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ABSTRACT

Suppose that K ⊂ R
d is either the unit ball, the unit sphere or the standard simplex. We show that there

are constants c1, c2 > 0 such that for a set of Fekete points (maximizing the Vandermonde determinant)
of degree n, Fn ⊂ K,

c1

n
� min

b∈Fn

b �=a

dist(a, b) � c2

n

for all a ∈ Fn. Here dist(a, b) is a natural distance on K that will be described in the text.

1. INTRODUCTION

Suppose that K ⊂ R
d is a compact set. The polynomials of degree at most n in d

real variables, when restricted to K , form a certain vector space which we will
denote by Pn(K). It has therefore a dimension Nn := dim(Pn(K)). The polynomial
interpolation problem for K is then, given a set of Nn distinct points An ⊂ K and a
function f :K → R, to find a polynomial p ∈ Pn(K) such that

p(a) = f (a), ∀a ∈ An.(1)

In one dimension (d = 1), there is always a unique solution to the problem (1). How-
ever, in higher dimensions (d > 1), depending on the geometry of the interpolation
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waldron@math.auckland.ac.nz (S. Waldron).
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points An, it may be that it is not possible to find a solution to (1). To see why this
is so, consider a basis

Bn = {P1,P2, . . . ,PNn}

of Pn(K). Then any polynomial p ∈ Pn(K) may be written in the form

p =
Nn∑

j=1

cjPj

for some constants cj ∈ R. Hence the conditions (1) may be expressed as

p(a) =
Nn∑

j=1

cjPj (a) = f (a), a ∈ An,(2)

which are exactly Nn linear equations in Nn unknowns cj . In matrix form this
becomes

[P(a)]a∈An,P∈Bnc = F,

where c ∈ R
Nn is the vector formed of the cj and F is the vector of function values

f (a), a ∈ An. This linear system has a unique solution precisely when the so-called
Vandermonde determinant

vdm(An;Bn) := det
([P(a)]a∈An,P∈Bn

) �= 0.

If this is the case, then the interpolation problem (1) is said to be correct (or
sometimes univsolvent).

Note that vdm(An;Bn) = 0 precisely when the interpolation points An all lie
on an algebraic variety of degree n and hence the generic situation is that the
interpolation problem is indeed correct. We will assume that this is the case
throughout this note. Note further that correctness depends only on the set of
interpolation points An and not on the particular basis Bn chosen.

Supposing then that the interpolation problem (1) is correct, we may write the
interpolating polynomial in so-called Lagrange form as follows. For a ∈ An set

�a(x) := vdm(An\{a} ∪ {x};Bn)

vdm(An;Bn)
.(3)

A brief explanation of this formula is in order. The numerator is but the Vander-
monde determinant with the interpolation point a ∈ An replaced by the variable
x ∈ R

d .
Then, expanding vdm(An\{a} ∪ {x};Bn) along the row corresponding to x, we

see that �a is a linear combination of the Pj and hence �a ∈ Pn(K). Further, it is
easy to see that �a(b) = δab, the Kronecker delta, for b ∈ An. The �a are called the
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Fundamental Lagrange Interpolating Polynomials and using them we may write the
interpolant of (1) as

p(x) =
∑

a∈An

f (a)�a(x).(4)

The mapping f �→ p is a projection and hence we sometimes write p = πAn(f ).
If we regard both f,p ∈ C(K) then the operator πAn has operator norm (as is not
difficult to see)

‖πAn‖ = max
x∈K

∑

a∈An

|�a(x)|.

This operator norm (sometimes called the Lebesgue constant) gives a bound on how
far the interpolant is from the best uniform polynomial approximant to f . To see
this, for any q ∈ Pn(K), write

‖f − p‖K = ‖f − πAn(f )‖K

= ‖f − q − πAn(f − q)‖K

� ‖f − q‖K + ‖πAn(f − q)‖K

� ‖f − q‖K + ‖πAn‖K‖f − q‖K

= (1 + ‖πAn‖)‖f − q‖K

so that

‖f − p‖K � (1 + ‖πAn‖) inf
q∈Pn(K)

‖f − q‖K.

It follows that the quality of approximation to f provided by the interpolant p is
indicated by the size of ‖πAn‖, the smaller it is the better.

Now, suppose that Fn ⊂ K is a subset of Nn distinct points for which An = Fn

maximizes |vdm(An;Bn)|. Then by (3), each

‖�a‖K � 1, a ∈ Fn(5)

and hence the corresponding Lebesgue constants are such that

‖πAn‖K � Nn.

The set Fn is called a set of Fekete points of degree n for K and provides, for any K ,
a good (often excellent) set of interpolation points.

In one variable, for K = [−1,1], the Fekete points have been much studied. Fejér
[5] showed that Fn consists of −1,+1 together with the zeros of P ′

n(x), where
Pn is the nth Legendre polynomial. Sündermann [8] subsequently showed that the
Lebesgue constants are O(log(n)), which is best possible. This confirms that the
Fekete points for the interval are indeed excellent interpolation points.
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From Fejér’s result in particular, it follows that they are asymptotically nearly
equally spaced with respect to the arcsin metric,

dist(a, b) = ∣∣cos−1(b) − cos−1(a)
∣∣.(6)

In other words, for each a ∈ Fn,

min
b∈Fn

b �=a

dist(a, b) ≈ c

n

for some constant c.
In contrast, as the Fekete points are more dense near the endpoints (just as are the

Chebyshev points, for example), in the usual euclidean distance, there are points
a ∈ Fn for which

min
b∈Fn

b �=a

|b − a| ≈ c

n2
.

More generally, Kövari and Pommerenke [7] have discussed the spacing of
complex Fekete points for K ⊂ C, a continuum.

In several variables, up to now, very little has been known about the spacing of
the Fekete points. Dubiner [4] has shown that for general compact sets there is a
lower bound

c1

n
� min

b∈Fn

b �=a

dist(a, b)

for an appropriate analogue of the arcsin metric (6) and c1 = π/2 (cf. Theorem 1).
We will show that for K ⊂ R

d , either a sphere, ball or simplex, there is a
corresponding upper bound, so that we may conclude there are constants c1, c2 > 0,
depending only on the dimension d , such that

c1

n
� min

b∈Fn

b �=a

dist(a, b) � c2

n
.

2. THE BARAN AND DUBINER DISTANCES

The generalizations of the arcsin distance (6) that we will use are the Baran and
Dubiner distances studied in [1,2].

First, we recall for a compact set K ⊂ C
d , the function

VK(z) := sup
{
log

(|p(z)|1/deg(p)
)
: p : Cd → C,deg(p) � 1,‖p‖K � 1

}

is known as the Siciak–Zaharjuta extremal function (see the monograph by Klimek
[6] for more detail). If VK(z) is finite, which it is for all z ∈ C

d when K = � ⊂ R
d
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where � is a domain, then for any polynomial p and any point z, from the definition
of VK we have the Bernstein–Walsh inequality

|p(z)| � edeg(p)VK(z)‖p‖K.

Definition 1. Suppose that K = � where � ⊂ R
d is a bounded domain. Then

δB(x;y) := lim sup
t→0+

VK(x + ity)

t
,

(for x ∈ � and y ∈ R
N ) defined for compact K for which it is usc, is the Baran

pseudometric for K and

distB(a, b) = inf
γ

1∫

0

δB

(
γ (t);γ ′(t)

)
dt

where the inf is taken over all parametric curves γ : [0,1] → K with γ (0) = a and
γ (1) = b, is the Baran distance for K .

We remark, that from the results of [3], δB is continuous for x ∈ Ko if K is an
arbitrary convex body. Moreover, in this case, the limsup in the definition of δB is
actually a limit.

Definition 2. Suppose that K ⊂ R
d is compact. Then

distD(a, b) := sup
‖p‖K�1,degp�1

1

degp

∣∣cos−1(p(b)
) − cos−1(p(a)

)∣∣

is the Dubiner distance on K .

Note that distB(a, b) is only well defined for compact sets which are the closure
of a domain, and hence not for a sphere. However, distD(a, b) is well defined for
any compact set K ⊂ R

d , including the sphere. It turns out that, when both are well
defined, it is always the case that

distD(a, b) � distB(a, b).(7)

For the proof of this and also other properties of these distances we refer the reader
to [1,2].

Of importance to us here will be the following general theorem, given by
Dubiner [4].

Theorem 1 (Dubiner). Suppose that K ⊂ R
d is compact and that Fn ⊂ K is a set

of Fekete points of degree n. Then, for all a ∈ Fn,

π

2

1

n
� min

b∈Fn

b �=a

distD(a, b).(8)
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Proof. Consider p = �a , the Lagrange polynomial of degree n for a. Then by (5),
‖�a‖K � 1 and so p = �a is a candidate in the supremum defining the Dubiner
distance. Hence, for any a �= b ∈ Fn,

distD(a, b) � 1

n

∣∣cos−1(�a(b)
) − cos−1(�a(a)

)∣∣

= 1

n

∣∣cos−1(0) − cos−1(1)
∣∣

= 1

n

π

2
. �

3. THE SPACING OF FEKETE POINTS ON THE SPHERE

We take K = Sd−1 ⊂ R
d the unit sphere. In this case the Dubiner distance is just

the geodesic distance on the sphere (cf. [1]), i.e., for a, b ∈ Sd−1,

distD(a, b) = dist(a, b) = cos−1(a · b).

Theorem 2. There are constants c1 = π/2 and c2 > 0, depending only on the
dimension d , such that if Fn ⊂ Sd−1 is a set of Fekete points of degree n, then
for all a ∈ Fn,

c1

n
� min

b∈Fn

b �=a

dist(a, b) � c2

n
.

Proof. The lower bound is given immediately by Theorem 1. To show the upper
bound, we will make use of the polynomial provided by the following lemma. We
remark that the constants in our estimates below, c, c3, c4, . . . , all depend only on
the dimension d . We do not specify their precise values. �
Lemma 1. There is a constant c > 0 such that for all integers n � 1 and points
A ∈ Sd−1, there exists a spherical polynomial P of degree at most n such that
(a) P(A) = 1 and (b)

|P(x)| � c

nd
dist(A,x)−d , x ∈ Sd−1.(9)

Proof. Let φ ∈ [0,π] be the angle between x ∈ Sd−1 and the point A so that
cos(φ) = A · x. Note that then φ = dist(x,A). For m := �n/d set

Q(x) = 2

2m + 1

{
1

2
+ cos(φ) + cos(2φ) + · · · + cos(mφ)

}
(10)

= 1

2m + 1

sin( 2m+1
2 φ)

sin(
φ
2 )

.
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Note that we may also write

Q(x) = 1

2m + 1
U2m

(√
A · x + 1

2

)

where Uk denotes the Chebyshev polynomial of the second kind of degree k.
Then P(x) := Q(x)d has the desired properties. �
Continuing, fix a ∈ Fn and let a∗ ∈ Fn be a closest Fekete point to a. Then choose

A ∈ Sd−1 so that dist(a,A) = 1
2 dist(a, a∗). In particular, A /∈ Fn.

Then, for all b ∈ Fn, b �= a,

dist(b,A) � dist(b, a) − dist(a,A)(11)

= dist(b, a) − 1

2
dist

(
a, a∗)

= 1

2
dist(b, a) + 1

2

{
dist(a, b) − dist

(
a, a∗)}

� 1

2
dist(b, a)

as dist(a, b) � dist(a, a∗) by the definition of a∗.
Now let P(x) be the polynomial of degree n provided by Lemma 1 for the

point A. We may write

P(x) =
∑

b∈Fn

P (b)�b(x)

so that at x = A,

1 = P(A) =
∑

b∈Fn

P (b)�b(A).

Taking absolute values, it follows that

1 �
∑

b∈Fn

|P(b)| by (5)(12)

� c

nd

∑

b∈Fn

dist(b,A)−d by (9)

= c

nd

{
dist(a,A)−d +

∑

b∈Fn

b �=a

dist(b,A)−d

}

= c

nd

{
2d dist

(
a, a∗)−d +

∑

b∈Fn

b �=a

dist(b,A)−d

}
by the choice of A
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� c

nd

{
2d dist

(
a, a∗)−d +

∑

b∈Fn

b �=a

2d dist(b, a)−d

}
by (11)

= 2d c

nd

{
dist

(
a, a∗)−d +

∑

b∈Fn

b �=a

dist(b, a)−d

}
.

To estimate the sum in (12) we partition Sd−1 into “strips”

S0 :=
{
b ∈ Sd−1 | dist(b, a) � 1

2
dist

(
a, a∗)

}
,

Sj :=
{
b ∈ Sd−1

∣∣∣
1

2
dist

(
a, a∗) + j − 1

n
< dist(a, b) � 1

2
dist

(
a, a∗) + j

n

}

where j is such that 1
2 dist(a, a∗) + j−1

n
< π (the maximum distance).

It is convenient to denote

λ := n

(
1

2
dist

(
a, a∗)

)

so that

Sj =
{
b ∈ Sd−1

∣∣∣
λ + j − 1

n
< dist(a, b) � λ + j

n

}
.

Note that S0 ∩ Fn = {a} as dist(a, a∗) is minimal. Further, for Sj , we may compute
its surface ‘area’ as

Vd−1(Sj ) = c3

(λ+j)/n∫

(λ+j−1)/n

sind−2(φ)dφ for some constant c3

= c3

{
λ + j

n
− λ + j − 1

n

}
sind−2(φj ) for a φj ∈

[
λ + j − 1

n
,
λ + j

n

]

= c3

n
sind−2(φj )

� c4

n
φd−2

j as sin(θ) � θ

� c4

n

(
λ + j

n

)d−2

as φj � (λ + j)/n

= c4

nd−1
(λ + j)d−2.

But, as there is the minimal spacing,

dist
(
b, b∗) � c1

n
,
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for b ∈ Fn and b∗ ∈ Fn a closest point to b, there are no other Fekete points in the
‘disk’ {x ∈ Sd−1 | dist(x, b) < c1/n}, a set of volume

c5

c1/n∫

0

sind−2(φ)dφ � c6

nd−1
.

Hence there are at most

c7
(λ + j)d−2/nd−1

1/nd−1
= c7(λ + j)d−2(13)

Fekete points in the strip Sj .
It follows that

∑

b∈Fn

b �=a

dist(a, b)−d =
∑

j�1

∑

b∈Fn∩Sj

dist(a, b)−d

� c7

∑

j�1

(λ + j)d−2
(

λ + j − 1

n

)−d

= c7n
d
∑

j�1

(λ + j)d−2

(λ + j − 1)d
.

Now, we may assume that λ � 1, for if not, λ < 1 and hence

n

(
1

2
dist

(
a, a∗)

)
� 1

and so dist(a, a∗) � 2/n and we are done. Making this assumption then, we have

λ + j � 2(λ + j − 1), j � 1,

so that

∑

b∈Fn

b �=a

dist(a, b)−d � c7n
d
∑

j�1

(λ + j)d−2

(λ + j − 1)d

� c7n
d
∑

j�1

2d−2(λ + j − 1)d−2

(λ + j − 1)d

= c8n
d
∑

j�1

1

(λ + j − 1)2

� c9n
d

{ ∞∫

0

1

(λ + x)2
dx + 1

λ2

}
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= c9n
d

{
1

λ
+ 1

λ2

}

� c10n
d 1

λ
using again that λ � 1.

Combining this with (12), we have

1 � 2dc

nd

{
nd

2dλd
+ c10n

d 1

λ

}

� c11

{
1

λd
+ 1

λ

}

� c12
1

λ
.

Hence λ � c12 and we are done.

4. THE SPACING OF FEKETE POINTS ON THE BALL

We now take K = Bd ⊂ R
d the unit ball. In this case the Dubiner and Baran

distances (cf. [1,2]) are equal and are described as follows. For a ∈ Bd , i.e., |a| � 1,
set

ã := (
a,

√
1 − |a|2) ∈ Sd ⊂ R

d+1.

In other words, ã is a lifted to the circumscribing sphere Sd .
Then, for a, b ∈ Bd , the Dubiner and Baran distances are just the geodesic

spherical distance on Sd between ã and b̃, i.e.,

distD(a, b) = distB(a, b)

= cos−1(̃a · b̃)

= cos−1(a · b +
√

1 − |a|2
√

1 − |b|2).

We will refer to either of these as dist(a, b).
We remark that the surface area measure on Sd pulls back under the mapping

a �→ ã to a measure on Bd , the ‘surface area’ measure,

dμ = c
1√

1 − |x|2 dx(14)

where c is a normalizing constant.

Theorem 3. There are constants c1 = π/2 and c2 > 0, depending only on the
dimension d , such that if Fn ⊂ Bd is a set of Fekete points of degree n, then for
all a ∈ Fn,

c1

n
� min

b∈Fn

b �=a

dist(a, b) � c2

n
.
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Proof. The lower bound is given immediately by Theorem 1. To show the upper
bound, we will make use of a polynomial analogous to that provided by Lemma 1.
We will first need to establish a technical result.

Lemma 2. Suppose that Q(φ) is the trigonometric polynomial given by (10). Then
for φ ∈ [0,π],

Q(φ) � −1/2.

Proof. If Q(φ) � 0 we need proceed no further, and hence we need only consider
φ for which Q(φ) � 0. But

Q(φ) = 1

2m + 1

sin( 2m+1
2 φ)

sin(
φ
2 )

and hence it changes sign at φk := 2kπ/(2m + 1), k = 1,2, . . . ,m. Specifically,
Q(φ) � 0 on the intervals [2kπ/(2m + 1),2(k + 1)π/(2m + 1)] for odd k. On such
an interval,

|Q(φ)| �
(

1

2m + 1

)
1

sin(kπ/(2m + 1))

�
(

1

2m + 1

)
1

(2/π)kπ/(2m + 1)
,

using the fact that sin(θ) � 2
π
θ , for θ ∈ [0,π/2]. Hence on the interval [2kπ/(2m +

1),2(k + 1)π/(2m + 1)], |Q(φ)| � 1/(2k) � 1/2. �
Lemma 3. There is a constant c > 0 such that for all integers n � 1 and points
A ∈ Bd , there exists an algebraic polynomial P of degree at most n such that
(a) P(A) = 1 and (b)

|P(x)| � c

nd+1
dist(A,x)−(d+1), x ∈ Bd.

Proof. For a point x̃ ∈ Sd write x̃ = (x, z) where x ∈ Bd and z ∈ [−1,1]. Let Q(̃x)

be the spherical polynomial on Sd given by (10), where φ is the angle between
x̃ ∈ Sd and Ã ∈ Sd and m = �n/(d + 1). Note that for x ∈ Bd , Q(x, z)d+1 +
Q(x,−z)d+1 is even in z and hence a function of z2 = 1 − |x|2, on Sd . Hence

P(x) = Q(x, z)d+1 + Q(x,−z)d+1

is an algebraic polynomial in x. We claim that it has (essentially) the required
properties.

First note that by Lemma 2, P(A) � 1 − 2−(d+1) > 0 and hence property (a)
follows from a constant re-normalization. To see property (b) just note that
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distSd

(
(x,±z), Ã

) = cos−1(x · A ± z
√

1 − |A|2)

� cos−1(x · A + |z|
√

1 − |A|2)

= cos−1(x · A +
√

1 − |x|2
√

1 − |A|2)

= dist(x,A).

Hence both Q(x, z)d+1 and Q(x,−z)d+1 are bounded by

c

nd+1
dist(x,A)−(d+1). �

The proof of Theorem 3 is now exactly the same as for Theorem 2, except in one
dimension higher, using the polynomial P(x) provided by Lemma 3. The volumes
of the strips Sj are measured using the measure dμ of (14) to yield (13). We omit
the details. �
5. THE SPACING OF FEKETE POINTS ON THE SIMPLEX

We now take K = T d ⊂ R
d the standard simplex, i.e.,

T d :=
{

x ∈ R
d
∣∣∣xi � 0, i = 1, . . . , d, and

d∑

i=1

xi � 1

}
.

In this case the Baran distance (cf. [1,2]) is described as follows. For a ∈ T d , set

ã :=
(

√
a1,

√
a2, . . . ,

√
ad,

√√√√1 −
d∑

i=1

ai

)
∈ Sd ⊂ Rd+1.

Then, for a, b ∈ T d ,

distB(a, b) = 2 distSd (̃a, b̃)

= 2 cos−1(̃a · b̃).

We remark that the surface area measure on Sd pulls back under the mapping
a �→ ã to a measure on T d ,

dμ = c
1√

x1x2 · · ·xd(1 − ∑d
i=1 xi)

dx

where c is a normalizing constant.
A closed form equation for the Dubiner distance is not known, but one will not

be needed here.
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Theorem 4. There are constants c1 = π/2 and c2 > 0, depending only on the
dimension d , such that if Fn ⊂ T d is a set of Fekete points of degree n, then for
all a ∈ Fn,

c1

n
� min

b∈Fn

b �=a

distD(a, b) � min
b∈Fn

b �=a

distB(a, b) � c2

n
.

Proof. The lower bound is given immediately by Theorem 1. To show the upper
bound, we will again make use of a polynomial analogous to that provided by
Lemmas 1 and 3.

Lemma 4. There is a constant c > 0 such that for all integers n � 1 and points
A ∈ T d , there exists an algebraic polynomial P of degree at most n such that
(a) P(A) = 1 and (b)

|P(x)| � c

nd+1
distB(A,x)−(d+1), x ∈ T d.

Proof. We let x̃ denote a point in Sd . Then, let Q(̃x) be the spherical polynomial
on Sd given by (10), where φ is the angle between x̃ ∈ Sd and Ã ∈ Sd and m =
�2n/(d + 1).

Now, let M denote the set of (d + 1) × (d + 1) diagonal matrices with ±1 on the
diagonal. There are #M = 2d+1 elements in M.

Then, set

P̃ (̃x) :=
∑

M∈M
Q(Mx̃)d+1.

P̃ (̃x) is a polynomial of degree at most 2n in x̃ that is symmetric under each of the
mappings x̃i �→ −x̃i . Hence it is actually a polynomial in the x̃2

i . Then, as x̃i = √
xi

1 � i � d and x̃d+1 =
√

1 − ∑d
i=1 xi ,

P(x) := P̃ (̃x)

is an algebraic polynomial of degree at most n in x. We claim that P(x) (essentially)
satisfies the desired properties.

First note that

P(A) =
∑

M∈M
Q(MÃ)d+1

= Q(Ã)d+1 +
∑

M∈M
M �=I

Q(MÃ)d+1

= 1 +
∑

M∈M
M �=I

Q(MÃ)d+1
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� 1 −
∑

M∈M
M �=I

(1/2)d+1 by Lemma 2

= 1 − (
2d+1 − 1

)
2−(d+1)

= 2−(d+1) > 0.

Thus property (a) is attained by a renormalization.
To see property (b), note that for each M ∈ M and x̃ :=

(
√

x1,
√

x2, . . . ,
√

xd,

√
1 − ∑d

i=1 xi)

(Mx̃) · Ã � x̃ · Ã

so that, as cos−1 is a decreasing function,

distSd (Mx̃, Ã) � distSd (̃x, Ã).

It follows that for all M ∈ M,

Q(Mx̃)d+1 � c

nd+1
distB(x,A)−(d+1)

and hence P(x) satisfies (b). �
The proof of Theorem 4 is now exactly the same as for Theorems 2 and 3,

using the polynomial P(x) provided by Lemma 4. The volumes of the strips Sj are
measured using the measure dμ of (15) to yield (13). We again omit the details. �
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