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Extremising the Lp-norm of a monic polynomial withroots in a given interval and Hermite interpolationShayne Waldron (waldron@math.wisc.edu)1. IntroductionLet � be a multiset of n points in [a; b], and!� := Y�2�(� � �) 2 �n:In this paper we discuss the size of k!�kp as a function of �. This constant k!�kp arisesnaturally in error bounds for Hermite interpolation. For example, if H�f 2 �<n is theHermite interpolant to f at the points � (counting multiplicities), thenkf �H�fkp � k!�kpn! kDnfk1; 8f 2 Wn1; (1:1)with equality i� f 2 �n.In Section 2, we show that if some of the points in � are prescribed, then k!�kp ismaximised by an appropriate choice of the remaining points from fa; bg. As an application,we provide Lp-error bounds for Hermite interpolation, in cases where some of the pointsin � are known to be from fa; bg.In Section 3, we show that k!�kp is minimised for a certain choice of �, consisting of ndistinct points in (a; b). These points are precisely the roots of the error in the unique bestLp-approximation from �<n to any polynomial of (exact) degree n. This result is closelyrelated to Gauss quadrature formul� with multiple nodes (via s-orthogonal polynomials),for which we are able to give error bounds. Other applications in this section include errorbounds for best Lp-approximation by polynomials of �xed degree.2. Maximising k!�kpThroughout, � will be used for a multiset of n points from [a; b]. Our functionswill be de�ned on the closed interval [a; b], b � a > 0. Thus k � kp := k � kLp[a;b], andWnp := Wnp [a; b] the Sobolev space of functions f with Dn�1f absolutely continuous on[a; b] and Dnf 2 Lp := Lp[a; b]. The space of polynomials of degree � n will be denotedby �n.(2.1) Theorem. Let �0 be a �xed multiset of � n points from [a; b]. The maximum offk!�kp : � � �0g2



is attained when � n�0 is in fa; bg.Proof. Let C be the convex hull of the compact setW := f!� : � � �0g � �n:Since C ! IR : f 7! kfkp is a continuous convex function, it attains its maximum at anextreme point of C. Since each point in C n W can be written as a (nontrivial) convexcombination of two points in C, the extreme points of C are contained in W.Suppose !� 2 W is an extreme point of C, with f�;�0g � �, for some � 2 (a; b).Then for small " !� = 12(� � (� � "))!�n� + 12(� � (� + "))!�n� ;a convex combination of points in W, contradicting the fact !� is an extreme point of C.Thus the extreme points of C are given by !�, where � consists of �0 together with pointsfrom fa; bg.We now use this result to �nd the maximum of � 7! k!�kp over An(i; j), which is,by de�nition, the set of those � containing one endpoint at least i times and the otherat least j times, where i + j � n. Notice that An(i; j) is symmetric in i; j, that An(0; 0)consists of all �, and that An(m;n�m) has at most two elements.Let B be the beta functionB(x; y) := Z 10 tx�1(1� t)y�1 dt = �(x)�(y)�(x + y) ; 8x; y > 0:Recall that B is symmetric, and satis�es: 0 < B(x; y) � minf1; 1=maxfx; ygg; 8x; y > 0:(2.2) Corollary. Let m := minfi; jg, and 00 := 1. Thenmax�2An(i;j) k!�kp = (b � a)n+ 1p �B(pm+ 1; p(n�m) + 1) 1p ; 1 � p <1mm(n �m)n�m=nn; p =1,with the maximum achieved i� � 2 An(m;n �m).Proof. By Theorem (2.1), the maximum occurs when all the points in � are fromfa; bg. For � 2 An(k; n� k), we computek!�kp = (b � a)n+ 1p �B(pk + 1; p(n � k) + 1) 1p ; 1 � p <1kk(n� k)n�k=nn; p =1,and then observe that the maximum of k!�kp over m � k � n �maxfi; jg occurs whenk = m.This improves upon the weaker result of Agarwal [Ag91], thatmax�2An(i;j) k!�kp � (b � a)n+ 1p (2B1=2(pm+ 1; p(n�m) + 1)) 1p ; 1 � p <1: (2:3)3



Here B1=2 is the incomplete beta functionB1=2(x; y) := Z 1=20 tx�1(1 � t)y�1 dt; 8x; y > 0:We observe that B1=2 is not symmetric, and satis�es B(x; y) � 2B1=2(x; y), 8 1 � x � y,with strict inequality unless x = y. Thus Corollary (2.2) gives better bounds than (2.3)whenever m 6= n�m, and the same bounds otherwise.Lp-Error bounds for Hermite interpolationLet 1 � p; q � 1, and H�f 2 �<n be the Hermite interpolant to f at � (countingmultiplicities). Recently, see Waldron [Wa94], the author has shown that:kf �H�fkp � constn;p;q;�(b � a)n+ 1p� 1q kDnfkq ; 8f 2Wnq ; (2:4)where constn;p;q;� := n 1qn! x 7! !�(x)(diamfx;�g)1=q p(b� a)�(n+ 1p� 1q ):Here diam denotes the diameter of a (multi)set of points. Using Corollary (2.2), we mayestimate the constants constn;p;q;�.(2.5) Hermite error bounds. Let � 2 An(i; j), with m := minfi; jg > 0. Thenconstn;p;q;� � n 1qn! �B(pm + 1; p(n �m) + 1) 1p ; 1 � p <1mm(n�m)n�m=nn; p =1:Proof. Since m > 0, diamfx;�g = b � a, and we obtainconstn;p;q;� = n 1qn! k!�kp(b � a)�(n+ 1p ):To this, apply Corollary (2.2).This improves upon the bounds in [Ag91], which involve B1=2. In the case m = 0, theabove argument can be modi�ed, by observing thatx 7! !�(x)(diamfx;�g)1=q p � �k!�kp(1� 1nq )�1� 1nq : (2:6)For a full discussion, including the cases of equality in (2.4), and mention of somerelated inequalities of Brink [Br72], see [Wa94].Application to the solution of ordinary di�erential equationsThe Hermite error bounds (2.5) can be applied to the analysis of the boundary valueproblem: Dnf = g, with Hermite multipoint conditions given by H�f = 0. See, e.g.,Agarwal and Wong [AW93]. 3. Minimising k!�kpTo show that � 7! k!�kp has a unique minimum, we use the following well-knownresult, see, e.g., [DL93:Ch.3,x5,x10]. 4



(3.1) Theorem. If P � C[a; b] is an n-dimensional Haar space, then g�, the unique bestLp-approximation to f 2 C[a; b] from P , interpolates f at n distinct points in (a; b).For 1 � p <1, by the characterisation theorem for best Lp-approximation (see, e.g.,[DL93:p83]) g� is uniquely determined byZ ba jf � g�jp�1sign(f � g�) g = 0; 8g 2 P; (3:2)where sign denotes the signum function.For a more detailed analysis, dealing with the interlacing of the zeros of errors in bestLp-approximations, see Pinkus and Ziegler [PZ76].Taking P = �<n, and f = (�)n, we obtain:(3.3) Corollary. There is a unique � which minimises k!�kp. This � consists of ndistinct points in (a; b), which are the roots of Mn;p 2 �n, which is, by de�nition, the errorin the unique best Lp-approximation to (�)n from �<n. We have14n (b� a)n+ 1p � min� k!�kp = kMn;pkp � 24n (b � a)n+ 1p ;with equality only when p = 1;1, respectively. In additionmin� k!�k2 = kMn;2k2 = (n!)2(2n)!p2n+ 1(b� a)n+ 12 :Proof. Taking P = �<n, and f = (�)n, in Theorem (3.1), we see that Mn;p,the error in best approximation, is of the form Mn;p = !�, for a certain � consisting ofdistinct points in (a; b). Thus, this choice of � uniquely minimises k!�kp (even if � is notrestricted to lie within [a; b]).From H�older's inequality, it follows thatp 7! Cp := kMn;pkp(b � a)�(n+ 1p ) = min� k!�kp(b � a)�(n+ 1p )is strictly increasing.For p = 1, Mn;p is, up to an a�ne change of variables equal to Un, the Chebyshevpolynomial of the second kind, and we calculateC1 = k2�nUnk1 2�(n+11 ) = 14n :SimilarlyMn;2, Mn;1 are Pn, Tn. i.e., the Legendre, Chebyshev polynomials, respec-tively, and C2 = k2n(n!)2(2n)! Pnk2 2�(n+12 ) = (n!)2(2n)!p2n+ 1 ;C1 = k2�(n�1)Tnk1 2�(n+ 11 ) = 24n :5



The facts about Un, Pn, Tn that we have used above can be found in any standard bookon orthogonal polynomials.
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Fig 3.1 Graphs of the polynomials M7;1 (dotted), M7;2 (dashed), and M7;1 (line)Corollary (3.3) is a collection of classical results from the theory of orthogonal poly-nomials, see, e.g., Szeg�o [Sz59:p41]. One generalisation of it, of interest to approximationtheorists, is Fej�er's convex hull theorem, see Davis [Da75:p244].As mentioned in the proof, when p = 1; 2;1, the Mn;p are well known orthogonalpolynomials. For other values of p, no recurrence relations are known for Mn;p. By (3.2),for 1 � p <1, Mn;p is the unique m 2 �n with leading term (�)n and(3:4) Z ba jmjp�1sign(m) g = 0; 8g 2 �<n:It is possible to view (3.4) as a nonlinear system of equations in the roots of Mn;p (witha unique solution), and solve it numerically. For two di�erent iterative schemes, togetherwith sample results, see Burgoyne [Bu67], and Vincenti [Vi86].Good approximation by polynomialsCombining Corollaries (2.2) and (3.3), we obtain:12 4n(np+ 1)1=p � max� k!�kpmin� k!�kp � 4n(np + 1)1=p ;where (np + 1)1=p := 1, when p = 1. Thus, a good choice of � can greatly improve thesize of the constant k!�kp occurring in (1.1), over that for a poor choice.6



For example, with �Eq consisting of points with equal spacing h := (b � a)=(n � 1),and �Ch the Chebyshev points, Isaacson and Keller [IK66:p267] provide the estimate:k!�Eqk1k!�Chk1 > p2n� 1�4e�n�1;for large n, in support of doing Lagrange interpolation at the Chebyshev points.Best approximation by polynomialsBy Theorem (3.1), the unique best Lp-approximation to f 2 C[a; b] from �<n isobtained by Lagrange interpolation at n points in (a; b). Thus, in view of (1.1), we expectsome relation between min� k!�kp, and the errorEn;p(f) := infg2�<n kf � gkpin best Lp-approximation. The main result in this direction, which is due to Phillips, isthe following.(3.5) Theorem ([Ph70]). If f 2 Cn[a; b], then 9 � 2 [a; b], such thatEn;p(f) = kMn;pkpn! jDnf(�)j � kMn;pkpn! kDnfk1;with equality i� f 2 �n.Along the same lines, Fink [Fi77], de�nes B(n; p; q) as the smallest constant such thatEn;p(f) � B(n; p; q)(b � a)n+ 1p� 1q kDnfkq ; 8f 2Wnq ;and gives some equivalent de�nitions.Since best approximations are given by Lagrange interpolation, we might hope toestimate B(n; p; q) by interpolating f at some �, as does Phillips in Theorem (3.5), wherehe shows: B(n; p;1) = kMn;pkpn! (b � a)�(n+ 1p ): (3:6)Pursuing this idea, we are able to estimate B(n; p; q) to within a factor of 8n.(3.7) Estimate for Fink's constant.1n! 14n � B(n; p; q) � n 1qn! � 24n�1� 1nq � 8n 1n! 14n :Proof. Let b � a = 1. First the lower bound. Since Mn;p is the error in approxi-mating f = (�)n, which has Dnf = n!, we must haveB(n; p; q) � kMn;pkpn! � 1n! 14n :7



By (2.4) and (2.6):B(n; p; q) � n 1qn! k!1� 1nq� kp = n 1qn! �k!�kp(1� 1nq )�1� 1nq : (3:8)Choosing !� =Mn;p(1�1=nq), then applying Corollary (3.3) to (3.8), we obtain the upperbound. Gauss quadrature formul� with multiple nodesThe polynomials Mn;p have the following interesting connection with quadrature, seeTuran [Tu50], also Ghizzetti and Ossicini [GO70:p74].If p = 2s+ 2, s = 0; 1; 2; : : :, then (3.2) reduces toZ ba m2s+1g = 0; 8g 2 �<n:The corresponding m (=Mn;2s+2) is called s-orthogonal (with weight dx).There is a quadrature formula of the formQ(f) := 2sXi=0Xv2�w(i; v)Dif(v); (3:9)for the integral I(f) := R ba f , of precision (2s + 2)n � 1, i� � is the zeros of Mn;2s+2. Inkeeping with the special case s = 0, such a Q is referred to as a Gauss formul� withmultiple nodes, or simply as a s-Gauss formula, and Mn;2s+2 is called a Legendres-polynomial.The s-Gauss formul� are interpolatory, i.e. Q(f) = I(H��f), where �� is any setof � n(2s+2) points, which contains each zero ofMn;2s+2 with multiplicity at least 2s+1.This allows us to estimate the error for these formul�.(3.10) Error bound for s-Gauss formul�. Let � be the zeros of Mn;2s+2. ThenjI(f) �Q(f)j � 1(n(2s + 2))!�k!�k2s+2�2s+2kDn(2s+2)fk1; 8f 2Wn(2s+2)1 ;with equality for all f 2 �n(2s+2). In addition�k!�k2s+2�2s+2 < � 24n�2s+2(b � a)n(2s+2)+1;which di�ers from equality by a factor of < 22s+2.Proof. With �� as above, by (1.1)jI(f)�Q(f)j = jI(f�H��f)j � kf�H��fk1 � 1(n(2s + 2))!k!��k1kDn(2s+2)fk1: (3:11)8



Let �� consist of the points �, each with multiplicity 2s + 2. For this choice,k!��k1 = �k!�k2s+2�2s+2:Further, if f 2 �n(2s+2), then f�H��f is a scalar multiple of !2s+2� , which is nonnegative,and so equality holds in (3.11). Finally by Corollary (3.3)�k!�k2s+2�2s+2 < � 24n (b � a)n+ 12s+2�2s+2 = � 24n�2s+2(b � a)n(2s+2)+1;which di�ers from equality by a factor of < 22s+2.Only when s = 0 is this result known; see, e.g., Davis and Rabinowitz [DR75:p98]. Inthis case k!�k2 is the L2-norm of a Legendre polynomial, and can be computed exactly.For a full account of s-Gauss formul�, including other error estimates, see the surveyarticle of Gautschi [Ga81].By using (2.4) and (2.6), it is possible to run through the above argument, to get errorbounds for s-Gauss formul� in terms of kDmfkq , where n(2s + 1) �m � n(2s + 2).References[Ag91] R. P. Agarwal, Better error estimates in polynomial interpolation, J. Math. Anal.Appl. 161 (1991), 241{257.[AW93] R. P. Agarwal and P. J. Y. Wong, \Error inequalities in polynomial interpolation andtheir applications", Kluwer Academic Publishers, 1993.[Br72] J. Brink, Inequalities involving kfkp and kf (n)kq for f with n zeros, Paci�c J. Math.42 (1972), 289{311.[Bu67] F. D. Burgoyne, Practical Lp polynomial approximation, Math. Comp. 21 (1967),113{115.[Da75] P. J. Davis, \Interpolation and approximation", Dover, 1975.[DL93] R. A. DeVore and G. G. Lorentz, \Constructive approximation", Springer-Verlag,1993.[DR75] P. J. Davis and P. Rabinowitz, \Methods of numerical integration", Academic Press,1975.[Fi77] A. M. Fink, Best possible approximation constants, Trans. Amer. Math. Soc. 226(1977), 243{255.[Ga81] W. Gautschi, A survey of Gauss{Christo�el quadrature formul�, in \E. B. Christo�el"(P. L. Butzer and F. Feh�er, Eds.), pp.72{147, Birkh�auser (Basel),1981.[GO70] A. Ghizzetti and A. Ossicini, \Quadrature formulae", ISNM Springer-Verlag vol 13,1970.[IK66] E. Isaacson and H. B. Keller, \Analysis of numerical methods", Wiley, 1966.9
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