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ORTHONORMAL BASES

Let Φ = {ϕj} be an orthonormal basis for Fd for F = R, C.

What are the nice properties of Φ?

1. Each vector is unit length.
(No vector is weighted more than the others.)

2. The inner products between the vectors are
2A. optimally small and
2B. equal.

(Vectors represent “different information.”)

3. For any x ∈ Fd, x = ∑j〈x, ϕj〉ϕj.
(We can easily compute a change of basis.)

How can we generalize these traits?

Equiangular tight frame = 1, 2A, 2B, 3 (up to scaling)
Equiangular lines = 1, 2B
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EQUIANGULAR LINES

DEFINITION
Let F = C or R. Let Φ = {ϕj}n

j=1 ⊂ Fk with
∥∥ϕj
∥∥ = 1 for all

j ∈ {1, . . . , n}. If there exists an α such that for all j 6= `,
∣∣〈ϕj, ϕ`〉

∣∣ = α,
Φ is a set of equiangular lines.

If further for all x ∈ Fk

n

∑
j=1
|〈x, ϕj〉|2 =

n
k
‖x‖2 ⇔ x =

n
k ∑

j
〈x, ϕj〉ϕj,

then Φ is an equiangular tight frame (ETF).

By slight abuse of notation,
I Φ =

(
ϕ1 ϕ2 . . . ϕn

)
, and

I α is the “angle.”

THEOREM
(Goyal, Kovačević, Kelner 2001; Strohmer, Heath 2003; Benedetto, Kolesar
2006) ETFs are optimally robust against erasures and noise.
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EXAMPLES IN R2

I ONB, ETF

I ETF, maximal set of
equiangular lines

I FUNTF, worst case
coherence

I Equiangular lines which
are not an ETF
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RESEARCH QUESTIONS

Q1 : Given d (and 0 < α < 1), what is the maximal size s(d) (resp.,
sα(d)) of a set of equiangular lines (resp., with angle α) in Rd?

Q2 : Given a specific ETF or class of ETFs, what is the structure of
linear dependencies of the vectors?
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GRAM MATRICES

Instead of Φ, we will usually deal with the Gram matrix
G(Φ) = Φ∗Φ.

Let In be the n× n identity and Jn the n× n all-ones matrix (where we
write I and J when clear from context).

Basic linear alg: If G = (a− b)In + bJn, then G
has a simple eigenvalue λ1 = a + (n− 1)b and
an eigenvalue λ2 = a− b with multiplicity n− 1.


a b . . . b
b a . . . b
...

...
. . .

...
b b . . . a
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GRAM MATRICES, II

I

(
1 0
0 1

)

I

 1 − 1
2 − 1

2
− 1

2 1 − 1
2

− 1
2 − 1

2 1



I


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1


I

(
1

√
2

2√
2

2 1

)
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SWITCHING EQUIVALENCE

Basic linear algebra: G(Φ) = G(Ψ) ⇔ Φ = UΨ for some unitary U.

Given Φ = {ϕ1, . . . , ϕn}, Φ̃ = {ϕn, . . . ,−ϕ1} has the same geometric
and linear algebraic properties.

DEFINITION
Two sets of unit vectors Φ and Ψ in Fd are switching equivalent,
denoted by Φ ∼= Ψ, if there exists a diagonal matrix B with unit norm
diagonal entries and a permutation matrix C such that

(BC) ·G(Φ) · (BC)−1 = G(Ψ).

Φ ∼= Ψ⇒ there exists a unitary U, diagonal (1,−1)-matrix B with
unit norm diagonal entries, and permutation matrix C such that

UΦ(BC)−1 = Ψ.

=((Van Lindt & Seidel 1966 + generalization to F) + permutations) =
(Projective unitary equivalence + permutations)
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TRIPLE PRODUCTS

THEOREM
(Godsil and Royle 2001; Chien and Waldron 2016) Let Φ, Ψ ⊂ Fd with
|Φ| = |Ψ| = n be equiangular. Then Φ ∼= Ψ if and only if there exists a
σ ∈ Sn such that for all i 6= j 6= k 6= i.

〈ϕi, ϕj〉〈ϕj, ϕk〉〈ϕk, ϕi〉 = 〈ψσ(i), ψσ(j)〉〈ψσ(j), ψσ(k)〉〈ψσ(k), ψσ(i)〉.

When F = R and ignoring permutations, this gives precisely the
structure of the two-graph which represents equivalence classes of
switching equivalences. (With permutations, get isomorphisms of the
two-graphs.)
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NEGATIVE CLIQUES

DEFINITION
Let Φ be a set of equiangular lines with angle α. If X ⊂ Φ is such that
X ∼= Y with G(Y) = (1 + α)I− αJ, then we call X a negative clique.

I (K, Tang 2016) Let X be a maximal negative clique in a given Φ.
X is called a K-base.

I (Fickus, Jasper, K, Mixon 2017) If X is a negative clique of size
1 + (1/α), we call X a 1/α-regular simplex.

Negative cliques have size ≤ 1 + 1/α.
When the bound is saturated, they form a tight frame for their span
(Fickus, Jasper, K, Mixon 2017);
otherwise they are linearly independent (e.g., Lemmens & Seidel
1973).
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PILLAR DECOMPOSITION

DEFINITION
(Lemmens & Seidel 1973) Let Φ ∈ Rd be equiangular with K-base X.
Let Ξ denote the subspace spanned by X. Elements of Φ which lie in
the same coset of Ξ⊥ are called pillars.

PROPOSITION
(Lemmens & Seidel 1973; K, Tang 2016) Let ϕ ∈ Φ\X. If any K-base is of
size 1 + 1/α, then the norm of PΞ⊥ϕ is equal to α. If any K-base is of size
< 1 + 1/α, then the norm of PΞ⊥ϕ depends on the number of negative
inner products 〈ϕ, xi〉, xi ∈ X.
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BASIC PROCEDURE OF K, TANG 2016

I (Lemmens & Seidel 1973) We only need to compute upper
bounds on sα(d) for α the reciprocal of an odd integer between 5
and a

√
2d + 1. (3 solved.)

I For each possible α, we consider all of the possible sizes of
K-bases. (≥ 2, ≤ 1 + (1/α)).

I For each K-base size, we partition Φ\X into equivalence classes
based on the number of negative inner products with X and
analyze these (using combinatorics, graph theory, and linear
algebra).

I We further split the above equivalence classes into classes based
on with which elements of X the elements have a negative inner
product and analyze these. (This will sometimes involve a
bound of a size of particular spherical two-distance sets.)
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SPHERICAL TWO-DISTANCE SETS

DEFINITION
Let Φ = {ϕ1, . . . , ϕn} ⊂ Rd be a set of unit normed vectors and let
α, β ∈ R. The Φ is a spherical two-distance set if 〈ϕi, ϕj〉 ∈ {α, β} for
all i, j ∈ {1, . . . , n}, i 6= j. We denote by s(d, α, β) the largest size of a
spherical two-distance set with the given parameters.

Note: An equiangular set of lines is a spherical two-distance set w.r.t
α,−α, and thus sα(d) = s(d, α,−α).
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NEW UPPER BOUND ON s1/5(d)

THEOREM
(K, Tang 2016) Let Φ ⊂ Rd be an equiangular set with angle 1/5. If
d > 60, then

|Φ| ≤ 148 + 3 · s (d, 1/13,−5/13) ≤ 148 +
648d(d + 2)
47d + 169

.
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A TASTE OF THE CASES

THEOREM
(K, Tang 2016) For n = 1, . . . , bK/2c and for each equivalence class
x ⊂ X(K, n), we have the following upper bounds on |x|.
(1) If n = 1, then

|x| ≤
{

r− K, 1 ≥ K− (1/α)+1
2

1−α
l(K,1)−α

, 1 < K− (1/α)+1
2 .

(2) If 1 < n < K− (1/α)+1
2 , then |x| ≤ r + 1.

(3) If n = K− (1/α)+1
2 , then |x| ≤ r− K + b2α r−K

1−α c.

(4) If K− (1/α)+1
2 < n < bK

2 c, then

|x| ≤ s (r, β, γ) ,

where β = α−l(K,n)
1−l(K,n) and γ = −α−l(K,n)

1−l(K,n) .
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EQUIANGULAR LINES IN Rd

THEOREM (K, TANG 2016)
Let m be the largest positive integer such that (2m + 1)2 ≤ d + 2. Then

s(d) ≤



4d(m+1)(m+2)
(2m+3)2−d

, d = 44, 45, 46, 76, 77, 78, 117, 118, 166,

222, 286, 358

((2m+1)2−2)((2m+1)2−1)
2 , other k between 44 and 400

.

Applied the SDP approach of [Bachoc, Valentin 2008; Barg, Yu 2014]
to bound the size of certain spherical two distance sets in the cases
they arose.
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NEW BOUND VS. OLD

FIGURE: K, Tang 2016 and sdp(d, 1
5 ,− 1

5 )

— : d(d+1)
2 ? ? ? : sdp(d, 1

5 ,− 1
5 ) +++ : K, Tang

2016

FIGURE: K, Tang 2016 and sdp(d, 1
7 ,− 1

7 )

— : k(k+1)
2 ? ? ? : sdp(d, 1

7 ,− 1
7 ) +++ : K, Tang

2016
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POSITIVE CLIQUES

One may similarly define a positive clique.

For all 0 ≤ α < 1 there exist at least d vectors In
Fd with pairwise inner product α

Geometrically, one may think of “pushing”
vectors in an onb together.

One may analyze projections onto orthogonal
complements of positive cliques and use
Ramsey theory to obtain asymptotic relative
bounds. (Balla, Dräxler, Keevash, Sudakov 2018)
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BINDERS

DEFINITION (FICKUS, JASPER, K, MIXON 2017)
Let Φ be an ETF. The set of subsets of vectors (or the corresponding
incidence matrix) which are 1/α-regular simplices is the binder.

These are the smallest sets of linearly dependent vectors in the ETF:
For a general set of unit vectors Φ,

size of the smallest set of linearly dependent vectors in Φ ≥ 1+
1

µ(Φ)
.

(Gerschgorin circle theorem applied to the Gram matrix. Donoho,
Elad 2003)
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BINDERFINDER

BinderFinder is a relatively short Matlab code that uses triple
products and some clever combinatorial tricks to compute the binder
of a given ETF.

(Could also be used on sets of equiangular lines.)

Code available for download at:
http://www.math.uni-bremen.de/cda/

24/35
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BINDERS OF ETFS IN C3×9

Perhaps the first investigation of linear dependencies in equiangular
Gabor frames (SIC-POVMs) was presented in a talk by Hughston in
2007 (cited in Dang, Blanchfield, Bengtsson, Appleby 2013), where
the linear dependencies of certain SIC-POVMs in C3 were shown to
be represented by the Hesse configuration.

I came to the question via the construction of ETFs in (Jasper, Mixon,
Fickus 2013). This construction involves a tensor-like construction of
an incidence matrix of a BIBD with a 1/α-regular simplex. (Bad
algebraic spread, but good geometric spread?!?!?)
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HESSE CONFIGURATION

The Hesse configuration is the set of all lines in F2
3:

FIGURE: By David Eppstein - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=18920067
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“NORMAL” CONFIGURATION

Let ζ = e2πi/3, θ ∈ [0, 2π/6]\{0, 2π/9}.
SIC-POVMs:(Hughston 2007; Dang, Blanchfield, Bengtsson, Appleby
2013) 0 0 0 −eiθ −eiθζ −eiθζ2 1 1 1

1 1 1 0 0 0 −eiθ −eiθζ −eiθζ2

−eiθ −eiθζ −eiθζ2 1 1 1 0 0 0


Kirkman ETFs (Fickus, Jasper, Mixon 2013):

BIBD(3, 2, 1) D3 0 1 1
1 0 1
1 1 0

 &

 1 1 1
1 ζ ζ2

1 ζ2 ζ

 =:

 w0
w1
w2



⇒

 0 0 0 w0 w1
w1 0 0 0 w0
w0 w1 0 0 0
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“NORMAL” CONFIG. BINDER & GRAM OF BINDER

Left: Binder of a “normal” SIC-POVM in C3, Right: The Gram matrix
of the binder.
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OBTAINING THE HESSE COFIGURATION
Let ζ = e2πi/3, θ ∈ {0, 2π/9}.
SIC-POVMs:(Hughston 2007; Dang, Blanchfield, Bengtsson, Appleby
2013) 0 0 0 −eiθ −eiθζ −eiθζ2 1 1 1

1 1 1 0 0 0 −eiθ −eiθζ −eiθζ2

−eiθ −eiθζ −eiθζ2 1 1 1 0 0 0


Polyphase BIBD ETFs (Fickus, Jasper, Mixon, Peterson, Watson 2017;
Fickus, Jasper, K, Mixon 2017):

BIBD(3, 2, 1) D3 0 1 1
1 0 1
1 1 0

 &

 1 1 1
1 ζ ζ2

1 ζ2 ζ

 =:

 w0
w1
w2



⇒

 0 0 0 w0 −w1
−w1 0 0 0 w0
w0 −w1 0 0 0
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HESSE CONFIGURATION AS A BINDER

Left: Hesse Configuration binder of a SIC-POVM in C3, Right: The
Gram matrix of the binder.
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BINDER OF HOGGAR’S LINES

Left: Binder of Hoggar’s lines (non-Gabor SIC POVM in C8 with 1008
simplices), Right: The Gram matrix of the binder.
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CONCLUSION

I Fond memories (nightmares?) of using Sylow p-groups in the
classification of finite simple groups.

I
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MISSING COMRADES
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Thanks to Shayne for
organizing/chauffeuring and to New
Zealand for being so beautiful!

king@math.uni-bremen.de

http://www.math.uni-bremen.de/cda/

“New Upper Bounds for Equiangular Lines by Pillar Decomposition”
on arXiv (the paper formerly known as “Computing Upper Bounds
for Equiangular Lines in Euclidean Space”)

“Equiangular tight frames that contain regular simplices” on arXiv
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