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Big picture

Finite frame theory: Application-driven arrangements of vectors

Recent problems solved with the help of AG:

I Phase retrieval injectivity threshold

I Finite-dimensional HRT conjecture

I Bilinear identifiability threshold

I Full spark unit norm tight frames

This talk: Can AG solve projective packing problems?

Conca, Edidin, Hering, Vinzant, Appl. Comput. Harmon. Anal., 2015

Vinzant, SampTA 2015

Malikiosis, Appl. Comput. Harmon. Anal., 2015

Kech, Krahmer, SIAM J. Appl. Algebra Geometry, 2017

Cahill, M., Strawn, SIAM J. Appl. Algebra Geometry, 2017
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A motivating application

Why the decline? Better home theaters, easy access online

L.E.K., Box Office Trends, 2015

Stobing, How Do Movies Leak Before They Come Out on DVD and Blu-Ray?, 2016
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A motivating application

How to defeat media piracy?

Watermarks help, but these can be removed

Want: Robust personalized fingerprints to help identify culprits

image from hollywoodandfine.com/the-screen-image-deteriorates/
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A motivating application
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attack channel

I Unit fingerprints {ϕi}i∈[n]

I The ith user is given s + ϕi

I Users K ⊆ [n] forge the signal:

ŝ =
∑

k∈K
αk(s + ϕk) + ε

I Interrogate argmax
i∈[n]

|〈ϕi , ŝ − s〉|

Theorem

max
i ,j∈[n]
i 6=j

|〈ϕi , ϕj〉| small, K , ε small =⇒ false positives unlikely

M., Quinn, Kiyavash, Fickus, IEEE Trans. Inform. Theory, 2013
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The problem

Find unit-norm vectors {ϕi}i∈[n] ⊆ Fd that minimize coherence:

µ({ϕi}i∈[n]) = max
i ,j∈[n]
i 6=j

|〈ϕi , ϕj〉|

i.e., n points in FPd−1 that maximize the minimum distance

Applications

I digital fingerprinting

I multiple description coding

I compressed sensing

I quantum state estimation

cf. Tammes problem:

Common mallow pollen grain

Strohmer, Heath, Appl. Comput. Harmon. Anal., 2003

image from wearedesignbureau.com/projects/weird-science/
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Packing cheat sheet

Step 1: Prove lower bound on coherence

I Isometric embedding

I Semidefinite programming

I Tarski–Seidenberg projection

Step 2: Construct packing that meets bound

I Group actions

I Combinatorial design

I Non-convex optimization
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Packing in RP1

n = 2 n = 3 n = 4 n = 5

Easy proof of optimality:

I RP1 and S1 are isometrically isomorphic

I pigeonhole ⇒ equally spaced points are optimal
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Packing in RP2

n = 3 n = 4 n = 5

n = 6 n = 7 n = 8

Case-by-case optimality proofs, most cases are open
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Part I

The Welch bound
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Theorem (Welch bound)

Suppose n ≥ d . Then every {ϕi}i∈[n] ⊆ Fd satisfies

µ({ϕi}i∈[n]) ≥
√

n−d
d(n−1) .

Proof: Put Φ = [ϕ1 · · ·ϕn] ∈ Fd×n. Then

0 ≤
∥∥ΦΦ∗ − n

d I
∥∥2

F
= ‖Φ∗Φ‖2

F − n2

d ≤ n + n(n − 1)µ(Φ)2 − n2

d

Equality if and only if

I |〈ϕi , ϕj〉| = const for i 6= j “equiangular”

I ΦΦ∗ = n
d I “tight frame”

Welch, IEEE Trans. Inform. Theory, 1974
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Tight frames

Overcomplete generalization of orthonormal bases:

)
= + =

2

3

(
+ +

)

Offers painless solution to least-squares problem y = Φ∗x + noise

aka “eutactic stars”

Daubechies, Grossmann, Meyer, J. Math. Phys., 1986

Schläfli, Theorie der vielfachen Kontinuität, 1901
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The real case is “easy”: Existence

Strongly regular graph

I every vertex has k neighbors

I neighbors: λ common neighbors

I otherwise: µ common neighbors

Theorem

Every real equiangular tight frame
comes from a strongly regular graph.

Real ETFs ↔ Brouwer’s table of SRGs

Caveat: Sometimes ETFs produce new SRGs (Tremain ETFs)

Waldron, Linear Algebra Appl., 2009

Brouwer, www.win.tue.nl/~aeb/graphs/srg/srgtab.html

Fickus, Jasper, M., Peterson, J. Combin. Theory A, to appear
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The real case is “easy”: Non-existence

Lemma

Given a symmetric matrix with integer entries, if the eigenvalues
have distinct multiplicities, then they are integer.

Λ = {0, nd } −→ Φ∗Φ = I + µS ←− Λ ⊆ 1 + µZ

Corollary

Suppose n 6= d , 2d . There exists an n-vector ETF in Rd only if

√
(n−d)(n−1)

d ,

√
d(n−1)
n−d ∈ Z

Caveat: Not sufficient by computer-assisted proof (76 in R19)

Sustik, Tropp, Dhillon, Heath, Linear Algebra Appl., 2007

Azarija, Marc, arXiv:1509.05933
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The complex case is hard

Existence: No analog to SRGs, so throw and see what sticks

I Group actions. abelian, Heisenberg–Weyl

I Generalize small examples. Steiner, Tremain, hyperovals

I Complexify real examples. DRACKNs, GQs, schemes

I Combinatorify algebraic examples. Kirkman

Non-existence: No analog to integrality conditions

The Fickus Conjecture (US$200/$100 prize for proof/disproof)

Consider d , n − d and n − 1. There exists an n-vector ETF in Cd

only if one of these quantities divides the product of the other two.

Holds for (d , n) = (3, 8) by Gröbner basis calculation

Fickus, M., arXiv:1504.00253

M., Short Fat Matrices, 2015

Szöllősi, arXiv:1402.6429
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Example: Abelian group action

1D |1̂D |2

The following are equivalent:

I D is pseudorandom

I |1̂D |2 = spike + const

I D is a difference set

− 1 2 4

1 0 1 3
2 6 0 2
4 4 5 0

ω = e2πi/7, h = diag(ω1, ω2, ω4), Z/7Z ∼= 〈h〉 ≤ U(3)

The orbit {g1}g∈〈h〉 is an ETF with 〈gk1, g l1〉 = 1̂D(l − k)

Turyn, Pacific J. Math, 1965

Strohmer, Heath, Appl. Comput. Harmon. Anal., 2003

Tao, Vu, Additive Combinatorics, 2006
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Part II

Beyond the Welch bound
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Welch revisited

Lift L : FPd−1 →
√

1− 1
d · S

D−1

ϕ 7→ ϕϕ∗ − 1
d I

Then
〈
L(ϕ), L(ψ)

〉
= |〈ϕ,ψ〉|2 − 1

d

Theorem (Rankin’s simplex bound)

If n ≤ D + 1, {xi}i∈[n] ⊆ SD−1 satisfies

max
i ,j∈[n]
i 6=j

〈xi , xj〉 ≥ − 1
n−1 .

Pull back Rankin =⇒ Welch bound

x

Rankin, Glasg. Math. J., 1955

Conway, Hardin, Sloane, Experiment. Math., 1996
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Bounds from lifting

Theorem (Rankin’s orthoplex bound)

If n > D + 1, {xi}i∈[n] ⊆ SD−1 satisfies

max
i ,j∈[n]
i 6=j

〈xi , xj〉 ≥ 0.

Pull back Rankin:

Corollary

If n > D + 1, {ϕi}i∈[n] ⊆ Fd satisfies

µ({ϕi}i∈[n]) ≥ 1√
d

.

Equality:
(

1 0
0 1

)
, 1√

2

(
1 1
1 −1

)
, 1√

2

(
1 1
i −i

)

x

Rankin, Glasg. Math. J., 1955

Conway, Hardin, Sloane, Experiment. Math., 1996
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Bounds from lifting

Zonal kernel: Any function f : R→ R with lifting L such that

〈
L(x), L(y)

〉
= f
(
|〈x , y〉|2

)
∀x , y ∈ FPd−1

e.g., f (t) = t − 1
d , L(ϕ) = ϕϕ∗ − 1

d I

Lemma

Let f be a zonal kernel for FPd−1 such that

f (1) = 1, f (t) < − 1
n−1 ∀t ∈ [0,B).

Then every {ϕi}i∈[n] ⊆ Fd satisfies µ({ϕi}i∈[n]) ≥
√
B.

Proof: Otherwise, contradict Rankin’s simplex bound. �

f ∈ cone(special polynomials) =⇒ Delsarte’s LP bound

Delsarte, Goethals, Seidel, Philips Res. Rep.,1975

Haas, Hammen, M., in preparation
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Bounds from lifting

Important instances of Delsarte:

deg(f ) = 1: Delsarte ⇒ Welch

deg(f ) = 2: Delsarte ⇒ Levenstein 1

1

f (t)

µ2

− 1
n−1

Theorem (Levenstein bound)

Suppose n ≥ d . Then every {ϕi}i∈[n] ⊆ Fd satisfies

µ({ϕi}i∈[n]) ≥
√

n(m+1)−d(md+1)
(n−d)(md+1) , 2m = [F : R].

Equality: 2-designs with |〈ϕi , ϕj〉| ∈ {0, µ} (cf. tight⇔ 1-design)

Few packings known, all exhibit interesting symmetries (e.g., E8)

Levenstein, Soviet Math. Dokl., 1982

Haas, Hammen, M., in preparation
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Bounds from lifting

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

Welch Orthoplex Levenstein

How close? Welch is within a constant factor of optimal

How to remove the remaining gaps?

I Three-point generalization of Delsarte (still not tight)

I Tarski–Seidenberg projection (tight, but slow)

Sloane, Packings in Grassmannian Spaces, neilsloane.com/grass/

Cohn, Woo, J. Am. Math. Soc., 2012

Fickus, Jasper, M., arXiv:1707.01858
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Tarski–Seidenberg projection

Tight bound ⇔ minimizing over a semialgebraic set:

{
(G , x) : rankG = d , diagG = 1, G � 0, µ(G )2 ≤ x

}

Idea: Project onto x coordinate and minimize

Tarski–Seidenberg Theorem

The projection of a semialgebraic set is semialgebraic.

Algorithm: cylindrical algebraic decomposition (Mathematica)

Runtime is double exponential in number of variables

Bochnak, Coste, Roy, Real Algebraic Geometry, 1998
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Tarski–Seidenberg projection

Half the variables in real case. Can we get fewer?

I contact graph: i ↔ j whenever |〈ϕi , ϕj〉| = µ

I d-secure graph: There’s no way to reach the empty graph by
iteratively deleting vertices of degree < d

Lemma

The contact graph of an optimal packing is d-secure.

Proof:

I If not d-secure, reach the empty graph by deleting {jk}k∈[n]

I Slightly move each ϕjk toward ({ϕi}i∈N(jk ))⊥

I Iterating through k decreases µ �

Fickus, Jasper, M., arXiv:1707.01858
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Tarski–Seidenberg projection

d-secure says more when n is small, so take n = d + 2

Lemma

There are two minimal d-secure graphs of order d + 2:

I Kd+1 ∪ v

I complement of a maximum matching

Therefore, every optimal Gram matrix has one of two forms:




1 ±µ ±µ x1

±µ 1 ±µ x2

±µ ±µ 1 x3

x1 x2 x3 1


 or




1 x1 ±µ ±µ
x1 1 ±µ ±µ
±µ ±µ 1 x2

±µ ±µ x2 1




Given fixed sign pattern, each form has ≤ n variables

Fickus, Jasper, M., arXiv:1707.01858
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Tarski–Seidenberg projection

Theorem

Every {ϕi}i∈[6] ⊆ R4 satsfies

µ({ϕi}i∈[6]) ≥ 1
3 ,

and equality is achieved in Sloane’s online database.

Proof:

I Apply CAD to project onto µ coordinate, take minimum

I Minimize over both forms and all sign patterns

I To avoid CAD queries, solve first form using its spectrum,
reduce to 14 inequivalent sign patterns for the second form �

Open: (d , n) = (5, 7). How to speed up CAD?

Fickus, Jasper, M., arXiv:1707.01858

Sloane, Packings in Grassmannian Spaces, neilsloane.com/grass/
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Part III

Zauner’s Conjecture



27/36

Maximal equiangular tight frames

Welch vs. Orthoplex: n-vector ETF in Cd requires n ≤ d2

ETF with n = d2 is called maximal or SIC-POVM

Cornerstone object in theory of Quantum Bayesianism

Zauner’s Conjecture

For each d ≥ 2, Cd admits a maximal ETF (with very specific structure).

Known to hold for finitely many d

Fuchs, Schack, Found. Phys., 2011

Zauner, Ph.D. thesis, U. Vienna, 1999

solutions available at www.physics.usyd.edu.au/~sflammia/SIC/
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Recent progress on Zauner’s conjecture

Heisenberg–Weyl group H generated by T ,M ∈ U(CZ/dZ)

T δj = δj+1, Mδj = e2πij/dδj (j ∈ Z/dZ)

Then {Uϕ}U∈H = d2 vectors × all dth roots of unity

Theorem

Every ϕ ∈ CZ/dZ satisfies

∑

j ,k∈Z/dZ

∣∣∣∣
∑

l∈Z/dZ

ϕ(l)ϕ(j + l)ϕ(k + l)ϕ(j + k + l)

∣∣∣∣
2

≥ 2

d + 1

with equality precisely when {Uϕ}U∈H produces a maximal ETF.

Minimize LHS (non-convex!) ⇒ numerical solutions for d ≤ 151

Fickus, J. Fourier Anal. Appl., 2009

Fuchs, Hoang, Stacey, arXiv:1703.07901

solutions available at www.physics.umb.edu/Research/QBism/solutions.html
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Recent progress on Zauner’s conjecture

We want ϕ ∈ CZ/dZ such that

∑

l∈Z/dZ

ϕ(l)ϕ(j + l)ϕ(k + l)ϕ(j + k + l) = δ0(j)+δ0(k)
d+1

Compute Gröbner basis and find real solutions (provided d is small)

Observation/Conjecture

Entries of ϕϕ∗ lie in an abelian extension of Q(
√

(d − 3)(d + 1)).

Chien’s program to find larger seed vectors:

1. Take a numerically approximated ETF seed vector

2. Locally optimize to obtain ∼ 104 digits of precision

3. Apply conjecture to guess analytic expression

4. Verify success by symbolic computation

Appleby, Yadsan-Appleby, Zauner, Quantum Inf. Comput., 2013

Appleby, Chien, Flammia, Waldron, arXiv:1703.05981
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Recent progress on Zauner’s conjecture

Coordinates are expressible by radicals, but not nicely:

Is there a shorter description?

M., Short Fat Matrices, 2017
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Should we abandon Heisenberg–Weyl?

Hoggar’s ETF: Spin (−1 + 2i , 1, 1, 1, 1, 1, 1, 1) with HW over (Z/2Z)3

Theorem

HW over (Z/2Z)k produces a maximal ETF only if k ∈ {1, 3}.

HW over other abelian groups? Numerics not promising

SmallGroups: When a group works, it gives a rotated HW ETF

Theorem

For d > 3 prime, if any group produces a maximal ETF in Cd ,
then HW produces a rotated version of the same ETF.

Godsil, Roy, Eurpean J. Combin., 2009

Appleby, Flammia, Fuchs, J. Math. Phys., 2011

Zhu, J. Phys. A, 2010
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How to avoid being explicit?

23/34

How to avoid being explicit?

Shor, mathoverflow.net/questions/30894/fixed-point-theorems-and-equiangular-linesShor, mathoverflow.net/questions/30894/fixed-point-theorems-and-equiangular-lines
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How to avoid being explicit?

Relax to biangular tight frames

Consider K = 〈T , e2πi/d · I 〉 ≤ H

Suppose there exist α, β ≥ 0 such that

|〈ϕ,Uϕ〉| =

{
α if U ∈ K \ Z (H)
β if U ∈ H \ K

Plot of all such ϕ = (1, x + iy):

Surprise: An ETF exists by the intermediate value theorem!

Does this generalize?
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How to avoid being explicit?

Relax to biangular tight frames

Consider K = 〈T , e2πi/d · I 〉 ≤ H

Suppose there exist α, β ≥ 0 such that

|〈ϕ,Uϕ〉| =

{
α if U ∈ K \ Z (H)
β if U ∈ H \ K

Plot of all such ϕ = (1, x + iy):

α = 0

@R

β = 0
���

Surprise: An ETF exists by the intermediate value theorem!

Does this generalize?



34/36

Provable relaxations?

Relaxation 1

Does there exist (u0, . . . , ud−1), (v0, . . . , vd−1) ∈ CZ/dZ such that

∑

l∈Z/dZ

ul vj+l vk+l uj+k+l = δ0(j)+δ0(k)
d+1 ∀j , k ∈ Z/dZ ?

Relaxation 2

What is the smallest r for which there exists Z � 0 over CZ/dZ of
rank r such that

∑

l∈Z/dZ

Zl ,j+l Zj+k+l ,k+l = δ0(j)+δ0(k)
d+1 ∀j , k ∈ Z/dZ ?
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Open problems

I The Fickus conjecture

I Better coherence bounds

I Fast Tarski–Seidenberg projection

I Zauner’s conjecture

I Relaxations of Zauner’s conjecture
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Questions?

Tables of the existence of equiangular tight frames
M. Fickus, D. G. Mixon
arXiv:1504.00253

The Levenstein bound for packings in projective spaces
J. I. Haas IV, N. Hammen, D. G. Mixon
SPIE 2017, to appear

Packings in real projective spaces
M. Fickus, J. Jasper, D. G. Mixon
arXiv:1707.01858

Also, google short fat matrices for my research blog
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