
Enumeration of Seidel matrices

Ferenc Szöllősi
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Overview

This talk is about the real equiangular lines problem.
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Seidel matrices (review from previous talk)

S =


0 1 1 1
1 0 −1 1
1 −1 0 −1
1 1 −1 0


Definition
A symmetric matrix S = ST with 0s on the main diagonal and {−1,1}
entries otherwise is called a Seidel matrix.

The group of signed permutation matrices act on Seidel matrices by
S → PSP−1. The orbits are called switching classes.
One is interested in Seidel matrices up to this equivalence. In this talk:
equivalence-free exhaustive generation is discussed.
The spectrum of S, Λ(S) is the multiset of (real) eigenvalues
{λ1, λ2, . . . , λn}. We use the notation Λ(S) := {[λ1]m1 , . . . , [λr ]mr }.
The spectrum is an invariant up to switching.
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Equiangular lines (review from previous talk)

Definiton
Let d ≥ 1, and n ≥ 1. A set of n lines, represented by unit vectors f1,
. . . , fn ∈ Rd is called equiangular, if |

〈
fi , fj
〉
| = α for all i 6= j .

Note for the pedantic: α is not really the angle, but let’s not get lost in notation.

Equivalent descriptions:
n equiangular lines in Rd , as geometric objects
unit norm columns of the d × n ‘short-fat-matrix’ F
the n × n Gram matrix G := F T F of rank d with Gii = 1 and
Gij = Gji = ±α
for α > 0, S := (G − I)/α with smallest eigenvalue
λmin = −1/α < 0 of multiplicity n − d .

Note: Maximum number of lines: N(d) ≥ d + 1 (take the simplex)
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Very small Seidel matrices

Task
To generate (“visit”) each equivalence class of Seidel matrices of order
n ≥ 1 exactly once. (Usually with additional constraints.)

Example: Seidel matrices for n ≤ 3 (there are 2n(n−1)/2 of them)

S =
[

0
]
, U =

[
0 1
1 0

]
∼
[

0 −1
−1 0

]
= V .

X =

 0 1 1
1 0 1
1 1 0

 ∼
 0 −1 1
−1 0 −1

1 −1 0

 ∼
 0 1 −1

1 0 −1
−1 −1 0

 ∼
 0 −1 −1
−1 0 1
−1 1 0

 ,
Y =

 0 −1 −1
−1 0 −1
−1 −1 0

 ∼
 0 1 −1

1 0 1
−1 1 0

 ∼
 0 −1 1
−1 0 1

1 1 0

 ∼
 0 1 1

1 0 −1
1 −1 0

 .
Λ(X ) = {[−1]2, [2]1}, Λ(Y ) = {[−2]1, [1]2}.
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Historical and contemporary remarks
The number of inequivalent Seidel matrices quickly goes out of control.

n # Generated by

1 1
2 1
3 2
4 3
5 7
6 16
7 54 Van Lint, Seidel (1966, by hand)
8 243
9 2.038 Bussemaker, Mathon, Seidel (1981)

10 33.120 Spence (early 1990s)
11 1.182.004 McKay (1990s)
12 87.723.296 Greaves, Koolen, Munemasa, Sz., 2014
13 12.886.193.064 Östergård and Sz., 2016
14 3.633.057.074.584 The number follows from Robinson’s result
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Seidel matrices and Euler graphs

Very roughly speaking generating the n × n Seidel matrices takes
about the same effort as generating the graphs on n − 1 vertices.
Radziszowski: “Graphs on 13 vertices are now accessible.”

Theorem[Mallows–Sloane, 1975]
The number of Seidel matrices up to equivalence equals to the number
of Euler graphs up to graph isomorphism.

Euler graph: every vertex degree is even, but not necessarily
connected.

Explicit, computable formula is available (Robinson 1969).
When n is odd, then every Seidel equivalence class contains a
unique Euler graph. Therefore if Γi , i ∈ I are pairwise
nonisomorphic Euler graphs, with adjacency matrices Ai , i ∈ I,
then Si := J − 2Ai − I are pairwise inequivalent Seidel matrices.
The previous correspondence fails to hold for n even (already for
n = 4), nevertheless, the number of objects agree.
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Generation of combinatorial objects I

Recorded objects approach – this is what everyone knows.

Step 0: Let Xn be a complete set of representatives of order n.
Step 1: generate a superset Y ⊇ Xn+1 containing at least one
representative (essentially, given Xn, augment each element
X ∈ Xn “in all possible ways”).
Step 2: remove duplicates from Y by comparing its elements with
each other.

Bottleneck: needs a master “list of inequivalent objects”. Not suitable
for parallel computation. Not suitable to deal with cases where the
number of elements of Xn+1 is “large”.

In terms of Seidel matrices, you append a new row and column in
every possible way.
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Generation II

Orderly generation. Idea: designate a “canonical” object %(S) for
each equivalence class, and organize the search to visit these. Do this
in a way so that equivalent augmented objects come from the same
canonical parent.

Step 0: Let Xn be a complete set of canonical representatives of
order n.
Step 1: for each X ∈ Xn generate a superset Y (X ) containing at
least one representative of those matrices with ancestor X .
Step 2: keep the canonical matrices only.

In terms of Seidel matrices, one suitable choice for % is (for n ≥ 2):

[%(S)21%(S)31%(S)32 . . . %(S)n(n−1)] =

max{[Z21Z31Z32Z41Z42Z43 . . .Zn1 . . .Zn(n−1)] : Z = PSP−1}.

Conceptual/programming bottleneck: generating permutations with
restricted prefixes. Knuth’s Algorithm X does this.
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Generation III

Canonical augmentation. Idea: keep an object only if the
augmentation step itself is canonical.
In practice: associate a graph to the combinatorial objects, apply
canonical labeling to the graph, and only keep an augmented graph if
the newly appended vertex gets smallest canonical label*.
For the pedantic*: if the newly appended vertex is in the very same vertex orbit as the one with smallest canonical label.

Step 0: Let Xn be a complete set of representatives of order n.
Step 1: for each X ∈ Xn generate a superset Y (X ) containing at
least one representative of those matrices with ancestor X . Keep
only those which come from a canonical augmentation.
Step 2: remove duplicates from Y (X ) by comparing its elements
with each other.

Conceptual bottleneck: essentially unreadable literature. People from
CS background make hardly any effort to document things pedantly,
as... people from math background will not care anyways.
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Example

Let’s have

S =

 0 1 1
1 0 1
1 1 0


Append a new row with coordinates [1,1,−1,0], [1,−1,1,0],
[−1,1,1,0], respectively.

In orderly generation only the choice [1,1,−1,0] is accepted.
With canonical augmentation – depending on how the labelling is
done – either all three cases survive the tests (and then they are
compared later), or none of them. In this latter case the Seidel
matrix is discovered starting from −S upon augmenting with
[1,1,1,0].

Technically, you really need a graph here to perform a canonical labeling...
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A graph representation of Seidel matrices

The goal is to encode S as a graph X (S) such that if S1 ∼ S2 then
X (S1) and X (S2) are isomorphic as graphs.

Graph representation of n × n Seidel matrices
Let S be n × n. We create a graph X (S) on 3n vertices in the following
way: a row ri , i ∈ {1, . . . ,n} of S is represented by a triplet of vertices
in X (S) – a “cherry” – formed by a green vertex ui adjacent to two red
vertices v (1)

i and v (2)
i . V = {u1, . . . ,un} ∪ {v (1)

1 , v (2)
1 , . . . , v (1)

n , v (2)
n }.

The edge set in addition contains edges based on the elements Sij .
E = {{ui , v

(k)
i }} ∪ {{v

(k)
i , v (k)

j } : Sij = 1} ∪ {{v (k)
i , v (3−k)

j } : Sij = −1}.

Example for n = 2

The Seidel matrix S =

[
0 1
1 0

]
is represented by the hexagon with a

pair of antipodal green vertices.
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Example of graph representation

S =

 0 −1 1
−1 0 −1

1 −1 0

 
The rows r1, r2, and r3
correspond to the encircled
“cherries”.

r1 r2

r3

X (S)

S is represented by X (S), a 2-colored graph on 9 vertices.
Equivalence is now reduced to deciding graph isomorphism.
X (S) should be designed carefully.
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Generation of Seidel matrices
Assume that Xn is a complete set of representatives of Seidel matrices
of order n. For example, X1 = {

[
0
]
}. Starting from Xn, we generate

Xn+1 by the method of canonical augmentation (McKay, 1998):
For every S ∈ Xn. Set up a container C ← ∅.
For every possible row v ∈ {±1}n, append v to S forming its last
row and column (S  Ŝ, the dependence on v is not shown).
Discard Ŝ if S is not its canonical parent.
Add Ŝ to C if this equiv. class has not yet been found. End for.
Output C. End for.

(Some irrelevant, minor details are being skipped here, such as why
anything like this would work, and how one should choose a canonical
parent in the first place...)
The main point is that the equivalence class Ŝ can be obtained from
multiple starting point matrices, say from S0 := S, S1, . . . , Sk ∈ Xn

such that Ŝ0 ∼ Ŝ1 ∼ · · · ∼ Ŝk . We avoid duplicates by declaring a
canonical parent, say Sj , to the equivalence class of Ŝ. Then Ŝi is kept
only if i = j .
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Interlacing eigenvalues

Q: How do we get large Seidel matrices (corresponding to large set of
equiangular lines)?
We have yet to use the spectrum of S.

Theorem[Interlacing:Basic version]
Assume that S is a Seidel matrix, and λ ∈ Λ(S) of multiplicity m ≥ 2.
Let T be any principal submatrix of S. Then λ ∈ Λ(T ) of multiplicity at
least m− 1. Moreover, if λ is the smallest eigenvalue of S, then it is the
smallest eigenvalue of T .

If m is “large”, then we can use this result iteratively to conclude that a
“small” principal submatrix of S has a prescribed eigenvalue. This
structural information can be exploited during the matrix generation.
Lemma
Let S be a Seidel matrix of order n, and let λ ∈ Λ(S) of multiplicity
m ≥ 1. Then m = n − rank(S − λI). Moreover if λ /∈ Λ(S) then
rank(S − λI) = n.
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Exploiting interlacing: a test case
Example[n = 28 lines in R7 with common angle α = 1/3]
Consider a Seidel matrix S corresponding to n = 28 equiangular lines
in R7 (the common angle is 1/3). S is of order 28 with λmin(S) = −3 of
multiplicity exactly m = 21. So any 27× 27 principal minor of S should
have λ as an eigenvalue of multiplicity at least 20, . . . , any 8× 8
principal minor of S should have λ = −3 as (the smallest) an
eigenvalue!

The number of Seidel matrices (up to equivalence) with λmin = −3 of
multiplicity at least n − 7:

n 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# 23 37 54 70 90 101 103 101 90 70 54 37 23 16 10 5 3 2 1 1 1 0

Recall that |X8| = 243, and |X13| ≈ 1.2× 1010.
Note that there are 2n ways to augment an n×n Seidel matrix with
a new row/column (actually, enough to check half of these). For
n = 28 this is about 268× 106, a manageable number of cases.
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Exploiting interlacing: towards catching a BIG fish

Theorem[Östergård and Sz., 2015]

The maximum number of equiangular lines in R12 with common angle
α = 1/5 is 20. There are exactly 32 distinct configurations.

Proof: along the same lines as previous example.
Assume that there exist 21 equiangular lines in R12.
Then it is represented by a 21× 21 Seidel matrix with smallest
eigenvalue −5 of multiplicity exactly 9.
Then any 13× 13 principal minor T has λmin(T ) = −5.
There are at most 26.030.960 such Seidel matrices.
Augment these with a new row/column and increase the
multiplicity of −5.
There are no 21× 21 examples.

The number of Seidel matrices with λ = −5 ∈ Λ(S) of multiplicity at
least n − 12:

n 13 14 15 16 17 18 19 20 21
# 26030960 8897086 2931650 851892 155223 16385 852 32 0

Ferenc Szöllősi (ComNet, Aalto University) Enumeration of Seidel matrices TFA, February 20, 2018 17 / 25



28 or 29 lines in R14?
Annoying, but not so important problem:
Problem
Are there n = 29 equiangular lines in R14 (with α = 1/5)?

The framework developed previously could be – in principle – applied
for this long standing open problem. There is a tiny caveat, however.
First steps of a (potential) proof:

Assume that there exist 29 equiangular lines in R14.
Then it is represented by a 29× 29 Seidel matrix with smallest
eigenvalue −5 of multiplicity exactly 15.
Then any 15× 15 principal minor T has λmin(T ) = −5.
We estimate, that there are about 3× 1010 such Seidel matrices...

Remark: one may circumvent the problem of 15× 15 matrices by
considering 14 linearly independent equiangular vectors in R14. This
corresponds to 14× 14 Seidel matrices without the eigenvalue −5.
Experiments show that there are about the same number of such
matrices as above (ie. in the range of 1010).
We should do 1000 times better (theory+implementation+CPUs time)
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The extended binary Golay code

Theorem: N(18) ≥ 54.

G :=

[
I6 O 0 j
O I6 jT C

]
, where C = Circ(0,1,0,0,0,1,1,1,0,1,1).

is the generator matrix of the extended binary Golay code.
C is the 759-element subset of the 212 codewords of weight 8
Let ei be the standard basis in R24, and let eΣ :=

∑24
i=1 ei .

Let f (x) := (4x − 4e1 − eΣ)/
√

80
Let c1, c2, m be explicit “magic” vectors from R24. Then

L22 := {f (d) : d ∈ C, 〈f (d), 4e1 + eΣ〉 = 〈f (d), e1 − e2〉 = 0} forms 176 lines in R22,

L21 := L22 ∩ {f (d) : d ∈ C, 〈f (d),e1 − e3〉 = 0} forms 126 lines in R21,

L20 := L21 ∩ {f (d) : d ∈ C, 〈f (d), c1〉 = 0} forms 90 lines in R20,

L19 := L20 ∩ {f (d) : d ∈ C, 〈f (d), c2〉 = 0} forms 72 lines in R19,

L18 := L19 ∩ {f (d) : d ∈ C, 〈f (d),m〉 = 0} forms 54 lines in R18.
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Problem 1

The number of Seidel matrices (up to equivalence) with λmin = −3 of
multiplicity at least n − 7:

n 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# 23 37 54 70 90 101 103 101 90 70 54 37 23 16 10 5 3 2 1 1 1 0

Problem 1
Why is it so, that the number of objects on n ≥ 8 vertices is the same
as on 28− k?

Is it true that all of these sub-configurations are actually inside the
configuration of 28 lines?
Is it true than that a submatrix and its “cofactor” are in 1:1
correspondence?
What about 276 lines in R23? Do we witness the same
phenomenon?
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Problem 2

Problem 2
What is the number of optimal configurations in dimensions
1 ≤ d ≤ 23?

For d = 23 the 276-line configuration is unique.
What about its subconfigurations, e.g. d = 21,22?
Enumerate the 48-line configurations in R17.
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Problem 3

Returning once again to the question of 28 or 29 in R14.

Problem 3
Assume that there exists n = 29 equiangular lines in R14. Give an
upper bound on its largest eigenvalue!

Trivial: λmax ≥
√

437/14 > 5.58
Is it true that λmax < 7? This would help to get rid of junk at early
stages.

In principle, results of the following flavor can be obtained
computationally. Let u ≥ 0 be fixed.
Theorem
There are no 29 equiangular lines in R14 with λmax ≤ u.

This is true for u = 3 (you get stuck with the Hadamard matrices of
order 16 and spectrum {[−5]6, [3]10}.) For u = 5 you get stuck at order
26 (conference graphs), for u = 7 you (maybe?) get stuck at n = 28.
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Problem 4

Asked by B. Sudakov and coauthors:

Problem 4
Are there O(d4) bi-angular lines in dimension d?

For equiangular lines O(d2) lines can be constructed in dimension d ,
and this is the best possible.

Theorem[l.bd. with Greaves and others]

32/1089d2 ≤ n(d) ≤ d(d + 1)/2

Dr. E. King mentioned relative difference sets in Atlanta, with 3 or 4 (?)
distinct inner products. Is it useful for attacking this problem? How
about 4-class association schemes (n = 17, index type-4 circulant
schemes)?
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Problem 5

Problem 5
Is the 54-line configuration the largest possible in R18?

Probably not.
There is some room for improvement up to 60 lines.
Having noninteger eigenvalues is also somewhat suspicious.

Λ(S) = {[−5]36, [7]6, [11]8, [13]2, [12−
√

37]1, [12 +
√

37]1}
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Thank you

Ferenc Szöllősi
Aalto University
szoferi@math.bme.hu
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