Some restrictions on the characteristic polynomial of a Seidel matrix and equiangular lines in \mathbb{R}^{17}

Gary Greaves

Division of Mathematical Sciences, Nanyang Technological University

20th February 2018

Plan

- Equiangular line systems and Seidel matrices
- Systems almost achieving the relative bound
- Restricting the coefficients of the characteristic polynomial
- ▶ An application to dimension 17
- Concluding remarks

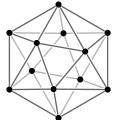
Equiangular line systems

- Let \mathcal{L} be a system of n lines spanned by $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^d$ with $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = 1$.
- \mathcal{L} is equiangular if $|\langle \mathbf{v}_i, \mathbf{v}_i \rangle| = \alpha$; ("common angle α ").
- ▶ **Problem**: given d, what is the largest possible size N(d) of an equiangular line system in \mathbb{R}^d ?

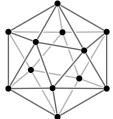
Example

- ▶ An orthonormal basis: n = d and $\alpha = 0$.
- ► $N(d) \ge d$.

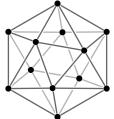
3 lines in \mathbb{R}^2 :



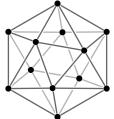
3 lines in \mathbb{R}^2 :



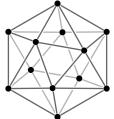
3 lines in \mathbb{R}^2 :



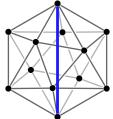
3 lines in \mathbb{R}^2 :



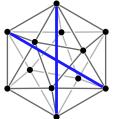
3 lines in \mathbb{R}^2 :



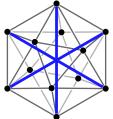
3 lines in \mathbb{R}^2 :



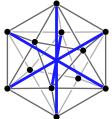
3 lines in \mathbb{R}^2 :



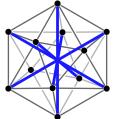
3 lines in \mathbb{R}^2 :



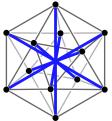
3 lines in \mathbb{R}^2 :



3 lines in \mathbb{R}^2 :



3 lines in \mathbb{R}^2 :



						7 – 13							
NI(d)	2	6	6	10	16	28	28	26	40	48	54	72	90
IV (u)	3	0	0	10	10	20	29	30	41	49	60	75	95

Below is a table with upper and lower bounds for N(d) for $d \leq 20$.

▶ GG, Koolen, Munemasa, Szöllősi (2016): $N(14) \le 29$ and $N(16) \le 41$;

						7 – 13							
N(d)	3	6	6	10	16	28	28 29	36	40 41	48 49	54 60	72 75	90

- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $N(14) \le 29$ and $N(16) \le 41$;
- ▶ GG and Yatsyna (under preparation): $N(17) \leq 49$;

d	2	3	4	5	6	7 – 13	14	15	16	17	18	19	20
N(d)	3	6	6	10	16	28	28 29	36	40 41	48 49	54 60	72 75	90 95

- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $N(14) \le 29$ and $N(16) \le 41$;
- ▶ GG and Yatsyna (under preparation): $N(17) \leq 49$;
- Szöllősi (2017): N(18) ≥ 54;

						7 – 13							
N(d)	3	6	6	10	16	28	28 29	36	40 41	48 49	54 60	72 75	90

- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $N(14) \le 29$ and $N(16) \le 41$;
- ▶ GG and Yatsyna (under preparation): $N(17) \leq 49$;
- ► Szöllősi (2017): $N(18) \ge 54$;
- ► GG (2018): $N(18) \le 60$;

						7 – 13							
N(d)	3	6	6	10	16	28	28 29	36	40 41	48 49	54 60	72 75	90

- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $N(14) \le 29$ and $N(16) \le 41$;
- ▶ GG and Yatsyna (under preparation): $N(17) \leq 49$;
- Szöllősi (2017): N(18) ≥ 54;
- ► GG (2018): $N(18) \le 60$;
- ▶ Azarija and Marc (2017+): $N(19) \le 75$ and $N(20) \le 95$;

d	2	3	4	5	6	7 – 13	14	15	16	17	18	19	20
N(A)	2	6	6	10	16	28	28	26	40	48	54	72	90
IV(u)	3	U	U	10	10	20	29	30	41	49	60	75	95

Seidel matrices

Equiangular lines l_1, \ldots, l_n

common angle $\alpha > 0$

Unit spanning vectors $\mathbf{v}_i : l_i = \langle \mathbf{v}_i \rangle | \langle \mathbf{v}_i, \mathbf{v}_i \rangle = \pm \alpha$

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \pm \alpha$$

Gram matrix $M=(\langle \mathbf{v}_i,\mathbf{v}_j
angle)_{ij}$

$$\begin{pmatrix}
1 & \pm \alpha & \pm \alpha \\
\pm \alpha & 1 & \pm \alpha \\
\pm \alpha & \pm \alpha & 1
\end{pmatrix}$$

Seidel matrix
$$S = \frac{(M-I)}{\alpha}$$

$$\left(\begin{array}{ccc}
0 & \pm 1 & \pm 1 \\
\pm 1 & 0 & \pm 1 \\
\pm 1 & \pm 1 & 0
\end{array}\right)$$

Multiplicity of the smallest eigenvalue

Unit vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ in \mathbb{R}^d

$$n$$
 vectors

$$B = \begin{pmatrix} \downarrow & \uparrow & & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \\ | & \downarrow & & | \end{pmatrix}$$

$$rank = d$$

Gram matrix
$$M = B^{\top}B$$

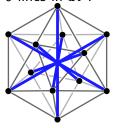
smallest eigenvalue $[0]^{n-d}$

Seidel matrix
$$S = \frac{(M-I)}{\alpha}$$

smallest eigenvalue
$$\left\lceil \frac{-1}{\alpha} \right\rceil^{n-d}$$

3 lines in \mathbb{R}^2 :

6 lines in \mathbb{R}^3 :



$$S = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$

Spectrum: $\{[-2]^1, [1]^2\};$

$$S = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & -1 & -1 & 1 \\ 1 & 1 & 0 & 1 & -1 & -1 \\ 1 & -1 & 1 & 0 & 1 & -1 \\ 1 & -1 & -1 & 1 & 0 & 1 \\ 1 & 1 & -1 & -1 & 1 & 0 \end{pmatrix}$$

Spectrum: $\{[-\sqrt{5}]^3, [\sqrt{5}]^3\}.$

Adjacency matrices for graphs

- ▶ Start with a Seidel matrix, e.g., $S = \begin{pmatrix} 0 & -1 & 1 & 1 \\ -1 & 0 & -1 & -1 \\ 1 & -1 & 0 & -1 \\ 1 & -1 & -1 & 0 \end{pmatrix}$
- ▶ Then A = (J I S)/2 is a **graph-adjacency** matrix:

ightharpoonup So the Seidel matrix S corresponds to the following graph

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

▶ Or equivalently S = I - I - 2A.

Line systems almost achieving the relative bound

The relative bound

Theorem (Relative bound)

Let \mathcal{L} be an equiangular line system of n lines in \mathbb{R}^d whose Seidel matrix has smallest eigenvalue λ_0 and suppose $\lambda_0^2 \geqslant d+2$.

$$n \leqslant \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d}.$$

Equality implies that S has 2 distinct eigenvalues.

▶ In the case of equality, S has spectrum

$$\left\{ \left[\lambda_0\right]^{n-d}, \left[\frac{(d-n)\lambda_0}{d}\right]^d \right\}.$$

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

d	λ_0	$\frac{d(\lambda_0^2-1)}{\lambda_0^2-d}$	$\left \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d} \right $	Spectrum
14	-5	≈ 30	30	$\{[-5]^{16}, [5]^9, [7]^5\}$
15	-5	36	36	$\{[-5]^{21}, [7]^{15}\}$
16	-5	pprox 42	42	$\{[-5]^{26}, [7]^7, [9]^9\}$
17	-5	51	51	$\{[-5]^{34}, [10]^{17}\}$
18	-5	≈ 61	61	$\{[-5]^{43}, [11]^9, [12]^1, [13]^8\}$
19	-5	76	76	$\{[-5]^{57}, [15]^{19}\}$
20	-5	96	96	$\{[-5]^{76}, [19]^{20}\}$

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

d	λ_0	$\frac{d(\lambda_0^2-1)}{\lambda_0^2-d}$	$\left \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d} \right $	Spectrum
14	-5	≈ 30	30	$\{[-5]^{16}, [5]^9, [7]^5\}$
15	-5	36	36	$\{[-5]^{21}, [7]^{15}\}$
16	-5	pprox 42	42	$\{[-5]^{26}, [7]^7, [9]^9\}$
17	-5	51	51	$\{[-5]^{34}, [10]^{17}\}$
18	-5	≈ 61	61	$\{[-5]^{43}, [11]^9, [12]^1, [13]^8\}$
19	-5	76	76	$\{[-5]^{57}, [15]^{19}\}$
20	-5	96	96	$\{[-5]^{76}, [19]^{20}\}$

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

d	λ_0	$\frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d}$	$\left\lfloor \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d} \right\rfloor$	Spectrum
14	-5	≈ 30	30	$\{[-5]^{16}, [5]^9, [7]^5\}$
15	-5	36	36	$\{[-5]^{21}, [7]^{15}\}$
16	-5	pprox 42	42	$\{[-5]^{26}, [7]^7, [9]^9\}$
17	-5	51	51	$\{[-5]^{34}, [10]^{17}\}$
18	-5	≈ 61	61	$\{[-5]^{43}, [11]^9, [12]^1, [13]^8\}$
19	-5	76	76	$\{[-5]^{57}, [15]^{19}\}$
20	-5	96	96	$\{[-5]^{76}, [19]^{20}\}$

$$2A = J - I - S.$$

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

d	λ_0	$\frac{d(\lambda_0^2-1)}{\lambda_0^2-d}$	$\left\lfloor \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d} \right\rfloor$	Spectrum
14	-5	≈ 30	30	$\{[-5]^{16}, [5]^9, [7]^5\}$
15	-5	36	36	$\{[-5]^{21}, [7]^{15}\}$
16	-5	pprox 42	42	$\{[-5]^{26}, [7]^7, [9]^9\}$
17	-5	51	51	$\{[-5]^{34}, [10]^{17}\}$
18	-5	≈ 61	61	$\{[-5]^{43}, [11]^9, [12]^1, [13]^8\}$
19	-5	76	76	$\{[-5]^{57}, [15]^{19}\}$
20	-5	96	96	$\{[-5]^{76}, [19]^{20}\}$

$$2A\mathbf{v} = J\mathbf{v} - I\mathbf{v} - S\mathbf{v}.$$

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

d	λ_0	$\frac{d(\lambda_0^2-1)}{\lambda_0^2-d}$	$\left\lfloor \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d} \right\rfloor$	Spectrum
14	-5	≈ 30	30	$\{[-5]^{16}, [5]^9, [7]^5\}$
15	-5	36	36	$\{[-5]^{21}, [7]^{15}\}$
16	-5	pprox 42	42	$\{[-5]^{26}, [7]^7, [9]^9\}$
17	-5	51	51	$\{[-5]^{34}, [10]^{17}\}$
18	-5	≈ 61	61	$\{[-5]^{43}, [11]^9, [12]^1, [13]^8\}$
19	-5	76	76	$\{[-5]^{57}, [15]^{19}\}$
20	-5	96	96	$\{[-5]^{76}, [19]^{20}\}$

$$2A\mathbf{v} = I\mathbf{v} - I\mathbf{v} - S\mathbf{v} = -(1 + \lambda)\mathbf{v}.$$

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

d	λ_0	$\frac{d(\lambda_0^2-1)}{\lambda_0^2-d}$	$\left\lfloor \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d} \right\rfloor$	Spectrum
14	-5	≈ 30	30	$\{[-5]^{16}, [5]^9, [7]^5\}$
15	-5	36	36	$\{[-5]^{21}, [7]^{15}\}$
16	-5	pprox 42	42	$\{[-5]^{26}, [7]^7, [9]^9\}$
17	-5	51	51	$\{[-5]^{34}, [10]^{17}\}$
18	-5	≈ 61	61	$\{[-5]^{43}, [11]^9, [12]^1, [13]^8\}$
19	-5	76	76	$\{[-5]^{57}, [15]^{19}\}$
20	-5	96	96	$\{[-5]^{76}, [19]^{20}\}$

$$2A\mathbf{v} = I\mathbf{v} - I\mathbf{v} - S\mathbf{v} = -(1 + \lambda)\mathbf{v}.$$

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

$$2A\mathbf{v} = I\mathbf{v} - I\mathbf{v} - S\mathbf{v} = -(1+\lambda)\mathbf{v}.$$

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

$$2A\mathbf{v} = I\mathbf{v} - I\mathbf{v} - S\mathbf{v} = -(1+\lambda)\mathbf{v}.$$

Equiangular lines in \mathbb{R}^{14}

- ▶ Suppose there is $n > 2 \cdot 14$ equiangular lines in \mathbb{R}^{14} .
- ▶ Lemmens and Seidel (1973): $\implies \lambda_0 = -5$.
- ▶ Relative bound: $n \leq 30.54 \cdots \notin \mathbb{N}$.
- Suppose we have n=30 (d=14), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

Equiangular lines in \mathbb{R}^{14}

- ▶ Suppose there is $n > 2 \cdot 14$ equiangular lines in \mathbb{R}^{14} .
- ▶ Lemmens and Seidel (1973): $\implies \lambda_0 = -5$.
- ▶ Relative bound: $n \leq 30.54 \cdots \notin \mathbb{N}$.
- Suppose we have n=30 (d=14), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

Observe that $\operatorname{tr} S=(n-d)\lambda_0+\sum_{i=1}^d\lambda_i=0;$ $\operatorname{tr} S^2=(n-d)\lambda_0^2+\sum_{i=1}^d\lambda_i^2=n(n-1).$

Suppose we have n = 30 (d = 14), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

Suppose we have n=30 (d=14), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

▶ Using the trace formulae, we have

$$\sum_{i=1}^{d} \lambda_i = -(n-d)\lambda_0 = 80;$$

$$\sum_{i=1}^{d} \lambda_i^2 = n(n-1) - (n-d)\lambda_0^2 = 470.$$

Suppose we have n=30 (d=14), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

Using the trace formulae, we have

$$\sum_{i=1}^{d} \lambda_i = -(n-d)\lambda_0 = 80;$$

$$\sum_{i=1}^{d} \lambda_i^2 = n(n-1) - (n-d)\lambda_0^2 = 470.$$

$$d = \sum_{i=1}^{d} (\lambda_i - 6)^2$$

Suppose we have n=30 (d=14), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

Using the trace formulae, we have

$$\sum_{i=1}^{d} \lambda_i = -(n-d)\lambda_0 = 80;$$

$$\sum_{i=1}^{d} \lambda_i^2 = n(n-1) - (n-d)\lambda_0^2 = 470.$$

$$1 = \sum_{i=1}^{d} (\lambda_i - 6)^2 / d$$

Suppose we have n=30 (d=14), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

Using the trace formulae, we have

$$\sum_{i=1}^{d} \lambda_i = -(n-d)\lambda_0 = 80;$$

$$\sum_{i=1}^{d} \lambda_i^2 = n(n-1) - (n-d)\lambda_0^2 = 470.$$

$$1 = \sum_{i=1}^{d} (\lambda_i - 6)^2 / d \geqslant \sqrt[d]{\prod (\lambda_i - 6)^2}$$

Suppose we have n=30 (d=14), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

Using the trace formulae, we have

$$\sum_{i=1}^{d} \lambda_i = -(n-d)\lambda_0 = 80;$$

$$\sum_{i=1}^{d} \lambda_i^2 = n(n-1) - (n-d)\lambda_0^2 = 470.$$

$$1 = \sum_{i=1}^{d} (\lambda_i - 6)^2 / d \geqslant \sqrt[d]{\prod (\lambda_i - 6)^2} \geqslant 1.$$

Suppose we have n=30 (d=14), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}$$
.

▶ Using the trace formulae, we have

$$\sum_{i=1}^{d} \lambda_i = -(n-d)\lambda_0 = 80;$$

$$\sum_{i=1}^{d} \lambda_i^2 = n(n-1) - (n-d)\lambda_0^2 = 470.$$

$$1 = \sum_{i=1}^{d} (\lambda_i - 6)^2 / d \geqslant \sqrt[d]{\prod (\lambda_i - 6)^2} \geqslant 1.$$

Hence
$$(\lambda_i - 6) \in \{\pm 1\}$$
.

Case study: equiangular lines in \mathbb{R}^{17}

- ▶ Suppose there is $n > 2 \cdot 17$ equiangular lines in \mathbb{R}^{17} .
- ▶ Lemmens and Seidel (1973): $\implies \lambda_0 = -5$.
- ▶ Relative bound: $n \leq 51$ (but equality is not possible).
- Suppose we have n = 50 (d = 17), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{17}$$
.

Case study: equiangular lines in \mathbb{R}^{17}

- ▶ Suppose there is $n > 2 \cdot 17$ equiangular lines in \mathbb{R}^{17} .
- ▶ Lemmens and Seidel (1973): $\implies \lambda_0 = -5$.
- ▶ Relative bound: $n \le 51$ (but equality is not possible).
- Suppose we have n = 50 (d = 17), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{17}.$$

$$25 = \sum_{i=1}^{d} (\lambda_i - 10)^2$$

Case study: equiangular lines in \mathbb{R}^{17}

- ▶ Suppose there is $n > 2 \cdot 17$ equiangular lines in \mathbb{R}^{17} .
- ▶ Lemmens and Seidel (1973): $\implies \lambda_0 = -5$.
- ▶ Relative bound: $n \le 51$ (but equality is not possible).
- Suppose we have n = 50 (d = 17), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{17}.$$

It follows that

$$25 = \sum_{i=1}^{d} (\lambda_i - 10)^2$$

Note $(\lambda_i - 10)^2$ are +ve algebraic integers with sum 25

► Can we compute all totally positive, monic, integer polynomials with trace = 25 and degree = 17?

- ► Can we compute all totally positive, monic, integer polynomials with trace = 25 and degree = 17?
- Yes.

- ► Can we compute all totally positive, monic, integer polynomials with trace = 25 and degree = 17?
- Yes.
- ► Good News: a similar computation has been done by McKee and Smyth (2005).

- ► Can we compute all totally positive, monic, integer polynomials with trace = 25 and degree = 17?
- Yes.
- ► Good News: a similar computation has been done by McKee and Smyth (2005).
- ▶ Bad News: there are hundreds of candidate polynomials. (E.g., there are 686 irreducible, totally positive, monic, integer polynomials of degree 9 and trace 17.)

A modular characterisation of the characteristic polynomial of a Seidel matrix

Let S = J - I - 2A be a Seidel matrix of order n even.

▶ Haemers: $\chi_S(x) \equiv (x-1)^n \mod 2\mathbb{Z}[x]$.

- ▶ Haemers: $\chi_S(x) \equiv (x-1)^n \mod 2\mathbb{Z}[x]$.
- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $\det S \equiv 1 n \mod 8$.

- ▶ Haemers: $\chi_S(x) \equiv (x-1)^n \mod 2\mathbb{Z}[x]$.
- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $\det S \equiv 1 n \mod 8$.
- ► GG and Yatsyna (2018+):

$$\chi_S(x) \equiv \chi_{I-I}(x) \mod 8\mathbb{Z}[x].$$

Let S = J - I - 2A be a Seidel matrix of order n even.

- ▶ Haemers: $\chi_S(x) \equiv (x-1)^n \mod 2\mathbb{Z}[x]$.
- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $\det S \equiv 1 n \mod 8$.
- ► GG and Yatsyna (2018+):

$$\chi_S(x) \equiv \chi_{J-I}(x) \mod 8\mathbb{Z}[x].$$

• for $\chi_S(x)$ modulo $16\mathbb{Z}[x]$: ≤ 2 possibilities;

- ▶ Haemers: $\chi_S(x) \equiv (x-1)^n \mod 2\mathbb{Z}[x]$.
- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $\det S \equiv 1 n \mod 8$.
- ► GG and Yatsyna (2018+):

$$\chi_S(x) \equiv \chi_{J-I}(x) \mod 8\mathbb{Z}[x].$$

- for $\chi_S(x)$ modulo $16\mathbb{Z}[x]$: ≤ 2 possibilities;
- for $\chi_S(x)$ modulo $32\mathbb{Z}[x]$: ≤ 8 possibilities;

- ▶ Haemers: $\chi_S(x) \equiv (x-1)^n \mod 2\mathbb{Z}[x]$.
- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $\det S \equiv 1 n \mod 8$.
- ► GG and Yatsyna (2018+):

$$\chi_S(x) \equiv \chi_{J-I}(x) \mod 8\mathbb{Z}[x].$$

- for $\chi_S(x)$ modulo $16\mathbb{Z}[x]$: ≤ 2 possibilities;
- ▶ for $\chi_S(x)$ modulo $32\mathbb{Z}[x]$: ≤ 8 possibilities;
- **...**

- ▶ Haemers: $\chi_S(x) \equiv (x-1)^n \mod 2\mathbb{Z}[x]$.
- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $\det S \equiv 1 n \mod 8$.
- ► GG and Yatsyna (2018+):

$$\chi_S(x) \equiv \chi_{J-I}(x) \mod 8\mathbb{Z}[x].$$

- for $\chi_S(x)$ modulo $16\mathbb{Z}[x]$: ≤ 2 possibilities;
- for $\chi_S(x)$ modulo $32\mathbb{Z}[x]$: ≤ 8 possibilities;
- for $\chi_S(x)$ modulo $2^k \mathbb{Z}[x]$: $\leq 2^{\binom{k-2}{2}}$ possibilities.

- ► Haemers: $\chi_S(x) \equiv x(x-1)^{n-1} \mod 2\mathbb{Z}[x]$.
- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $\det S \equiv n-1 \mod 4$.
- ► GG and Yatsyna (2018+):

$$\chi_S(x) \equiv \chi_{J-I}(x) \mod 4\mathbb{Z}[x].$$

- for $\chi_S(x)$ modulo $8\mathbb{Z}[x]$: ≤ 2 possibilities;
- for $\chi_S(x)$ modulo $16\mathbb{Z}[x]$: ≤ 4 possibilities;
- for $\chi_S(x)$ modulo $2^k \mathbb{Z}[x]$: $\leq 2 \cdot 2^{\binom{k-2}{2}}$ possibilities.

- ▶ Instead of S = J I 2A, consider T = J 2A.
- ▶ We have $\chi_{J-2A}(x) = \chi_{-2A}(x) \mathbf{1}^{\top} \operatorname{adj}(xI + 2A)\mathbf{1}$.
- ► Further, $\operatorname{adj}(xI + 2A) = \sum_{i=0}^{n-1} (-2A)^{n-1-i} \sum_{j=0}^{i} x^{i-j} c_j$, where $\chi_{-2A}(x) = \sum_{i=0}^{n} c_i x^{n-i}$.

- ▶ Instead of S = J I 2A, consider T = J 2A.
- ▶ We have $\chi_{J-2A}(x) = \chi_{-2A}(x) \mathbf{1}^{\top} \operatorname{adj}(xI + 2A)\mathbf{1}$.
- ► Further, $\operatorname{adj}(xI + 2A) = \sum_{i=0}^{n-1} (-2A)^{n-1-i} \sum_{j=0}^{i} x^{i-j} c_j$, where $\chi_{-2A}(x) = \sum_{i=0}^{n} c_i x^{n-i}$.

Lemma

Write
$$\chi_{J-2A}(x) = \sum_{i=0}^n a_i x^{n-i}$$
 and $\chi_A(x) = \sum_{i=0}^n b_i x^{n-i}$. Then

$$a_r = (-2)^r \left(b_r + \frac{1}{2} \sum_{i=1}^r b_{r-i} \mathbf{1}^\top A^{i-1} \mathbf{1} \right).$$

Lemma

Write
$$\chi_{J-2A}(x) = \sum_{i=0}^{n} a_i x^{n-i}$$
 and $\chi_A(x) = \sum_{i=0}^{n} b_i x^{n-i}$. Then

$$a_r = (-2)^r \left(b_r + \frac{1}{2} \sum_{i=1}^r b_{r-i} \mathbf{1}^\top A^{i-1} \mathbf{1} \right).$$

Corollary (GG and Yatsyna)

Lemma

Write $\chi_{J-2A}(x) = \sum_{i=0}^{n} a_i x^{n-i}$ and $\chi_A(x) = \sum_{i=0}^{n} b_i x^{n-i}$. Then

$$a_r = (-2)^r \left(b_r + \frac{1}{2} \sum_{i=1}^r b_{r-i} \mathbf{1}^\top A^{i-1} \mathbf{1} \right).$$

Corollary (GG and Yatsyna)

Write $\chi_{J-2A}(x) = \sum_{i=0}^{n} a_i x^{n-i}$ with n even. Then 2^r divides a_r .

Note that $a_0 = 1$, $a_1 = -n$, and $a_2 = 0$ for all A.

Lemma

Write $\chi_{J-2A}(x) = \sum_{i=0}^{n} a_i x^{n-i}$ and $\chi_A(x) = \sum_{i=0}^{n} b_i x^{n-i}$. Then

$$a_r = (-2)^r \left(b_r + \frac{1}{2} \sum_{i=1}^r b_{r-i} \mathbf{1}^\top A^{i-1} \mathbf{1} \right).$$

Corollary (GG and Yatsyna)

- Note that $a_0 = 1$, $a_1 = -n$, and $a_2 = 0$ for all A.
- So $\chi_{I-2A}(x) \equiv x^n nx^{n-1} \mod 8\mathbb{Z}[x]$.

Corollary (GG and Yatsyna)

- Note that $a_0 = 1$, $a_1 = -n$, and $a_2 = 0$ for all A.
- So $\chi_{I-2A}(x) \equiv x^n nx^{n-1} \mod 8\mathbb{Z}[x]$.

Corollary (GG and Yatsyna)

- Note that $a_0 = 1$, $a_1 = -n$, and $a_2 = 0$ for all A.
- So $\chi_{I-2A}(x) \equiv x^n nx^{n-1} \mod 8\mathbb{Z}[x]$.
- $\chi_{J-2A}(x) \equiv x^n nx^{n-1} + a_3x^{n-3} \mod 16\mathbb{Z}[x]$

Corollary (GG and Yatsyna)

- Note that $a_0 = 1$, $a_1 = -n$, and $a_2 = 0$ for all A.
- So $\chi_{I-2A}(x) \equiv x^n nx^{n-1} \mod 8\mathbb{Z}[x]$.
- $\chi_{J-2A}(x) \equiv x^n nx^{n-1} + a_3x^{n-3} \mod 16\mathbb{Z}[x]$
- $\chi_{J-2A}(x) \equiv x^n nx^{n-1} + a_3x^{n-3} + a_4x^{n-4} \mod 32\mathbb{Z}[x]$

A note for the case when n is odd

Lemma

Write $\chi_{J-2A}(x) = \sum_{i=0}^n a_i x^{n-i}$ and $\chi_A(x) = \sum_{i=0}^n b_i x^{n-i}$. Then

$$a_r = (-2)^r \left(b_r + \frac{1}{2} \sum_{i=1}^r b_{r-i} \mathbf{1}^\top A^{i-1} \mathbf{1} \right).$$

▶ Observe that 2^{r-1} divides a_r for r odd; and 2^r divides a_r for r even.

Lemma (key lemma)

For $l \geqslant 2$, we have

$$\sum_{d \mid 2l} \varphi(2l/d) \operatorname{tr}(A^d) + l \mathbf{1}^{\top} A^l \mathbf{1} \equiv 0 \pmod{4l}.$$

Combining the two restrictions

Back to 50 lines in \mathbb{R}^{17}

Suppose we have n = 50 (d = 17), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{17}$$
.

Using Haemers' observation, we find that:

$$\chi_S(x) = (x+5)^{33} \prod_{i=1}^{17} (x-\lambda_i) \equiv (x+1)^{50} \mod 2\mathbb{Z}[x]$$

$$F(x) = \prod_{i=1}^{17} (x - (\lambda_i - 10)^2) \equiv (x+1)^{17} \mod 2\mathbb{Z}[x]$$

So now we want to compute all totally positive, monic, integer polynomials with trace = 25 and degree = 17 congruent to $(x+1)^{17}$ modulo $2\mathbb{Z}$.

Finding all such totally positive algebraic integers

- ► There are 55 totally positive, monic, integer polynomials with trace = 25 and degree = 17 congruent to $(x+1)^{17}$ modulo $2\mathbb{Z}[x]$.
- ▶ Now convert each polynomial into putative characteristic polynomials for a Seidel matrix.
- ▶ Only two of these polynomials are congruent to $\chi_{J-I}(x)$ modulo $8\mathbb{Z}[x]$:

$$(x+5)^{33}(x-7)(x-9)^9(x-11)^7$$
$$(x+5)^{33}(x-9)^{12}(x-11)^4(x-13)$$

Now we have our targets

To show that there does not exist 50 lines in \mathbb{R}^{17} , show that there does not exist a Seidel matrix with characteristic polynomial

$$(x+5)^{33}(x-7)(x-9)^9(x-11)^7$$
 or $(x+5)^{33}(x-9)^{12}(x-11)^4(x-13)$.

Now we have our targets

To show that there does not exist 50 lines in \mathbb{R}^{17} , show that there does not exist a Seidel matrix with characteristic polynomial

$$(x+5)^{33}(x-7)(x-9)^9(x-11)^7$$
 or $(x+5)^{33}(x-9)^{12}(x-11)^4(x-13)$.

Theorem (GG and Yatsyna)

There does not exist a Seidel matrix with characteristic polynomial

$$(x+5)^{33}(x-7)(x-9)^9(x-11)^7$$
 or $(x+5)^{33}(x-9)^{12}(x-11)^4(x-13)$.

						7 – 13							
N(d)	2	6	6	10	16	28	28	36	40	48	54	72	90
	3	0	0	10	10	20	29	30	41	49	60	75	95

What we did:

1. Suppose we have n=50 (d=17), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_d;$$

- 2. List all candidates for $\{(\lambda_i 10)^2\}$ (degree 17, trace 25);
- 3. Produce all corresponding candidate char polys for S;
- 4. Only two of these satisfy modulo $8\mathbb{Z}[x]$ condition;
- 5. No Seidel matrix has either of the two char polys.

						7 – 13							
M(A)	2	6	6	10	16	28	28	26	40	48	54	72	90
1V(u)	3	U	U	10	10	20	29	30	41	49	60	75	95

For dimension 18:

1. Suppose we have n = 60 (d = 18), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_d;$$

2. List all candidates for $\{(\lambda_i - 12)^2\}$ (degree 18, trace 42);

						7 – 13							
N(d)	2	6	6	10	16	28	28	36	40	48	54	72	90
1V(u)	3	0	U	10	10	28	29	30	41	49	60	75	95

For dimension 18:

1. Suppose we have n=60 (d=18), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_d;$$

2. List all candidates for $\{(\lambda_i - 12)^2\}$ (degree 18, trace 42); this is currently too computationally difficult.

For dimension 18:

1. Suppose we have n=60 (d=18), with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_d;$$

- 2. List all candidates for $\{(\lambda_i 12)^2\}$ (degree 18, trace 42); this is currently too computationally difficult.
- 3. But we can list those with integer roots:

$$(x-13)^{9}(x-11)^{6}(x-9)^{3}(x+5)^{42}$$

$$(x-15)(x-13)^{6}(x-11)^{9}(x-9)^{2}(x+5)^{42}$$

$$(x-15)^{2}(x-13)^{3}(x-11)^{12}(x-9)(x+5)^{42}$$

$$(x-15)^{3}(x-11)^{15}(x+5)^{42}$$

Thanks for listening!