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1. IntroductionIn the lectures `Exploiting symmetry in applied and numerical analyis' [AGM93], theeditors contend that:\Symmetry plays an important role in theoretical physics, applied analysis, clas-sical di�erential equations, and bifurcation theory. Although numerical analysishas incorporated aspects of symmetry on an ad hoc basis, there is now a growingcollection of numerical analysts who are currently attempting to use symmetrygroups and representation theory as fundamental tools in their work."In the same spirit, this paper presents the abstract machinery for dealing with the`symmetries' of linear functionals, together with some applications to numerical analysis.The paper is set out as follows. Section 2 gives a de�nition of the symmetry groupof a linear functional, with examples and discussion. In Section 3, the main result: thata linear functional can be represented by a �nite group of its symmetries and its restric-tion to certain functions invariant under these symmetries, is given. Some illuminatingapplications to rule construction are given in Section 4. In Section 5, some relevant resultsfrom the classical theory of G-invariant polynomials are outlined. Finally, in Section 6,it is indicated how the ideas of this paper can be extended to describe the symmetries oflinear maps. 2. SymmetriesThroughout, let P denote a space of functions 
! IR, where 
 � IRn. The algebraicdual of P , i.e., the space of linear functionals on P , will be denoted by P 0. The group ofa�ne transformations (invertible a�ne maps) on IRn will be denoted by A := A�(IRn).For a linear functional � 2 P 0, and an a�ne map g 2 A, let g�� be the linear functionalgiven by g�� : f 7! �(f � g):De�nition. The symmetry group of a linear functional � 2 P 0 issym(�) := fg 2 A : g�� = �g;it is a subgroup of A.Example 2.1. Consider the symmetry group of a (nonzero) weighted Lebesgue inte-gral I : f 7! Z f w;with w � 0, which is de�ned at least on polynomials.1



By the change of variables formula,(g�1�I)f = Z (f � g�1)w = Z f jdet gjw � g:Thus, g 2 sym(I) if and only if w = jdet gjw � g. This implies that jdet gj = 1, and sosym(I) is a subgroup of the unimodular (or special a�ne) group, which consists ofthe Lebesgue-measure-preserving a�ne transformations.For integrals I that numerical analysts seek to approximate (see, e.g., Stroud [St71]),sym(I) has a �xed point and so, (after a suitable translation), can be thought of as a groupof linear transformations. For example, if I is integration on the squareI(f) := Z[a;b]2 f;and P is some suitably chosen space, such as L1([a; b]2), or C([a; b]2), then sym(I) is thegroup of symmetries of the square (the dihedral group of order 8).Example 2.2. Consider the symmetry group of a numerical integration formula fora weighted Lebesgue integral I (as in Example 2.1)Q : f 7!X�2�w(�)f(�);where � is a �nite subset of IRn.If � contains n + 1 points in general position and each appears with nonzero weight{ as is the case when Q is of precision 1 { then sym(Q) is a �nite group. In this case,sym(Q) can be viewed as a group of permutations on the nodes �, with those nodes in thesame orbit having equal weights. Additionally, sym(Q) is a subgroup of the unimodulargroup (as is every �nite subgroup of A).To help better understand the nature of sym(�), let the symmetry group of thespace P of functions be sym(P ) := fg 2 A : P � g = Pg;and the symmetry group of the domain 
 besym(
) := fg 2 A : g
 = 
g:Then the following inclusion of groups holds:sym(�) � sym(P ) � sym(
) � A:Often sym(�) = sym(
), as was the case for integration over the square 
 := [a; b]2(mentioned in Example 2.1). 2



3. Representing symmetric linear functionalsSuppose G is a �nite subgroup of sym(P ), and #G is its order. For all p 2 P , de�nepG := 1#GXg2G p � g 2 P:Then the map RG : P ! P : p 7! pGis a linear projector. In keeping with the case when P is �, the space of polynomials, wedenote the range of RG, i.e., the space of G-invariant functions in P , by PG. The termG-invariant is appropriate since p � g = p, 8g 2 G i� p 2 PG. The letter R is used becausep 7! pG is referred to by some authors as the Reynold's operator.Next we present the main result, which is an abstract version of a result of Sobolev[So62].Theorem 3.1. If � 2 P 0, and G � sym(�) is a �nite subgroup of its symmetries, then� = � � RG:In other words, � is determined by G and the restriction of � to PG.Proof. Since g 2 G � sym(�), we have that �(p � g) = �(p), 8p 2 P . Thus,�(RG(p)) = 1#GXg2G �(p � g) = �(p); 8p 2 P:The result of SobolevLet I be the integral of Example 2.1, and Q be the integration formula (for I) ofExample 2.2. Cools [C92] says that Q is invariant with respect to a group G � Awhen:(a) I is of the form I(f) := Z
 f w;where w � 0, G � sym(
), and 8g 2 G, w � g = w.(b) Q is such that g 2 G maps � onto �, with nodes in the same orbit havingequal weight.It can readily be seen that conditions (a), (b) are equivalent to:(a0) G � sym(I).(b0) G � sym(Q).In particular, the condition that Q be invariant with respect to G impliesG � sym(Ij�k ) \ sym(Qj�k );where j�k denotes restriction to �k (the polynomials of degree k). Thus, as a corollary ofTheorem 3.1, one obtains Sobolev's theorem, as stated by Cools.3



Sobolev's theorem 3.2 (as in [C92]). If Q is invariant with respect to G, then Q is ofdegree k for I if (and only if) I(f) = Q(f); 8f 2 (�k)G:The original theorem of Sobolev [So62] dealt with the case when 
 is the sphere.4. ApplicationsIn this section we indicate how Theorem 3.1 can be used in numerical analysis bygiving two examples that concern rule construction.Cubature rulesAn integral I is said to be centrally symmetric if it satis�esg�I = I;when g is reection through the origin, i.e., g : x 7! �x. A numerical integration rule foran area-integral is commonly referred to as a cubature formula.In his dissertation (1973), M�oller proved that a cubature formula of degree 3 for acentrally symmetric integral must have at least 4 nodes. In addition, such a formula with4 nodes must itself be centrally symmetric. For details see M�oller [M79].In Stroud [St71:p88], Sylvester's law of inertia is used to compute all (centrally sym-metric) cubature formul� of degree 3 for the integralI : f 7! Z[�1;1]2 f: (4:1)This method, as pointed out by Stroud,\is not readily extended to construct formulas of higher degree."By comparison, using Sobolev's theorem, these, and higher order formul�, can be obtained,see, e.g., Cools [C92].We now use Sobolev's theorem to �nd all the cubature formul� Q of degree 3 for theintegral I of (4.1) which have the minimum number of nodes. Since these formul� arecentrally symmetric, they must have nodes �(r cos a; r sin a), �(R cos A;R sin A) withweights w, W respectively.Let G be the group (of order 2) generated by reection through the origin. Since Gis contained within the symmetry groups of I and Q restricted to P := �3, it follows fromTheorem 3.1 that Ij�3 = I � RG; Qj�3 = Q � RG; (4:2)4



where RG : �3 ! �0 ��02:Here �02 denotes space of homogeneous quadratics. To see that the space (�3)G of G-invariant cubics is �0 � �02, one can simply �nd the image of a basis for �3 under RG.More details about G-invariant polynomials are given in Section 5.From (4.2) it follows that Q is of degree 3, i.e., Ij�3 = Qj�3 , if and only ifIj�0��02 = Qj�0��02 : (4:3)By requiring that I and Q agree at the monomials 1, (�)2;0, (�)0;2, (�)1;1 (which form abasis for �0 ��02), the following nonlinear system:w +W = 2;wr2cos2 a+WR2cos2A = 2=3;wr2sin2 a+WR2sin2A = 2=3;wr2sin a cos a+WR2sin A cos A = 0; (4:4)which is equivalent to (4.3), is obtained.The last three equations in (4.4) are linear in wr2 and WR2, and the condition forthem to have a solution is that A = a + �2 :For the choice A = a+ �=2, there is a unique solutionwr2 =WR2 = 23 :To additionally satisfy the �rst equation, i.e., that w +W = 2, one must have that�2� 23r2�R2 = 23 :Hence we have shown the following.Theorem 4.5 (see [St71:Th.3.9-2]). Let I be integration over the square [�1; 1]2.Given any point � := (r cos a; r sin a)which is outside the circle of radius 1=p3, there is a unique centrally symmetric cubatureformula for I which is of degree 3 with 4 nodes, one of which is �. By M�oller's result, theseare all of the cubature formul� for I of degree 3 that have a minimum number of nodes.For such a formula the weight for � and its antipodal point �� isw = 23r2 :5



The other two points in the formula are�(R cos(a + �=2); R sin(a + �=2));where R := r=p3r2 � 1, which have weightW = 6r2 � 23r2 = 23R2 :Notice that R!1 as r! (1=p3)+.
a = �=4r = R =p2=3w =W = 1 a = �=6r = 1=p2, w = 4=3R = 1, W = 2=3 a = �=4r =p2=5, w = 5=3R = p2, W = 1=3Fig. 4.1 Some examples of cubature formul� of degree 3 for integration over [�1; 1]2which have the minimum number of nodes, with the circle of radius 1=p3 inscribed.Remark. Given the many possible rules of Theorem 4.5, it is natural to ask whether somemight be preferred over others on the basis of considerations in addition to degree.To the author's mind, the rule with nodes (�p1=3;�p1=3) each given weight 1,i.e., the �rst rule of Fig. 4.1, is the most desirable. This rule has a simple form, and itssymmetry group (as a functional on a larger space than �3, such as C([�1; 1]2)) is thedihedral group of the square - which is the symmetry group of I. In addition, it canbe obtained as the product of two univariate rules, and hence is exact for the space ofpolynomials of co-ordinate degree 3 (which is larger than �3).Numerical di�erentiation rulesIn this example, we seek to approximate the linear functional� : C2(IR)! IR : f 7! Z a+ha�h D2fby a rule of high degree based on 3 nodes. 6



The symmetry group of �, which we denote by G, is of order 2, and generated byreection through a. Seeking a rule � with the same symmetries, we must take�(f) := w1f(a � �) + w2f(a) + w1f(a + �):To simplify the calculations assume that a = 0. For this case the G-invariant polyno-mials are the even polynomials. Thus, from Theorem 3.1 we obtain that:If w1, w2, and � can be chosen so that � and � agree for the even monomials ofdegree upto 2s, then the rule � has degree 2s + 1.In this way we obtain: �(f) := f(a �p2h) � 2f(a) + f(a +p2h);which is a rule of degree 5 for �.Remark. One might expect that (2h)�1� is a good approximation to the linear functional� : f 7! D2f(a):Indeed, we recognise (2h)�1� as the rule of precision 3 for � based on 3 nodes (withstepsize p2h). To put it another way, the well-known rulef 7! f(a � h)� 2f(a) + f(a + h)h2 ;which is of degree 3 for �, is of degree 5 forf 7! 1h2 Z a+h2=2a�h2=2 D2f:5. G-invariant polynomialsIn the examples of Section 4, P is a space of polynomials. However, Theorem 3.1is in no way limited to this case. Other choices for P of possible interest include spacesof splines, or complex functions. There has been little work on the G-invariance of suchspaces of functions.On the other hand, the theory of G-invariant polynomials is a well-developed branch ofinvariant theory, see, e.g., Humphreys [H90] and Benson [B93]. Here is a quick expositionof some relevant results of the theory.We have already used (for example in (4.2)) the fact that�Gk := (�k)G = �G \�k:7



It follows from the Hilbert basis theorem that �G is a �nitely generated IR-algebra. If Gis a group of linear transformations, then �G is homogeneous. The space �G is generatedby n algebraically independent polynomials of positive degree (together with 1), which arecalled an integrity basis for G, if (and only if) G is a �nite reection group (of lineartransformations).The dimensions of �Gk , for G a �nite group can be computed as follows. LetMk := dim�Gk � dim�Gk�1; with M0 := dim�G0 = 1:The seriesPkMktk is called the Poincar�e (alsoMolien) series for G. Molien's theorem,see, e.g., [B93:p21], states that the following equality of formal power series holds:1Xk=0Mktk = 1#GXg2G 1det(1� tg) :6. ConclusionAll of the previous discussion about symmetries of linear functionals� : P ! IRholds more generally when IR is replaced by any linear space X, i.e., for a linear mapL : P ! X:For g 2 A, let g � L be the linear mapg � L : P � g�1 ! X : f 7! L(f � g):De�nition. The symmetry group of a linear map L 2 L(P;X) issym(L) := fg 2 A : g � L = Lg;it is a subgroup of A.With these de�nitions, the earlier arguments, with � now replaced by L, continue tohold. In particular, so does the analogue of Thereom 3.1: if G � sym(L) is a �nite groupof symmetries of L, then L = L � RG:This representation of linear maps with symmetries could be used in numerical analysisin the same way as was indicated for the case of linear functionals. Roughly, one wants to8



approximate some linear map (quite possibly the identity) that has symmetries, by choos-ing a simpler map that has some of the same symmetries. To check that the approximationhas the desired polynomial reproduction, it is only necessary to check that certain invari-ant polynomials are reproduced. Typical examples of such maps include quasi-interpolantsand linear multi-step methods (for solving ordinary di�erential equations).Finally, those interested in other applications of group theory to numerical analysisshould see the book F�assler and Stiefel [FS92].References[AGM93] Allgower, E. L., K. Georg, and R. Miranda (eds.) (1993), Exploiting Symmetry inApplied and Numerical Analysis, Lectures in Applied Math. 29, AMS (Providence).[B93] Benson, D. J. (1993), Polynomial invariants of �nite groups, London Math. Soc.Lecture Note Series 190, Cambridge University Press.[C92] Cools, R. (1992), \A survey of methods for constructing cubature formulae", in Nu-merical Integration (T. O. Espelid and A. Genz, eds), NATO ASI Ser. C, Vol. 357,Kluwer (Dordrecht), 1{24.[FS92] F�assler, A., and E. Stiefel (1992), Group theoretical methods and ther applications,Birkh�auser.[H90] Humphreys, J. E. (1990), Reection groups and Coxeter groups, Cambridge UniversityPress.[M79] M�oller, H. M. (1979), \Lower bounds for the number of nodes in cubature formulae",in Numerische Integration (G. H�ammerlin, ed), Birkh�auser (Basel), 221{230.[So62] Sobolev, S. L. (1962), \Cubature formulas on the sphere invariant under �nite groupsof rotations", Soviet Math. 3, 1307{1310.[St71] Stroud, A. H. (1971), Approximate calculation of multiple integrals, Prentice-Hill Inc.
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7. Additional commentsFor g 2 G := sym(P ) the linear map�g : P ! P : p 7! p � gprovides a right group action of G on P . The algebraic dual of the map �g is preciselyg� : P 0 ! P 0 : � 7! g � �which gives a left group action of G on P 0.The stabiliser of L under the action of sym(P ) on the linear maps L(P;X) is sym(L).Symmetry groups transform in the following waysym(g � L) = sym(L) � g; 8g 2 sym(P ):
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