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Weaver, 2004

Let v1, . . . , vn ∈ Cm satisfy ‖v i‖2 ≤ α for each i = 1, . . . , n and
suppose that

n∑
i=1

|v i
∗x |2 = 1

for all x ∈ Cm with ‖x‖ = 1. Then we can partition
J = {1, . . . , n} into two disjoint sets J1,J2 such that∣∣∣∣∣∣

∑
i∈Jk

|v i
∗x |2 − 1

2

∣∣∣∣∣∣ ≤ 5
√
α

for each k = 1, 2 and all x ∈ Cm with ‖x‖ = 1.
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Marcus, Spielman, Srivistava, 2014

If v1, . . . , vn ∈ Cm are such that ‖v j‖2 ≤ α for all j = 1, . . . , n and

n∑
j=1

v jv
∗
j = I

then there is a partition of the index set J = {1, . . . , n} ⊂ N into
two disjoint subsets J1 and J2 such that∥∥∥∥∥∥

∑
j ∈Jk

v jv j
∗

∥∥∥∥∥∥
2

≤
(

1√
2

+
√
α

)2

for each k = 1, 2. The norm used here is the 2-norm
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Walsh function Wk : [0, 1]→ {−1, 1} for k ∈ N− 1

Choose m ∈ N
Let each k < 2m be represented in binary form as

k = km . . . k1 ⇔
m∑
s=1

ks2s−1 ⇔ k = (k1, . . . , km, 0, 0, . . . ) ∈ {0, 1}∞

Let each x ∈ [0, 1] be represented in binary form as

x = 0 · x1x2 · · · ⇐⇒ · · · ⇐⇒ x = (x1, x2, · · · ) ∈ {0, 1}∞

where no expansion is permitted with xs = 1 for all s ≥ n for some
n = n(x) ∈ N ,
Then for each x ∈ [0, 1] we have

Wk(x) = (−1)p(k ,x ), for each k < 2mwhere p(k , x) =
m∑
s=1

ksxs
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Walsh matrix Y = Yr

Let n = 2r for some r ∈ N. The Walsh matrix Y = Yr ∈ Cn×n is
defined by the Sylvester construction which can be implemented
using the Matlab algorithm

Y = [1];
for i = 1 : r
Y = [Y Y ;Y − Y ];
end

6 / 25



Motivation Introduction Splitting Main Results

The Sylvester construction gives the natural ordering for the rows
and columns. The sequency ordering is also used. The advantage
of the sequency ordering is that it corresponds to the ordering used
for the Walsh functions. The disadvantage is that there is no easy
construction. We will use the natural ordering.
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Some properties of Walsh functions and Walsh matrices

Walsh functions form a complete orthonormal set in a Hilbert
space L2[0, 1].

The matrix Y is real symmetric with yij = ±1 for all i , j and
Y ∗Y = nI .

The columns {y1, . . . , yn} form an orthogonal basis for Cn

with ‖y j‖ =
√
n for all j = 1, . . . , n.
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Walsh Matrices: Natural Ordering

We have

Y1 =

[
1 1

1 −1

]
,

Y2 =


1 1 1 1
1 −1 1 −1

1 1 −1 −1
1 −1 −1 1


and

Y3 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


.
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Normalized tight frames defined by Walsh matrices

Let r ∈ N + 1 and define n = 2r and m ≤ n.
Y be the corresponding Walsh matrix.
Define G = Y /

√
n, Clearly it is a unitary matrix.

Set G = [g1, . . . , gn] and W ∈ Cn×m = [g1, . . . , gm].

Let V = W ∗ ∈ Cm×n = [v1, . . . , vn]

The column vectors {v1, . . . , vn} form a normalized tight frame in
Cm with ‖vj‖ =

√
m
n for all j = 1, . . . , n.
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Objective

To discuss the discrepancy of a special class of normalised tight
frames defined by Walsh matrices, we show that if m, n ∈ N with
m ≤ n = 2r for some r ∈ N, then there is a normalized tight frame
defined by a pre-frame matrix operator V = [v1, . . . , vn] ∈ Cm×n

where
v j ∈ Cm with vij = ±1/

√
n for all i = 1, . . . ,m and j = 1, . . . , n

and ‖vj‖ =
√

m
n for all j = 1, . . . , n.

In particular, we have

for m ≤ n
2 , these frames can be split into two identical tight

frames with frame constant c = 1
2 .

for n
2 < m < n we show that the frames can no longer be

evenly split but we find explicit expression for the discrepancy
in a best possible split.
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Splitting a Walsh frame: A simple example

Let m = 3 and n = 8.
Using the first three rows of the Walsh matrix Y3, we define

V =
1

2
√

2

 1 1 1 1 1 1 1 1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1

 =
[
Va Vb

]

VV ∗ = I3

.
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The normalized tight frame can be split into two identical frames
with Va = Vb and VaVa

∗ = VbVb
∗ = I/2.

Renormalizing, we get

V =
1

2

 1 1 1 1
1 −1 −1 1
1 1 −1 −1

 =
[
Va Vb

]

VV ∗ = I3

.
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If we split the new normalized tight frame into two parts Va and
Vb then the two parts are no longer identical.
So from above split, we have

‖VaVa
∗ − I3/2‖2 = ‖VbVb

∗ − I3/2‖2 = 1/2

which is less than the general bound given by Weaver.
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Quadratic forms

We have

x∗VV ∗x = x21 + x22 + x23

= (x21/2 + x22/2 + x23/2 + x1x3) + (x21/2 + x22/2 + x23/2− x1x3)

= (x∗VaVa
∗x + x∗VbVb

∗x)

Note

columns of Va and Vb do not span C3 and so fail to define
frames.

For n = 2r , we can split this normalized tight frame into two
identical normalized tight sub-frames each having 2r−1

elements.
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Main Result - I

Let n = 2r for some r ∈ N and suppose m ∈ N with
m ≤ n/2 = 2r−1.
W = [y1, . . . , ym]/

√
n ∈ Cn×m be defined by the first m columns

of the Walsh matrix Yr ∈ Cn×n and
V = [v1, . . . , vn] = W ∗ ∈ Cm×n. Then,

VV ∗ = I

The normalized tight frame in Cm defined by the columns of
the matrix V can be split into two equal parts defined by the
columns of the matrices V1 = [v1, . . . , vn/2] and
V2 = [vn/2+1, . . . , vn]

V1V1
∗ = V2V2

∗ = I/2.
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Main Result - II

Let n = 2r for some r ∈ N and suppose m ∈ N with
2r−1 = n/2 ≤ m < n = 2r .
Yr−1 = [y1, . . . , yn/2] ∈ C(n/2)×(n/2) be the Walsh matrix of order
r − 1
Define

Y =

[
y1 · · · yn/2 yk(1) · · · yk(s)

y1 · · · yn/2 −yk(1) · · · −yk(s)

]
=

[
Ya

Yb

]
∈ Cn×m

where s = m − n/2 and 1 ≤ k(1) < · · · < k(s) ≤ n/2 is an
arbitrarily selected subset of {1, . . . , n/2}.
Let V = Y ∗/

√
n, Va = Ya

∗/
√
n and Vb = Yb

∗/
√
n.

Then, VV ∗ = I
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Result − II contd ..

The split defined by V = [Va | Vb] gives

VaVa
∗−I/2 =

[
0 ∆/2

∆∗/2 0

]
and VbVb

∗−I/2 =

[
0 −∆/2

−∆∗/2 0

]
where ∆ = [ek(1) · · · ek(s)] ∈ C(n/2)×s .

The best possible error is

‖VaVa
∗ − I/2‖2 = ‖VbVb

∗ − I/2‖2 = 1/2

We also have ‖VaVa
∗‖2 = ‖VbVb

∗‖2 = 1.
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An interesting question is whether this result is completely specific
or whether similar results apply to other normalized tight frames
constructed from equal length vectors.
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Lemma

Let m ∈ N and n = 2r for some r ∈ N. If m ≤ n and
V = [v1, . . . , vn] ∈ Cm×n defines a normalized tight frame for Cm

with S = VV ∗ = Im and ‖v j‖2 = α for each j = 1, . . . ,m then
α = m/n.
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Key Idea

Let m ∈ N and n = 2r for some r ∈ N and suppose m ≤ n.
Suppose also that V = [v1, . . . , vn] ∈ Cm×n defines a normalized
tight frame with ‖v j‖ =

√
m/n for each j = 1, . . . ,m.

Define W = [w1, . . . ,wm] ∈ Cn×m by setting W = V ∗.
Since W ∗W = VV ∗ = Im and so {w1, . . . ,wm} ∈ Cn is an
orthonormal set.
Let us extend this set to an orthonormal basis {w1, . . . ,wn} ∈ Cn.
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Define the orthogonal matrix

H = [H1 | H2] = [w1, . . . ,wm | wm+1, . . . ,wn] ∈ Cn×n

where H1 = W ∈ Cn×m and H2 ∈ Cn×(n−m).

Define G = H∗ ∈ Cn×n and we can write

G = [G1 | G2] = [g1, . . . , gm | gm+1, . . . , gn]

where G1 ∈ Cn×m and G2 ∈ Cn×(n−m).

The matrix G defines an orthonormal basis
{g1, . . . , gm | gm+1, . . . , gn} for Cn.
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Let Y = [y1, . . . , yn] ∈ Cn×n be the Walsh matrix of order r
defined by the Sylvester algorithm.
Define F = [f 1, . . . , f m | f m+1, . . . , f n] ∈ Cn×n by setting
F = Y√

n
∈ Cn×n. we have

f j =
yj√
n
, j = 1, . . . , n

Note that the normalised Walsh matrix F is real symmetric and
orthogonal.
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Define an orthogonal matrix P ∈ Cn×n by setting P = FH.
Therefore, PG = F and Pg i = f i for all j = 1, . . . , n. We use this
matrix P to change the coordinate representation for the
embedded normalized tight frame defined by G into representation
defined by F .
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Thank You!
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