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Polynomials on a compact manifold

For a compact manifold K ⊂ Rd ,

Pd
n(K ) denotes the subspace of d -variate polynomials of total

degree not exceeding n restricted to K , and
Nn = Nn(K ) = dim(Pd

n(K )) denotes its dimension.

For example Nn = (n + 1)2 for the sphere S2 .
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Norming meshes

Definition 1

For compact K ⊂ Rd , and C (K ) the space of continuous
functions on K , given a sequence of finite dimensional subspaces
Pn(K ) ⊂ C (K ), a Pn -norming mesh is a sequence (An) of finite
subsets of K such that

‖p‖L∞(K) 6 c sup
z∈An

|p(z)| for all p ∈ Pn.

(Calvi and Levenberg 2008)
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Polynomial meshes

A polynomial mesh on a compact manifold K ⊂ Rd is a sequence
of finite norming subsets An ⊂ K such that

‖p‖L∞(K) 6 C ‖p‖`∞(An) , ∀p ∈ Pd
n(K ) , (1)

where Mn = card(An) = O(Nβ
n ) , β > 1 and C is a constant

independent of n .

Since An is automatically Pd
n(K ) -determining, then

Mn > Nn = dim(Pd
n(K )) = dim(Pd

n(An)) .

Such a mesh is called optimal when β = 1 .



Polynomial meshes Dubiner distance The unit sphere EQ spherical codes CATCH Numerical results

Weakly admissible meshes

When C is substituted by a sequence Cn that increases
subexponentially,

‖p‖L∞(K) 6 Cn ‖p‖`∞(An) , ∀p ∈ Pd
n(K ) , (2)

in particular when Cn = O(ns) , s > 0 ,

we speak of a weakly admissible polynomial mesh.

(Calvi and Levenberg 2008)
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Properties of polynomial meshes

Polynomial meshes

I contain computable near optimal interpolation sets, and

I are near optimal for uniform Least Squares approximation:

Λ(An) = ‖LAn‖ := sup
f ∈C(K),f 6=0

‖LAn f ‖L∞(K)

‖f ‖L∞(K)
6 C

√
Mn ,

(3)
where LAn is the `2(An) -orthogonal projection operator
C (K )→ Pd

n(K ) , from which follows

‖f − LAn f ‖L∞(K) 6
(

1 + C
√

Mn

)
min

p∈Pd
n (K)
‖f − p‖L∞(K) .

(4)

(Bos, Calvi, Levenberg, Sommariva and Vianello 2011; Bos, De Marchi, Sommariva and Vianello 2010)

(Calvi and Levenberg 2008)
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Dubiner distance (1)

The Dubiner distance in a compact set or manifold is

distD(x , y) = sup
deg(p)>1

{
1

deg(p)
| cos−1(p(x))− cos−1(p(y))|

}
,

(5)
where the sup is taken over the polynomials p ∈ Pd

n(K ) such that
‖p‖L∞(K) 6 1 .

(Dubiner 1995)
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Dubiner distance (2)

The Dubiner distance is known analytically only in a very few
cases: the interval, the cube, the simplex, the ball, and the sphere.
In particular, it can be proved via the classical van der
Corput-Schaake inequality that on the sphere it coincides with the
usual geodesic distance,

distD(x , y) = γ(x , y) = cos−1(〈x , y〉) , ∀x , y ∈ S2 , (6)

where 〈x , y〉 denotes the Euclidean scalar product in R3 .

(Bos, Levenberg and Waldron 2004)
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Covering radius inequality

A simple connection of the Dubiner distance with the theory of
polynomial meshes is given by the following

Proposition 1

Let An be a compact subset of a compact set or manifold
K ⊂ Rd whose covering radius with respect to the Dubiner
distance does not exceed θ/n , where θ ∈ (0, 1) and n > 1 , i.e.

∀x ∈ K ∃y ∈ An : distD(x , y) 6
θ

n
. (7)

Then the following inequality holds,

‖p‖L∞(K) 6
1

1− θ
‖p‖L∞(An) , ∀p ∈ Pd

n(K ) . (8)
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Proof

In view of (7), the proof of Proposition 1 is an immediate
consequence of the elementary inequality

|p(x)| 6 |p(y)|+ |p(x)− p(y)| 6 |p(y)|+ n distD(x , y) ‖p‖L∞(K) .
(9)

Note that An need not be discrete.
In the case where (7) is satisfied by a sequence of finite subsets

with card(An) = O(Nβ
n ) , β > 1 , then these subsets form a

polynomial mesh like (1) for K , with C = 1/(1− θ) .
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The case of the sphere K = S2

A sequence of finite point configurations XM ⊂ S2 , with
cardinality M > 2 , is called a “good covering” of the sphere if its
covering radius

η(XM) = max
x∈S2

min
y∈XM

|x − y | (10)

satisfies the inequality

η(XM) 6
α√
M

, (11)

for some α > 0

(Hardin, Michaels and Saff 2016)



Polynomial meshes Dubiner distance The unit sphere EQ spherical codes CATCH Numerical results

Covering inequality for the sphere

The following result can also be obtained via a tangential Markov
inequality on the sphere with exponent 1.

Proposition 2

Let {XM} , M > 1 , be a good covering of S2 . Then for every
fixed θ ∈ (0, 1) the sequence An = XMn , with

Mn = dσ2
nn2e , σn =

2πα

θ(2π − θ/n)
∼ α

θ
, n→∞ . (12)

is an optimal polynomial mesh of S2 with C = 1/(1− θ) .
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Proof (1)

Proof. By (10)-(11) and simple geometric considerations,
for every x ∈ S2 there exists y ∈ XM such that

γ(x , y) = 2 sin−1

(
|x − y |

2

)
6 2 sin−1

(
α

2
√

M

)
when

√
M > α/2 , where γ is the (geodesic) Dubiner distance.
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Proof (2)

By Proposition 1, in order to determine Mn it is sufficient that

2 sin−1

(
α

2
√

M

)
6
θ

n

or equivalently
α

2
√

M
6 sin

(
θ

2n

)
. (13)
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Proof (3)

By the trigonometric inequality sin(t) > t(1− t/π) , valid for
0 6 t 6 π , we get

sin

(
θ

2n

)
>

θ

2n

(
1− θ

2πn

)
,

and thus (13) is satisfied if

α

2
√

M
6

θ

2n

(
1− θ

2πn

)
,

i.e. for M > σ2
nn2 . �
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Equal area partitions of the unit sphere

An equal area partition of Sd ⊂ Rd+1 is a finite set P of
Lebesgue measurable subsets of Sd , such that⋃

R∈P
R = Sd ,

and for each R ∈ P ,

λd(R) =
λd(Sd)

|P|
,

where λd is the Lebesgue area measure on Sd .
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Diameter bounded sets of partitions

The diameter of a region R ⊂ Rd+1 is defined by

diam R := sup{‖x− y‖ | x, y ∈ R}.

A set Ξ of partitions of Sd ⊂ Rd+1 is diameter-bounded with
diameter bound K ∈ R+ if for all P ∈ Ξ , for each R ∈ P ,

diam R 6 K |P|−1/d .
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The partition EQ(2,33) on S2 ⊂ R3

EQ partitions: Recursive Zonal Equal Area partitions of Sd ,⋃
EQ(d ,N ) = Sd , with |EQ(d ,N )| = N .
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The spherical code EQP(2,33) on S2

EQ codes: The Recursive Zonal Equal Area spherical codes,
EQP(d ,N ) ⊂ Sd , with |EQP(d ,N )| = N .
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Properties of the EQ partition of Sd

EQ(d ,N ) is the recursive zonal equal area partition of Sd into N
regions.

The set of partitions EQ(d) := {EQ(d ,N ) | N ∈ N+} .

The EQ partition satisfies:

Theorem 2

For d > 1 , N > 1 , EQ(d ,N ) is an equal-area partition.

Theorem 3

For d > 1 , EQ(d) is diameter-bounded.
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Properties of the EQP code on Sd

For EQP(d ,N )

Good:

I Centre points of regions of diameter = O(N−1/d) ,

I Mesh norm (covering radius) = O(N−1/d) ,

I Minimum distance and packing radius = Ω(N−1/d) .

I Normalized spherical cap discrepancy = O(N−1/d) ,

Not so good:

I Mesh ratio = Ω(
√

d) ,

I Packing density 6 πd/2

2d Γ(d/2+1)
as N →∞ .

I Inefficient for polynomial interpolation
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The EQP codes form a polynomial mesh on S2

The EQP codes on the sphere S2 are a theoretically good covering
with α = 3.5 , but numerical experiments suggest α = 2.5 .

For example, taking θ = 1/2 , by Proposition 2 we have

Corollary 4

The zonal equal area codes EQP(Mn, 2) with

Mn =
⌈

49n2
(
1− 1

4πn

)−2
⌉

points are an optimal polynomial mesh

on the sphere, with C = 2 .

(Hardin, Michaels and Saff 2016; L 2006; L 2007)
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The EQP codes form a polynomial mesh on Sd

For general dimension d the following holds.

Theorem 5

The EQ codes form a Pν(Sd) -polynomial mesh .

Proof.

Any finite point set on the unit sphere Sd with mesh norm at most
(1− c)/ν generates a norming set with constant c for Pν(Sd).
The EQ spherical codes have mesh norm at most CdN−1/d . Thus
if N > (Cd/(1− c))d νd , then EQP(d ,N ) is a norming set with
constant c for Pν(Sd).

(Jetter, Stöckler and Ward, 1998, 1999; L and Vianello 2014)
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Caratheodory-Tchakaloff (CATCH) submeshes (1)

In order to reduce the cardinality of a polynomial mesh, we may try
to relax the boundedness requirement for the ratio
‖p‖L∞(K)/‖p‖`∞(An) , seeking a weakly admissible mesh contained
in the original one, where the ratio is allowed to increase
subexponentially with respect to the degree.

A discrete approach that can be considered a sort of fully discrete
hyperinterpolation, is the extraction of Caratheodory-Tchakaloff
submeshes. These are computable by Linear or Quadratic
Programming, and there are rigorous bounds for the corresponding
constants Cn .

We recall a discrete version of the Tchakaloff theorem, whose
proof is based on the Caratheodory theorem about combinations of
finite dimensional cones.
(Sloan 1995; Borwein and Vanderwerff 2010)
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Discrete Tchakaloff theorem

Theorem 6

Let µ be a multivariate discrete measure supported at a finite set
X = {xi} ⊂ Rd , with correspondent positive weights λ = {λi} ,
i = 1, . . . ,M .
Then there exists a quadrature formula with nodes T = {tj} ⊆ X
and positive weights w = {wj} , 1 6 j 6 m 6 Nν = dim(Pd

ν (X )) ,
such that∫

X
p(x) dµ =

M∑
i=1

λi p(xi ) =
m∑
j=1

wj p(tj) , ∀p ∈ Pd
ν (X ) . (14)

We call T = {tj} a set of
Caratheodory-Tchakaloff (CATCH) quadrature points.
(Borwein and Vanderwerff 2010)
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Caratheodory-Tchakaloff submeshes (2)

We apply the Tchakaloff theorem to the extraction of a weakly
admissible submesh from a polynomial mesh.

Proposition 3

Let An ⊂ K be a polynomial mesh like (1) for K with cardinality
Mn > N2n = dim(Pd

2n(K )) , let µ be the discrete measure with
unit weights supported at An , and let T2n = {tj} be the
m 6 N2n CATCH quadrature points for degree ν = 2n , extracted
from An , with corresponding weights w = {wj} , 1 6 j 6 m .

Then T2n is a weakly-admissible CATCH submesh for K with
Cn = C

√
Mn , and the following estimate holds for the

corresponding weighted least squares approximation

‖f − LwT2n
f ‖L∞(K) 6 (1 + Cn) min

p∈Pd
n (K)
‖f − p‖L∞(K) . (15)
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Caratheodory-Tchakaloff submeshes (3)

The error estimate (15) follows from the inequality

Λw (T2n) = ‖LwT2n
‖ = sup

f ∈C(K),f 6=0

‖LwT2n
f ‖L∞(K)

‖f ‖L∞(K)
6 Cn = C

√
Mn .

(16)

The error estimate (15) for weighted discrete Least Squares on the
CATCH submesh turns out to coincide with the natural error
estimate (4) for unweighted Least Squares on the original
polynomial mesh.
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CATCH submeshes on the sphere (1)

From Proposition 2 and 4 and Corollary 1 and 2 we get

Corollary 7

Let An be a good covering optimal polynomial mesh as in
Proposition 2, and let T2n be the extracted CATCH submesh
(with corresponding weights).

Then, T2n is a weakly admissible mesh for the sphere with
cardinality N2n = dim(P3

2n(S2)) = (2n + 1)2 , and (15) holds for
the corresponding weighted Least Squares polynomial
approximation LwT2n

f to f ∈ C (S2) , where

Cn =
σn n

1− θ
∼ αn

θ(1− θ)
, n→∞ . (17)
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CATCH submeshes on the sphere (2)

In particular, for a CATCH submesh of the zonal equal area
configurations of Corollary 1, we have

Cn =
14n

1− (4πn)−1
∼ 14n , n→∞ . (18)

By (3), (16) and (17) we get O(n) estimates for the least squares
operator norms, whereas the best projection operators on P3

n(S2)
have a O(n1/2) norm. On the other hand, (16) turns out to be an
overestimate of the actual norm, as we shall see in the numerical
examples.

(Sloan and Womersley 2000)
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Numerical approaches

In order to compute a sparse nonnegative solution to the
underdermined system that exists by the Tchakaloff theorem, there
are a number of different approaches available.

On the sphere, we use the classical spherical harmonics basis to
define the Vandermonde-like matrix V .
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Non-Negative Least Squares

A first approach uses Quadratic Programming, specifically the
Non-Negative Least Squares problem

QP :

{
min ‖V tu− b‖2

u > 0
(19)

which can be solved by the Lawson-Hanson active set method,
which naturally seeks a sparse solution.

The nonzero components of u identify the weights w = {wj} and
the corresponding CATCH submesh T2n .

(Piazzon, Sommariva and Vianello 2016; Sommariva and Vianello 2015)
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Linear Programming

A second approach is based on Linear Programming.

LP :

{
min ctu
V tu = b , u > 0

(20)

where the constraints identify a polytope and the vector c is
suitably chosen.

Solving the problem by the classical Simplex Method, we get a
nonnegative sparse solution to the underdetermined system.

(Piazzon, Sommariva and Vianello 2016; Ryu and Boyd 2015; Tchernychova 2015)
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Numerical results

In our Matlab codes for Caratheodory-Tchakaloff Least Squares we
used both the QP approach (via both the lsqnonneg function and
an optimized version of this function), and the LP approach (via
the Simplex Method in the Matlab interface of the CPLEX
package).

In Table 1, we report the numerical results corresponding to the
extraction of CATCH submeshes from zonal equal area meshes of
S2 , for a sequence of degrees.

The cardinality of the CATCH submeshes is
dim(P3

2n(S2)) = (2n + 1)2 , and the Compression Ratio,
Cratio = card(An)/card(T2n) , increases, approaching the
asymptotic value 49/4 = 12.25 .

(Piazzon, Sommariva and Vianello 2016)
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Results of the QP approach (1)

Table: Results of lsqnonneg for different Weakly Admissible Meshes

deg |An| |T2n| Cratio
Wmax
Wavg

Wmin
Wavg

ΛAn 1.5
√
n ΛT2n

2 213 25 8.5 2.1 2.1× 10−2 2.2 2.1 2.5
5 1265 121 10.5 2.4 1.9× 10−4 3.3 3.4 3.7
8 3200 289 11.1 2.4 7.5× 10−5 4.2 4.2 4.7

11 6016 529 11.4 2.4 7.5× 10−6 4.9 5.0 5.3
14 9715 841 11.6 2.6 1.2× 10−5 5.6 5.6 5.9
17 14295 1225 11.7 2.6 1.3× 10−6 6.2 6.2 6.5
20 19757 1681 11.8 2.5 2.3× 10−6 6.7 6.7 7.1
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Results of the QP approach (2)

Since
∑

wj = card(An) , the average CATCH weight turns out to
coincide with the Compression Ratio.

The compressed least squares operator norms Λw (T2n) are close
to the norm Λ(An) of the least squares operator on the starting
mesh.

On the other hand, all the norms are much lower than the
theoretical overestimate Cn ∼ 14n in Corollary 2, having
substantially a O(n1/2) increase.
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Example of a CATCH submesh on the sphere

CATCH submesh (121 points, blue) extracted by NNLS from
EQP(2, 1187) (red) for degree n = 5 .
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