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ABSTRACT

The following multivariate generalisation of Hardy’s inequality, that for m —n/p > 0
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valid for f € L,(IR") and © an arbitrary finite sequence of points in IR", is discussed.
The linear functional f +— f® f was introduced by Micchelli [M80] in connection with
Kergin interpolation. This functional also naturally occurs in other multivariate gener-
alisations of Lagrange interpolation, including Hakopian interpolation, and the Lagrange
maps of Section 5. For each of these schemes, (*) implies Ly-error bounds.
We discuss why (*) plays a crucial role in obtaining L,-bounds from pointwise integral
error formule for multivariate generalisations of Lagrange interpolation.
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1. Introduction

1.1. Overview

The central result of this paper is the inequality, that for m —n/p > 0

1
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where © is a finite sequence of points in IR", and §2 is a suitable domain in IR". This
inequality is a multivariate generalisation of Hardy’s inequality, that for p > 1

1 [* p
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Thus, we will refer to (1.1.1) as the multivariate form of Hardy’s inequality.
Our interest in (1.1.1) comes from a desire to obtain L,-bounds from the many integral
error formulae for multivariate generalisations of Lagrange interpolation that involve the

— . 1.1.3
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——

linear functional

The paper is set out in the following way. In the remainder of this section, the
notation, and facts about Sobolev spaces that we will need, are discussed. In Section 2,
some properties of the linear functional f — f® f, and its connection with simplex splines,
are given. In Section 3, the multivariate form of Hardy’s inequality is proved. In Section 4,
the multivariate form of Hardy’s inequality is applied to obtain L,-bounds for the error in
the scale of mean value interpolations, which includes Kergin and Hakopian interpolation.
In Section 5, in a similar vein, L,-bounds for the error in Lagrange maps are obtained. In
Section 6, we discuss why the multivariate form of Hardy’s inequality is applicable to the
many error formulae for multivariate Lagrange interpolation schemes, and is likely to be
so for others yet to be obtained.

1.2. Some notation

The discussion takes place in IR", with the following definitions holding throughout.
The space of n-variate polynomials of degree k will be denoted by II;(IR"), and the space
of homogeneous polynomials of degree &k by II{(IR"). The differential operator induced by
q € IIx(IR™) will be written ¢(D). Let || - || be the Fuclidean norm on IR", and let @ C IR",
with  its closure. The letters 1, j, k, 1, m,n will be reserved for integers, and 1 < p < oco.
We use standard multivariate notation; so, e.g., {a : |a| = k} is the set of multi-indices «

of length k.



We find it convenient to make no distinction between the matrix [0y, ..., 6], and the
k-sequence 6,...,0; of its columns. Since [fy,...,0;]f is a standard notation for the
divided difference of f at © = [0y,...,0;], we use for the latter the nonstandard notation

bof =40, 0,1

Note the special case
o) f = fla).

Similarly, to avoid any confusion, the closed interval with endpoints @ and b will be denoted
by [a..b].
The derivative of f in the directions O is denoted

Deof := D¢, --- Dy, f.

The notation © C © means that © is a subsequence of 0, and @\(:) denotes the comple-
mentary subsequence. The subsequence consisting of the first j terms of © is denoted 0O,
and

r—0:=[x—0,...,20— 0.
Thus, with O :=[6y,...,07], we have, for example, that
Dip—e\ey,0—,1f = D6 Ds—6,Dr—g, f-

The diameter and convex hull of a sequence © will be that of the corresponding set
and will be denoted by diam © and conv © respectively.
Many of the constants in this paper involve the shifted factorial function

I'(a+n)

(@)= @)+ Do +2)-- (a0 —1) = =,

(1.2.1)

where I' is the Gamma function. The Gamma function satisfies the relation: I'(a+1) =
al'(a), Ya > 0, and has I'(1) = 1. In particular

F'n+1l)=n!, n=0,1,2,.... (1.2.2)

Some of our calculations require the Beta integrals

! a—1 b—1 g, _ I'(a)l'(b)
/0 1 —1) dt = 7“@ ) a,b >0, (1.2.3)

and the hypergeometric function
= (@) (D) .
2F1<ac’b;:1;> = g wx ) (1.2.4)

The standard reference to these is the monograph [E53].
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1.3. Geometry of the domain )

We say that 2 C IR" is starshaped with respect to S a set (resp. sequence) in IR"

when €2 contains the convex hull of S U {z} for any « € Q. This condition is weaker than
Q being convex.

In our results, it will be required that € be starshaped with respect to ©@ € IR™**,
where € is an open set in IR". This condition is required of Q, rather than of €, so as
to include cases where some points in © lie on the boundary of 2. One such example of
interest is the Lagrange finite element given by linear interpolation at O, the vertices of a
n-simplex, see, e.g. Ciarlet [Ci78:p46]. In this case, {2 = conv O, and none of the points of
O are in the open simplex (2.

Fig 1.1 Examples of domains § (shaded) for which € is starshaped
with respect to the points in © (e)

We now show that being starshaped with respect to a finite sequence is equivalent to
being starshaped with respect to its convex hull.

Proposition 1.3.1. If Q ¢ R" and © € R"**, then the following are equivalent:
(a) Q is starshaped with respect to ©.
(b) § is starshaped with respect to conv ©.

Proof. Only the implication (a) = (b) requires proof. Suppose (a). To ob-
tain (b) it suffices to prove that if 2 is starshaped with respect to points v and v, then
conv{u,v,x} C Q, Vo € Q, i.e.,  is starshaped with respect to conv{u,v}.

Assume without loss of generality that wu,v,z are affinely independent, and z €
conv{u,v,x}. Let w be the point of intersection of the line through u and z with the
interval conv{z,v}. Since  is starshaped with respect to v, one has that w € Q. Thus,
since € is starshaped with respect to u, one has that z € conv{u,w} C Q. O



Fig 1.2 The proof of Proposition 1.3.1

This equivalence ensures that if Q is starshaped with respect to O, then f € L,() is
defined over the region of integration in (1.1.3) for all = € Q.

1.4. Sobolev spaces

Let ngk)(Q) be the Sobolev space consisting of those functions defined on Q (a
bounded open set in IR" with a Lipschitz boundary) with derivatives up to order k in
L,(Q), and equipped with the usual topology; see, e.g., Adams [Ad75]. It is convenient to
include in the definition the condition that €2 have a Lipschitz boundary, so that Sobolev’s
embedding theorem can be applied. The full statement of Sobolev’s embedding theorem
can be found in any text on Sobolev spaces, see, e.g., [Ad75:p97]; however we will need
only the following consequence of it. If j —n/p > 0, then

.y e
W, (Q) C CH(Q).
To measure the size of its k-th derivative, it is convenient to associate with each
fe W]gk)(ﬂ) the function |D¥ f| € L,(Q), given by the rule
|D¥fl(z) := sup |Def(x)| = sup Dk f()], (1.4.1)

@cRPXk
i<t leli=1

where the derivatives Dgf are computed from any (fixed) choice of representatives for
the partial derivatives D f € L,(2), |a| = k. The equality of the two suprema is proved
in Chen and Ditzian [CD90]. This definition of |D*f| is consistent with its standard
univariate interpretation. From (1.4.1), it is easy to see that |D¥ f| is well-defined and
satisfies

[De f| < [DE 161l - 118l (1.4.2)

for all ® € IR"**. The inequality (1.4.2) holds a.e. To emphasize that De f, and |D* f|
are in L,(Q), we will say that (1.4.2) holds in L,(Q). The L,()-norm of |D¥ f| gives a

seminorm for f € ngk)(Q),
Folflipe =Dl L, - (1.4.3)
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Because of (1.4.2), this coordinate-independent seminorm (1.4.3) is more appropriate for
the analysis that follows than other equivalent seminorms, such as

F LUD L, o = lel = k) lp-

2. The linear functional f— [, f

2.1. Definitions

The construction of the maps of Kergin and Hakopian depends intimately on the
following linear functional called the divided difference functional on IR" by Micchelli
in [M79], and analysed there and in [M80].

Definition 2.1.1. For any © € R™**+D Jet

1 51 Sk—1
fl—)/ f:/ / / f(eo—|—81(91—90)—|—"'—|—8k(9k—9k_1))d8k"'d82 dSl,
e 0o Jo 0
with the convention that f[] f:=0.

In addition to Kergin and Hakopian interpolation, the linear functional f — f® f
also occurs when discussing other multivariate generalisations of Lagrange interpolation,
e.g., the Lagrange maps of Section 5. It was used as early as 1869, when in [Gel869]
Genocchi proved the (Hermite-)Genocchi formula, namely that for O € R 4D and

] € Ck(COIlV @)
© /

In this section, we outline those properties of f +— f® f needed in the subsequent
sections. Many of these properties are apparent from the following observation.

Observation 2.1.2. If S is any k-simplex in IR™ and A : R™ — IR" is any affine map
taking the k + 1 vertices of S onto the k 4+ 1 points in O, then

| =t Lo

with voly(S) the (k-dimensional) volume of S.
With the choice
A:RF SR (81,...,8%) = 0 +51(01—60) + ... + sk (0r—0k_1),
S = {(31,...,3k)€Rk:0§3k <eee <y <8y <1
this is just Definition 2.1.1. The different choice
A RFH — R" : (vg,...,v5) — voby + - - + vy,

k
S = {(vo,...,vk) € RFF! cv; 20, Zvj = 1}7
7=0
shows that our definition of f® f coincides with the one used by Micchelli in [M&0].

S



Properties 2.1.3.
(a) The value of f® f does not depend on the ordering of the points in O.
(b) The distribution

M@:COOO(IR")HIR:fHk!/@f

is the (normalised) simplex spline with knots © (cf. [M80]).
(¢) If f € C(conv ©), then [y f is defined and, for some § € conv O,

JREE=G!

(d) If g : IR* - R, and B : R" — IR” is an affine map, then

/@(goB)Z/B@g-

Remark 2.1.4. Let A| denote the restriction of A to the orthogonal complement of its
kernel, which is a 1-1 map onto the affine hull of ©. The simplex spline Mg of (b) has
support conv O. It can be represented by the nonnegative bounded function

VOlk_d(A_lt N S)

ct— M(t = d:=di
conv® — IR :t — M(t0O) [det(A])[volx(3) " im conv O,

in the sense that
Mo f = M(-]©)f. (2.1.5)
conv ©

In particular, if the points of © are affinely independent, then

k!/ f= ﬁ/ f = average value of f on conv ©. (2.1.6)
o voly(conv conv ©

Thus, [ f is defined (as a real number) if and only if M(:|©)f € Ly(conv ©), in which

|/®f|§/®|f|- (2.1.7)

If f is nonnegative on conv 0, then [, f € [0..00] is defined (by Definition 2.1.1). Therefore,
we will write (2.1.7) for all f which are defined on conv® — with the understanding that
f® f is defined if and only if f@ |f| < oo or f is nonnegative. In the univariate case, that is,
when n =1, M(-|©) is the (normalised) B-spline with knots ©. For additional details
about Me and M(-|0), see, e.g., Micchelli [M79]. O

case

Ezample 2.1.8. As a special case of (2.1.5), we have

1 ! —-m m—
/[0 0,1,...,1] - (m—l)!(k_m)!/o t* (1—1) lf(t)dt.
ves0, 1,

m k+1—m




Thus, by Property 2.1.3 (d), with B :t — ¢ +#(v — 2), and © = [0,...,0,1,...,1],

/[ = / s Fla + (v — 2))

m k-|—1 m m k-|—1 m (219)

- 1)1(k - /0 =1 — ) fa 4 t(o — 7)) dt,

2.2. Some technical details

®|—>/®f

could be thought of as a map defined on finite multisets in IR" rather than on sequences.
However, adopting this definition leads to certain unnecessary complications. For example,
to discuss the continuity of O — f® f, 1t would be necessary to endow the set of multisets
of k + 1 points in IR" with the appropriate topology. Thus, in the interest of simplicity,
0 — f® f remains a map on sequences — but with the reader encouraged to think of it,
as does the author, as a map on multisets. O

Remark 2.2.1. In view of Property (a),

Lastly, by (2.1.5), we can describe the continuity of © — f® f as follows.

Proposition 2.2.2.
(a) For f € C(IR"), the map

R™X (k1) —>IR:®'—>/f
e

is continuous.

(b) For f € L°¢(IR™), the map
{0 e R vl (conv O) > 0} - IR : O — / f
©

is continuous.

3. The main results:
the multivariate form of Hardy’s inequality and L,-inequalities

In this section we prove the multivariate form of Hardy’s inequality. This inequality
is useful for obtaining L,-bounds from integral error formulee for various multivariate
interpolation schemes.

First we need a technical lemma.

3.1. A lemma



Lemma 3.1.1. Let m,k be integers, and € IR. If 1 < m <k, and m 4+ u > 0, then

// s o =

Proof. This can be proved by successively evaluating the univariate integrals.
Instead, a proof using the properties of f +— f® f 1s given.
From Definition 2.1.1, it is seen that

// / (1= s dseedss = [

©:=1,...,1,0,...,0].

where

By (2.1.9), (1.2.3), and (1.2.2), it follows that

wo__ 1 ! k—m _ pym—1 _\M
/@(-) = (m—l)!(k—m)!/o th=m(1—ym Y1 — ) di
B 1 T(k—m+1)I'(m+ p)
(m — 1)k —m)! C(k+1+p)

—

(m = DIm + )kt+1-m

Here the condition that m + ¢ > 0 1s needed to ensure that the Beta integral is finite. O

3.2. The multivariate form of Hardy’s inequality
Now we prove the multivariate form of Hardy’s inequality.

Theorem 3.2.1. Let © be a nonempty finite sequence in IR", and let @ be an open set
in R"™ for which € is starshaped with respect to ©. If m —n/p > 0, then the rule

Hopof(e) i= /[ f (3.29)

yeony T,0]

induces a positive bounded linear map Hy, o : L,(2) — L,(2) with norm

1
Hm S — X
[Hm.ollL, @ (m — 1)l(m — n/p)ge

as  m—n/p— 0T, (3.2.3)

This upper bound for ||Hm el1,(e) is sharp when © involves only one point, i.e., when



and is also sharp when p = oo. Furthermore, if Q@ C €)', then
[Hm.ollL,@ < HmeollL,@): (3:2.4)
Proof. Suppose that m —n/p > 0. Then m > 0. Let k4+1 := m 4+ #0, and write

[2,...,2,0] =[2,...,2,0pm,0mt1,...,0k].
——

m m

By Definition 2.1.1,
Hoof(e) = [ fldcs)ds (325)
S

where s := (s1,...,5k),

1 51 Sk—1
/::// / , ds :=dsg---dsy,
s o Jo 0

Apsi=a + Sm(em - l') + Sm—l—l(em—l—l - em) +---+ Sk(ek - ek—l)-

and

The domain of integration for f in (3.2.5) is conv[z, O], which, by Proposition 1.3.1,
is contained (up to a set of measure zero) in €2, for any = € . However, for f € L,(Q),
it is not clear whether the integrals in (3.2.5) converge so as to define a function H,, o f
which is in L,(€) (or is even measurable for that matter).

First, suppose that f is a nonnegative measurable function. Then (3.2.5) defines a
nonnegative measurable function H,, e f, as is now shown. The nonnegativity of H,, o f,
i.e., the positiveness of the map H,, e, is obvious, and the measurability of H,, o f is a
consequence of Tonelli’s theorem (see, e.g., Folland [Fo84]), as follows.

First we prove that the map

(x,8) — f(Azs) (3.2.6)

is measurable. Since f is measurable, the measurability of (3.2.6) is equivalent to A™'(E)
being measurable for each E € £ where

A (x,s)— Ags,

and &£ is any family of sets that generates the Lebesgue o-algebra. Take & as the Borel
sets together with the subsets F' C B where B is a Borel set of measure zero. Since A4 is
continuous, the inverse image under A of a Borel set is a Borel set (which is measurable).
For F C B, A7!(F) is contained within the Borel set A~1(B) which has zero measure (see
below), and hence is measurable. For s, # 1, the set

1

1—3s.,

{r:A;s € B} =

(B - Smem - Sm—l—l(em—l—l - em) — Sk(ek - ek—l))a



hence has zero measure, and so, by Tonelli’s theorem,
meas(A™'(B)) = / meas({z : Ays € B})ds = 0.
S

This completes the proof of the measurability of (3.2.6). Since (3.2.6) is a nonnegative
measurable function, it follows from Tonelli’s theorem that

Hypo:o— /sf(AxS)

is measurable.
Apply Minkowski’s inequality for integrals (see, e.g., Folland [Fo84:p186]) to the sum
(integral) [ of functions @ — f(Azs) to obtain

|HmofllL,@) < /SHJ} = f(Aes)|lz, @) ds. (3.2.7)

The case 1 < p < oo. The inequality (3.2.7) can be written as

1/p
| HmofllL o) < /S ( /Q f(Al,s)pd:z:> s,

Make the change of variables
y=A;s

in the inner integral above. The new region of integration is contained in {2, and dy =
(1 — sm)"dx. Thus, by the change of variables formula (see, e.g., Rudin [Ru87:p153]) it
follows that

[(aaors ooz [([£2280) "= (fr-oarsrate

From Lemma 3.1.1, with k +1 — m = #0 and p = —n/p, it follows that

8, P ds = 1 )
/;1 R A 1 Ry B

The case p = oco. Since x — A, s maps sets of measure zero to sets of measure zero,
it follows from (3.2.7) that

(3.2.8)

1
| Hmofllr. @) < /S 1 fllpe () ds = fa 1l pe c92)s (3.2.9)

with equality when f is constant. The fact that

1
/dSZ —’,
o !
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used above, follows from Observation 2.1.2, or by Lemma 3.1.1 with p = 0.
So far, it has been shown that, for a nonnegative measurable f, (3.2.2) defines a
nonnegative measurable function which satisfies

1

H,, <
[ Hm.0fllL, @) (m — 1)l(m —n/p)ge

1 fllz, ) (3.2.10)

In view of this inequality, H,, ¢ induces a map from the nonnegative functions in L,({2)

to L,(2). Each f € L,(Q) can be written as
f=f-f,

a difference of nonnegative functions in L,(€2) (its positive and negative parts), and so (due
to its linearity) H,, o induces a map on L,({2), also denoted by H,, . Since

[ Hmofllz, @ < [Hmo(fDlL,@, Yfe L)

inequality (3.2.10) holds for all f € L,(12), which gives (3.2.3).
Next, (3.2.4) is shown. Since the restriction map

L(Q) = Ly(Q): fr fla
is onto, and (H,, e f)|o depends only on flq,

H,, H,, /
| ,®(f|Q)HLp<Q>< - | Hm.ofllL, @)

|Hmollr,@ = sup

FEL,(Q) Hf|QHLP(Q) - FELp(Q') HfHLp(Q/)
f=xqlf
| Hm.o fllL, @
< sup 2 = | Hom ol -
FEL,(Q) 1Nz, 00

Finally, the sharpness is proved. Suppose that © = [v,... v]. Let
Fimll-—vl*, aeR.

Then, by (2.1.9), and (1.2.3), for m + o > 0,

1 1
el )(#6 - 1)! /0 O L =)™ | + (v — @) — o[ dt
1 1
(m —1Y(#6 —1)! /0 H#OH (L — )y Gt [l — o))
= 1 P(#@)P(m+a) Hx _vHa

(m —1)(#0 — DI T(#0 + m + «)
1

(m—1
—1

= [l = o]|%,

(m —Dl(m + a)ze

11



so that f := |- —v||*, m 4+ a > 0 is an eigenvector of H,, ¢ with eigenvalue

A= 1
C (m =Dl m+a)ge’
Thus,
1ol @) > supf ! |- = € Ly(Q), a+m > 0}
m Z su v , 1+ M
ONE ) =S T m + a)ge ’
1

> : —
= Sup{(m “Dimtame n/p}

B 1
(m—=1Dl(m — n/p)ae’

giving equality in (3.2.3). The sharpness for the case p = oo follows from the observation
that there is sharpness in inequality (3.2.9) for f constant and © bounded, together with
the inequality (3.2.4). O

Remark 8.2.11. If vol,(conv ®) > 0, then, by Remark 2.1.4, it follows that the value of
Hp,0f(x) is the same for all representatives of f € L,(2). Indeed, by Proposition 2.2.2,
for all f € L,(Q) we have that H,, o f € C(Q2), regardless of whether or not m —n/p > 0.

On the other hand, when vol,(conv ©) = 0, then the function H,, e f need not be so
well-behaved. For example, if n > 1 and © consists of a single point 6, then f € L,(Q)
can be altered on a null set so that H,, e f takes on arbitrary preassigned values on any
countable dense subset of ). For the details of one such construction, see the end of this
section.

3.3. Special case: Hardy’s inequality
In the very special case n =1, m = 1, and © = [0], one has, by (2.1.6), that

Hmof(z)= %/Of (3.3.1)

With the choice Q = (0, 00), (3.2.3) is Hardy’s inequality (1.1.2). This well-known inequal-
ity was first proved by Hardy [Ha28], see also [HLP67:§9.8].

For a comprehensive survey of the literature connected with Hardy’s inequality, see
Chapter IV: Hardy’s, Carleman’s and related inequalities, of the monograph [FMP91]. The
only multivariate occurrence of Theorem 3.2.1 that the author is aware of is, implicitly, in
Arcangeli and Gout [AGT6] for the case when O consists of a single point. The bulk of the
174 references for chapter IV of [FMP91] deals with univariate generalisations of Hardy’s
inequality — some of which are special cases of Theorem 3.2.1.

3.4. Further L,-bounds

Next we use Theorem 3.2.1 to give a bound particularly suited for obtaining L ,-bounds
from integral error formulae, such as those given in Sections 4 and 5.

12



Theorem 3.4.1. Fix ay,...,as € IR’i+1 \ 0, where s > 0. Let © € R™**, and let Q be
a bounded open set in IR" for which Q is starshaped with respect to ©. If m —n/p > 0,

then the rule ,
Lf(x) ::/ (H D[l,,@]aj>f (3.4.2)
[z,...,z,0] j=1
——

m

induces a bounded linear map £ : W () — L,(§2), with

- 1
L < [ max x,0]a; s p Q- 3.4.3
121,00 < (s L Ol o= e (843)
In addition, when p = oo, we have the pointwise estimate
1 8
L) £ g (1:I ) P S A X

Proof. It follows from Theorem 3.2.1 that (3.4.2) induces a linear map W;(Q) —
L,(€Q). Next, (3.4.3) is proved.
Let z € Q, and f € W, (Q). By (1.4.2),

(TT 2110 ) 1| = (TT e 001 1071 (5.45)

in L,(Q2). Here |D°f| € L,(Q) is defined by (1.4.1). Thus,

Apf = (H D[x,@]aj>f
=1

defines a bounded linear map A, : W;(2) — Ly(2), with
A f] < K |D*f], (3.4.6)
in L,(Q2), where

K :=K(ay,...,as, ) = max x,0la;l|.
(@ )=z [Tl 0l

Notice that
Lf(x) = (Hmeo Asf)(2).

Thus, (3.4.6) and the positiveness of Hp, @ : L,(2) — L,(2) implies that
[Lf] < Hpo(K |[D*f]),

13



in L,(Q2). Take the L,(Q)-norm of this inequality, then apply Theorem 3.2.1, to obtain

1
(m—1)!(m —n/p)y

L]z, @) < @KH D fl Iz, o)

Since

H |D8f| HLP(Q) = |f|s,p,Qv

this proves (3.4.3).
Similarly, from (3.4.5) and Theorem 3.2.1, we have for a.e. x € §, that

[Lf(z)] < (H H[%@%H)HHm,e(IDSfI)HLoom)

J=1

i 1

which is (3.4.4). O

In the special case when s = 0, Theorem 3.4.1 reduces to Theorem 3.2.1. Theorem
3.4.1, together with Property 2.1.3 (d), can be used to obtain bounds for maps more general
than (3.4.2). One such example is the lift of an elementary liftable map, see [Wa94].

3.5. An example

Finally, the example promised in Remark 3.2.11.

Let n > 1 and © consist of the single point #. Suppose that  is starshaped with
respect to 6, and that B is a countable dense subset of . It is possible to change f € L,(2)
on the intersection of {2 with the cone C' with vertex 6 and base B, which is a null set, so
that H,, (4 f, as computed from (3.2.2), takes on arbitrary preassigned values on B.

The cone C' consists of the union of rays r emanating from 6 and passing through a
point b € B. Let r be such a ray, and order the points from B lying on r as by, bs,..., so
that b; 1s closer to 6 than b;11. By Remark 2.1.4,

Hop, 10 f(bi) = /M('|bi,---7bi,9)f

m

with the integration above being over the interval [6 .. b;] := conv{6,b;} weighted by a
nonnegative polynomial. Thus, by redefining f to be an appropriate constant over each of
the intervals [6..b;], [b1..b2], [b2..b3], ..., one can make H,, 14 f(b;) take on any preassigned
values.

The function H,, (4 f is more than simply an interesting example. It occurs in the
multipoint Taylor error formulae for multivariate Lagrange interpolation given by Ciarlet
and Raviart [CR72]. From the multipoint Taylor formula, Arcangeli and Gout [AGT6]
obtained L,-bounds for multivariate Lagrange interpolation, long used by those working
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in finite elements, but known to few approximation theorists. For this reason, these bounds
are discussed in some detail in Section 5.

4. Application:
L,-error bounds for Kergin and Hakopian interpolation

In this section, we use Theorem 3.4.1 to obtain Ly-error bounds for the scale of mean
value interpolations, which includes the Kergin and Hakopian maps.

To describe the mean value interpolations, and the Lagrange maps of Section 5, we
will need the following facts about linear interpolation.

4.1. Linear interpolation

Let F be a finite-dimensional space and A a finite-dimensional space of linear function-
als defined at least on F'. We say that the corresponding linear interpolation problem,
LIP(F,A) for short, is correct if for every g upon which A is defined there is a unique
f € F which agrees with g on A, i.e.,

M) = Mg), YA€ A.

The linear map L : g — f is called the associated (linear) projector with interpolants

F and interpolation conditions A. Each linear projector with finite-dimensional range

F is the solution of a LIP(F, A) for some unique choice of the interpolation conditions A.
Notice that the correctness of LIP(F, A) depends only on the action of A on F.

4.2. The scale of mean value interpolations

Throughout this section, © € IR"“*. For 0 < m < k, we have the mean value
interpolation

(m) Af o fis c*=m=1 on conv O} — Ix_p—1 (IR™),
which 1s given by

S Y Y [, Pemornaf

j=m+1 @c@)] 1
#G) m

Hgn) is a linear projector, with interpolants II;_,,—1(IR") and interpolation conditions
span{f|—>/ D)f:0C 0O, #0 > m + 1, QEH o (R™)}

The map H® is Kergin’s map, and H(n D s Hakopian’s map. The Kergin
interpolant matches function values at ©, as does the Hakopian interpolant in case © 1is
in general position; but this latter fact is not obvious. For this reason, the scale (Hgn) :
0 < m < k) of multivariate mean value interpolations is thought of as a multivariate
generalisation of Lagrange interpolation. For more details see [Wa94].

For the remainder of this section, 2 will be a bounded open set in IR"™ with a Lipschitz
boundary. From [Wa94], one obtains the following integral error formulae for the scale of
mean value interpolations.
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Theorem 4.2.1. Suppose that Q is starshaped with respect to ©. If 0 < j < k —m,
q € H?(IR"), p>n,and f € ngk_m)(ﬂ), then

k

(DI -HP D =m+i) S X [ Do e euDf

i=k—m—j 6ce;_, [€,-2,04]

(4.2.2)

This formula involves only derivatives of f of order k — m.

Remark 4.2.5. ITn [Wa94] the formula (4.2.2) was proved only for f € C*~™(IR"), without

any reference to p. We now outline how it can be extended to f € ngk_m)(ﬂ). By
Sobolev’s embedding theorem, the condition p > n implies that

Wik=m(Q) c c*=mmH(Q) C C(Q).

Thus, H(@m)f is defined for all f € ngk_m)(ﬂ). To extend (4.2.2) to f € ngk_m)(Q) use
a density arguement.
O

4.3. Ly-bounds for the scale of mean value interpolations
Next we apply Theorem 3.4.1 to (4.2.2) to obtain L,-bounds for the scale of mean

value interpolations. Let

hy e :=sup|z—0|, hge :=suph,e < diam®.
€O zEQ

Theorem 4.3.1. Suppose that Q is starshaped with respect to ©. If 0 < j < k —m,
p>n,and f € ngk_m)(ﬂ), then

1F = HEFL o < Capibom (h2,0)* ™ 1 f 1k _ s (4.3.2)

5p,8 =

where

1
(1—=n/plk—m—j

The constant Cy p jkm — o0 as p — nt. Additionally, if p = oo, then we have the

Crpjkm =

pointwise estimate that, for all v € Q,

1

T

DI (f —HG P)l(x) < KT

Proof. Choose ¢ € H?(IR") so that



where uy,...,u; € R" with |Ju;]| <1. By Theorem 3.4.1, we have for each of the terms in
(4.2.2) that

||x — [ '] D[f_ei_l\é,w_gi]q(D)fHLp(Q)

1
SOt 1—i—n/p)

(hQ,Q)k_m_jlflk—m,oo,Q'

Notice that in the above, the constants

max H |z — 8|

xEQ ~
0€[0,;-1\0,6;]

were replaced by the possibly larger, but far less complicated constant (hQ’Q)k_m_j. This
gives the first inequality with

k
. 1 L
i ! Z
Cp,jske,m (m‘H)-‘ > ‘<m—|—j—|—i—k>(k—i)!(k—l—l—i—n/p)i

k—l)’ —m—j,l—n/p‘
(i—m—j— (1 —n/p) E( 1),

By the Chu-Vandermonde convolution identity:

—n,b c—b),
2F1< Z §1>:( )

which is the special case a = —n of equation (14) in [E53:p61], it follows that

1
(1—=n/plk—m—j

Cpjkym =

The second inequality, which is proved in [Wa94], follows from the pointwise estimate

(3.4.4). O

By considering the special case of Taylor interpolation at a point by polynomials of
degree < k, one obtains the following estimate of the distance of smooth functions from

.
Corollary. Suppose that @ C IR" is a bounded, open, starshaped region that has a
Lipschitz boundary. Then for p > n and 0 <5 <k +1,

dist |.|jypyﬂ(f7Hk) = glengk 1 f—9l;,0

1 | . » (4.3.3)
(diam ©2) Nl pos Y eW, ()

ST/
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Note that .

(1 =n/p)r+1-;
That an inequality of the form (4.3.3) holds for j = 0, where the constant 1/(1 —
n/p)k+1—; is replaced by some unknown constant depending only on n, k and p, is the

content of the paper by Dechevski and Quak [DQ90]. From this they obtain the corre-
sponding ‘improved’ version of the Bramble-Hilbert lemma (see [BH70]).

— o0, asp—nT.

4.4. A related result of Lai and Wang

The only related result in the literature is an L,-bound for the error in Hakopian
interpolation given by Lai and Wang [LW84]. In that paper they show the following.

Theorem 4.4.1 ([LW84:Th.1]). Let |a| < k — n. Then for any positive integer { <
k+ |a] —n+ 1, we have

De(f —HE ™))

lal+n n B on
=(la|+n—1) Z Z(w — Olajtn—pi+1)ir Z Z(w — Olajtn—pa+2)ir X
u1:1 i1:1 H’?Zl i2:1
he—1 n ¢ ;.
I _9|a|+n_w+f)”/ D im Y (4.4.2)
pe=1i,=1 x,...,w,@l,...,9|a|+n_w+z]

K
k—1

- ) > Dawy(:p)/ D7f.

j=|al+n—1+£ |y|=j—n+1 [61,...,64]

The above uses standard multi-index notation. The ¢-th component of z € IR" is x;,
and e’ is the ¢-th unit vector in IR". To (4.4.2), Lai and Wang apply the integral form of
Minkowski’s inequality in the form

|z — /[ DFllo o) <Co D fllo s p=1, . lal+n,  (44.3)
5. ,Z,el,...,9k+1_ﬂ

to obtain the following.
Theorem 4.4.4 ([LW84:Th.2]). Let G be a convex set containing ©, with diameter h.
Ifp>n,|la|<k—n,and f € ngk_n—i_l)(G), then

ID°(F = HG ™ Pl () < ORI mae D7 flln, . (4.4.5)

where C' a constant independent of f.

Since f — maX|ﬂ|:k+1_nHDﬂfHLp(Q)7 and f — |flry1-pnp0 arve equivalent semi-
norms, Theorem 4.4.4 follows from Theorem 4.3.1. Had Lai and Wang attempted to
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compute the Cy of (4.4.3) using the multivariate form of Hardy’s inequality, they would
have obtained

1
(=D —n/plrti—n

Thus, their constant C' in (4.4.5) would have the same qualitative behaviour as our own
Crp.jk.m of (4.3.2), namely that C — oo as p — n™.

Cy <

4.5. The behaviour of C,, ; j 1.» as a function of its parameters

In [Wa94] it is shown that, in an appropriate sense, the constant Cy, , j k.m of (4.3.2)
is best possible when p = co. The question then arises whether or not the over-estimation
committed in using the multivariate form of Hardy’s inequality to obtain C, p, jxm 1s
significant for p < co. In particular, does the best possible constant C' in the inequality

1f = HSV £l o < C(hao) ™ 1 fli e (4.5.1)

become unbounded as p — nTI In the univariate case, at least, the answer is no — the
best possible constant in (4.5.1) does not become unbounded.

Before we show this, let us clarify a little the role that the condition p > n plays
in Theorems 4.3.1 and 4.4.4. The condition p > n is necessary if these results are to be

stated in terms of the Sobolev space ngk_m)(Q) — in particular, so that H(@m)f is defined

for f € ngk_m)(ﬂ). However, it makes good sense to ask what is the best constant C for
which (4.5.1) holds for all sufficiently smooth functions f — say, e.g., f € C*=™(Q). The
condition p > n is again needed when one seeks to apply the multivariate form of Hardy’s
inequality to the integral error formulae (4.2.2) and (4.4.2).

We now show that, in the univariate case, i.e., when n = 1, there is a best possible
constant C' in (4.5.1) for all sufficiently smooth f, which can be bounded independently
of 1 < p < oo. The crucial step in the argument to follow is the use of the B-spline
L ,-estimate that

1-1/
#9 - 1) ’ (4.5.2)

M(-|© <
MO, m < (Bog
when diam © > 0, see de Boor [B73].

In line with [Wa94], the univariate case of the map Hgn), termed the generalised
Hermate map, will be emphasised by writing it as H((am). This map has the simple form

HSV f = D™(HoD ™ f),

where Hg is the Hermaite interpolator at the points ©, and D~ f is any function for which
D™(D™™f)=f.

Theorem 4.5.3. Let O be a k-sequence in the interval [a..b]. If 1 < p,q¢<o00,0< 5 <
k—m, and f € C*¥~™[a .. b], then

(m ) ke

j (m)
HD](f_HG f)HLp[ab] < (k—m—j)' A (b_

) TS DR F .
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Proof. Fix « € [a..b]. For © a finite sequence in IR, let
wel(x) = H(:L' —9).
#cO
With this notation, replacing each occurrence in (4.2.2) of a linear functional of the form
f f® f by integration against a B-spline, we obtain that
DI(f ~ HG" f)(x)

=(m+7) Z Z w®i—1\é(x) (z—6;) % /Dk—me(-|:1;,®i).

t=k—m—j OCO®;_1
#O=m+j+i—k

By Hoélder’s inequality, and (4.5.2), we have that

k 1/q .
S pk—m '
- (diam[:z;,@ﬂ) I fHLq[a..b]

‘w@i_l\@(w)(l‘—@)
(diam[z, ©;])1/4

‘/D’“‘mf M(-|z,0;)

Since

< (b-— a)k_m_l/q,

we obtain that

1DI(f —HS" f)()|

k
. i—1 et/ o .
SUESIEDS ( ) e (b—a)* = DR £l 1 oy

‘ Am+ji+t—k
t=k—m—j
(m +j) ke e .
- (k_m_]); Lt (b_a)k 1/qHDk fHLq[a..b]-
Finally, take || - |1, [4..) of both sides. O

To adapt this argument to the multivariate case, it is necessary to have the simplex
spline analog of the B-spline L,-estimate (4.5.2). This is provided by Dahmen [D79], who
shows that when vol,,(conv ®) > 0,

v El(k +1)! 1 L=t/p
IALCION, rey < nl(n 4+ 1)(n —k)! (voln(conv @)) ’ (4.54)

with k+ 1 := #0. Yet, with this in hand, it does not seem possible to apply the argument

of Theorem 4.5.3 in any satifactory form.

Remark 4.5.5. Incidentally, the constant in (4.5.4) is not the best possible. Already, by
using the fact that [ AM(:|©) = 1, together with the case p = oo of (4.5.4), one obtains

(k4 1)! 1 G
. ny < )
M0z, ®mn) < (n'(n + DI(n — k)! vol,(conv @))
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In the univariate case this over-estimates (4.5.2) by a factor of ((k + 1)!/2)1_1/1’.
The key step in proving (4.5.2) is the bound

M(10) <

4.5.6
~ diam®’ ( )

which follows from the partition of unity property of B-splines. Thus, a close examination
of the simplex spline analog of the B-spline partition of unity, given recently by Dahmen,
Micchelli and Seidel [DMS92], should give tighter bounds than those of (4.5.4). However,

we make no attempt here to give such an argument. O

Remark 4.5.7. There are other integral error formule for the scale of mean value interpo-
lations, to which Theorem 3.4.1 can be applied to give L,-bounds. These include Lai and
Wang [LW86] (Kergin interpolation), Gao [Ga88], and Hakopian [BHS93:p200] (Hakopian
interpolation). See [Wa94] for a discussion of the relative merits of each of these formulae.
O

5. Application:
L,-error bounds for multivariate Lagrange interpolation

In this section, we use Theorem 3.4.1 to obtain Ly-error bounds for multivariate
Lagrange interpolation schemes.

5.1. Lagrange maps

A linear interpolation problem for which the space of interpolation conditions is
spanned by point evaluations at ©, a finite sequence in IR", is called a Lagrange in-
terpolation problem. If P is the space of interpolants for such a problem and the
problem is correct, then the associated linear projector, called the Lagrange map, will
be denoted by Lpe. The Lagrange form of a Lagrange map is given by

Lpof=Y_f(6)s. (5.1.1)

€O

Here (5.1.1) uniquely defines
lg := Ke,p,e - P,

the Lagrange function for § € ©. In other words, (éj¢])sco is dual (bi-orthonormal) to
(lg)oco.

Lagrange maps into a space containing polynomials of degree k are frequently used
to interpolate to scattered data, see, e.g., Alfeld [Al89]. Particular examples receiving
much attention lately are maps where the interpolants include radial basis functions or
multivariate splines, and de Boor and Ron’s least solution for the polynomial interpolation
problem [BR90] (also see [BR92] for its generalisation). In addition there are of course the
maps of Kergin and Hakopian.
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For such maps, there is the multipoint Taylor formula for the error. This formula was
initiated by the work of Ciarlet and Wagschal [CWT1]; most of the relevant papers are in
French, and it is little known outside the area of finite elements. It is for these reasons,
and because our Theorem 3.4.1 implies Ly-estimates from the multipoint Taylor formula,
that we discuss the formula here.

5.2. The multipoint Taylor formula

Multipoint Taylor formula 5.2.1 ([CR72]). Let © be a finite sequence in IR", and let
Q be an open set in IR" for which Q is starshaped with respect to ©. If Lp e is a Lagrange
map with II;,(IR") C P C C*¥(Q), then for f € C*T1(Q), ¢ € I1(IR™), and x € Q, its error

satisfies: (¢(D)Yf—Lpef))(x)=— Z </[

z,...,z,0]
€O

thif)wwwe)(x). (5.2.2)

k41

The term multipoint Taylor formula comes from the fact that
6 — / Dk+1
k+1

is the error in Taylor interpolation of degree k at the point z, a special case of the error in
Kergin interpolation. The proof of (5.2.2) further justifies the use of this term.
The region of integration in (5.2.2) consists of line segments from x to 6 € ©.

©

Fig 5.1 The region of integration in (5.2.2) for © consisting of 6 points

From the multipoint Taylor formula, Arcangeli and Gout [AG76] obtain L,-bounds
for the error in a Lagrange map. These bounds are precisely those obtained by applying
Theorem 3.4.1 to (5.2.2). The crucial step in the argument presented in [AG76:Prop.1-1]
is the use of the multivariate form of Hardy’s inequality for the map

x> Hypq ) f(2) = /[ I (5.2.3)

k41

This inequality is not explicitly stated, though the proof of their (weaker) Proposition 1-1
would imply it.
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Remark 5.2.4. The key step in the proof of Proposition 1-1 in [AG76] is an application of
Holder’s inequality to the splitting

1 1
/[ | f= E/o (1—t)" Y1 ((1 — )RR £t (o — :1;))) dt,

B4l
where ¢ := (k+1—n/p)/q, and 1/p+ 1/q = 1, as opposed to our use of the integral form
of Minkowski’s inequality. O

Having identified the precise role of the multivariate form of Hardy’s inequality in
[AGT6], it is possible to use it to run through Arcangeli and Gout’s calculation for a much
more general class of norms, including those most often used in numerical analysis. The
resulting bounds, given below, have smaller (and simpler) constants than those one might
hope to obtain by applying the inequalities for similar norms to the results of [AGT6].

For the remainder of this section, 2 will denote a bounded open set in IR" with a
Lipschitz boundary, and © a finite sequence in IR". Recall

hge = supsup ||z — 0| < diam Q.
€O €
Corollary 5.2.5. Suppose that ) is starshaped with respect to ©, and that Lpe is a

Lagrange map with IIx(IR") C P C C*Q). If k+1—-n/p>0, and f € ngk—i_l)(Q), then

1
|f LP®f|P,Q > k’(k L1 ) (Z |£9|OO,Q> |f|k+1’p’9 (hQ’@)k—i—l. (526)

n/p Hco

Here | - |, o is any seminorm on W]f(ﬂ) of the form

[flp. = [ Ulgi(D)Fllz, 2))iZy llmm,
where the g; € IIx(IR") are fixed, and || - ||gm is any norm on IR™, or |- |, q is ||, , o for
some 0 <1 < k.

Proof. By Sobolev’s embedding theorem, the condition £ + 1 —n/p > 0 implies
WH(Q) C O(9),
and so the Lagrange map Lp g is well defined. Asin Remark 4.2.3, (5.2.2) can be extended
to f € W]gk—l_l)(Q). Fix f € ngk—i_l)(Q), and « € Q. Let h:= hg e. By (1.4.2),
DG I < D16 — 27 < [DETLF[ AR,
in L,(Q). Thus, with ¢; € II;(IR"), we have for a.e. x €  that

LIS YIS DI ANE A ) [P AS

6co [z,...,z,0]
E41
To this, the condition k£ + 1 —n/p > 0 allows us to apply the multivariate form of Hardy’s
inequality to obtain

I55D)F = e Nl < g =77 ( 2 DN el ) 1 ey 14

€O

Finally, take the || - |[r= norm of the inequality (for m-vectors) given above. O
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In [AG76:Th.1-1], Corollary 5.2.5 is proved only in the case when |- |, o is of the
form |f]; , o for some 0 < ¢ < k, with hg e replaced by diam 2. In that paper some
bounds on the size of the Lagrange functions (g, together with relevant applications are
given. One application is bounding the error in a finite element scheme, see also Ciarlet
[Ci78:p128]. Another, of interest to approximation theorists, is to estimate the distance of
smooth functions from II;(IR"), and to give the corresponding constructive version of the
Bramble-Hilbert Lemma, see [BH70].

The condition in Corollary 5.2.5 that ¥ + 1 — n/p > 0 plays an analogous role to
the condition in Theorem 4.3.1 that n > p. Namely, it is required so that the results
can be stated in terms of Sobolev spaces, and to apply the multivariate form of Hardy’s
inequality. Additionally, by Theorem 4.5.3, the unboundedness of the constant in (5.2.6)
as k+1—n/p — 07 is, in the univariate case, not a true reflection of the behaviour of the
error.

With the multivariate form of Hardy’s inequality in hand, it is also possible to obtain
pointwise error bounds for Lagrange maps.

Corollary 5.2.7. Suppose that  is starshaped with respect to ©, and that Lpe is a
Lagrange map with Il (IR") C P C C*(Q). With f € Wo(clf—i_l) C C(Q) and = € Q, we have

the (coordinate-independent) pointwise error bound

1

#() = Lro fo)] € gy

| Fligt000 > 16— 2l 0a(2)], (5.2.8)

€O

and the (coordinate-dependent) pointwise error bound

F@) =~ Lrof@I <3 3 D fliw (60 C@).  (5:29)

Proof. The proof runs along the same lines as that for Corollary 5.2.5, except
that for (5.2.9) we first expand Dgi'if as

Diflf= ) BEIlg  oypey,

!
(&'
|a|=k+1

by using the multinomial identity. O

Neither of (5.2.8) or (5.2.9) occurs in the literature. For f € C*T1(Q), they can be
obtained more simply, by applying the mean value theorem, as given by Properties 2.1.3
(¢), to the integrals occurring in (5.2.2).

Remark 5.2.10. The results of [AGT76] have been extended in the following ways. In
[GoT77], Gout treats the error in certain forms of Hermaite interpolation — that is where, in
addition to function values, certain derivatives are matched at the points in O. In [AS84],
Arcangeli and Sanchez bound the error in a Lagrange map for functions from fractional
order Sobolev spaces. [
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5.3. The error formula of Sauer and Xu

There is another error formula, for the error in a Lagrange map with range (inter-
polants) IIx(IR"), that has been given recently by Sauer and Xu, see [SX94].

Sauer and Xu order the dim II;(IR"™) points in © so that each Lagrange interpolation
problem with points ©7 (by definition the initial segment of © consisting of the first
dimII;(IR"™) terms) and interpolants IT;(IR") is correct for j = 0,...,k. They consider
the collection ¥ of all (k 4+ 1)-sequences ¥ = [ig,..., 9], called paths by them, with
¥; € ©\077 all j. Given this notation, Sauer and Xu state their result in the following
form.

Theorem 5.3.1 ([SX94:Th.3.6]). Suppose that Lpe := L, (r"),e is a Lagrange map,
and f € C*TY(IR™). Then

LP@f Z p‘ll Dx—kawk—wk_1 "'D¢2—¢1D¢1—¢0f7 (532)
Vew [z,V]

where py € II;(IR") is given by

pu(z) = (k+ 1y, m, w0l H 0T (R),0 (Yig1).

The region of integration in each term of (5.3.2) is the convex hull of x and V.

©

°
Fig 5.2 The region of integration in (5.3.2) for © consisting of 6 points

From (5.3.2), the following pointwise estimate is obtained.

Corollary 5.3.3 ([SX94:Cor.3.11]). Suppose, in addition to the hypotheses of Theorem
5.3.1, that Q) is starshaped with respect to ©. Then, for all x € (Q,

1
|f(z) = Lpef(z)| < ) D IDe—in D~y - Dy Dy o Fll Lo () [P ().
vew

(5.3.4)
The bound (5.3.4) is of a form similar to those of (5.2.8) and (5.2.9). For a more direct

comparison, one obtains from (5.2.2) the bound

) = Leo () < gy 2 106l (o)l (5:3.5)

€O
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This last bound has #6 = Ef:o #0OJ terms, as opposed to #W = Hf:o #0607 for (5.3.4),
and requires no ordering of ©. For the purposes of comparison, in the bivariate case, i.e.,
when n = 2, one has that #0 = (k 4+ 2)(k + 1)/2, while #¥ = (k + 1)!. In addition,
bounds analogous to (5.3.5) can be obtained, from (5.2.2), for the derivatives of the error
inLpe.

To obtain L,-bounds from (5.3.2), it is necessary to bound

t— Ly yf(x):= f (5.3.6)
[z, V]

in terms of || f|| 7, (q)- This can be done by using the multivariate form of Hardy’s inequality.
Thus, we have the following instance of Theorem 3.4.1.

Corollary 5.3.7. Suppose the hypotheses of Corollary 5.3.3. If 1 —n/p > 0, then

1
If = Lrofl,@ < —(Z Hmrum@) | F 1kt paho0)

(1 - n/P)k—i—l S

The condition 1—n/p > 0 is needed so that the multivariate form of Hardy’s inequality
can be applied to (5.3.6). By comparison, to obtain (5.2.6) from (5.2.3), only the weaker
condition that k+ 1 —n/p > 0 was needed.

6. Other error bounds

6.1. Discussion

All of the integral error formulz for Lagrange maps given in the literature, including
those of Section 5, can be obtained from

f@) = Lrof(a (/ / )69

€O

which is valid whenever P contains the constants, by appropriately using the identity

fo f= Dol (6.1.1)

[©,v] [O,w] [©,v,w]

and the integration by parts formula.

For example, in Gregory [Gr75] the integration by parts formula is used to give a
Taylor type expansion for f. From this is obtained an integral error formula for linear
interpolation on a triangle, i.e., when © consists of 3 affinely independent points in IR?, and
the interpolants are the linear polynomials P := Hl(IRZ). Such an argument is frequently
referred to as a Sard kernel theory argument, as developed by Sard [Sa63]. The resulting
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formula is complicated — it has 4 line integrals and 5 area integrals. Another example is
given by Hakopian [H82], who uses (6.1.1) to obtain an integral error formula for tensor
product Lagrange interpolation.

In view of their derivations, all of these integral error formule involve terms which
consist of a function (obtained appropriately from the Lagrange functions) multiplied by
the integral of some derivative against a simplex spline. Thus, it is possible to apply the
multivariate form of Hardy’s inequality to all such formulee (and those likely to be obtained
in the future) to obtain L,-bounds — with the caution that, as pointed out for the examples
in Sections 4 and 5, for small p this may not accurately reflect the behaviour of the error.

Exactly how to use (6.1.1) and the integration by parts formula to obtain the best
possible error formula for a given purpose is far from clear. In a future paper the author
considers the simplest case, that of linear interpolation on a triangle. There, the formulae
of Ciarlet and Wagschal [CWT1], Gregory [Gr75], Sauer and Xu [SX94], amongst others,

are discussed.
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