ finite element [Co43]), it allows us to
address some fundamental questions about the representation of errors in multivariate
polynomial interpolation in this simple setting. Some questions are answered, while other
perhaps suprising issues are raised.

The paper is set out as follows. In the remainder of this section we give necessary
definitions. The maps of interest are cases of so-called Lagrange maps. We discuss the linear
functional f — f(_) f, and some of its relevant properties. This linear functional is proving
to be the appropriate notation in which to express multivariate polynomial interpolants
and their errors (see, e.g., de Boor [B95]). In Section 2, the error formula is given and
compared with others. In Sections 3, 4 and 5, L,-error bounds for linear interpolation,
which are sharp for p = oo, are obtained from the formula by using a multivariate form
of Hardy’s inequality. These bounds are compared with others in the literature, including

recent work of Handscomb [H95] and Subbotin [Su904], [Su902].

Lagrange maps

We say that Lagrange interpolation from a space of functions P to a set of points
© C IR" is correct if for each function f (defined at least on ©) there is a unique p € P
with
p(v) = f(v), YveO.

The associated linear projector f +— p is called the Lagrange map (given by the space of
interpolants P and points of interpolation 0), and it is denoted by

Lpe:f—p.

The Lagrange form of a Lagrange map Lpg is given by

Lpof= Z.f(”)ﬂm (1.1)

vEO

where (1.1) uniquely defines
KU = ﬂ?),P,@ € Pa

the Lagrange function for v € O.

Lagrange maps with a space of interpolants that contains II; (the polynomials of
degree < k) are frequently used to interpolate to scattered data. Particular examples
receiving much attention lately are maps where the interpolants include radial basis func-
trons.



The linear functional f — f@ f

To describe the error in a Lagrange map it is often convenient to use the following
linear functional called the divided difference functional on IR" by Micchelli in [M80]
and analysed there and in [M79].

Definition 1.2. For O the sequence [fy,...0;] of k 4+ 1 points in IR", let

1 S1 Sk—1
f|—> / f = / / / f(90 —I—S1 (91 *90) ++9k(9k*9k,1))(]‘3k(]‘32 d817
JO JO JO J0

with the convention that f[] f=0.

The value of f(_) f does not depend on the ordering of the points in . The nature of
f(_) f becomes more apparent by observing that

L= ), e (1.3)

where M(-|®) is the simplex spline with knots @ (which is supported on conv ©, the
convex hull of the points in ©). The class of functions for which f(_) f is defined can be
determined from (1.3).

Crucial to the arguments of the paper is the following form of the fundamental theorem

of calculus, that
/ fﬁ / f: / vawf- (14)
J[0,v] J[O,w] J[O,v,w]

This is a form of the difference identity for simplex splines (see [M80:Th.6]) which pervades
the multivariate spline literature.
We will also use the differentiation rule, that

/ DZ1D22"'DZk
Jz1,.r a1 S

where D, denotes the derivative in the direction z, and © is a finite sequence of points.

The rules (1.4) and (1.5) are the basis for a multivariate divided difference theory that
is currently being developed (see, e.g., de Boor [B95]). In this regard, notice that the
Hermite-Genocchi formula can be written as

)

f= / D.D., ---D,_f, (1.5)
@] . [m1,...,mk+1,®]

[6o,....00]f = / D¥ ¢, (1.6)

[80,---,0%]

where [0y, ...,0;]f is the univariate divided difference of f at the points 6, ..., 8 in IR.
Other properties, including a discussion of the continuity of the map

G%/ﬂ
JO
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can be found in Waldron [W96,].

The special cases of f — f(_) f used in the paper

We will only consider f f(_) f for © consisting of one, two, or three points. For a
single point we simply have point evaluation

.Kﬁ—ﬂm- (L.7)

If © consists of two distincet points, then f(_) f is the average of f over the line segment

/[] = ./01 Flu+t(v —u))dt,

while if © consists of two points that are the same, then we again have point evaluation

/[] f = flu).

If O consists of three points which are the vertices of a triangle T' := conv{u, v, w} with

area A, then f(_) f 1s half of the average of f over T

11
f=55/* (1)
./[11, v ) 2 A JT

If © consists of three points which are collinear but not all the same, then f(_) f is a line

joining them

integral of f over the line segment conv O against the B-spline with knots 0.

U v w U vV=w

Fig 1.1 The B-splines corresponding to three collinear points

If © consists of three points all the same, then we have point evaluation divided by 2

./[,1’7”7”] f= f(;).

2. The error formula

In this section we give an error formula for a Lagrange map whose space of interpolants
contains IT; (the linear polynomials). This formula involves only second order derivatives
of the function interpolated (the form desired by numerical analysts). The idea of the
proof below is to use the ‘difference identity’ (1.4) in just the right way so as to introduce
these second order derivatives. Let D, f denote the derivative of f in the direction y.
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Theorem 2.1. Suppose that ) (the closure of §)) is starshaped with respect to ©. If Lp g
is a Lagrange map with

I, c PCC(Q),
then for all f € C*(Q)

flo) = Lpef(z) = Y lo(x)lu(r) / Dy wDu of,  Vref. (2.2)

{v,w}CO® " [.’l?,?},“]]
vFEw

where the sum is taken over all 2-element subsets of ©.

Proof: Since P contains Iy (the constants), it follows from (1.1) that

» 0, =1 (2.3)

vEB
This, together with (1.7) and the ‘difference identity’ (1.4), gives
f(z) = Lpef(x (/ f/ ) Z( D.T,Uf> Cy(). (2.4)
UEO (2] ve@ N [%,v]

Since P contains TI; (the linear polynomials), and each coordinate of (- — v) is a linear
polynomial, it follows from (1.1) that

r—v= Z w — )y ( (2.5)

weEB

Substituting (2.5) into (2.4), and using the linearity of y — D, gives

f( ) LPOf Z Z ﬁv w 7' Dwfvf- (2-6)

vEO WEB Jx,0]

The double summation in (2.6) is over all ordered pairs (v, w) where v # w (the terms for
v = w are zero). By summing the pairs (v,w) and (w,v) first, we obtain the following sum
over the unordered pairs {v, w}

Fo) ~ Lrafle) = % futaltnto)(

{v,w}CO® " ['77777]
vFEw

Dwfw,f - Dwv.f) - (27)
J[z,w]

Finally, by the ‘difference identity’ (1.4) again,

Dwfvf - Dwfvf = / DU*“JDU]*U,fj
J[x,v] [7,w] [z,v,w)]

which gives the result. O



This error formula reflects the geometry in a particularly appealing way. The error
at any point = not lying on a line connecting points in O is the sum over distinct points
v,w € O of 1/2 the average of the second order derivative D, _,,D,,_, [ over the triangle
conv|[z, v, w| multiplied by the function ¢,¢,, which vanishes at all of the points in ©.

w

Fig 2.1 The region of integration for the derivative D, _,, D, f
occuring in the error formula (2.2)

The special case of this formula when P = TI; is the first in a family of error formulza for
Chung-Yao interpolation from IT; recently obtained by de Boor [B95]. In Chung-Yao
interpolation, see [CY77] for more details, the points of interpolation are the intersections
of certain sets of hyperplanes. Interpolation from II; (the linear polynomials) is often
referred to as linear interpolation (for obvious reasons), a term which is also used (by
some) for any interpolation scheme where the interpolation operator is linear (for equally
obvious reasons). In this paper we will always mean the former.

For the special case of linear interpolation at u, v, w the vertices of a triangle in IR?,
there are many formulae which express the error in terms of second order derivatives.
Most of these formulae require the points u, v, w to lie in some special position, and do not
transform in a simple way under an affine change of variables. For example, Gregory [G75]
gives a formula for when the points are (0,0), (1,0), (0,1) that involves four line integrals
and five area integrals of the partial derivatives D? f, Dy Do f, and D32 f. More recently,
Sauer and Xu [SX95] have given the formula

f(T) - L(—),]_h f(T) - /U(T) / D.T*UDU*U,JC + ﬂw(m) / Dmwawfu,fa (28)
oz u,v] oz u,w)
and similar ones for Lagrange interpolation from II;. The formula (2.8), though of similar
form to (2.2), has the disadvantage that it is not symmetric in the points u, v, w, that is,
it depends on some ordering of them.



Besides (2.2), there is one other formula for the error in a Lagrange map whose space
of interpolants contains the linear polynomials. Like (2.2), this formula, the multipoint
Taylor formula given below, is symmetric in the points of ©.

Multipoint Taylor formula ([CW71]) 2.9. Suppose that 2 is starshaped with respect
to ©. If Lpg is a Lagrange map with

I, c PCC(Q),
then for all f € C*(Q)

fo) = Lpof(r) ==Y lu(z) / D . f. VYreq. (2.10)

vE® [z,7,v]

w

Fig 2.2 The region of integration for the derivative D? __f
occuring in the multipoint Taylor formula (2.10)

The multipoint Taylor formula (2.10) is the multivariate form of Kowalewski’s re-
mainder (see [K32:p21-24], or Davis’s book [D75:p71]). Recently, it has been shown in
[W96*] that (2.2) and (2.10) are special cases of a family of error formulae indexed by
certain real measures of unit mass.

There exists a version of the multipoint Taylor formula for the derivative of the er-
ror, but it is not clear whether there is such a formula for (2.2). For example, simply
differentiating (2.2) using the ‘differentiation rule’ (1.5) gives

Dy (f - LP,(—)f) (T) - Z ﬂw(m)ﬂw(m) / DyDUwawa,f

{v,w}C® [2,2,0,w)]
vFEw
+ Z D /” 7”( )+/”( )D /“J( ))/ DU,“]D“],U.]C’
{v,w}C® Sz, v,w)
vFEw



which has third order derivatives of f (in addition to the desired second order derivatives).
Comparison of the relative merits of (2.2) and the multipoint Taylor formula (2.10)
turns out to involve a complex set of issues. Ultimately, it is seen that in some situations
one formula is to be favoured over the other, while in other situations it is the reverse.
First consider the case when L is the map of linear interpolation to the points v, w € IR.
In this case, using the Hermite-Genocchi formula (1.6) to change to divided difference
notation, our error formula (2.2) is the standard formula

fl2) = Lf(x) = (x —v)(x —w)[z,v,w]f, (2.11)

while the multipoint Taylor formula (2.10) is Kowalewski’s remainder

(x —w) (r —w)

(v —w) (w —v)

Here, for standard applications, such as obtaining L,-bounds on the error (see, e.g.,

flx) — Lf(x) = (v —2) [z, 2,0]f + (w — ) [z, 2, 0] f. (2.12)

[W96:]), the error formula (2.2) is to be preferred, as is indicated by the relative obscurity
of Kowalewski’s formula.

For linear interpolation in IR"™ when n > 1, the question of which is the best formula
becomes more complicated. If n = 2, then both formulse have 3 terms, while for n > 2
our error formula has n(n 4+ 1)/2 terms which is more than the multipoint Taylor formula
which has only n + 1 terms. However, from a structural point of view our formula is
perhaps a little more pleasing, since (like the standard univariate formula) it involves
quadratic polynomials multiplying averages of derivatives (over triangles), as opposed to
cubic polynomials multiplying averages of derivatives This form makes obvious certain
features of linear interpolation, such as the fact that the error in approximation to a
quadratic polynomial is a quadratic polynomial.

More substantive differences between the formulae become apparent when they are
used to obtain L,-error bounds. These questions are considered in the remaining sections,
and ultimately lead to a number of open problems (see Research Problems Section of this
issue) whose solution will provide the answers (or raise a whole new set of questions).

3. Preliminary facts and some notation

In this section we outline those techniques and notations needed to obtain L,-error
bounds in Sections 4 (sharp Lo,-bounds) and 5.

The multivariate form of Hardy’s inequality

The following inequality is extremely useful for obtaining L,-bounds from many of
the error formulae for multivariate polynomial interpolation schemes, such as the formula
(2.2) and the multipoint Taylor formula. Let

((],)n = ((],)((], + 1)((7 + 2) .. ((7, In— 1)7
the shifted factorial function, and denote the cardinality of © by #0.
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Multivariate form of Hardy’s inequality ([W96,]) 3.1. Let © be a finite sequence
in R", and let £ be an open set in IR" for which ) is starshaped with respect to ©. If
m —n/p >0, then the rule

Hyof(r):= /[T f

induces a positive bounded linear map H,, o : L,(2) — L,(§2) with norm

1
< 7 r)ee —o0 as  m—n/p—0t. (3.2)

| Hm.o

This upper bound for |H,, o|| is sharp when © involves only one point, i.e., when

0=1v,...,v],

and when p = oo (with the norm taken on only for the constant functions).

The inequality given by (3.2) was used to obtain L,-error bounds from a wide variety
of formulae in [W964]. There it is referred to as the multivariate form of Hardy’s inequality,
since in the univariate case when m =1, @ = {0}, and Q = (0, 00), it reduces to Hardy’s
inequality.

We will need only the special cases that: for 1 —n/p >0

e [ ]
Jx,v,w)

and for 2 —n/p >0

e [
Jx,7, )

where T =  is starshaped with respect to v, w (respectively v). In particular, to inves-

1
Ly (T) = (1 —n/p)(2—n/p)

[FAIFES Vfe Ly(T), (3:3)

1
<
To(T) (2 _ n/p) ||f||L,,(T),

Vfe L,(T), (3.4)

tigate the extremal functions for the sharp inequalities given in Section 4, we need the
consequence of (3.3) that, for all x € T

1
[ pl= s, vreom, (3.5)

for which there is equality only when f is constant on conv{z,v,w} with the size of that
constant value equal to [[f||7_ (7). This inequality also follows (immediately) from the
mean value theorem (for positive measures).

Norming Wif

Many Ly-error bounds can be conveniently described by using the co-ordinate inde-
pendent seminorms

f=1il,r

8



defined as follows. Let W;“(T) be the Sobolev space of functions with derivatives of order up
to kin L,(T). To each f € W;“(T) associate the function |D* f| € L,(T), which measures

the size of its k-th derivative, and is given by the rule

IDFfl(x) == sup Dy, --- Dy, f(x)| = sup D f(x)], (3.6)

% ,...,uy ERT uER?

gl < el =1
where the derivatives D, --- D,, f are computed from any (fixed) choice of representatives
for the k-th order partial derivatives of f. Here || - || denotes the Fuclidean norm. The

equality of the two suprema follows from a classical result of Banach on the norm of a
symmetric multilinear mapping (see, e.g., Harris [Har96]). This definition of |D*f| is
consistent with its standard univariate interpretation. From (3.6), it is easy to see that

|Dkf| 1s well-defined and satisfies
Dy -+ D fl < D fl |- sl ace. (3.7)

for all uy,...,ur € R”. For k = 1 and 2, |D* f| relates to the usual notions of first and
second derivative as follows: |Df]| is the norm of the gradient of f

IDf| = |lgradf|| = /(D1 f)> + -+ (Du f)?, (3.8)

and |D?f| is the spectral radius of the Hessian of f, which in the bivariate case can be

computed by

D*f| = |D}f + D2f| + /(DI f — D3f) +4D\ D, (3.9)

The L,(T)norm of |D* f| gives a seminorm on W;“(T)

Fe 1 lepr = 1D FI 2,07y (3.10)

with
| flopr = Ifll7, ()

4. Sharp pointwise L.-error bounds for linear interpolation

The main result of this section is a sharp pointwise L.-error bound for linear inter-
polation. By linear interpolation we mean interpolation by linear polynomials to function
values at n + 1 points in IR"”. These n + 1 points are necessarily affinely independent, i.e.,
the vertices of a simplex in IR". This simplex will be denoted

T := conv O,
its diameter by
h:= diam ©® = max [[v — w],
v, WwED

and the map of linear interpolation by Lg.



Theorem 4.1. Suppose that Le is the map of linear interpolation at ©. Let ¢ be the
centre and R the radius of the (unique) sphere containing ©. Then, for each x € T, there
is the sharp inequality

[f(2) = Lo f(x)] < S(B* — |z = cll) | f Lo Vf € W(T). (4.2)

1
2
Equality in (4.2) occurs when

f € Q :=span{q} & 11y, (4.3)

where ¢ is the quadratic polynomial obtained by taking the square of the Fuclidean norm,
ie.,

and these are the only C*(T) functions giving equality in (4.2) forz € T \ ©.

In particular, there is the sharp inequality

1
If = Lefllr.r < §(R2 — ) 1 f gm0, vF, (4.5)

where d is the distance of ¢ from T, i.e.,

d :=dist(¢,T) = min ||z — ¢||.
reT

Special cases of (4.5) of interest include the following:
(a) If ¢ € T, then there is the sharp inequality

1
If = Lefllrn.cr < §R2 |f12,00,7 vf. (4.6)

(b) For the bivariate case (n =2), if ¢ € T, then there is the sharp inequality

1
If —Lefllr.(r < ghQ |f 12,00, 7 vf. (4.7)

The inequalities (4.5), (4.6) and (4.7) are sharp when f € Q.

Proof: In the interests of simplicity (2.2) was stated for f € C?(€). However, as
its proof indicates, it also holds (more generally) for f € W2 (2). The details of this fact
are a little technical, involving such things as the use of the multivariate form of Hardy’s
inequality 3.1 to show that the divided difference functionals that appear in (2.2) and its
proof remain well defined for f € W2 (T).

For a general f € W2 (T) the function

r = KU(."I?)KW('T) / Dwfanwa,f (48)

Jz,v,w0]

10



occuring in (2.2) is only defined a.e. To (4.8) apply (3.3) (with p = o0), followed by (3.7)

(with w1 = v — w, ug = w — v) to obtain

ﬂw(m)ﬂqu(m) / DU*UJDwa.f S KU(‘T)K“J(‘T)

Jz,v,w0]

DU w w—ov fH
./[-,U,w] 100 (T)

1
S §£U(T) w( )||DU w w— Uf”TOO(T) (49)

1
S 5&1(7)/“]( )HU o 11)|| |f|2 ,00,T"

for a.e. x, which gives:

|f( ) LO]C Zﬁv w |7) *“)H |f|200T7 VfE WQOO(T) (410)

1175 w

Here the fact that the Lagrange polynomials ¢, are non-negative on T was used.
The next part of the proof relies on the fact that

=Y wly(x), 1= l,(x), (4.11)

vEO vEO

which follows from (1.1), and is effectively the observation that (¢,(x) : v € @) are the
barycentric co-ordinates of x with respect to . With (-;-) denoting the Euclidean inner
product, the quadratic polynomial (of ) oceurring in (4.10) can be expanded and simplified
using (4.11) in the following way.

— Zﬁ” Cop ()]0 —w||

Uqéw
- _ZZ/“ w ||7) *11}”
1 Z Zﬁ” 7” ||7)|| <7),w> + ||w||2)
- (4.12)
= F I 5 e S vt + 3 3 bl ol
1
— 5 (Z ||7)||2£11(f’7) — <Z 7)%7}(_’17)7;[j>>
1 ) ,
=5 [ Doty — )
Since

e S ol () [P (4.13)
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is the unique quadratic polynomial which is zero at the points in © and has the quadratic
part of its Taylor series at the origin equal to —q = —|| - ||?, it must be equal to

R |-l

This gives (4.2) with equality for f € Q. Tt is shown at the end of this section that when
f € C*T) (and = € O) these are the only cases of equality.

The sharp inequality

1
If —Lefllr.r < 5?2%(1%2 Nl —ell®) 1fl2.00.7 v,

follows immediately from (4.2), and the constant

max(R?> — ||z — ¢||*) = R?> — min ||z — ¢||* = R* — d°,
reT reT

giving (4.5). Finally the special cases.

Case (a). If ¢ € T, then R* — d* = R~

Case (b). If ¢ € T, then 2* the (unique) choice of € T which minimises ||z — ¢|| must
lie in some facet F of T, since when x is in the interior of T it may be moved closer to ¢
(thereby reducing ||# — ¢||). In the bivariate case (n = 2), T is an obtuse angled triangle
with F its largest side and 2* is the midpoint of F' (see Fig. 4.1.). Since the line segment
from ¢ to #* is orthogonal to the facet F' which has length i, Pythagoras’s theorem gives

d’> +(h/2)* = R,

and so

1 1
—(R*> —d*) = =h”.
2 8

12



Fig. 4.1. The situation for an obtuse angled triangle: showing the triangle T (shaded),
the facet F' (thick side), and 2* the closest point to the center ¢

Remark 4.14. Tt is interesting to observe that Theorem 4.1 can also be obtained from
the multipoint Taylor formula as follows. Using (3.4) in place of (3.3), the argument used
for (4.10) can be applied to the multipoint Taylor formula (2.10) to obtain

[f(z) = Lof(x)] < 5 Zm o =1* 1flpor  VF. (4.15)

The polynomial ) /,||v —-||* occurring in (4.15) appears to be cubic (which may explain
why Theorem 4.1 was not obtained earlier). But, it is infact a quadratic giving the sharp
bound (4.2) as is shown by the expansion:

—Zm ||7H~||2:—Zm )2 = 26, v) + )
1
= 5 Sl ) — (o 3 )} + gl

v

1 1
= 5 S Il tute) = ) + el

13



which is similar to (4.12). Theorem 4.1 can also be obtained from Sauer and Xu’s formula
(2.8), but the proof is more involved. O

Comparison with the sharp L..-bounds of Handscomb and Subbotin

The inequality (4.2) is well-known in the univariate case (see, e.g., Davis [D75:p57]),
but is not known for n > 1.

The inequalities (4.6) and (4.7) were recently proved by Handscomb [H95] for the
bivariate case, i.e., when T is a triangle. His proof uses bounds for the error in univariate
interpolation in a clever way, and in the case of (4.6) could be extended to the multivariate
case n > 2. There the condition ¢ € T (respectively ¢ ¢ T') is stated in the equivalent way
that the triangle T be acute angled (respectively obtuse angled).

The inequality (4.7) does not extend to n > 2, since in this case for given h, R there
is an interval of possible values for d (depending on the geometry of the points ©). For
example, when n = 3 the constant %(RQ — d*) occurring in (4.5) can as small as h?/8
(exactly two of the points are a distance h from each other), or as large as h?/6 (exactly
three of the points are a distance h from each other).

In the bivariate case (when T is a triangle)

sup{R?/h* : T acute angled} = 1/3,

with the supremum attained (only) when T is an equilateral triangle. Thus from (4.6) and
(4.7) it follows that for all triangles

1
If = Lefllrn.cr < 677/2 |fls,00, 7 v, (4.16)

which is sharp if and only if T is an equilateral triangle. The inequality (4.16) was proved
in Subbotin [Su90;] using an argument similar to that of Handscomb. Suprisingly the
argument involves a claim that there is sharpness in (4.16) not for some f € @, but for a
certain cubic polynomial (Example 1 of [Su90¢]). At the end of this section, it is shown
that when f € C*(T) there is (nontrivial) equality in (4.2) for 2 &€ © only for f € @, and
it is pointed out why Subbotin’s calculation is in error.

More generally, for n > 1 it can be shown that

sup{R*/h* : c € T} = ﬁj

with the supremum attained (only) when the points in O are equidistant from each other.
In this way one obtains the n > 2 analogue of (4.16) that

1 n
— Le < ——— B v 4.17
\f — Lo fllr.(rm < i | fl2 00 7 1 (4.17)
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which is sharp when the points in © are equal distances from each other. This inequality
(4.17) was proved by Subbotin [Su90,:Th.1] where, this time correctly, the sharpness was
demonstrated by considering an appropriate quadratic polynomial f € (), namely

f - %hQ Z ﬂvﬂwa

{v,w}CO®
vFEw

which we recognise as the polynomial given by (4.12), with each occurence of ||v — w]|

replaced by h.

Geometric interpretation of the result,
the optimal recovery of functions and envelope theorems

Suppose that the following information about f € W2 (T) is known:
fv), veBO (its values at the points ) (4.18)

and

D<K on T (i |flymr < K). (4.19)

If 11 is any continuous linear functional on W2 (T'), then it follows from an ohservation of

Golomb and Weinberger [GW59] that the possible values of u(f) form a bounded interval
L<u(f)<T,

where the values of the endpoints may or may not be attained. The reason for this, is that
the set of f satisfying (4.18) and (4.19) is bounded with respect to the norm

Folflomwr+ > If0)

vEO

(which is equivalent to any of the usual norms for W2 (T)), and so its image under the
bounded linear map p (the set of possible values for u(f)) is a bounded convex set, i.e.,
an interval.

In particular, considering the (continuous) linear functional of point evaluation at =,
there exist functions L, U for which

L(r) < f(a) <U(),  VeeT.

and these bounds cannot be improved in the sense that there exists an f taking any value
strictly between them. For obvious reasons, some authors refer to these functions L and U
that enclose f as (lower and upper) envelopes for f.

15



fla) +

| |
T T

a b
Fig. 4.2. The lower and upper envelopes L, U bounding the (shaded) region where the

univariate function f must lie, given that its values at a,b are known and
its second derivative is bounded by some (known) constant on [a .. b].

Theorem 4.1 provides the solution of the optimal recovery problem of determining L
and U as follows. Since f satisfies (4.19), inequality (4.2) gives

KR o — )
which can be rewritten as
1 1
Lof(r) ~ SK(B — llo — cl) < f(s) < Lof(a) + 2K (B o —c®).  (4.20)

Since (4.20) is sharp for those f € Q with | f|, ., = K (which is nonempty for any given
data f(v), v € @), it provides the envelopes for f, which we now state as a corollary.

Corollary (Envelope Theorem) 4.21. Suppose that the definitions of Theorem 4.1
hold. If the value of f € W2 (T) is known at the points ©, and |D*f| < K on T, then

L(z) < f(r) < U(z), Vo eT, (4.22)

where

(4.23)



and there exists a function f taking any of the values allowed by (4.22). In particular, the
quadratic functions L,U match f at © and satisfy |D?L|,|D?*U| = K on T.

Notice that the envelope functions L, U given by (4.23) can be computed from O and
the values given for f(v), v € ©.

/r;/;/)( ()

/////; W(ﬂ"
v/ PV
A

v

/
L

l’%f’
(%
F
/

U

Fig. 4.3. Examples of the upper envelopes for a bivariate function f which is zero
at © = {u,v,w} and has |[D?f| < K on the triangle T (shaded), showing
the circle containing the points ©. The first example is an acute angled
triangle and the second an obtuse angled triangle.

Perhaps the best known ‘envelope theorem’ is the result of Gaffney Powell [GP76]
and Micchelli Rivlin Winograd [MRW76] which shows that if the values of a univariate
function f is known at m 4+ k points in [a .. b] and [D*f| < K on [a..b], then f must
lie between two perfect splines of degree k. Corollary 4.21 is a multivariate generalisation
of the case k = 2 (with m = n — 1). Though a trivial generalisation in the sense that
the envelope functions are such simple multivariate splines (quadratic polynomials), it is
important in view of the lack of results on the optimal recovery of multivariate functions
from such information, and the possibility that it may lead towards more significant results.

In this regard, it is worth mentioning a related result of Shvartsman (see [B94]) which
has a geometric form similar to (4.2). Let n be the centre of a ball of radius p containing
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O. Then, using Jensen’s inequality, Shvartsman proves that for all x € T

[f() = Lo f(x)] < v/p* —llx =l Ifly oy YV EWL(T),

and so, in particular,

f(z) — Lo f(x) < VR> — ||z — | If I sor  VF.

These inequalities are not sharp for general x € T.

Extremal functions

For a general f € W2 (T) the function (4.8) used in the proof of (4.2) is only defined
a.e., and so (for fixed 2 € T) it does not make sense to ask what conditions on f give
equality in (4.9). However, if f € C*(T), then (4.8) defines a continuous function, and the
conditions giving equality in (4.9) are known. In this way, it is now shown that the set E
of C?*(T) functions giving equality in (4.2) for a fixed € T'\ © is exactly Q.

By (3.5), there is equality in (4.9) only if

D,_ Dy f is constant on conv{z,v,w}, (4.24)

and
1D f()] = lv —wlPID? fl(z) = [[o — w|* | f s, 00.7- (4.25)

The condition (4.25) is a statement about the quadratic form given by
y = Dyf(x) =y Hy

where H is the Hessian matrix of f evaluated at x. Tt says precisely that each vector v —w
is an eigenvector of H with eigenvalue of maximum modulus p = |D?f|(x) = 1 f 12 007
All of these eigenvectors correspond to one of the two possible eigenvalues +p, since for
u,v,w € O two of the vectors v — u,w — v, u — w correspond to the same eigenvalue, and
so the third, being a difference of the other two, must also. This implies H is a scalar
multiple of the identity matrix, i.e.,

D2f() = +1f 1 o rllyll*. (4.26)

Since the (n+2)-dimensional space @ is contained in E, to prove that F = @ it is sufficient
to show that the only function from FE that is annihilated by some n + 2 linear functionals
which are linearly independent over () is the zero function. We now show this for the n 4 2
linear functionals consisting of point evaluation at each v € © together with

f Dy f(a),

for some y. If Dgf("r) = 0 for f € E, then (4.26) implies | f], .. =0, and so f is a linear
polynomial. But the only linear polynomial which is zero at each point in O is the zero
polynomial, and we conclude E = ().
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An immediate consequence of this is that the only functions f € C*(T) giving equality
in (4.16), for T an equilateral triangle, are f € (). In Subbotin [Su90,:Ex.1] it is claimed
that for the equilateral triangle with vertices

there is equality in (4.16) for the cubic polynomial given by

1 hy — V3
floy) = M |y(ho —y) + L (h —a)e|,  ho:= "h,
2 ho 2

(which vanishes at ©). There it is supposed that | f|, . » = M, and it is observed that

fle)= MV o= (h/2,VBh6).

giving the sharpness. However, it is not true that [ f|, . » = M. Indeed, with { = (&1,§2)
one has that

Dgf(0,0) = =M (& + & + h&i&) . (4.27)
and 50 1 fly iy > M(1 4 5/2).

5. The corresponding I ,-bounds

In this section the multivariate form of Hardy’s inequality is applied to (2.2) to obtain
L ,-error bounds for linear interpolation for 1 < p < co. For small p the results obtained in

this way are not a significant improvement over those already in the literature. As before,
let T := conv ©.

Proposition 5.1. Suppose Lg is the map of linear interpolation at ©, and 1 < p < co.
Then, the best constant in the inequality

||f - L(‘)fHT/p(T) < C Z ||D77771]D7H777,f||r,p(T)7 \V/f € WPQ(T), (52)

{v,w}CO®
vFEw

depends only on n and p. This best constant, which will be denoted by C,, ,, satisfies

1
Crp < , p>n, 5.3
"4 n/p)(2 - n/p) (53)
which is sharp when p = oo, i.e.,
Ch.oo =1/8. (5.4)
Proof: Inequalities of the form (5.2) with the seminorm

f — Z ||D71771JD7U711]C||T,D(T) (55)

vFw
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replaced by other equivalent seminorms such as ||, , 7, and €' a constant depending on T
also, are well-known (see, e.g., Ciarlet [C78:Th.3.1.4]). Thus, (5.2) holds with a constant
which depends on T in addition to n and p. An affine change of variables shows this
constant to work for all T, and so in particular we may choose the best possible constant
Chr.p, which depends only on n and p.

It follows from the multivariate form of Hardy’s inequality 3.1 that (2.2) holds for
Vfe WPQ(T) when p > n. It can easily be shown that:

||£11£w|| Lo (T) = 1/47

with the maximum taken at the midpoint of the line segment with endpoints v and w.
Using this fact, together with (3.3), one obtains from (2.2) that

1
If— Lofllr,cm <= Y.

T = / DU*“JDU]*U,)C‘
J[x,v,w]

{v,w}CO® LP(T)
vFEw
1
S ||D77771]D7H7U,f||r1 T)-
41 —n/p)(2—n/p) {mzw}c(_) p(T)
vFEw

Finally, we prove the sharpness asserted in (5.4). Let f be a quadratic polynomial
with all the derivatives that occur in (2.2) zero except for D,y Dyy—p f. Then, by (1.8)

1
/ DU*/IUD/IU*U,)C == _DU*/IUD’IU*U,)C?
2
Jx,v,w)
so (2.2) reduces to

1
f - L(—)f - 5”11”71}/2 DU*“JDU]*U,)C'

Taking the L,(T)-norm of this gives the lower bound

Crnp> ,
2 1l

which is sharp when p = oco. O

The seminorm (5.5), though convenient for our purposes, is not usually used. Instead,
for the purposes of comparison, we give a result using the more usual | f], , p.
k) k)

From (3.7) it follows that

||D77771]D7l]777.f||LP(T) < ||7) - “)H2 |.f|27p77“7

and so by Proposition 5.1 we have, that for p > n

- n(n+1)
If — Lo fllr,m < 8(1—n/p)(2—n/p)

20
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where, as before, h := diam T. For p < oo, the best bound in the literature was obtained
by Arcangeli and Gout [AG76:Th.1-1] from the multipoint formula (2.10) by using (the
equivalent of) (3.4). They proved that for p > n/2

n-4+1
| f— L(—)fHLp(T) < th |f|2,p,T7 Vfe WZ(T)- (5.7)

Since the inequality (5.6) improves upon (5.7) only when n < 8 and p > 8n/(8 —n), it
provides only minor improvements. Particularly distressing is that in the case of greatest
practical interest, when p = n = 2, (5.6) does not provide a bound. Whether this is a
limitation of the error formula (2.2), or of the argument used to obtain (5.6) is an important
question. This, and other questions arising from the this paper are elaborated upon in a
set of research problems (see this issue).
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