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Abstract
For over a decade, there has been intensive work on the numerical and analytic 
construction of SICs (d2 equiangular lines in Cd) as an orbit of the Heisenberg 
group. The Clifford group, which consists of the unitary matrices which 
normalise the Heisenberg group, plays a key role in these constructions. All 
of the known fiducial (generating) vectors for such SICs are eigenvectors of 
symplectic operations in the Clifford group with canonical order 3. Here we 
describe the Clifford group and the subgroup of symplectic operations in 
terms of a natural set of generators. From this, we classify all its elements of 
canonical order three. In particular, we show (contrary to prior claims) that 
there are symplectic operations of canonical order 3 for d ≡ 6 mod 9, which 
are not conjugate to the Zauner matrix. It is as yet unknown whether these 
give rise to SICs.

Keywords: SIC (symmetric informationally complete positive valued 
operator measure), Clifford group, symplectic operation, quadratic Gauss 
sum, Heisenberg group

1. Introduction

A set of d2 unit vectors in Cd (or the lines they determine) is said to be equiangular if

|〈vj, vk〉|2 =
1

d + 1
, j �= k.

In the quantum information theory community, the corresponding rank one orthogonal projec-
tions Pj = vjv∗j  are said to be a symmetric informationally complete positive operator valued 
measure (SIC or SIC-POVM for short). The existence of a SIC for every dimension d is known 
as Zauner’s conjecture or the SIC problem [FHS17].
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Since Zauner’s thesis in 1999 (see [Zau10]), there has been constant progress on the SIC 
problem. With one exception (the Hoggar lines in C8), all the known SICs appear as the orbit 
of a single (fiducial) vector/projection under the action of the Heisenberg group (this is some-
times referred to as a strong form of Zauner’s conjecture). The search for such a fiducial vector 
dramatically reduces the number of unknown variables from the order of d3 to d, and has led 
to high accuracy numerical SICs [RBKSC04, SG10, Sco17], which in turn has led to analytic 
SICs [ACFW18] i.e. a proof Zauner’s conjecture for various dimensions d.

A key feature of these SIC fiducials is that they are mapped to each other by elements of the 
Clifford group, i.e. the normaliser of the Heisenberg group in the unitary matrices (see espe-
cially Appleby [App05]), and there is a fiducial (on a given Clifford group orbit) which is an 
eigenvector of a ‘symplectic’ operation in the Clifford group with canonical order 3. This fur-
ther reduces the number of unknowns in a SIC fiducial to the order of d3. Here, we consider the 
structure of the Clifford group, and in particular, its elements of order 3. The main points are:

 •  We determine the diagonal elements of the Clifford group, and thereby show that it is 
generated by the Fourier matrix F and a diagonal matrix R (together with generators of 
the Heisenberg group).

 •  The generator R above can be replaced by the Zauner matrix Z (of order 3).
 •  We show that the subgroup of symplectic operations is generated by F and R.
 •  We give an alternative to the Appleby indexing of the elements of the Clifford group, 

which is 1–1, in all cases.
 •  We use our indexing to determine the Clifford operations of order 3, and in particular, 

those with Clifford trace  −1 (canonical order 3). This includes a family for d ≡ 6 mod 9, 
which was previously overlooked.

 •  We show that for d even there are nontrivial symplectic operations which are not displace-
ment free, i.e. belong to the Heisenberg group.

 •  We show explicitly how to write the permutation matrices as words in F and R.

The techniques involved include the calculation of certain quadratic Gauss sums, and the 
analysis of certain binary quadratic forms over Zd . Along the way we prove conjecture 4 of 
[Fla06].

2. The Heisenberg group and Weyl–Heisenberg SICs

Throughout, let ω  and µ be the primitive dth and 2dth roots of unity

ω := e
2πi

d , µ := e
2πi
2d ,

and take the indices for elements of Cd and Cd×d from Zd = {0, 1, . . . , d − 1}. Let S ∈ Cd×d  
be the cyclic shift matrix, and Ω ∈ Cd×d  be the modulation matrix given by

(S)jk := δj,k+1, (Ω)jk := ω jδj,k. (2.1)

The notation X  =  S and Z = Ω is commonly used in quantum information theory. These 
matrices have order d, and satisfy the commutativity relation

ΩkS j = ω jkS jΩk. (2.2)

Thus the group generated by the unitary matrices S and Ω is

H := 〈S,Ω〉 = {ωrS jΩk : r, j, k ∈ Zd}. (2.3)
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This is called the Heisenberg group4 (for Zd), as is the group

Ĥ := {ch : c ∈ T, h ∈ H} ⊂ U(Cd), T := {c ∈ C : |c| = 1}. (2.4)

The map ( j, k) �→ S jΩk is a faithful irreducible projective representation of Zd × Zd . In par-
ticular, the unitary action of H on Cd is irreducible, and so (hv)h∈H and (S jΩkv)j,k∈Zd  are tight 
frames for Cd for any v �= 0 (see [VW05]), i.e.

f =
1
d

∑
( j,k)∈Z2

d

〈 f , S jΩkv〉S jΩkv, ∀f ∈ Cd.

Every SIC is a tight frame. A SIC (equiangular tight frame of d2 vectors for Cd) is said to be a 
Weyl–Heisenberg SIC for Cd if (up to projective unitary equivalence) it has the form

Φv := (S jΩkv)j,k∈Zd ,

where the unit vector v ∈ Cd  (or the projection Π = vv∗) is called a fiducial.
A Weyl–Heisenberg SIC for Cd is generated from a single fiducial vector v by applying 

S (translation) and Ω (frequency shift). Thus, it is a discrete analogue of a Gabor system 
(Weyl–Heisenberg frame) with good time–frequency localisation. In this analogy the fiducial 
vector v corresponds to the mother wavelet. From now on, we consider only Weyl–Heisenberg 
SICs (which we refer to as SICs).

3. The Clifford group

Let [U] := {cU : c ∈ T} = {eitU : t ∈ R}, so that [I] is the unitary scalar matrices. The nor-
maliser of the Heisenberg group Ĥ  in the group of unitary matrices is called the Clifford 
group, and it is denoted by C(d). The projective Clifford group is PC(d) := C(d)/[I] (its ele-
ments are called Clifford operations).

There is a natural action of C(d) on the SIC fiducial vectors v, and of PC(d) on SIC fiducial 
projectors Π = vv∗ given by

a · v := av, [a] ·Π := (av)(av)∗ = aΠa−1.

This maps SICs to SICs, since if [a] ∈ PC(d) and v is a SIC fiducial vector, then

|〈S j1Ωk1 av, S j2Ωk2 av〉|2 = |〈a−1S j1−j2Ωk1−k2 av, v〉|2 =
1

d + 1
, ( j1, k1) �= ( j2, k2),

because a−1S jΩka, ( j, k) �= (0, 0), is a nonscalar element of Ĥ .
Since H ⊂ C(d), the action of C(d) on Cd is irreducible, and its centre is [I]. Since

S∗ = ST = S−1, Ω∗ = Ω−1, ΩT = Ω, (3.5)

the Heisenberg group and the Clifford group are closed under taking the transpose and 
Hermitian transpose, and hence also entrywise conjugation A = (A∗)T . Therefore entrywise 
conjugation maps a given Heisenberg SIC fiducial to another. The group generated by entry-
wise conjugation and C(d) is the extended Clifford group EC(d), and the extended projective 
Clifford group is PEC(d) := EC(d)/[I] (the nonunitary elements of these groups are called 
the antiunitaries). These map SICs to SICs. The counting of (Weyl–Heisenberg) SICs is usu-
ally done up to projective unitary equivalence and the extended Clifford orbit it lies on (see 
[Wal18]). In addition to (entrywise) complex conjugation, certain Galois automorphisms of 

4 It is also known as the generalised Pauli or Weyl–Heisenberg group.
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the SIC field (the field generated by µ and entries of a fiducial projector Π) have been shown 
to map SICs to SICs. Counting SICs up to the orbit under the extension of the Clifford group 
by these (pointwise) automorphisms gives a so called multiplet (union of extended Clifford 
orbits) [ACFW18].

Elements of the Clifford group include the Fourier matrix F, the diagonal matrix R, and the 
permutation matrices Pσ, σ ∈ Z∗

d (the units modulo d), which are given by

(F)jk :=
1√
d
ω jk, (3.6)

(R)jk := µ j( j+d)δjk, (3.7)

(Pσ)jk := δj,σk, σ ∈ Z∗
d . (3.8)

We observe that R is well defined, i.e. the value of j( j + d) depends only on the integer 
j mod d. The entry µ j( j+d) has many alternative descriptions, e.g.

µ j( j+d) = µ j2(−1) j = µ j2(−1) j2 = (−µ) j2 = µ(d+1) j2 .

Indeed, elementary computations (see [Wal18]) give:

Lemma 3.1. The unitary matrices F,R,Pa belong to the Clifford group. Indeed

F(S jΩk)F−1 = ω−jkS−kΩ j, (3.9)

R(S jΩk)R−1 = µ j( j+d)S jΩ j+k, (3.10)

Pσ(S jΩk)P−1
σ = SσjΩσ−1k, (3.11)

where σ−1 is the multiplicative inverse of σ ∈ Z∗
d.

The appearance of R can be explained (it was first observed by [BW07] for d odd). It 
appears in the following direct search for diagonal matrices in the normaliser of Ĥ .

Proposition 3.1. The subgroup of diagonal unitary matrices in C(d) is generated by the 
unitary scalar matrices, Ω, and the matrix R.

Proof. Suppose that Λ = diag(λj) normalises Ĥ , and λd := λ0. Then

ΛSΛ−1 =




0 0 · · · λd
λd−1

λ1
λ0

0 · · · 0
0 λ2

λ1
· · · 0

...
...




= cSΩk, i.e.
λj+1

λj
= cω jk, ∀j,

where c ∈ C, k ∈ Z. Solving this recurrence gives

λj = λ0c jω
1
2 j( j−1)k = λ0c jµ j( j−1)k = λ0µ

j( j+d)k(cµ−k(d+1)) j.

Since λd = λ0, this gives

(cµ−k(d+1))d = (cµ−k(d+1))0 = 1 =⇒ cµ−k(d+1) = ωm,

and so Λ = λ0RkΩm. □ 
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We will see (theorem 4.1) that R along with F and H generate the Clifford group. To this 
end, we now consider the structure of C(d), by using a variation of the arguments of [App05]. 
Let

U( j,k) := S jΩk, ( j, k) ∈ Z2
d. (3.12)

If a ∈ C(d), then

aUλa−1 = za(λ)Uψa(λ), ∀λ ∈ Z2
d, (3.13)

which defines functions ψa : Z2
d → Z2

d and za : Z2
d → T, since no Uλ is a scalar multiple of 

another. For example, (3.9) and (3.10) give

ψF

(
j
k

)
=

(
−k
j

)
, zF

(
j
k

)
= ω−jk, ψR

(
j
k

)
=

(
j

j + k

)
, zR

(
j
k

)
= µ j( j+d).

We now show the elements of the Clifford group factored by Ĥ  can be indexed by the ele-
ments of SL2(Zd). For a 2 × 2 matrix A, we define a symmetric matrix σA by

σA :=
(
αγ βγ

βγ βδ

)
, A =

(
α β

γ δ

)
. (3.14)

The map A �→ σA is not 1–1, e.g. σA = 0 for all diagonal matrices.

Lemma 3.2. Let ψa and za be given by (3.13). Then the map

ψ : C(d) → SL2(Zd) : a �→ ψa (3.15)

is a group homomorphism with kernel Ĥ , and za satisfies

za( p + q) = ω pTσAqza( p)za(q), p, q ∈ Z2
d (3.16)

where A = ψa and σA is given by (3.14).

Proof. By (2.2), we have UpUq = ω p2q1 Up+q and so

ω p2q1(aUp+qa−1) = aUpUqa−1 = (aUpa−1)(aUqa−1),

which gives

ω p2q1 za( p + q)Uψa( p+q) = za( p)Uψa( p)za(q)Uψa(q)

= za( p)za(q)ωψa( p)2ψa(q)1 Uψa( p)+ψa(q)

and hence

ψa( p + q) = ψa( p) + ψa(q), (3.17)

ω p2q1 za( p + q) = za( p)za(q)ωψa( p)2ψa(q)1 . (3.18)

For p = p1e1 + p2e2 ∈ Z2
d, from (3.17) we obtain

ψa( p) = p1ψa(e1) + p2ψa(e2) = [ψa(e1),ψa(e2)] p,

i.e. ψa can be represented by the 2 × 2 matrix [ψa(e1),ψa(e2)].

L Bos and S Waldron J. Phys. A: Math. Theor. 52 (2019) 105301
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Let [ p′, q′] = [ψa( p),ψa(q)] = ψ[ p, q], so that det([ p′, q′]) = det(ψa) det([ p, q]). Since 
the quotient za( p)za(q)/za( p + q) is symmetric in p  and q, (3.18) gives

ω p2q1−p′2q′1 = ωq2p1−q′2p′1 =⇒ p′1q′2 − q′
1p′

2 = p1q2 − q1p2

=⇒ det([ p′, q′]) = det([ p, q]),
=⇒ det(ψa) = 1,

 (3.19)

i.e. ψa ∈ SL2(Zd). Using this, (3.18) can be written as (3.16).
Since (ab)Uλ(ab)−1 = a(bUλb−1)a−1, we have

zab(λ)Uψab(λ) = a(zb(λ)Uψb(λ))a
−1 = zb(λ)za(ψb(λ))Uψa(ψb(λ)), (3.20)

so that ψab(λ) = ψa(ψb(λ)), i.e. a �→ ψa is a homomorphism.
We now find the kernel of ψ. By (2.2), Ĥ ⊂ kerψ. Suppose ψa = I , so that aSa−1 = za(1, 0)S  

and aΩa−1 = za(0, 1)Ω. Since Sd = Ωd = I , this implies that za(1, 0) and za(0, 1) are dth roots 
of unity, say

aSa−1 = ωαS, aΩa−1 = ωβΩ. (3.21)

If a ∈ Ĥ, then (3.21) implies that a is a scalar multiple of S−βΩα. Hence, we consider the 
unitary matrix b = (S−βΩα)−1a. By (3.21) and repeated application of (2.2), we have that

b(S jΩk)b−1 = Ω−αSβ(aSa−1) j(aΩa−1)kS−βΩα

= Ω−αSβ(ωαS) j(ωβΩ)kS−βΩα = S jΩk.

Since b commutes with the basis (S jΩk)j,k∈Zd  for Cd×d, Schur’s lemma implies that b must be 
a (unit) scalar matrix cI, and hence a = cS−βΩα ∈ Ĥ. □ 

The order of SL2(Zd) is known to be (see [Gun62] theorem 3, chapter I)

|SL2(Zd)| = d3
∏
p|d

(
1 − 1

p2

)
, ( p the prime factors of d).

Hence, by lemma 3.2, the number of Clifford operations is

|PC(d)| =
∣∣∣C(d)
[I]

∣∣∣ =
∣∣∣ Ĥ
[I]

∣∣∣
∣∣∣C(d)

Ĥ

∣∣∣ = d2|SL2(Zd)| = d5
∏
p|d

(
1 − 1

p2

)
.

Example 3.1. From lemma 3.1, we have the following ψa ∈ SL2(Zd),

ψF =

(
0 −1
1 0

)
, ψR =

(
1 0
1 1

)
, ψPσ

=

(
σ−1 0

0 σ

)
. (3.22)

Example 3.2. If h = cSaΩb ∈ Ĥ, then ψh = I  and zh( j, k) = ωbj−ak  (a character), since 
(2.2) gives

hU( j,k)h−1 = SaΩbS jΩkΩ−bS−a = Sa(ωbjS jΩb)Ωk−bS−a = ωbj−akS jΩk = ω jb−akU( j,k).

A function za satisfying (3.16) is called a second degree character of Z2
n associated to the 

bicharacter

L Bos and S Waldron J. Phys. A: Math. Theor. 52 (2019) 105301
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B : Z2
n × Z2

n → T, B( p, q) := ω pTσAq,

given by σA (see [Rei89]). A continuous map B : G × G → T is a bicharacter of a locally com-
pact abelian group G if for any fixed choice of one argument the resulting function G → T is 
a character. All the second degree characters associated to a given bicharacter can be obtained 
from one by multiplying it by the characters.

Using a variation of the above argument, in FHK+ 08 it is shown that if

Ĥ → Ĥ : cUλ �→ cz(λ)UAλ, c ∈ T, z : Zd → T, A ∈ GL2(Zd),
 (3.23)

is an automorphism of Ĥ , then A ∈ SL2(Zd) and z is a second degree character (given by σA). 
For a ∈ C(d), the map cUλ �→ a(cUλ)a−1 = cza(λ)UAλ, A = ψa, is an automorphism of Ĥ . 
The elements of C(d) are termed metaplectic operations, and they are said to ‘intertwine the 
automorphisms of Ĥ’.

4. Generators for the Clifford group

It turns out that the matrices ψF  and ψR of (3.22) generate SL2(Zd), and hence we obtain the 
following generators for the Clifford group.

Theorem 4.1 (Generators for the Clifford group). The homomorphism

ψ : C(d) → SL2(Zd) : a �→ ψa

maps F and R to generators for SL2(Zd), and hence is onto. Therefore C(d) is generated by 
the unitary scalar matrices, and S, Ω, F, R.

Proof. By lemma 3.2, the kernel of a �→ ψa is Ĥ . Since Ĥ  is generated by the unitary scalar 
matrices and S,Ω, it suffices to show that SL2(Zd) is generated by

ψF =

(
0 −1
1 0

)
, ψR =

(
1 0
1 1

)
. (4.24)

It is well known that these matrices generate SL2(Z). Since the map of taking the entries of 
A ∈ SL2(Z) modulo d is a homomorphism onto SL2(Zd), they generate SL2(Zd). □ 

This result appears in [Far14], where the generator F is referred to as the QFT (discrete 
quantum Fourier transform) gate, and R as the phase-shift gate. There it is proved using the 
Pauli–Euclid–Gottesman lemma, which says that there is a Clifford operation conjugating 
S jΩk  to Ωgcd( j,k).

We call the subgroup of the Clifford group C(d) generated by F, R (and the scalars) the 
symplectic unitaries

CSp(d) := 〈F, R, [I]〉,

and the elements of CSp(d)/[I] the symplectic operations. We will show that this is equivalent 
to the definition of [AYAZ13] that an element of the Clifford group is a symplectic unitary if 
it has an Appleby index of the form [A, 0]. Elements of the Heisenberg group Ĥ  (or Ĥ/[I]) are 
referred to as Heisenberg operations, (Weyl) displacements or time–frequency shifts. It fol-
lows from theorem 4.1, that

L Bos and S Waldron J. Phys. A: Math. Theor. 52 (2019) 105301
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Every Clifford operation is the product of a symplectic operation and a displacement.

For d even, an elementary calculation gives

Ω
d
2 = Rd, S

d
2 = F−1Ω

d
2 F = F−1RdF, S

d
2 Ω

d
2 = F−1RdFRd. (4.25)

Thus there are nontrivial symplectic operations which are also displacements5. It turns out that 
(4.25) are the only ones (see corollary 7.1). This makes the description of the Clifford group 
more technical for d even (here R has order 2d).

5. Indexing the Clifford operations

We now show that each Clifford operation is uniquely determined by the pair (ψa, za). Define 

a semidirect product SL2(Zd)� TZ2
d via the multiplication

(A, zA)(B, zB) := (AB, (zA ◦ B)zB), (5.26)

where functions Z2
d → T are multiplied pointwise.

Corollary 5.1. With the multiplication (5.26), the map

C(d) → SL2(Zd)� TZ2
d : a �→ (ψa, za) (5.27)

is a homomorphism with kernel [I ]. Thus every Clifford operation [a] ∈ C(d)/[I] has a unique 
index (ψa, za), and these satisfy

ψab = ψaψb, zab = (za ◦ ψb)zb, (5.28)

ψa∗ = ψa−1 = ψ−1
a , za∗ = za−1 = za ◦ ψa∗ , (5.29)

ψa = JψaJ, za = za ◦ J, J :=
(

1 0
0 −1

)
. (5.30)

Further, if ψa = ψb, then za/zb  is a character.

Proof. It is easy to check SL2(Zd)� TZ2
d is a group with the multiplication (5.26), identity 

(I, 1), and inverse (A, zA)
−1 = (A−1, z−1

A ◦ A−1). By (3.20), we have

ψab = ψaψb, zab = (za ◦ ψb)zb,

i.e. the map a �→ (ψa, za) is a homomorphism. Thus (5.28) holds, as does (5.29) by the calcul-
ation (ψa−1 , za−1) = (ψa, za)

−1 = (ψ−1
a , z−1

a ◦ ψ−1
a ). and (5.30), since Uλ = UJλ gives

aUλa−1 = aUJλa−1 = za(λ)UAJλ = za(λ)UJAJλ.

Now suppose that a is in the kernel, i.e. ψa = I , za  =  1. By lemma 3.2, we have 
a = cS jΩk ∈ Ĥ . Using (2.2), we therefore obtain (see example 3.2)

aS p1Ω p2 a−1 = S jΩkS p1Ω p2Ω−kS−j = ωkp1−jp2 S p1Ω p2 ,

so that za( p) = ωkp1−jp2 = 1, ∀p ∈ Z2
d . Thus j   =  k  =  0 and a = cI ∈ [I], as supposed.

For ψa = ψb = A, it follows from (3.16) or (3.18) that za/zb  is a character. □ 

5 Subgroups of the symplectic unitaries are sometimes said to be displacement free.
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Example 5.1. For a  =  RF, from (3.22) and lemma 3.1, we calculate

ψRF = ψRψF =

(
1 0
1 1

)(
0 −1
1 0

)
=

(
0 −1
1 −1

)
,

zRF = (zR ◦ ψF)zF =⇒ zRF( j, k) = µ(−k)(−k+d)ω−jk = µk(k+d)+2jk.

We call the subgroup of SL2(Zd)� TZ2
d given by

Ind(d) := {(ψa, za) : a ∈ C(d)}

the index group of the Clifford operations, and the index map is the isomorphism

C(d)/[I] → Ind(d) : [a] �→ (ψa, za). (5.31)

In view of the multiplication

zah = (za ◦ ψh)zh = zazh, h ∈ Ĥ.

Example 3.2 (that all characters of Z2
d  have the form zh, h ∈ Ĥ), and the fact that a �→ ψa is onto 

SL2(Zd) (theorem 4.1), the elements of Ind(d) consist of all pairs (A, z), where A ∈ SL2(Zd) 
and z is a second degree character given by σA. In other words:

Corollary 5.2. The automorphisms of the Heisenberg group of the form (3.23) are given by 
conjugation by Clifford operations.

Proof. All the possible automorphisms of this type have z a second degree character given 
by σA, where A ∈ SL2(Zd), i.e. (A, z) ∈ Ind(d). If a is a Clifford operation with this index, 
then conjugation by a gives such an automorphism of Ĥ . □ 

6. Appleby indexing

If d is odd, then −µ = ω
d+1

2 , and it follows from (3.16) that

za( p) = (−µ) pTσAp ẑa( p), ∀p ∈ Z2
d, (6.32)

where A = ψa, and ẑa is a character. If d is even, then the factor (−µ) pTσAp above is not well 
defined. To obtain an analogue of (6.32), one must ‘lift’ A to a B ∈ SL2(Z2

2d). This ‘doubling’ 
works, but the corresponding (Appleby) index [B,χ] is not unique. We now give the details, as 
in [App05], using corollary 5.1 to streamline the proof.

Define displacement operators by

D̂p := (−µ) p1p2 S p1Ω p2 , p ∈ Z2. (6.33)

These satisfy det(D̂p) = 1,

D̂−1
p = D̂−p, D̂pD̂q = (−µ)〈〈 p,q〉〉D̂p+q = ω〈〈 p,q〉〉D̂qD̂p, (6.34)

and

D̂p+dq =

{
D̂p, d odd;
(−1)〈〈p,q〉〉D̂p, d even, (6.35)
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where 〈〈·, ·〉〉 denotes the symplectic form

〈〈p, q〉〉 := p2q1 − p1q2 = pT
(

0 −1
1 0

)
q,

which has the property

〈〈Ap, Aq〉〉 = det(A)〈〈p, q〉〉, ∀p, q. (6.36)

It follows from (6.35) that D̂p depends only on p mod d′, where

d′ :=

{
d, d odd;
2d, d even.

The appearance of d′ in the description of C(d) is due to the fact that R has order d′. The over-

laps χΠ
p := trace(ΠD̂p), p ∈ Z2

d′, for a SIC fiducial Π = vv∗ play a crucial role in describing 
the Galois symmetries of a SIC.

We now generalise (6.32), to show that for each [a] ∈ C(d)/[I] there exists a B ∈ SL2(Zd′) 
and χ ∈ Z2

d, such that

aD̂pa−1 = ω〈〈χ,Bp〉〉D̂Bp, ∀p ∈ Z2
d′ .

Here 〈〈χ, Bp〉〉 is interpreted as 〈〈χ, Ap〉〉, A := B mod d , when d is even. We will write the pair 
(B,χ) as [B,χ], and call it an Appleby index.

Theorem 6.1. Define a semidirect product SL2(Zd′)� Z2
d via the multiplication

[B1,χ1][B2,χ2] := [B1B2,χ1 + A1χ2], A1 := B1 mod d. (6.37)

There exists a unique surjective homomorphism onto the Clifford operations

f : SL2(Zd′)� Z2
d → C(d)/[I], (6.38)

with the property that for [a] = f ([B,χ])

aD̂pa−1 = ω〈〈χ,Bp〉〉D̂Bp, ∀p ∈ Z2
d′ , (6.39)

i.e.

A := ψa = B mod d, za( p) = ω〈〈χ,Ap〉〉(−µ) pTσBp, ∀p ∈ Z2
d. (6.40)

This f  is an isomorphism for d odd (i.e. d′ = d), and for d even it has kernel

ker f =
{[(1 + rd sd

td 1 + rd

)
,
(

s d
2

t d
2

)]
: r, s, t ∈ {0, 1}

}
. (6.41)

Proof. If a ∈ C(d) satisfies (6.39), then (6.40) follows. Here pTσBp is calculated modulo 
2d, and its value only depends on p mod d. In view of the isomorphism (5.31), f  is uniquely 
defined, and it suffices to show that

θ : SL2(Zd′)� Z2
d → Ind(d) : [B,χ] �→ (A, za),

given by (6.40) is a surjective homomorphism.
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We now show it is a homomorphism (as a map to SL2(Zd)� TZ2
d). Now

θ
(
[B1,χ1][B2,χ2]

)
= θ

(
[B1B2,χ1 + A1χ2]

)
= (A1A2, za1a2),

Aj := Bj mod d, za1a2( p) := ω〈〈χ1+A1χ2,A1A2p〉〉(−µ) pTσB1B2 p,

and

θ
(
[B1,χ1]

)
θ
(
[B2,χ2]

)
= (A1, za1)(A2, za2) = (A1A2, (za1 ◦ A2)za2),

(
(za1 ◦ A2)za2

)
( p) = ω〈〈χ1,A1A2p〉〉(−µ)(B2p)TσB1 B2pω〈〈χ2,A2p〉〉(−µ) pTσB2 p,

so that θ is a homomorphism provided that

〈〈χ1 + A1χ2, A1A2p〉〉 = 〈〈χ1, A1A2p〉〉+ 〈〈χ2, A2p〉〉,

pTσB1B2 p = (B2p)TσB1 B2p + pTσB2 p.

The first follows since (6.36) gives

〈〈χ2, A2p〉〉 = 〈〈A1χ2, A1A2p〉〉,

and the second follows by the identity

σB1B2 = BT
2σB1 B2 + det(B1)σB2 .

We calculate (as in examples 3.1 and 3.2)

θ
(
[

(
0 −1
1 0

)
, 0]

)
= (ψF, zF), θ

(
[

(
1 0
1 1

)
, 0]

)
= (ψR, zR), (6.42)

and

θ
(
[I,

(
α
β

)
]
)
= (zSαΩβ ,ψSαΩβ ), (6.43)

so that θ maps generators for SL2(Zd′)� Z2
d to generators for Ind(d), and hence is a surjective 

homomorphism.
Finally, we determine ker f = ker θ. By (6.40), we have [B,χ] ∈ ker f  if

A := ψa = B mod d = I, za( p) = ω〈〈χ,Ap〉〉(−µ) pTσBp = 1, ∀p.

For d odd, d′ = d, and so B  =  I and za( p) = ωχ2p1−χ1p2 = 1, ∀p. Thus [B,χ] = [I, 0], and f  is 
an isomorphism. For d even, B mod d = I  gives

B =

(
1 + rd sd

td 1 + ud

)
, r, s, t, u ∈ {0, 1},

and the condition det(B) = 1 gives
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det(B) = (1 + rd)(1 + ud)− std2 ≡ 1 + (r + u)d mod d′ =⇒ r = u,

so that

B =

(
1 + rd sd

td 1 + rd

)
, σB =

(
td(1 + rd) tdsd

sdtd sd(1 + rd)

)
≡

(
td 0
0 sd

)
mod d′.

Hence za( p) = ω〈〈χ,p〉〉(−µ) pTσBp = ωχ2p1−χ1p2(−µ)tdp2
1+sdp2

2 = 1, which gives

ωχ1p2−χ2p1 = (−1)tp2
1+sp2

2 = (−1)tp1+sp2ω
d
2 (tp1+sp2), ∀p.

Thus, χ1 = d
2 s, χ2 = − d

2 t = d
2 t, and we obtain (6.41). □ 

Each Clifford operation has an Appleby index [B,χ] ∈ SL2(Zd′)× Z2
d.

 •  This is unique for d odd.
 •  There are eight choices (each differing by an element of ker f ) for d even.
 •  Appleby indices for F, R, SαΩβ are given by (6.42) and (6.43).

Example 6.1. By (3.11), the index for the permutation matrix Pσ, σ ∈ Z∗
d, is

(ψPσ
, zPσ

) = (Pσ , 1),

and it has an Appleby index [Pσ , 0], where σ ∈ Zd′, i.e. σ−1 is calculated modulo 2d when 
d is even (see proposition 8.1). For example, when d  =  8 (d′ = 16), the permutation matrix 

P3 =

(
3 0
0 3

)
 has eight Appleby indices [B,χ]

[(1 + 8r 8s
8t 1 + 8r

)
,
(

4s
4t

)][(3 0
0 11

)
, 0
]
=

[(3 + 8r 8s
8t 11 + 8r

)
,
(

4s
4t

)]
, r, s, t ∈ {0, 1}.

Two of these have χ = 0 (and B diagonal).

7. Symplectic unitaries

By (4.25), for d even, there are nontrivial symplectic unitaries (those generated by F, R and the 
scalars) which are in the Heisenberg group [App05]. We now characterise these.

Let md be the surjective homomorphism

md : SL2(Zd′) → SL2(Zd) : B �→ A := B (mod d),

which is the identity for d odd, and for d even has kernel (see theorem 6.1)

K :=
{(1 + rd sd

td 1 + rd

)
: r, s, t ∈ {0, 1}

}
, |K| = 8. (7.44)

Corollary 7.1. A matrix a ∈ C(d) is a symplectic unitary if and only if it has an Appleby 
index of the form [B, 0]. Indeed, the map

α : SL2(Zd′) → CSp(d)/[I] : B �→ f ([B, 0]) (7.45)

L Bos and S Waldron J. Phys. A: Math. Theor. 52 (2019) 105301



13

is a surjective homomorphism, which is an isomorphism for d odd. When d is even, 
kerα = {I, (d + 1)I}, and hence the only nontrivial Heisenberg operations which are sym-
plectic are given by

S
d
2 , Ω

d
2 , S

d
2 Ω

d
2 (d even).

Proof. By (6.37), we have

[B1B2, 0] = [B1, 0][B2, 0],

and so α is a homomorphism. It is onto, since by (6.42), its image contains

α
((0 −1

1 0

))
= [F], α

((1 0
1 1

))
= [R], (7.46)

which are generators for CSp(d)/[I]. Since ψ has kernel Ĥ  (lemma 3.2), it induces a well de-
fined homomorphism ψ̂ : CSp(d)/[I] → SL2(Zd), with

ψ̂([F]) = ψ(F) =
(

0 −1
1 0

)
, ψ̂([R]) = ψ(R) =

(
1 0
1 1

)
. (7.47)

By (7.46) and (7.47), we conclude that

md = ψ̂ ◦ α,

since it holds for the generators (4.24) of SL2(Zd′). The kernel of ψ̂ consists of the symplectic 
operations which are also Heisenberg operations, i.e.

ker ψ̂ = CSp(d)/[I] ∩ Ĥ/[I].

For d odd, md is an isomorphism, so that ker ψ̂ = {[I]}. For d even,

md = ψ̂ ◦ α =⇒ | ker ψ̂| | kerα| = | ker md| = |K| = 8,

and (6.35) gives

D̂(d+1)Ip = (−1)〈〈p,p〉〉D̂p = D̂Ip =⇒ (d + 1)I ∈ kerα =⇒ | kerα| � 2.

In view of (4.25), we must have

kerα = {I, (d + 1)I}, ker ψ̂ = {[I], [S d
2 ], [Ω

d
2 ], [S

d
2 Ω

d
2 ]},

as claimed. □ 

Thus, each symplectic operation [a] has an Appleby index of the form [B, 0], and

 •  This is unique for d odd.
 •  There are two choices ([B, 0] and [(d + 1)B, 0]) for d even.

We call B ∈ SL2(Zd′) a symplectic index for [a] ∈ CSp(d)/[I].
The following commutative diagram summarises corollary 7.1.

 (7.48)
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In particular, we have the following 1–1 indexing of the symplectic operations

CSp(d)
[I]

∼=

{
SL2(Zd), d odd;
SL2(Z2d)
〈(d+1)I〉 , d even.

The matrices in SL2(Zd′) are said to be symplectic. If a is a symplectic unitary, with sym-
plectic index B, then (6.39) gives

aD̂pa−1 = D̂Bp, ∀p(∈ Zd′),

i.e. the conjugation action of a on the displacement D̂p is given by multiplication of p  by the 
symplectic matrix B. This is the origin of the term symplectic unitary.

The group CSp(d) of symplectic unitaries is not irreducible for d  >  2, since its centre con-
tains the nondiagonal matrix

P−1 = F2.

Calculations in CSp(d)/[I] can be done in the finite group generated by F and R.

8. Permutation matrices

Here we show that the permutation matrices are a subgroup of the symplectic unitaries (as we 
define them), i.e. each permutation matrix is a word in F, R and the scalar matrices.

Proposition 8.1. The permutation matrices Pb, b ∈ Z∗
d, are symplectic. Indeed, with 

1 � b < d, we have

Pb = (cb,d)
−1Rb−1

FRbFRb−1
F, (8.49)

where b−1 is the inverse of b in Z∗
d′, and cb,d = cb−1,d is the Gauss sum

cb,d :=
1√
d

∑
j∈Zd

µbj( j+d) =
1

2
√

d
G
(
b(d + 1), 2d

)
.

Proof. Let B =

(
b 0
0 b−1

)
∈ SL2(Zd′). Then σB = 0, and so (3.11) gives

A := ψPb = B mod d, zPb( p) = 1 = ω〈〈0,Ap〉〉(−µ) pTσBp, ∀p ∈ Z2
d.

By theorem 6.1, this implies that [B, 0] is an Appleby index for Pb , which is therefore a sym-
plectic unitary, with symplectic index B. Now B can be factored

B =

(
b

b−1

)
=

(
0 −1
1 −b−1

)(
0 −1
1 −b

)(
0 −1
1 −b−1

)
. (8.50)

In view of (6.42), a symplectic index for RbF is given by
(

0 −1
1 −b

)
=

(
1 0
1 1

)b (0 −1
1 0

)
,

and so applying the homomorphism α of corollary 7.1 to (8.50) gives (8.49), for some scalar 
cb,d, to be determined. From (3.6) and (3.7), we have
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(RbF)jk =
1√
d
µbj( j+d)+2jk. (8.51)

Hence, equating the (0, 0)–entries of cb,dPb(Rb−1
F)−1 = RbFRb−1

F , gives

1√
d

cb,d =
∑
j∈Zd

(RbF)0j(Rb−1
F)j0 =

1
d

∑
j∈Zd

µb−1j( j+d).

We recall that µ j( j+d) depends only on j  modulo d, and µ jd = µdj2, so that

cb,d =
1
2

1√
d

2d−1∑
j=0

µb−1j( j+d) =
1

2
√

d

2d−1∑
j=0

µb−1(d+1) j2 =
1

2
√

d
G
(
b−1(d + 1), 2d

)
.

Evaluating the (0, 0)–entries of (8.49), using (8.51), gives

 

cb,d =
1

d
√

d

∑
j∈Zd

∑
k∈Zd

µbj( j+d)+2jk+b−1k(k+d) = cb−1,d.

□ 

If the b−1 is computed as the inverse in Z∗
d  for d even, then the formula (8.49) only gives Pb 

up to multiplication by the symplectic Heisenberg operations (4.25). The permutation matrices 
{Pσ}σ∈Z∗

d
 are a subgroup of the symplectic unitaries, since the map Z∗

d → CSp(d) : σ → Pσ is 
a group homomorphism, by the calculation

(Pσ1σ2)jk =
∑

r

(Pσ1)jr(Pσ2)rk = δj,σ1rδr,σ2k = σj,σ1σ2k = (Pσ1σ2)jk.

The formulas for evaluating Gauss sums imply that cb,d is an 8th root of unity, e.g. if b has 
odd order, then cb,d = (

√
i)1−d .

Example 8.1. When b  =  1, (8.49) gives

(RF)3 = c1,dP1 = e−
2πi

8 (d−1)I.

Thus [RF] is a symplectic operation of order three.

The symplectic unitary of order three (as a matrix), given by

Z := ζd−1RF, ζ := e
2πi
24 , ψZ =

(
0 −1
1 −1

)
,

is called the Zauner matrix. This matrix plays a central role in the construction of SICs, since 
the majority of the known SICs are can be obtained as eigenvectors of Z. The Zauner matrix 
satisfies

R−1ZR = Z
2
, R−1Z2R = Z, (8.52)

Z(S jΩk)Z−1 = µk(k−2j+d)S−kΩ j−k, (8.53)

and by (5.28) and (5.30)

ψZ =

(
0 −1
1 −1

)
, ψZ2 =

(
−1 1
−1 0

)
, ψZ =

(
0 1
−1 −1

)
, ψZ2 =

(
−1 −1
1 0

)
.
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In view of its definition, Z can substitute for either F or R as the generators for the Clifford 
group given by theorem 4.1. Since the antilinear map of entrywise complex conjugation

C : Cd → Cd : z �→ z

maps SIC fiducials to SIC fiducials (as does the Clifford group), it is natural to consider the 
extended Clifford group EC(d), which is generated by C and the Clifford group. Thus we have 
the following cute corollary of theorem 4.1.

Corollary 8.1. The extended Clifford group is generated by Ĥ , and

C (order 2), Z (order 3), F (order 4).

In addition to being symplectic and of order three, Z has Clifford trace

trace(ψZ) = −1 ∈ Zd.

We now give a complete characterisation of all such symplectic unitaries.

9. The symplectic unitaries of order three

The Clifford trace is the map

trC : C(d) → Zd : a �→ trace(ψa).

Since a �→ ψa is a homomorphism with kernel Ĥ  (lemma 3.2), this satisfies

trC(ab) = trC(ba), ∀a, b ∈ C(d), (9.54)

trC(ah) = trC(a), ∀a ∈ C(d), ∀h ∈ Ĥ. (9.55)

In particular, the Clifford trace of any conjugate of Z or Z−1 = Z2 is  −1, e.g.

trC(gZg−1) = trC(Zg−1g) = trC(Z) = trace(ψZ) = −1,

and the Clifford trace is well defined on the Clifford operations, i.e.

trC([a]) := trC(a), ∀[a] ∈ PC(d).

The order of a Clifford operation is related to its Clifford trace, since

A2 = trace(A)A − I, ∀A ∈ SL2(Zd). (9.56)

Lemma 9.1. A nonidentity extended Clifford operation [a] ∈ EC(d)/[I] with index (A,za) 
and Clifford trace t = trace(A) has order 3 if and only if

(t2 − 1)A = (t + 1)I, za((t + 1)Ap) = ω(t+1) pT MAp, ∀p ∈ Z2
d, (9.57)

where MA =

(
γ(α3 + 2α2δ + αδ2 − 2α− δ) βγ(α+ δ − 1)(α+ δ + 1)
βγ(α+ δ − 1)(α+ δ + 1) β(δ3 + 2αδ2 + α2δ − 2δ − α)

)
, A =

(
α β

γ δ

)
.

Proof. Since a product of three antiunitaries is not a unitary matrix, we have that a ∈ C(d). 
In view of the isomorphism (5.31), [a] has order 3 if and only if

(A, za)
3 = (A3, (za ◦ A2)(za ◦ A)za) = (I, 1).
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From (9.56), we obtain

A3 = A(tA − I) = t(tA − I)− A = (t2 − 1)A − tI,

so that the condition A3  =  I can be written as the first condition of (9.57).
We now consider the condition (za ◦ A2)(za ◦ A)za = 1. By (3.16), we calculate

za( p)za(Ap)za(A2p) = ω−pTσA(Ap)za( p + Ap)za(A2p)

= ω−pTσA(Ap)ω−( p+Ap)TσA(A2p)za( p + Ap + A2p)

= ω−pT(σAA+σAA2+ATσAA2) pza( p + Ap + A2p).

By (9.56), we have

I + A + A2 = I + A + tA − I = (1 + t)A.

Using det(A) = αδ − βγ = 1, a calculation gives

σAA + σAA2 + ATσAA2

= (α+ δ + 1)
(
γ(α3 + 2α2δ + αδ2 − 2α− δ) βγ(α+ δ − 1)(α+ δ + 1)
βγ(α+ δ − 1)(α+ δ + 1) β(δ3 + 2αδ2 + α2δ − 2δ − α)

)
.

Thus we may rewrite the condition (za ◦ A2)(za ◦ A)za = 1, to obtain the result. □ 

Example 9.1. Since za(0)  =  1, ∀a ∈ EC(d), and trC(I) = 2 = −1 if and only if d  =  3, we 
have that if a ∈ C(d) has Clifford trace  −1 and d �= 3, then [a] has order 3.

Taking the trace of (t2  −  1)A  =  (t  +  1)I, shows that a Clifford operation of order 3 has 
Clifford trace t satisfying

(t − 2)(t + 1)2 = 0. (9.58)

For d a prime, the Clifford operators of order 3 must have Clifford trace  −1.

Proposition 9.1. Suppose that d �= 3 and a ∈ C(d). Then

 1.  If a has Clifford trace  −1, then [a] has order 3.
 2.  If d is prime, then [a] has order 3 if and only if a has Clifford trace  −1.

Proof. Since we have already proved 1, it suffices to prove for d �= 3 prime and [a] of order 
3 that the Clifford trace t = trC(a) is  −1. We recall that t is a root of (9.58).

If t �= −1, then t  +  1 is a unit (all nonzero elements of Zd  are units for d prime), so that 
t  =  2. But, if t  =  2, then (9.57) gives 3A  =  3I, and hence A  =  I (3 ∈ Z∗

d for d �= 3 prime), so 
that a ∈ Ĥ (by lemma 3.2). Since (S jΩk)3 = ω3S3jΩ3k  and S, Ω have order d, the order of [a] 
cannot be 3 (since 3 does not divide d). Thus t = trC(a)− 1 (when [a] has order 3 and d �= 3 
is prime). □ 

A Clifford operation of order 3 is said to be canonical order 3 if it has Clifford trace  −1 (see 
[App05]), e.g. the Zauner matrix Z and W1, W2 (theorem 9.1) are canonical order 3.

Example 9.2. It follows from (9.54) and (9.55) that left or right multiplication of a canoni-
cal order 3 Clifford operation by a displacement operation gives another canonical order 3 
operation, e.g. [h1Zh2] is canonical order 3 for any h1, h2 ∈ Ĥ.
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There are Clifford operations of order 3 with Clifford trace 2.

Example 9.3. If 3 divides d, then the symplectic unitary R
d′
3  (and its inverse) has order 3 

and Clifford trace

trC(R
d′
3 ) = trace

(
(

1 0
d′

3 1

))
= 2,

as do the Weyl displacement operators S
d
3 ,Ω

d
3 , S

d
3 Ω

d
3 .

There are Clifford operations of order 3 with Clifford trace t �= −1, 2, i.e. for which (9.58) 
holds with t  −  2 and t  +  1 not units in Zd .

Example 9.4. For d  =  10, SL2(Z10) has a single conjugacy class of elements of order 3 and 
trace 4 and 7. These have representatives

A =

(
3 2
6 1

)
(trace 4), B =

(
6 5
5 1

)
(trace 7).

These can be lifted to symplectic indices which give symplectic unitaries of order 3 and Clif-
ford trace 4 and 7, e.g. a = R10FR8F−1R6, b = R10FR5F−1R15.

The main technical result of the paper is the following lemma. This is essentially a proof 
the Conjecture 4 of [Fla06] on the number of conjugacy classes (d is replaced by 2d for d 
even), which was proved for d prime.

Lemma 9.2. Suppose that d � 2, and let

z := ψZ =

(
0 −1
1 −1

)
, z2 =

(
−1 1
−1 0

)
, (9.59)

m1 :=
(

1 3
d−3

3 −2

)
, d ≡ 3 mod 9, (9.60)

m2 :=
(

1 3
2d−3

3 −2

)
, d ≡ 6 mod 9. (9.61)

Then the conjugacy classes of elements of order 3 and trace  −1 in SL2(Zd) have   
representatives

{z}, d �≡ 0 mod 3, (9.62)

{z, z2}, d ≡ 0 mod 9or d = 3, (9.63)

{z, z2, m1}, d ≡ 3 mod 9, d �= 3, (9.64)

{z, z2, m2}, d ≡ 6 mod 9. (9.65)

By the Chinese remainder theorem, it is sufficient to prove this for d a prime power. The 
proof is given in the appendix. It is elementary, but long, since each case involves the solution 
of a binary quadratic equation.
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We also need the following technical lemmas.

Lemma 9.3. Let ϕ : G → H  be a homomorphism of G onto H, with | kerϕ| = 2k. If h ∈ H 
has order 3, then there is an element g ∈ G of order 3 with ϕ(g) = h.

Proof. By the first isomorphism theorem for groups, we may assume that H  =  G/K, where 
K = kerϕ. Suppose that h = aK ∈ G/K has order 3, i.e. a3 = x ∈ K , where a �∈ K . By  
Bézout’s identity (the Euclidean algorithm) choose integers α,β  with 1 = −3α+ 2kβ . Let 
g = axα ∈ 〈a〉. Then ϕ(g) = axαK = aK , and

 g
3 = (axα)3 = a3x3α = x3α+1 = x2kβ = 1. □ 

Lemma 9.4. For d even, SL2(Z2d) has no elements of order 3 and trace d  −  1.

Proof. If A ∈ SL2(Z2d) has order 3, and t = trace(A), then, by (9.56), we have

A3 = A(tA − I) = t(tA − I)− A = (t2 − 1)A − tI = I =⇒ (t2 − 1)A = (t + 1)I.

For t  =  d  −  1, this gives (d2 − 2d)A = 0 = dI (mod 2d), which not possible. □ 

We now characterise all symplectic unitaries of canonical order 3.

Theorem 9.1 (Characterisation). The symplectic operations of canonical order 3 are 
conjugate in CSp(d)/[I] to [a], where a ∈ CSp(d) is one of the following

{Z}, d �≡ 0 mod 3,

{Z, Z2}, d ≡ 0 mod 9or d = 3,

{Z, Z2, W1}, d ≡ 3 mod 9, d �= 3,

{Z, Z2, W2}, d ≡ 6 mod 9,

where

Z := e
2πi
24 (d−1)RF−1,

Wa := (−1)d−1R
2d
3 aF−1R3FR,

 (9.66)

have order 3 in CSp(d).

Proof. The key idea is to apply the fact that group homomorphisms map conjugacy classes 
to conjugacy classes to the commutative diagram (7.48) of section 7, i.e.

We observe that

 •  The kernel of Ψ̂ has order 1 or 4 (d odd or even), and so the conjugacy classes of elements 
of order 3 and Clifford trace  −1 in CSp(d)/[I] map onto the conjugacy classes of elements 
of order 3 and trace  −1 in SL2(Zd) (by lemma 9.3).
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 •  The kernel of α has 1 or 2 (d odd or even), and so each conjugacy class of an element of 
order 3 and Clifford trace  −1 in CSp(d)/[I] is the image under α of the conjugacy class of 
an element of order 3 in SL2(Zd′) (by lemma 9.3) and of trace  −1 (by lemma 9.4).

Thus the conjugacy classes of elements of order 3 and trace  −1 in SL2(Zd′) map onto the con-
jugacy classes of elements of canonical order 3 in CSp(d)/[I], which in turn map onto the con-
jugacy classes of elements of order 3 and trace  −1 in SL2(Zd). A count of the conjugacy classes 
in SL2(Zd′) and SL2(Zd) (for d even) shows that these maps are 1–1, i.e. representatives of 
the conjugacy classes of elements of order 3 and trace  −1 in SL2(Zd′) give symplectic indices 
for representatives of the conjugacy classes of the symplectic operations of canonical order 3.

We now use lemma 9.2 to calculate these symplectic indices (and show the injectivity as-
serted above) for the various cases.

For d �≡ 0 (mod 3), we have 2d �≡ 0 (mod 3), and so there is a single conjugacy class 
with symplectic index z.

For d ≡ 0 (mod 9), d �= 3, we have 2d ≡ 0 (mod 9), and so there is are two conjugacy 
classes given by the symplectic indices z,z2. For d  =  3, we have d′ = d, and there are two 
conjugacy classes given by the symplectic indices z,z2.

For d ≡ 3 (mod 9), d �= 3, we have 2d ≡ 6 (mod 9), so that there are three conjugacy 
classes given by the symplectic indices z,z2, and

(
1 3

d−3
3 −2

)
∈ SL2(Zd) (d odd),

(
1 3

2(2d)−3
3 −2

)
∈ SL2(Z2d) (d even).

The second formula gives the first for d odd, and so works in both cases.

For d ≡ 6 (mod 9), we have 2d ≡ 3 (mod 9), so that there are three conjugacy classes 
given by the symplectic indices z,z2, and

(
1 3

2d−3
3 −2

)
∈ SL2(Zd) (d odd),

(
1 3

2d−3
3 −2

)
∈ SL2(Z2d) (d even).

In the last two cases, the third conjugacy class is given by the symplectic indices m1 and 
m2 (respectively), where

mj :=
(

1 3
4dj−3

3 −2

)
∈ SL2(Zd′).

and m2
j  is conjugate to mj  (since otherwise there would be four conjugacy classes). For con-

venience of presentation, we take the representative with symplectic index

wj := m2
j =

(
−2 −3

1 + 2d
3 j 1

)
=

(
1 0
1 1

) 2d
3 j (0 −1

1 0

)−1 (1 0
1 1

)3 (0 −1
1 0

)(
1 0
1 1

)
.

By taking the symplectic operations corresponding to the representatives z, z2, w1, w2 in the 
above conjugacy classes, i.e. Z, Z2, W1, W2, we obtain representatives for the conjugacy class-
es of canonical order 3 symplectic operations. The normalisation of Wa in its definition (9.66) 
ensures that it has order 3. □ 

From the above proof, we have:
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The conjugacy classes of order 3 and trace  −1 elements in SL(Zd′) are in 1–1  
correspondence with the conjugacy classes of canonical order 3 symplectic operations.

The canonical order 3 symplectic operations Z (the Zauner matrix) and M1 = W2
1 appear 

as symmetries of the Scott–Grassl SICs [SG10], where they are denoted by the symplectic 
indices Fz and Fa, i.e.

Bz =

(
0 −1
1 −1

)
= (d + 1)Fz, Bm1 =

(
d + 1 3

d−3
3 d − 2

)
= (d + 1)Fa.

As yet, no numerical SIC fiducials have been found that are eigenvectors of W2 (see [ABDF17, 
AB18] for discussion). We propose the name of a ghost SIC for such SIC.

10. Conjugates of the canonical order 3 symplectic unitaries

We now use theorem 9.1 to determine when the conjugate of Z or W1 (or W2 for that matter) 
by a symplectic operation is a monomial matrix of the form RαPσ. Since the permutation 
matrices in C(d) are symplectic (see section 8), there exists a permutation matrix Pσ ∈ C(d), 
σ ∈ Z∗

d of canonical order 3 if and only if

P3
σ = Pσ3 = I, trC(Pσ) = σ + σ−1 = −1,

i.e. the existence of an integer σ (for d �= 3) with

σ3 ≡ 1 mod d, σ2 + σ + 1 ≡ 0 mod d. (10.67)

For such a σ, we have 
(
σ 0
α σ−1

)
3 =

(
σ3 0

α(1 + σ + σ2) σ−3

)
=

(
1 0
0 1

)
, so that:

If σ satisfies (10.67), then [RαPσ] is a canonical order 3 symplectic operation.
By Chinese remainder theorem, one has (see [App05]) that the condition (10.67) is equiva-

lent to d satisfying:

 (i)  d has at least one prime divisor ≡ 1 mod 3.
 (ii)  d has no prime divisors ≡ 2 mod 3 (so that d is odd).
 (iii)  d is not divisible by 9.

Table 1. The index (ψa, za) and an Appleby index [B,χ] for various Clifford operations.

a ψa za(j ,k) [B,χ]

SαΩβ I ωβj−αk
[I,

(
α

β

)
]

F
(

0 −1
1 0

)
ω−jk

[

(
0 −1
1 0

)
, 0]

R
(

1 0
1 1

)
µ j( j+d)

[

(
1 0
1 1

)
, 0]

Pσ
(
σ 0
0 σ−1

)
1

[

(
σ 0
0 σ−1

)
, 0]
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The first few d satisfying these conditions are

d = 7, 13, 19, 21, 31, 37, 39, 43, 49, 57, 61, 67, 73, 79, 91, 93, 97, . . .

By theorem 9.1, the monomial operation [RαPσ] is conjugate (via a symplectic operation) to 
one of [Z], [Z]2, [W1], [W2].

 •  For d not a multiple of 3 (d �≡ 0 mod 3), i.e.

d = 7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, . . .

  there is single conjugacy class, and so all [RαPσ] are conjugate to [Z].
 •  For d a multiple of 3, i.e.

d = 21, 39, 57, 93, 111, 129, 147, 183, 201, 219, 237, . . .

  we have d
3 ≡ 1 mod 3, i.e. d ≡ 3 mod 9, and so the conjugacy classes are given by 

[Z], [Z]2, [W1].

For a σ satisfying σ3 = 1, 1 + σ + σ2, the symplectic index calculations

gzg−1 =

(
σ 0
1 σ2

)
, gz2g−1 =

(
σ2 0
−1 σ

)
, g :=

(
1 σ

0 1

)
, z =

(
0 −1
1 −1

)
,

give the following:
For any d, if σ satisfies (10.67), then

 1.  The monomial operation [RPσ] is a symplectic conjugate of [Z].
 2.  The monomial operation [R−1Pσ] is a symplectic conjugate of [Z2].

Whenever d is a multiple of 3, i.e. d ≡ 3 mod 9, it appears (for the d listed above) that [Pσ] is 
always a symplectic conjugate of [M1].

Example 10.1. For d  =  21, no symplectic conjugate of Z is a permutation matrix, but many 
conjugates are monomial, e.g. the symplectic index calculation

(
1 4
0 1

)(
0 −1
1 −1

)(
1 4
0 1

)−1

=

(
4 0
1 16

)
,

together with table 1, gives

gZg−1 = ω7R16P4, g := F−1R−4F.
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Appendix

Proof of lemma 9.2. We first show that it suffices to consider the case of d a prime power. 

Let d =
∏m

j=1 prj
j  be a product of powers of distinct primes. If a, b ∈ SL2(Zd) are conjugate: 
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a  =  gbg−1, g ∈ SL2(Zd), then they are conjugate in SL2(Zp
rj
j
), i.e.

agj ≡ gjb mod prj
j , 1 � j � m, (A.1)

where gj ≡ g mod prj
j  and gj ∈ SL2(Zp

rj
j
). Conversely, suppose that a and b are conjugate in 

SL2(Zp
rj
j
) via gj ∈ SL2(Zp

rj
j
), 1 � j � m. Then by the Chinese remainder theorem, there is a 

g ∈ Z2×2 with g ≡ gj mod prj
j , so that (A.1) gives

ag ≡ gb mod d =

m∏
j=1

prj
j .

Similarly, det(g) ≡ det(gj) ≡ 1 mod prj
j , gives det(g) ≡ 1 mod d. Thus a and b are conju-

gate in SL2(Zd).
Hence we assume now that d  =  p r, p  a prime and begin with the easiest case:

Case 1. p �= 3, i.e. d is not divisible by 3.

Here we claim that there is one single conjugacy class, i.e. if a, b ∈ SL2(Zd) with 
tr(a) ≡ tr(b) ≡ −1 mod d, then a is conjugate to b. Since

z =
(

0 −1
1 −1

)
∈ SL2(Zd)

with tr(z) ≡ −1 mod d, alternatively we may express this by saying that if a ∈ SL2(Zd) with 
tr(a) ≡ −1 mod d, then a is conjugate to z, i.e. ∃g ∈ SL2(Zd) such that

a ≡ gzg−1 ⇐⇒ ag ≡ gz mod d.

It turns out that the existence of such a g reduces to the existence of a solution of an associated 
binary quadratic equation.

Lemma A.1. Suppose that d ∈ Z�2 (including the divisible by 3 case) and that 

a =

(
α β

γ δ

)
∈ SL2(Zd) with tr(a) ≡ −1 mod d. Then there exists g ∈ SL2(Zd) such that

a ≡ gzg−1 mod d

iff

g = [x; ax], x ∈ Z2
d

such that

Qa(x1, x2) := γx2
1 + (δ − α)x1x2 − βx2

2 ≡ +1 mod d. (A.2)

Proof of lemma  Writing g  =  [x;y] with columns x, y ∈ Z2
d,

gz ≡ ag ⇐⇒ [x; y]
(

0 −1
1 −1

)
≡ a[x; y]

⇐⇒ [y;−x − y] ≡ [ax; ay]

⇐⇒ y ≡ ax and ay ≡ −x − y.

But y ≡ ax  implies that
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ay ≡ a2x ≡ −(a + I2)x ≡ −ax − x ≡ −y − x.

Hence gz ≡ ag ⇐⇒ g ≡ [x; Ax] for an x ∈ Z2
d. Here we have used the fact that, by the 

modular form of the Cayley–Hamilton theorem,

a2 − tr(a)a + det(a)I2 ≡ 0 mod d

so that, by our assumptions on a,

a2 ≡ tr(a)a − det(a)I2 ≡ −a − I2.

Now, for g to be in SL2(Zd) we require that det(g) ≡ +1 mod d. But for g = [x; ax],

 

det(g) = det
(

x1 αx1 + βx2

x2 γx1 + δx2

)

= γx2
1 + (δ − α)x1x2 − βx2

2 =: Qa(x1, x2). □ 

We therefore proceed to analyze the solutions of the binary quadratic equation  (A.2). We 
begin with an important subcase.

Lemma A.2. Suppose that p   >  2 is a prime and that a, b, c ∈ Z are units modulo p  (i.e. not 
multiples of p ). Then

ax2 + by2 ≡ c

has a solution modulo p r for all r � 1.

Proof of lemma. We use induction on r. The r  =  1 case is actually a ‘well-known’ con-
sequence of the Chevalley–Warning theorem (see [IR90]); we give the details for the sake of 
completeness.

Homogenize the equation to

ax2 + by2 − cz2 ≡ 0

giving a homogeneous quadratic equation in three variables. The Chevalley–Warning theorem 
then implies that there is a non-trivial integer solution (x0, y0, z0) such that

ax2
0 + by2

0 − cz2
0 ≡ 0 mod p.

If z0 �≡ 0 mod p it is a unit and we get

a(x0z−1
0 )2 + b(y0z−1

0 )2 ≡ c mod p,

i.e. x = x0z−1
0 , y = y0z−1

0  is a sought for solution. Otherwise, if z0 ≡ 0 mod p then we must 
have x0 �≡ 0 and y0 �≡ 0 and

ax2
0 + by2

0 ≡ 0 mod p

=⇒ x2
0 + (ba−1)y2

0 ≡ 0

=⇒ ba−1 ≡ −(x0y−1
0 )2,

i.e. −ba−1 = t2, t = x0y−1
0 . Thus our original equation ax2 + by2 ≡ c reduces to
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x2 − t2y2 ≡ ca−1

⇐⇒ (x − ty)(x + ty) ≡ ca−1

which is solved, for example, by any solution of the linear system

x + ty ≡ ca−1

x − ty ≡ 1,

and in particular by x = 2−1(ca−1 + 1), y = 2−1t−1(ca−1 − 1).
Continuing by induction, suppose that we have a solution (x0, y0) modulo p r. We will show 

that then we also have one modulo p r+1. To see this, note first that

x0 + αpr, y0 + βpr, α,β ∈ Z

are also solutions modulo p r. We claim that one of these is also a solution modulo p r+1. Sub-
stituting into our equation, we have (using the fact that p2r ≡ 0 mod pr+1)

a(x0 + αpr))2 + b(y0 + βpr)2 ≡ c mod pr+1

⇐⇒ a(x2
0 + 2x0αpr + α2p2r) + b(y2

0 + 2y0βpr + β2p2r) ≡ c mod pr+1

⇐⇒ ax2
0 + by2

0 + pr(2ax0α+ 2by0β) + 0 ≡ c mod pr+1

⇐⇒ (ax2
0 + by2

o − c) + pr((2ax0α+ 2by0β) + 0 ≡ c mod pr+1.

But, by assumption, (x0, y0) is a solution modulo p r and so

ax2
0 + by2

0 − c = kpr

for some k ∈ Z.
Consequently, we see that (x0 + αpr, y0 + βpr) is a solution modulo p r+1 iff

pr(k + (2ax0)α+ (2by0)β) ≡ 0 mod pr+1

⇐⇒ (k + (2ax0)α+ (2by0)β) ≡ 0 mod p.

But, as c is not a multiple of p  by assumption, at least one of x0, y0 is also not a multi-
ple of p  and as p > 2, 2 is a unit, it follows that the linear Diophantine equa-
tion (k + (2ax0)α+ (2by0)β) ≡ 0 mod p for (α,β) has at least one coefficient a unit modu-
lo p r+1 and therefore has a solution. □ 

Lemma A.3. Suppose that p   >  2 is a prime and that for a, b, c ∈ Z,

Q(x, y) := ax2 + bxy + cy2

is a Binary Quadratic Form with discriminant

∆ := b2 − 4ac �≡ 0 mod p.

Let u ∈ Z be a unit modulo p . Then for every r � 1, the equation

Q(x, y) ≡ u mod pr

has a solution.
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Proof of lemma. First suppose that one of a, c �≡ 0 mod p. By symmetry we may assume 
that it is a �≡ 0 mod p. Then modulo p r,

Q(x, y) ≡ u

⇐⇒ 4aQ(x, y) ≡ 4au (as both a and 4 are units)

⇐⇒ 4ax2 + 4abxy + 4acy2 ≡ 4au

⇐⇒ (2ax + by)2 − {b2 − 4ac}y2 ≡ 4au

⇐⇒ (2ax + by)2 −∆y2 ≡ 4au.

Setting x′ = 2ax + by we have

(x′)2 −∆y2 ≡ 4au mod pr

and by lemma A.2 there is a solution (x′0, y0) which leads to the solution

x = x0 = 2−1a−1{x′0 − by0}, y = y0

to Q(x, y) ≡ u mod pr.
If, on the other hand, a ≡ c ≡ 0 mod p then as, by assumption, ∆ �≡ 0 mod p, we must 

have b �≡ 0 mod p. We need in this case to prove our claim by induction on r.
If r  =  1 then our equation reduces to

bxy = u mod p

which has a solution (among others), x = 1, y   =  ub−1, mod p.
Hence suppose that there is a solution (x0, y0) modulo p r. We must show that then there is 

also a solution modulo p r+1. Indeed, just as in the previous lemma, we search for such a solu-
tion among

x = x0 + αpr, y = y0 + βpr, α,β ∈ Z.

Then modulo p r+1,

Q(x0 + αpr, y0 + βpr) ≡ u

⇐⇒ (ax2
0 + bx0y0 + cy2

0 − u) + pr(2ax0α+ bx0β + by0α+ 2cy0β) ≡ 0

⇐⇒ (ax2
0 + bx0y0 + cy2

0 − u) + prb(x0β + y0α) ≡ 0

as apr ≡ cpr ≡ 0 mod pr+1 since, by assumption in this case a and c are multiples of p . But 
as (x0, y0) is a solution modulo p r there must exist a k ∈ Z such that

ax2
0 + bx0y0 + cy2

0 − u = kpr.

Therefore, cancelling p r from both sides, we arrive at the condition

k + b(x0β + y0α) ≡ 0 mod p.

This linear Diophantine equation has a solution for (α,β) as, in this case, b is a unit and the 
fact that u is a unit implies that not both x0 and y 0 can be multiples of p . □ 
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We will use the above to prove

Lemma A.4. For a =

(
α β

γ δ

)
∈ SL2(Zd), d  =  p r, p  a prime other than 3, r � 1, with 

tr(a) = α+ δ ≡ −1 mod d, there is a solution of the quadratic equation (A.2), i.e. of

Qa(x1, x2) = γx2
1 + (δ − α)x1x2 − βx2

2 ≡ +1 mod d.

Consequently a is conjugate to z modulo p r.

Proof of lemma. First suppose that p   >  3. First note that the discriminant of Qa is

∆ = (δ − α)2 + 4βγ

= (δ + α)2 − 4(αδ − βγ)

= (tr(a))2 − 4det(a)

= (−1)2 − 4 × 1
= −3 �≡ 0 mod p.

Since u  =  1 is a unit, we have from lemma A.3 that there exists a solution to 
Qa(x1, x2) ≡ +1 mod pr.

The case p = 2, d  =  2r is somewhat different as then 2 is not a unit and lemma A.3 is not 
applicable. Nevertheless, also in this case Qa(x1, x2) ≡ +1 mod 2r has a solution.

To see this note that the units modulo 2r are precisely the odd integers � d  −  1. Now, 
tr(a) = α+ δ ≡ −1 mod 2r  implies that α+ δ  is odd and hence one of α, δ  is odd and the 
other is even. Consequently the product αδ us even. Further, det(a)αδ − βγ ≡ 1 mod 2r and 
so αδ − βγ is odd with αδ even. Hence βγ is odd and indeed both β and γ  are odd, i.e. are 
units.

We claim that there is a solution of the form Qa(x1, 1) ≡ +1 mod 2r, i.e. with x2  =  1. In 
fact, modulo 2r,

Qa(x1, 1) ≡ +1

⇐⇒ γx2
1 + (δ − α)x1 − β ≡ +1

⇐⇒ x2
1 + γ−1(δ − α)x1 ≡ γ−1(1 + β).

Note that as one of α, δ  is odd and the other even, δ − α is odd and hence a unit. Further γ  is 
odd and hence so is γ−1. Consequently γ−1(δ − α) is odd. Moreover, β is odd and so 1 + β 
and γ−1(1 + β) are both even.

Consider now the univariate polynomial P(x):  =  x2  +  ax with a ∈ Z, odd. We claim that 
P(x) maps the set of odd integers {x ∈ Zd : x odd} one-to-one and onto the set of even in-
tegers {x ∈ Zd : x even}. Indeed, P(x)  =  x2  +  ax  =  x(x  +  a). Hence if x is odd then x  +  a is 
even and P(x) is even. To see that the mapping is one-to-one, suppose that x, y ∈ Zd are both 
odd. Then modulo d  =  2r,

P(x) ≡ P(y)

⇐⇒ x2 + ax ≡ y2 + ay

⇐⇒ x2 − y2 + a(x − y) ≡ 0
⇐⇒ (x − y)(x + y + a) ≡ 0.
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But x, y both odd and a also odd implies that x  +  y   +  a is odd and hence a unit modulo 2r. 
Consequently we may divide by x  +  y   +  a to obtain that P(x) ≡ P(y) iff x − y ≡ 0, i.e. x ≡ y  
and we have shown that the mapping is one-to-one.

To see that it is also onto just note that the cardinality of the domain #{x ∈ Zd : x odd} = d/2 
as does the cardinality of the image #{x ∈ Zd : x even} = d/2.

Thus with a = γ−1(δ − α) it follows that there is an x1 ∈ Zd such that P(x1) = γ−1(1 + β) 
and we are done. □ 

In summary, we have shown so far that for any d a product of primes other than 3, i.e. 
for any d not divisible by 3, every a ∈ SL2(Zd) with tr(a) ≡ −1 mod d, is conjugate to 

z =
(

0 −1
1 −1

)
.

We now consider the cases when d is divisible by 3 beginning with

Case 2. d  =  3
We claim that there are three conjugacy classes:

 1.  Those conjugate to z : Cz :=
{(

0 −1
1 −1

)
,
(

1 0
1 1

)
,
(

1 −1
0 1

)
,
(
−1 −1
1 0

)}

 2.  Those conjugate to z2: Cz2 :=
{(

0 1
−1 −1

)
,
(

1 1
0 1

)
,
(

1 0
−1 1

)
,
(
−1 1
−1 0

)}
= CT

z

 3.  Those conjugate to I2: CI := {I2} .

We begin with the lemma for z2 analogous to lemma A.1 for z.

Lemma A.5. Suppose that d � 2 and that a =

(
α β

γ δ

)
∈ SL2(Zd) with tr(a) ≡ −1 mod d. 

Then there exists a g ∈ SL2(Zd) such that

a = gz2g−1

iff g  =  [Ay;y] for some y ∈ Z2
d such that

Qa(y1, y2) = γy2
1 + (δ − α)y1y2 − βy2

2 ≡ −1 mod d.

Proof of lemma. Writing, as before, g  =  [x;y] with columns x, y ∈ Z2
d,

gz2 ≡ ag ⇐⇒ [x; y]
(
−1 1
−1 0

)
≡ a[x; y] = [ax; ay]

⇐⇒ [−x − y; x] ≡ [ax; ay]

⇐⇒ x ≡ ay and − x − y ≡ ax.

But x ≡ ay implies that

ax ≡ a2y

≡ −(a + I2)y

≡ −ay − y

≡ −x − y.

Hence gz2 ≡ ag iff g  =  [ay;y] for some y ∈ Z2
d.
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Now, for such g,

det(g) = det
(
αy1 + βy2 y1

γy1 + δy2 y2

)

= βy2
2 + (α− δ)y1y2 − γy2

1

= −Qa(y1, y2).

Hence det(g) ≡ +1 mod d iff Qa(y1, y2) ≡ −1 mod d. □ 

Now if a ≡ I2 then obviously a ∈ CI . We claim that if a �≡ I2 then there is either a solution of

Qa(y1, y2) ≡ +1 mod 3

or else of

Qa(y1, y2) ≡ −1 mod 3

but not both. To see this note that if β and γ  are both 0 mod 3 then a is diagonal and it is easily 
verified that the only diagonal a ∈ SL2(Z3) with tr(a) ≡ −1 is a  =  I2. Hence at least one of 
β, γ are not 0 modulo 3.

Now, if γ ≡ 1, then Qa(y1, y2) ≡ +1 has the solution y1 = 1, y2 = 0. If γ ≡ −1, then 
Qa(y1, y2) ≡ −1 has the solution y1 = 1, y2 = 0. Otherwise, if γ ≡ 0 and hence β �≡ 0, 
Qa(0, 1) ≡ −1 if β ≡ +1 while Qa(0, 1) ≡ +1 if β ≡ −1.

We now verify that we can not have solutions to both Qa(y1, y2) ≡ ±1, or in other words, 
z and z2 are not conjugate. Indeed, by lemma A.1 z2 is conjugate to z iff there is a solution of

Qz2(x1, x2) ≡ +1 mod 3.

But Qz2(x1, x2) = −x2
1 + x1x2 − x2

2 so, modulo 3,

Qz2(x1, x2) ≡ +1

⇐⇒ x2
1 − x1x2 + x2

2 ≡ −1

⇐⇒ x2
1 + 2x1x2 + x2

2 ≡ −1

⇐⇒ (x1 + x2)
2 ≡ −1.

But  −1 is not a perfect square modulo 3 and so this is not possible.
For d  =  3 there are only 9 different a ∈ SL2(Z3) with tr(a) ≡ −1 and hence it is a trivial 

matter to list the conjugacy classes.
Case 3. d  =  3r, r � 2. We claim that here there are two conjugacy classes:

 1.  Those conjugate to z : {a ∈ SL2(Zd) : (a mod 3) ∈ Cz}
 2.  Those conjugate to z2: {a ∈ SL2(Zd) : (a mod 3) ∈ Cz2}

The class {a ∈ SL2(Zd) : (a mod 3) = I2} is not present. Indeed, if a ≡ I2 mod 3, then

a =

(
1 + 3x 3y

3z1 + 3w

)

for some x, y, z, w ∈ Z.
Then tr(a) = 2 + 3(x + w) and

det(a) = (1 + 3x)(1 + 3w)− 9yz = 1 + 3(x + w) mod 9.

If tr(a) ≡ −1 mod 3r, r � 2, then tr(a) ≡ −1 mod 9 and similarly det(a) ≡ +1 mod 9. 
Hence we must have
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2 + 3(x + w) ≡ −1 mod 9
and 1 + 3(x + w) ≡ +1 mod 9.

Subtracting the two gives 1 ≡ −2 mod 9 which is clearly not possible.
Supposing therefore that a �≡ I2 mod 3, it is easy to check by comparing with the lists 

of Cz and Cz2 (mod 3), that one of β, γ �≡ 0 mod 3. By symmetry we may suppose that it is 
γ �≡ 0.

We claim that there is either a solution of

Qa(x1, x2) ≡ +1 mod 3r

or Qa(x1, x2) ≡ −1 mod 3r

but not both.
The r  =  1 case gives a solution (x1, x2) = (1, 0) mod 3 for

Qa(x1, x2) ≡ +1 mod 3 in case γ ≡ +1 mod 3

and

Qa(x1, x2) ≡ −1 mod 3 in case γ ≡ −1 mod 3.

This persists for r � 2, i.e. there is a solution (x1, x2) = (1, 0) mod 3 for

Qa(x1, x2) ≡ +1 mod 3r in case γ ≡ +1 mod 3

and

Qa(x1, x2) ≡ −1 mod 3r in case γ ≡ −1 mod 3.

To see this we proceed by induction on r and assume that we have such a solution mod 3r; we 
will show that there is also one mod 3r+1. Indeed,

(x1 + u3r, v3r), u, v ∈ Z

are all solutions mod 3r. Then setting γ := γ mod 3, we have

Qa(x1 + u3r, v3r) ≡ γ mod 3r+1

⇐⇒ γ(x1 + u3r)2 + (δ − α)(x1 + u3r)(v3r)− β(v3r)2 ≡ γ mod 3r+1

⇐⇒ γ(x2
1 + 2ux13r) + (δ − α)(x1v3r) ≡ γ mod 3r+1

⇐⇒ (γx2
1 − γ) + 3r(2γx1u + (δ − α)x1v) ≡ 0 mod 3r+1.

But, as (x1,0) is a solution mod 3r  (by assumption),

γx2
1 − γ = k3r

for some k ∈ Z.
Thus

3r{k + (2γx1)u + ((δ − α)x1)v} ≡ 0 mod 3r+1

iff

k + (2γx1)u + ((δ − α)x1)v ≡ 0 mod 3

iff

k + (2γ)u + ((δ − α))v ≡ 0 mod 3

as x1 ≡ 1 mod 3. But this has the solution
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v = 0,

u = (2γ)−1(−k) mod 3

≡ (−γ)−1 mod 3

≡ γ−1k mod 3
≡ γk mod 3,

i.e. we have the solution

(x1 + (kγ)3r, 0) mod 3r+1.

The conjugacy classes are distinct as conjugacy modulo 3r+1 implies conjugacy modulo 3.
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