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Observation of Trefethen

For a multivariate polynomial p(x) =
∑
α

aαx
α

Usual degree: deg(p) := max
aα 6=0

d∑
i=1

αi

= max
aα 6=0

‖α‖1

Euclidean degree: deg2(p) := max
aα 6=0

‖α‖2

Certain functions are better approximated from the space of
polynomials of deg2(p) ≤ n.
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Errors in Approximation

Len Bos Approximation by Polynomial Spaces



but

BUT
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Error in Approximation to f1 =
1

1−z1/2 +
1

1−z2/2
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Classical Bernstein-Walsh-Siciak

Theorem

Let K ⊂ Cd be compact and nonpluripolar with VK continuous.
Let R > 1, and let ΩR := {z : VK (z) < logR}. Let f be
continuous on K. Then

lim sup
n→∞

Dn(f ,K )1/n ≤ 1/R

if and only if f is the restriction to K of a function holomorphic in
ΩR .
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Siciak-Zaharjuta Extremal Function

VK (z) = max[0, sup{ 1

deg(p)
log |p(z)| : ||p||K := max

ζ∈K
|p(ζ)| ≤ 1}]

p is a nonconstant holomorphic polynomial

Dn(f ,K ) := inf{||f − pn||K : pn ∈ Pn}

Pn is the space of holomorphic polynomials of degree at most
n.
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Generalized Degree

P a non-degenerate convex set

e.g. Pp := {(x1, ..., xd) ∈ (R+)d : (xp1 + · · · xpd )1/p ≤ 1}
For p = 1 we have P1 = Σ where

Σ := {(x1, ..., xd) ∈ Rd : x1, ..., xd ≥ 0, x1 + · · · xd ≤ 1}.

gives the usual degree
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Polynomial Spaces and Generalized Extremal Function

Poly(nP) := {p(z) =
∑

J∈nP∩(Z+)d

cJz
J : cJ ∈ C}

when P = Σ we have Poly(nΣ) = Pn, the usual space of
holomorphic polynomials of degree at most n in Cd .

VP,K = lim
n→∞

1

n
log Φn

where

Φn(z) := sup{|pn(z)| : pn ∈ Poly(nP), ||pn||K ≤ 1}.
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Generalized Bernstein-Walsh-Siciak (Bos-Levenberg)

Dn = Dn(f ,K ,P) ≡ inf{||f − pn||K : pn ∈ Poly(nP)}.

Theorem

Let K be compact and PL−regular. Let R > 1, and let
ΩR = ΩR(P,K) := {z : VP,K (z) < logR}. Let f be continuous on
K.

1 If f is the restriction to K of a function holomorphic in ΩR(P,K),

then lim sup
n→∞

Dn(f ,P,K )1/n ≤ 1/R.

2 If lim supn→∞ Dn(f ,P,K )1/n ≤ 1/R, then f is the restriction to K
of a function holomorphic in ΩR(P,K).
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Order of Approximation

The order of approximation to a holomorphic function f (z) by
Poly(nP) is given (essentially) by

Dn(f ,K ,P) = O(R−n)

where
log(R) := inf

z∈S(f )
VP,K (z)

and S(f ) ⊂ Cd is the singular set of f .
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In terms of Orthogonal Polynomials

Let
{pα(z) = pα(z , µ) : α ∈ (Z+)d}

be the family of orthonormal polynomials obtained by the
Gram-Schmidt process with inner-product given by µ applied to
the monomials {zα : α ∈ (Z+)d}.

Theorem

(Generalized Zeriahi) Under the above assumptions

VP,K (z) = lim sup
α

1

|α|P
log |pα(z , µ)| for z ∈ Cd \ K̂

where K̂ denotes the polynomial hull of K .
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Case of K ⊂ Cd the unit ball

K = Bd := {z ∈ Cd : |z | ≤ 1}
pα(z) = cαz

α, α ∈ (Z+)d with

c2α :=
(|α|+ d)!

α!πd

Here |α| :=
∑d

j=1 αj and α! :=
∏d

j=1(αj !).
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The Bloom Functional

We have, for

Fd(θ; z) := lim
j→∞

α(j)/|α(j)|P→θ

1

|α(j)|P
log |cα(j)zα(j)|

Theorem

For z ∈ Cd \ K

VP,K (z) = max
θ∈(R+)d , |θ|P=1

Fd(θ; z).
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Formula for the Bloom Function

Theorem

For K the complex ball in Cd ,

Fd(θ) =

1

2

∑
i∈I (z)

θi log(|zi |2)−
∑
i∈I (z)

θi log(θi ) +

∑
i∈I (z)

θi

 log

∑
i∈I (z)

θi


where I (z) := {i : zi 6= 0}
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Level Sets of the Extremal Function
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The q =∞ (tensor-product) case

Theorem

Suppose that d = 2. Then for |z | ≥ 1,

VP∞,B2(z) =
1
2

{
log(|z2|2)− log(1− |z1|2)

}
if |z1|2 ≤ 1/2 and |z2|2 ≥ 1/2

1
2

{
log(|z1|2)− log(1− |z2|2)

}
if |z1|2 ≥ 1/2 and |z2|2 ≤ 1/2

log(|z1|) + log(|z2|) + log(2) if |z1|2 ≥ 1/2 and |z2|2 ≥ 1/2
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Example One

Consider f1(z1, z2) :=
1

1− z1/2
+

1

1− z2/2
Note that best L2 approximations are equivalent to Taylor
expansions.

f1(z1, z2) =
n∑

k=0

(
zk1
2k

+
zk2
2k

)
+

{
(z1/2)n+1

1− z1/2
+

(z2/2)n+1

1− z2/2

}
Note that for any q ≥ 1, the degrees of zk1 and zk2 are both k . In
particular, the best L2 approximation for f1 on K of degree n, for
any q ≥ 1 is

pn(z1, z2) :=
n∑

k=0

(
zk1
2k

+
zk2
2k

)
.

In other words there is no advantage in a higher value of q despite
the fact that the spaces Poly(nPq) are of increasing dimension in q.
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Error in Approximation to f1
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Example 2

Consider the bivariate Runge type function

f2(z1, z2) :=
1

a2 + z21 + z22
a > 1.

It’s singular set is given by

S(f2) := {z ∈ C2 : z21 + z22 = −a2}.

Lemma

We have
min

z∈S(f2)
VPq ,K (z) = log(a), q ≥ 1,

attained at (among other points) z1 = ia, z2 = 0.

Len Bos Approximation by Polynomial Spaces



Example 2

Consider the bivariate Runge type function

f2(z1, z2) :=
1

a2 + z21 + z22
a > 1.

It’s singular set is given by

S(f2) := {z ∈ C2 : z21 + z22 = −a2}.

Lemma

We have
min

z∈S(f2)
VPq ,K (z) = log(a), q ≥ 1,

attained at (among other points) z1 = ia, z2 = 0.

Len Bos Approximation by Polynomial Spaces



Example 2

Consider the bivariate Runge type function

f2(z1, z2) :=
1

a2 + z21 + z22
a > 1.

It’s singular set is given by

S(f2) := {z ∈ C2 : z21 + z22 = −a2}.

Lemma

We have
min

z∈S(f2)
VPq ,K (z) = log(a), q ≥ 1,

attained at (among other points) z1 = ia, z2 = 0.

Len Bos Approximation by Polynomial Spaces



Example 2 continued

Note that |(ia, 0)|Pq = |a| for all q ≥ 1

In other words the rate of decay of the approximation errors to f2
are also the same for all choices of q ≥ 1; there is no
approximation value added despite the fact that the dimensions of
the spaces Poly(nPq) are increasing in q!
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Example 3

Take f3(z) =
1

1− z1z2

The best L2 approximation is

f3(z1, z2) =
1

1− z1z2
=

m∑
k=0

zk1 z
k
2 +

(z1z2)m+1

1− z1z2
.

The uniform norm of the error on K is easily bounded by

max
|z|≤1

∣∣∣∣(z1z2)m+1

1− z1z2

∣∣∣∣ ≤ 2−(m+1)

1− 1/2
= 2−m

For classical degree: O(2−n/2)

For euclidean degree (q = 2): O(2−n/
√
2)

For tensor-product degree (q =∞): O(2−n)
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Thank you for your attention.
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