Grassmannians as universal minimizers of frame potentials

Kasso Okoudjou (joint work with X. Chen, E. Goodman, M. Ehler, and V. Gonzales)

> Department of Mathematics &Norbert Wiener Center University of Maryland, College Park

Workshop on Tight frames and Approximation Taipa, Doubtless Bay, NZ February 20–23, 2018

Outline

Frame potentials

(3) $\mu_{p,d+1,d}$ and its minimizers

Kasso Okoudjou Grassmannians as universal minimizers of frame potentials

3

-

p^{th} frame potentials and their minimizers

Definition

Let $N,d\geq 2$ and $p\in(0,\infty].$ The p^{th} frame potential of $\Phi=\{\varphi_k\}_{k=1}^N\subset S^{d-1}$ is given by

$$\operatorname{FP}_{p,N,d}(\Phi) = \sum_{k,\ell=1}^{N} |\langle \varphi_k, \varphi_\ell \rangle|^p$$

when $p<\infty$ and

$$\operatorname{FP}_{\infty,N,d}(\Phi) = \max_{k \neq \ell} |\langle \varphi_k, \varphi_\ell \rangle|$$

Let $\mu_{p,N,d}(0,\infty] \to (0,\infty)$ be the function given by

$$\mu_p := \mu_{p,N,d} = \min_{\Phi \subset S^{d-1}} \operatorname{FP}_{N,d,p}(\Phi) = \min_{\Phi \subset S^{d-1}} \sum_{k,\ell=1}^N |\langle \varphi_k, \varphi_\ell| \rangle^p.$$

Questions

Remark

For $p \in (1, \infty)$, $\operatorname{FP}_{p,N,d}$ is induced by a conservative force.

Question

Given $d \ge 2, \ p \in (0,\infty]$, and $N \ge 2$

- What are the optimal configurations $\{\varphi_k\}_{k=1}^N \subset S^{d-1}$, i.e., the minimizers of $\mu_{p,d,N}$?
- Find an explicit formula for the function $\mu_{p,d,N}$.

3

3 × < 3 ×

Frames, FUNTFs, and ETFs

Definition

A set $\{\varphi_k\}_{k=1}^N \subset \mathbb{R}^d$ is a *finite frame* for \mathbb{R}^d if there exist , $0 < A, B < \infty$, such that for all $x \in \mathbb{R}^d$,

$$A||x||^2 \le \sum_{k=1}^N |\langle x, \varphi_k \rangle|^2 \le B||x||^2.$$

If A = B, then the frame is *tight*, and if each $\|\varphi_k\| = 1$, then the frame is *unit-norm*. If, for a constant $c \ge 0$, $|\langle \varphi_k, \varphi_\ell \rangle| = c$ for every $k \ne \ell$, the frame is *equiangular*. An (unit-norm) equiangular tight frame is called an *ETF*.

A special case: p = 2

Remark

For $N \geq 2$ and $d \geq 2$,

$$\mu_{2,N,d} = \begin{cases} N^2/d & \text{if } N \ge d\\ N & \text{if } N \le d \end{cases}$$

- $N \ge d$ the minimizers of $\mu_{2,N,d}$ are FUNTFs.
- $N \leq d$ they are ON sets.

Indeed, finding $\mu_{2,N,d}$ is a equivalent to minimizing

$$tr(G^2) = \sum_{k=1}^d \lambda_k^2$$

subject to

$$tr(G) = \sum_{k=1}^{d} \lambda_k = N.$$

Some properties of μ_p

Proposition (X. Chen, E. Goodman, V. Gonzales, K.O (2018))

Let $N \ge d \ge 2$ be given and $p \in (0, \infty)$. The the following statements holds.

(a) If $\Phi = \{\varphi_k\}_{k=1}^N \subset S^{d-1}$ is a minimizer of $\mu_{p,N,d}$, then Φ is a frame for \mathbb{R}^d .

(b) μ_p is a continuous non-increasing function on $(0, \infty)$.

(*) = (*) = (*)

э.

Another special case: $p = \infty$

Remark

For $N \ge 2$ and $d \ge 2$, Welch's bound

$$\mu_{\infty,N,d} \ge \sqrt{\frac{N-d}{d(N-1)}}$$

with equality if and only if Φ is an ETF. Furthermore, equality can hold only when $N \leq \frac{d(d+1)}{2}.$

3

3 × < 3 ×

Grassmannian frames

Definition

Let $N \ge d$. A sequence $\Phi_d^N = \{\varphi_k\}_{k=1}^N \subset S^{d-1}$ is an (N,d) Grassmannian frame if it is a frame and if

$$\tilde{\mu}_{\infty,N,d} := \min \operatorname{FP}_{\infty,N,d}(\Phi) = \operatorname{FP}_{\infty,N,d}(\Phi_d^N)$$

where the minimum is taken over all N-elements unit-norm frames Φ in $\mathbb{R}^d.$

Remark

- (a) $\mu_{\infty,N,d} \leq \tilde{\mu}_{\infty,N,d}$.
- (b) For N > d(d+1)/2, the Welch bound implies that Grassmannian frames cannot be ETFs.

(c) for d = 2 and $N \ge 3$, Benedetto and Kolesar characterized all Grassmannian frames: $\{e^{\pi i k/N}\}_{k=0}^{N-1} \subset \mathbb{R}^2$.

Another special case: N = 3, d = 2

Theorem (M. Ehler, K.O. (2012))

$$\mu_{p,3,2} = \begin{cases} 5 & \text{for } p \in (0, \frac{\log(3)}{\log(2)}] \\ 3 + 6e^{-p\log 2} & \text{for } p \ge \frac{\log(3)}{\log(2)}. \end{cases}$$

Furthermore, on $(0, \frac{\log(3)}{\log(2)}]$ the minimizers are ONB+ one repeated vector, and on $[\frac{\log(3)}{\log(2)}, \infty]$ the minimizers are ETFs. The graph of $\mu_{p,3,2}$ when $p \in (0, \infty)$ is given below

Figure: Graph of $\mu_{p,3,2}$ when $p \in (0,4)$.

Kasso Okoudjou

Sharp configurations

Definition

A finite subset of the unit sphere S^{d-1} is a sharp configuration if there are m inner products between distinct points in it and it is a spherical (2m-1)-design.

Example (Cohn and Kumar (2007))

Any N equally spaced points on S^1 is a sharp configuration.

Theorem (Cohn and Kumar (2007))

Let $f: (0,4] \to \mathbb{R}$ be completely monotonic (f is C^{∞} and $(-1)^k f^{(k)}(x) \ge 0$), and let $\mathcal{C} \in S^{d-1}$ be a sharp configuration with $N = |\mathcal{C}|$. Then \mathcal{C} is an optimal configuration (minimizer) for

$$\min_{\{x_k\}_{k=1}^N \subset S^{d-1}} \sum_{i,j} f(|x_i - x_j|^2)$$

Optimal configuration for the p^{th} frame potentials

Proposition

- For $N \ge d \ge 2$ we have
- (a) $\mu_{p,2,3}$ for 0 , is minimized by either ONB+ (one repeated vector) or ETF (Ehler/Okoudjou (2012)).
- (b) $\mu_{p,kd,d} = \frac{N^2}{d}$, for 0 , is minimized by <math>k copies of an ONB (Ehler/Okoudjou (2012)).
- (c) p > 2, $\mu_{p,N,d}$ is minimized by ETFs when they exist Ehler/Okoudjou (2012)).
- (d) New results: $\mu_{p,2k,2}$, for $p \in (2,\infty]$ and $k \ge 2$ (Chen, Goodman, Gonzales, K.O. (2018)).

< 3 > < 3 >

$\mu_{p,4,2}$ and its minimizers

Theorem (M. Ehler, K.O. (2012))

For $p \in (0,2]$ $\mu_{p,4,2} = 8$ and the minimizers are 2 copies of an ONB. Furthermore, it was later conjecture that on $[2,\infty]$, $\mu_{p,4,2}$ should have the following graph and its minimizers must be equally spaced vectors on the upper half circle.

Figure: Graph of $\mu_{p,4,2}$ when $p \in (0,4)$.

$\mu_{p,4,2}$ and its minimizers.

Theorem (Chen, Goodman, Gonzales, K.O. (2018))

$$\mu_{p,4,2} = \begin{cases} 8 & \text{for } p \in (0,2] \\ 4 + 2^{3-p/2} & \text{for } p \ge 2. \end{cases}$$

Furthermore, on $[2,\infty]$ the (unique) minimizers are equally spaced points on the upper half circle.

3

法国际 化原油

$\mu_{p,4,2}$ and its minimizers: Optimal configurations

Let $X_N = \{x_k\}_{k=1}^N$ be the subset of some sphere in dimension d. Let K(x, y) be a nonnegative kernel and consider the energy

$$E_K(X_N) = \sum_{k < \ell} K(x_k, x_\ell).$$

Theorem (Chen, Goodman, Gonzales, K.O. (2018))

Let $f: (0, 4r^2] \to \mathbb{R}$ be a decreasing convex function defined at t = 0 by the (possibly infinite) value $\lim_{t\to 0^+} f(t)$. Any configuration X_4^* of 4 equally spaced points on any circle with radius r minimizes the discrete energy

$$E_K(X_4) = \sum_{k < \ell} K(x_k, x_\ell)$$

with the kernel $K(x, y) = f(||x - y||^2)$ when N = 4. If, in addition, f is strictly convex or strictly decreasing, then no other 4-point configuration is optimal.

$\mu_{p,4,2}$ and its minimizers: Optimal configurations

Remark

The last Theorem is the key to dealing with $\mu_{p,4,2}$. When we replace 4 by a number $N \ge 5$, then the argument breaks down. The theorem is an extension of an old theorem of L. F. Tóth

Theorem (L. Fejes Tóth, (1959))

Let $f: (0,2] \to \mathbb{R}$ be a decreasing convex function defined at t = 0 by the (possibly infinite) value $\lim_{t\to 0^+} f(t)$. Any configuration w_N^* of equally spaced points on S^1 minimizes the discrete energy E_K with the kernel K(x,y) = f(||x - y||). If, in addition, f is strictly convex or strictly decreasing, then no other N-point configuration is optimal.

通 と く ヨ と く ヨ と

$\mu_{p,4,2}$ and its minimizers: A lifting trick

Let M(2) denote the set of 2×2 matrices on $\mathbb{R}.$ Define $P:S^1\to M(2)$ by

$$P_x := P(x) = xx^* = \begin{bmatrix} x_1^2 & x_1x_2\\ x_1x_2 & x_2^2 \end{bmatrix}$$

if
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
. P_x can be identified with $(x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$

Remark

$$\begin{split} &P(S^1) \text{ is contained in the circle (in } \mathbb{R}^3) \text{ centered at } (\frac{1}{2}, 0, \frac{1}{2}) \text{ with radius} \\ &\frac{1}{\sqrt{2}}. \text{ Furthermore, for any } x, y \in S^1, \\ &\text{(a) } \langle P_x, P_y \rangle = \langle x, y \rangle^2, \\ &\text{(b) } \|P_x - P_y\|^2 = 2 - 2\langle x, y \rangle^2, \\ &\text{(c) } |\langle x, y \rangle|^p = \left(1 - \frac{\|P_x - P_y\|^2}{2}\right)^{p/2}. \end{split}$$

э

$\mu_{p,4,2}$ and its minimizers: Proof

The following Lemma is easy to check.

Lemma

If $\{P_{x_i} = P(x_i)\}_{i=1}^N$ are N equally spaced points on $P(S^1)$, then $\{x_i\}_{i=1}^N$ are equally spaced points on the half circle of S^1 .

We can then prove that

Theorem (Chen, Goodman, Gonzales, and K.O. (2018))

 $\mu_{p,4,2}$ is uniquely minimized by equally spaced points on the half circle. In other words, when p > 2, the optimal configuration for $\mu_{p,4,2}$ is $\{e^0, e^{\frac{\pi i}{4}}, e^{\frac{\pi i}{2}}, e^{\frac{3\pi i}{4}}\}.$

(B) < B)</p>

$\mu_{p,4,2}$ and its minimizers: Proof

Proof.

Let
$$X_4 = \{x_i\}_{i=1}^4$$
, $P_i = P_{x_i}$ and $\mathcal{P}_4 = \{P_i\}_{i=1}^4$.

$$F(X_4) = \sum_{i < j} |\langle x_i, x_j \rangle|^p = \sum_{i < j} \left(1 - \frac{\|P_i - P_j\|^2}{2} \right)^{p/2} := \sum_{i < j} f(\|P_i - P_j\|^2)$$

where $f(t) = (1 - t/2)^s$ with s = p/2 > 1. f is decreasing and strictly convex on [0, 2). Consequently, $F(X_4)$ is minimized when and only when P_i are equally spaced points on the circle $P(S^1)$.

3

$\mu_{p,N,2}$ and its minimizers: p even

Theorem (Chen, Goodman, Gonzales, and K.O. (2018))

Fix $N \geq 5$. If p > 2 is even, an optimal configuration for $\mu_{p,N,2}$ problem is $\{e^{i \cdot 0}, e^{i\frac{\pi}{N}}, e^{i\frac{2\pi}{N}}, \cdots, e^{i\frac{(N-1)\pi}{N}}\},\$

i.e., equally spaced points on the half circle.

Proof.

In this case f is completely monotone on [0, 4] if p is an even integer.

(B) < B)</p>

3

Revisiting $\mu_{p,3,2}$

For d=2 N=3 we recall that the graph of $\mu_{p,3,2}$ when $p\in(0,\infty)$ is given below

Figure: Graph of $\mu_{p,3,2}$ when $p \in (0,4)$.

Furthermore, on $(0, \frac{\log(3)}{\log(2)}]$ the minimizers are ONB+ one repeated vector, and on $[\frac{\log(3)}{\log(2)}, \infty]$ the minimizers are ETFs. What happen when $d \geq 3$?

ONB+, lifted ETFs

Definition

In \mathbb{R}^d :

 \bullet An ONB+ is a set of d+1 vectors consisting of an ONB plus one vector repeated.

• An ETF_d is an ETF of d + 1 vectors in \mathbb{R}^d .

 \bullet A lifted ETF from \mathbb{R}^k to \mathbb{R}^d is a frame containing d+1 vectors of the form

$L_k^d =$	$\begin{bmatrix} ETF_k \end{bmatrix}$	0]
	0	I_{d-k}

where I_{d-k} is the identity matrix in \mathbb{R}^{d-k} . By definition, $ONB+=L_1^d$.

Examples of lifted ETFs

Example

$$L_2^2 = \begin{bmatrix} 1 & -1/2 & -1/2 & 0\\ 0 & \sqrt{3/2} & -\sqrt{3/2} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad L_2^4 = \begin{bmatrix} 1 & -1/2 & -1/2 & 0 & 0\\ 0 & \sqrt{3/2} & -\sqrt{3/2} & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Note that these frames are neither tight nor equiangular, but there are two-distant frame, e.g., the frame operator and Gramian of L_2^4 are

$$S = \begin{bmatrix} 3/2 & 0 & 0 \\ 0 & 3/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad G = \begin{bmatrix} 1 & -1/2 & -1/2 & 0 \\ -1/2 & 1 & -1/2 & 0 \\ -1/2 & -1/2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Conjecture on $\mu_{p,d+1,d}$

Conjecture

Let

$$p_k = \frac{\log(k+2) - \log k}{\log(k+1) - \log k}.$$

The following configurations minimize the *p*-frame potential $FP_{p,N+1,N}$:

- when $p \in [0, p_1]$, the ONB+, or L_1^N , configuration,
- when $p \in [p_{k-1}, p_k]$ for 1 < k < N, the L_k^N configuration, and
- when $p \in [p_{N-1}, \infty)$, the ETF_N, or L_N^N configuration.

3

Conjecture on $\mu_{p,d+1,d}$ for $d \in \{3, \ldots, 7\}$

Figure: The conjectured minima of the *p*-frame potential, $\mu_{p,N+1,N}$, with the minimizing configurations for N = 3, 4, 5 compared to the known minima, $\mu_{p,3,2}$, for N = 2.

э

Thank You! http://www2.math.umd.edu/ okoudjou

æ

-