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Transfinite Diameter
Motivation

I We observe that the charges spread themselves out across the
capacitor in a way that minimises the overall energy of the system.

I This is equivalent to maximising the mutual distances between each of
the charges.

I To translate this to mathematics, let K be the body of the capacitor and
each charge be represented by a point pi. We can describe the
maximum mutual distance as

sup
p1,...,pn∈K


 ∏

1≤j<i≤n

|pi − pj|




2/n(n+1)

I We call this number the n-diameter for the set K, denoted dn(K).
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Transfinite Diameter
n-Diameters

I Here are some n-diameters for the reuleaux triangle.

p2

p1

d2(K) = |p1 − p2|

p2

p1 p3

d3(K) =
∏

1≤j<i≤3
|pi − pj|1/3

p3

p1 p5

p2 p4

p6

d6(K) =
∏

1≤j<i≤6
|pi − pj|1/21

I It is well known that the product of the distances between n points is
equal to a Vandermonde determinant.

∏

1≤j<i≤n

|pi − pj| =

∣∣∣∣∣∣∣∣∣∣∣

det




1 1 ... 1
p1 p2 ... pn
p21 p22 ... p2n
...

...
. . .

...
pn1 pn2 ... pnn




∣∣∣∣∣∣∣∣∣∣∣
I n-diameters are of interest because the configurations of points give

‘good’ nodes for polynomial interpolation.
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Transfinite Diameter
Definition

Definition (Fekete (1923), Szegö (1924))
Let K ⊂ C be a compact set. The transfinite diameter of K is defined to be

d(K) := lim
n→∞

dn(K).

Theorem
Let K ⊂ C be a compact set. Then τ(K) = d(K) where τ(K) is the Chebyshev
constant for K.

τ(K) = lim
k→∞

inf{‖p‖1/kK : p(z) = zk + lower order terms}.
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Transfinite Diameter
Examples

I All of the following sets have transfinite diameter equal to 1.

Circle radius 1 Line length 4 Ellipse, semi-axes 1.5 and 0.5

Equilaterial Triangle, side ∼2.3711 Circular arc, radius 2, angle 2π
3
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Transfinite Diameter
Definition in Higher Dimensions

I We lose the physical motivation for studying the transfinite diameter in
CN for N ≥ 2 but because the transfinite diameter has interesting
connections to approximation theory / potential theory it is still
something that we are interested in studying.

I Following this, n-diameters are defined in terms of Vandermonde
determinants. If Pn = {e1(z), e2(z), ..., em(n)(z)} is a monomial basis
for the polynomials of degree at most n in CN and l(n) the sum of the
degrees of the monomials of degree at most n then

dn(K) = sup
ζ1,...,ζm(n)∈K

∣∣∣∣∣∣∣∣∣
det




e1(ζ1) e1(ζ2) ... e1(ζm(n))
e2(ζ1) e2(ζ2) ... e2(ζm(n))

...
...

. . .
...

em(n)(ζ1) em(n)(ζ2) ... em(n)(ζm(n))




∣∣∣∣∣∣∣∣∣

1/l(n)

I We define d(K) := limn→∞ dn(K) as before. Equality with a
generalised τ(K) can also be obtained [Leja 1959, Zakharyuta, 1975].
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Generalisation to Affine Algebraic Varieties
Algebraic Varieties

I An affine algebraic variety V is the common zero set of a collection of
polynomials in CN. Precisely,

V := {z ∈ CN | p1(z) = ... = ps(z) = 0}.
I By construction there are non-trivial zero polynomials on V . A

consequence of this is that the monomials in CN are not linearly
independent on V .

I For large n, we can do row operations on a Vandermonde determinant
defining an n-diameter to obtain a row of zeroes.

det




e1(ζ1) e1(ζ2) ... e1(ζm)
e2(ζ1) e2(ζ2) ... e2(ζm)

...
...

. . .
...

em(ζ1) em(ζ2) ... em(ζm)




row ops.−→ det




e1(ζ1) e1(ζ2) ... e1(ζm)
e2(ζ1) e2(ζ2) ... e2(ζm)

...
...

...
...

pj(ζ1) pj(ζ2) ... pj(ζm)
...

...
...

...
em(ζ1) em(ζ2) ... em(ζm)




= 0

I With the CN definition d(K) = 0 for any K ⊂ V .
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Generalisation to Affine Algebraic Varieties
A Useful Transfinite Diameter

I To get a useful transfinite diameter a natural approach is to modify
monomial basis used in the CN definition of a n-diameter.

I The Cox-Ma‘u approach is an algebraic approach.
We list the monomials with increasing degree and remove monomials
which are linearly dependent to monomials that precede them. We
call this set the reduced monomials for V and use these for our
n-diameter. We use the notation dcm(K) to indicate the Cox-Ma‘u
transfinite diameter.

I The Berman-Boucksom approach is an analytic approach.
Fix a probability measure µ. Take the monomials and perform the
Gram-Schmidt on them. This produces an L2µ-orthonormal basis for the
polynomials on V , which we can use in the definition of our
n-diameter. We use the notation dbbµ (K) to indicate the
Berman-Boucksom transfinite diameter.
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Generalisation to Algebraic Varieties
Cox-Ma‘u Transfinite Diameter

I We will now construct the reduced monomials for
V = {z22 − z21 − 1 = 0}.

I The C2 monomials ordered by grevlex1 are

1, z1, z2, z21 , z1z2, z22, z31 , z21 z2, z1z22, z32, z41 , ...

I On V , we have that z22 = z21 + 1. So z22 is a linear combination of
monomials that precede it. The same is true of any monomial with a
power of z22.

I Removing these terms gives us the reduced monomials

1, z1, z2, z21 , z1z2, z31 , z21 z2, z41 , z31 z2, z51 , ...

I In general the reduced monomials can be found by looking at the
quotient C[V] := C[z]/I(V) where I(V) is the ideal associated to V .

1Ordered first by total degree then letting z1 precede z2 within monomials of the same
degree.
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Generalisation to Algebraic Varieties
Berman-Boucksom Transfinite Diameter

I We will now construct a L2µ-orthonormal polynomial basis for
V = {z22 − z21 − 1 = 0}.

I Recall that the C2 monomials ordered by grevlex are

1, z1, z2, z21 , z1z2, z22, z31 , z21 z2, z1z22, z32, z41 , ...

I We choose µ to be normalised Lebesgue measure on

TV = {z ∈ V : |z1| = 1}.
I A sample normalisation calculation in the Gram-Schmidt process is

〈z2, z2〉1/2µ =

(∫

TV
z2z2 dµ

)1/2
=

(∫

|z1|=1
|z21 + 1| dµ

)1/2
=

(∫ 2π

0

∣∣e2it + 1
∣∣ dt
2π

)1/2
=

2√
π
.

I One can check that monomials involving z22 are removed via
Gram-Schmidt. This means an L2µ-orthonormal basis for the
polynomials on V is

1, z1,
√
π

2
z2, z21 ,

√
π

2
z1z2, z31 ,

√
π

2
z21 z2, z41 ,

√
π

2
z31 z2, z51 , ...
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Equality of Transfinite Diameters
Overview

I In 2014 the question was asked of how dcm(K) and dbbµ (K)were related.
In 2017 we showed that, under mild hypotheses, that

dcm(K) = dbbµ (K).

I The first hypothesis was that C[V] was a Noether normalisation.
I The second hypothesis was that µ was normalised Lebesgue measure

on TV .
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Equality of Transfinite Diameters
Noether Normalisation

I C[V] being a Noether normalisationmeans there are coordinates
z = (x, y) ∈ CM × CN−M such that there are finitely many
multi-indices αi which allow the decomposition

C[V] =
⊕

i

yαiC[x]

I e.g. if V = {z22 − z21 − 1 = 0} then setting z2 = y and z1 = x we have
C[V] = C[x]⊕ yC[x] which can be seen directly:

monomials in C[V] = 1, x, y, x2, xy, x3, x2y, ...
monomials in C[x] = 1, x, x2, x3, ...
monomials in yC[x] = y, xy, x2y, ...

I This property is not always true, consider V ′ = {xy − 1 = 0} then the
reduced monomials are

1, x, y, x2, y2, x3, y3, x4, ...

I One can always make a linear change of variables to ensure this
property holds.
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Equality of Transfinite Diameters
The Measure µ on TV

I Given a Noether normalisation z = (x, y), we define
TV := {(x, y) ∈ V : |xi| = 1}. This is the intersection of a unit
x-polycylinder with V .

I µ is chosen to be normalised Lebesgue measure on TV . This choice
ensures that the x-monomials are already orthonormal.

I The Noether normalisation hypothesis ensures that TV is bounded in
the y directions.
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Equality of Transfinite Diameters
Main Idea

I The hypotheses ensure that the y-dependent scale factor between
dcmn (K) and dbbn,µ(K) has slower growth than the l(n)-root, so it tends to
1 as n→∞.

I e.g. compare the reduced monomial/L2µ-orthonormal polynomial basis
for V = {z22 − z21 − 1 = 0}.
1, z1, z2, z21 , z1z2, z31 , z21 z2, z41 , z31 z2, z51 , ...

1, z1,
√
π
2 z2, z21 ,

√
π
2 z1z2, z31 ,

√
π
2 z21 z2, z41 ,

√
π
2 z31 z2, z51 , ...

I We can show that (√
π

2

)n/l(n)

dcmn (K) = dbbn,µ(K)

Recalling that l(n) is the sum of the degree of the monomials of at
most degree n, the power can be simplified to

n
l(n)

=
n

n(n+ 1)
=

1
n+ 1

.

This approaches 0 as n→∞meaning the scale factor tends to 1 in the
limit which gives the desired equality.
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Generalisations

Different bases?
I Method generalises to two bases B and C if

B =
⋃

1≤i≤k

{fi(z)p(z) : p ∈M} C =
⋃

1≤i≤k

{gi(z)p(z) : p ∈M}

where the fi’s and gi’s are elements in C[V] andM is a countable
subset of C[V].

I UsuallyM is taken to be C[x] while the finite elements are linear
combinations of elements in C[V] which ‘span’ the yαi elements.
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Generalisations

Can the normalisation root of l(n) be replaced?
I Only by roots proportional to l(n) e.g. nm(n) wherem(n) is the

number of monomials of degree at most n. We can calculate

lim
n→∞

nm(n)
l(n)

=
M+ 1
M

.

WhereM is the dimension of the variety. So transfinite diameters using
a nm(n) root areM/M+ 1 times smaller than those using a l(n) root.
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Applications
A Link Between CM Theory and BB Theory

I The work of Cox-Ma‘u is motivated by classical methods from the CN

case which is advantageous from the point of view of studying
analogues of things like Chebyshev constants.

I The work of Berman-Boucksom is rich and far reaching, but is
inconvenient for studying something like Chebyshev constants on an
algebraic variety.

I The equality of transfinite diameters allows the Cox-Ma‘u theory to tap
into the results of Berman-Boucksom and obtain analogues of classical
results on an algebraic variety.

I As an illustration we’ll look at the convergence of Fekete polynomials.
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Applications
Fekete Polynomials

Let K ⊂ V be a compact set and letM[V] be the reduced monomials from
C[V]. We define the nth Fekete polynomial to be

Fn(z) =
VDMM(ζ1, ..., ζn, z)
VDMM(ζ1, ..., ζn)

where VDMM is a Vandermonde determinant over the given points over
the first n elements of the reduced monomial basisM[V] and (ζ1, ..., ζn)
are an n-Fekete set (points where the Vandermonde determinant attains its
maximum).

Bloom (2001) showed that when K ⊂ CN is compact, polynomially convex

and regular then the regularised limit
[
lim sup
n→∞

1
deg(Fn)

log |Fn(z)|
]∗

converges to the logarithmic extremal function VK(z).

VK(z) = sup

{
1

deg p
log |p(z)| : p ∈ C[z], ‖p‖K ≤ 0

}∗
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Applications
Fekete Polynomials

Theorem
If K ⊂ V is compact, polynomially convex and regular then

VK(z) =
[
lim sup
n→∞

1
deg(Fn)

log |Fn(z)|
]∗

Main idea: Study the log-asymptotics of each function. These induce
functions ρK and ρF defined on the hyperplane at∞. One can show that the
sub-zero sets of these functions have the same transfinite diameter.

Lemma
If K, L ⊂ V are compact, K ⊂ L and dcm(K) = dcm(L) then L\K is pluripolar.

Proof: invoke Berman-Boucksom theory! The result is true for dbbµ .

Conclusion: The log-asymptotics of the RHS can only arise from an extremal
function, with a little more work, the only possibility is VK.
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Thank you for your time.
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