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A piece of terminology

This talk is about maximal sets of complex equiangular lines. I am
a physicist, so I am going to use the name usual in physics : SIC
(short for Symmetric Iinformationally Complete Positive Operator
Valued Measure), pronounced SEEK (as opposed to SICK).
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A SIC is a geometrical structure.

However, quite unexpectedly, it turns out to have some remarkably
rich and interesting number-theoretic properties, having
connections with a major open problem in number theory
(Hilbert’s 12th problem). These are the subject of this talk.

Two-way connection: number theory may help us understand SICs
better; SICs may help us understand number theory better.
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Preliminaries (1)

A SIC is a set of d2 equiangular lines in a d-dimensional complex
vector space. It is therefore specified by a set d2 normalized
vectors |ψ1〉, . . . , |ψd2〉 satisfying

∣∣〈ψj |ψk〉
∣∣2 =

{
1 j = k
1

d+1 j 6= k
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Problem: the choice of the |ψj〉 is arbitrary, in that each can be a
multiplied by an arbitrary phase factor e iθj . This non-uniqueness
matters from a number-theoretical point of view. To get a unique,
canonical object we therefore take the corresponding projectors
|ψj〉〈ψj | to be the object of study.

So for our purposes a SIC is a set of d2 rank-1 projectors
Π1, . . .Πd2 on d-dimensional complex inner product space such
that

Tr(ΠjΠk) =

{
1 j = k
1

d+1 j 6= k
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Existence

SICs have been calculated numerically1 in dimensions 2–151
inclusive; also 168, 172, 195, 199, 228, 259, 323, 844.

Exact SICs have been calculated2 in dimensions 2–21
inclusive; also 24, 28, 30, 31, 35, 37, 39, 43, 48, 120, 323.

This encourages the speculation that SICs exist for every finite
dimension. But a proof is still lacking.

1Scott and Grassl, J. Math. Phys, 51 , 042203 (2010); Scott,
arXiv:1703.03993; Fuchs, Hoang and Stacey, Axioms, 6, 21 (2017); Grassl and
Scott, J. Math. Phys. 58, 122201 (2017)

2Scott and Grassl, ibid; Appleby, Chien, Flammia, Waldron,
arXiv:1703.05891 (2017); Grassl and Scott, ibid; Grassl, to appear.
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Group Covariance

A SIC is said to be group covariant if

The projectors are labelled by the elements of a finite group G.

For each group element g there is a unitary Ug such that

UgΠg ′U†g = Πgg ′

for all g ′.

The group action is transitive.

This means that the SIC is fully specified by fixing a single
projector (the fiducial projector).
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Weyl-Heisenberg Group

With a single exception3 every known SIC is covariant with respect
to the Weyl-Heisenberg (or WH) group.

Moreover, in prime dimensions it can be proved that if a SIC has a
group covariance at all, then it is necessarily covariant with respect
to the Weyl-Heisenberg group4 (though it remains an open
question whether non-group covariant SICs are possible).

3The exception being a SIC in dimension 8 which is covariant with respect
to the product of 3 copies of the group

4Zhu, J. Phys. A, 43, 305305 (2010).
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Definition of the WH group

Fix an orthonormal basis |0〉, . . . |d − 1〉.
Define operators X , Z by

X |r〉 = |r ⊕ 1〉 Z |r〉 = ωr |r〉

where r ⊕ 1 means addition mod d and ω = e2πi/d .

Define WH displacement operators

Dj ,k = X jZ k

A WH SIC consists of the d2 projectors

D†j ,kΠDj ,k

where Π is the fiducial projector.
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Extended Clifford Group

SICs are naturally classified using the extended Clifford group. This
is the set of unitaries/anti-unitaries U which permute the WH
displacement operators according to

UDpU
†=̇DFp

where =̇ means “equal up to multiplication by a phase”, and5 F is
a 2× 2 matrix with entries in Z/dZ such that detF = ±1 mod d .
The set of all such 2× 2 matrices will be denoted ESL(2,Z/dZ).

5If d is even one needs to replace d with 2d in the rest of this paragraph.
From now on I will ignore this complication.
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Classification

The significance of the Clifford group is that if Πj is a WH SIC and
U is a Clifford unitary/anti-unitary then UΠjU

† is another WH
SIC. So the set of all WH SICs in a given dimension splits into
orbits under the extended Clifford group.

With the exception of d = 3 there are only a finite number of
orbits in every dimension studied so far. We follow the Scott-Grassl
convention of labelling the orbits with a letter.

For example in dimension 4 there is a single extended Clifford
group orbit 4a, in dimension 7 there are two orbits 7a, 7b, in
dimension 35 there are ten orbits 35a–35j , and so on.
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The numbers themselves

In this talk the emphasis will be on the numbers theoretic
properties of the known SIC projectors.

Need to be a bit careful here: the matrix elements of a projector Π
depend on the basis. In the following it will always be assumed that
we are working in the standard basis: i.e. the basis in which the
WH displacement operators act in the manner described earlier.

Also WH SICs in dimensions 2 and 3 have some special properties.
In the following it will accordingly be assumed without comment
that d ≥ 4.
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The observation which started all this

There are now 98 known examples of extended Clifford SIC orbits
(exact solutions—many hundreds of numerical ones).

Solutions are in general very complicated (sometimes more than a
1000 pages of computer print out). However they all have a
certain striking property: namely, they are all expressible in terms
of radicals (nested roots).
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Why is this surprising?

Galois showed that the solutions to a polynomial equation in one
variable of degree ≥ 5 are typically not expressible in terms of
radicals.

A SIC fiducial projector Π = |ψ〉〈ψ| is a solution to the equations

|〈ψ|Dp|ψ〉|2 =
dδp,0 + 1

d + 1

These are degree 4 polynomial equations in the components of |ψ〉.
So the solution should be expressible in radicals?

—Not so: for they are equations in many variables.
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Gröbner Bases

Standard way to solve a system of equations like the one in the
last slide is to construct a Gröbner basis. This reduces the problem
to that of solving a series of polynomial equations each in a single
variable. However the effect of the construction is usually to
(greatly) increase the degree. As is the case here.

So one would not a priori expect the solutions to be expressible in
radicals.

Nevertheless in each of the 98 cases calculated so far they are
expressible in radicals.

—tells us that the Galois group is of a very special kind.
Specifically: it is a solvable group.
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The basic idea of Galois theory.
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Simple example

There is one example which everyone knows: the complex numbers
C = R(i). Consists of all combinations of the form

a + ib a, b ∈ R

A galois conjugation is any map g : C→ C such that

g(x) = (x)

g(z + w) = g(z) + g(w)

g(zw) = g(z)g(w)

∀x ∈ R and z ,w ∈ C. There are exactly two such maps: the
identity map and complex conjugation.

So the Galois group is cyclic, order 2.
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Generalization

Suppose we have a base field B and a generator u /∈ B. Then
define B(a) to be the smallest field containing B.

In the last example the base field was R, the generator was i and
the extension field was C.

Assume that u is the root of a polynomial with coefficients in B
(i.e. is algebraic over B). Then B(u) consists of all combinations
c0 + c1u + . . . cn−1u

n−1 with cj ∈ B for some integer n (the degree
of the extension).

The Galois group consists of all bijections g : B(u)→ B(u) which
(a) fix the base field and (b) preserve addition and multiplication.
It is a finite group of order ≤ n. The extension is said to be normal
if the order = n.
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Fields over the rationals

In the SIC problem the base field is always Q.

A very simple example of such an extension: F = Q(
√

2) consisting
of all numbers of the form

a + b
√

2 a, b ∈ Q

Galois group consists of the identity together with the map

g : a + b
√

2→ a− b
√

2

(analogue of complex conjugation).

So as with R(i) the Galois group is cyclic, order 2.
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Another example: Cyclotomic fields

Cyclotomic fields are fields generated by roots of unity over the
rationals.

Let ω = e
2πi
p where p is a prime number and F = Q(ω). Then F

consists of all combinations of the form

c0 + c1ω + · · ·+ cp−2ω
p−2

The Galois group consists of the p − 1 automorphisms
gk : ω → ωk , k = 1, . . . , p − 1. It is therefore cyclic, order p − 1.

In the case of an mth root of unity for m not a prime number the
group is still Abelian, but no longer cyclic.
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Towers

We can extend the field repeatedly, to obtain a tower:

Q ⊂ Q(u1) ⊂ Q(u1, u2) ⊂ · · · ⊂ Q(u1, . . . , um)

Actually, it is always possible to replace the multiple generators
u1, . . . , um with a single generator v :

Q(u1, . . . , um) = Q(v)

However, one often gets more insight into the field by building it as
a tower—as we will shortly see.

Number-Theoretic Aspects of Maximal Sets of Complex Equiangular Lines



Example of a non-Abelian Galois group

Consider the tower

Q ⊂ F ⊂ E

F = Q(i) E = F(

√√
2 + 1)

The Galois group of E over Q is generated by

g1 : i → −i
√√

2 + 1→
√√

2 + 1

g2 : i → −i
√√

2 + 1→ i

√√
2− 1

It is non-Abelian, because g1g2 = g3
2 g1.
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Example of a non-Abelian Galois group (2)

In the tower

Q ⊂ F ⊂ E

F = Q(i) E = F(

√√
2 + 1)

we saw that the Galois group of E over Q is non-Abelian.

However, the Galois groups of the individual extensions—F over Q
and E over F—are Abelian.

This is connected with the fact that the field is generated by
radicals (combinations of nested roots), and is a particular instance
of a general phenomenon.
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General theorem

A field E is generated by radicals if and only if it can be built as a
tower

Q ⊂ F1 ⊂ · · · ⊂ Fm ⊂ E

such that

(a) Each successive extension is normal over the one
before (degree of extension equals order of group).

(b) The Galois group of each field over the one before is
Abelian.

It is possible to re-express this as a statement about the Galois
group of E over Q—which is how Galois proved his celebrated
theorem, that polynomial equations of degree ≥ 5 cannot, in
general, be solved in radicals.
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Back to SICs

The exact expressions for SIC projectors are simply horrible—in
some cases many pages of printout for a single matrix element.
The fields they generate are huge—degree 104 or more.

However

In the 98 cases examined they are always expressible in radicals.
Which tells us that the field they generate must be constructible as
a tower with each successive extension Abelian over the one before.

Obvious question:

How tall is the tower?

Given the (seeming) horribleness of the numbers one might expect
the tower to be horrible too. But in fact it isn’t.
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Structure of the SIC field

In every case examined the field has the structure

Q ⊂ Q(
√
D) ⊂ E

where D is the square-free part of (d − 3)(d + 1), and E is a
normal Abelian extension of Q(

√
D) (and, in fact, Q).

This is striking because

(1) The tower is height 2—as short as it can be
consistent with E not being Abelian over Q.

(2) The intermediate field is degree 2—as low as it can
be consistent with E not being Abelian over Q.

(3) We have an ansatz for a generator of the
intermediate field: namely the number

√
D.

However, it doesn’t end there. E isn’t just any Abelian extension
of Q(

√
D). It is a very remarkable one. To understand why we

need to review some number theory.
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Abelian extensions in general.

Abelian extensions have been the focus of an enormous amount of
work over the last 150 years. Indeed, they are the subject of
Hilbert’s 12th problem.

So a lot is known about them (though not as much as we would
like—Hilbert’s 12th problem is still unsolved).
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Kronecker-Weber theorem

Kronecker started this line of investigation back in the 19th

century, by asking what is the general form of an Abelian extension
of the rationals. The answer is given by

Kronecker-Weber theorem: a finite degree field is Abelian
over the rationals if and only if it is a subfield of a

cyclotomic field (i.e. a subfield of Q(e
2πi
n ), for some n).
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Generalizing the Kronecker-Weber Theorem

Having got that far Kronecker then thought about generalizing the
result.

Suppose we have a tower

Q ⊆ K ⊆ L

Let GK(L) be the Galois group of L over K (i.e. the
automorphisms of L which fix the numbers in K.

Question: for given K can we fully characterize the set of fields L
for which GK(L) is Abelian?
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Imaginary Quadratic Fields

This question can be answered in the affirmative for imaginary
quadratic fields: i.e. fields of the kind

K = Q(i
√
n)

with n a positive integer.

The proof uses Kronecker’s theory of complex multiplication
(which, contrary to what the name might suggest, is emphatically
not trivial).

Using this theory it can be shown that GK(L) is Abelian if and only
if L is a subfield of a field generated by the torsion points of a
certain kind of elliptic curve.
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Hilbert’s 12th problem

Hilbert described the theory of complex multiplication as “not only
the most beautiful part of mathematics but also of all science.”

Admittedly this is the recollection of one person, published 11
years after the event6. But there can be no doubt that it inspired
Hilbert’s 12th problem, which asks for the generalization of
complex multiplication to other number fields.

This problem has been one of the main foci of algebraic number
theory ever since, but in spite of an enormous amount of effort it
remains open.

The obvious place to start is Abelian extensions of real quadratic
fields (i.e. the type of field which features in the SIC problem).

6Taussky, Nature, 152, 182 (1943)
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Breaking the problem up

To solve Hilbert’s 12th problem for real quadratic fields you need
to do two things:

(1) Identity the analogues of the fields Q(e
2πi
n ).

(2) Identify the analogue of the transcendental function
ex (supposing it exists).

It is (2) which remains open. (1) has been solved.
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Ray class fields

The fields which play the role of Q(e
2πi
n ) for Abelian extensions of

an arbitrary field are called ray-class fields. The analogue of the
integer n is called the conductor.

For a given real quadratic field and a given finite integer n there
are actually four ray class fields. We are chiefly interested in the
largest, which contains the other three, and is technically called
the ray class field with ramification at both infinite places.

Although no one knows the analogue of the function ex (or even
whether it exists), there are algorithms for calculating ray class
fields. Enter the appropriate commands into a program like
Magma and it will give you a set of generators. Often (but not
always) it will even do it fast: seconds or less.
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Back to SICs: fields and multiplets

In a given dimension d there is typically more than one extended
Clifford orbit of SICs. The orbits are grouped into multiplets:
collections of orbits all corresponding to the same number field. It
turns out that the fields associated to the different multiplets form
a lattice under field inclusion. The lattice has unique minimal and
maximal elements, with all other fields being intermediate between
these two.
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Field Lattice for Dimension 35

Labels 35j , 35i etc are the corresponding extended Clifford orbits
in Scott-Grassl notation. Numbers beside the arrows are extension
degrees.

15ac 19bc 35bcdg

15b 19d 35e 35af 35h

15d 19a 35i

19e 35j

39acde 48abcd

39bf 39gh 48e 48f

39ij 48g

2

2

3

2

2

2

2

4

4

4
2

4

3 2

2 3

8 3

3 8

1
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Remarkable fact

It turns out that each of the 24 minimal SIC fields which have
been examined to date (for d = 4–21, 24, 28, 35, 48, 120, 323) is
the ray class field over Q(

√
D) with conductor d and ramification

at both infinite places.
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Two questions

This raises two natural questions:

(1) Supposing the phenomenon occurs in every
dimension, just how many ray class fields are
generated by SICs?

(2) The fact that a geometric structure generates a
certain field does not usually tell one very much
about the structure itself. For instance, the
standard-basis components of a full set of
Wootters-Fields MUBs generate a cyclotomic field.
Knowing this is not, on its own, very much help if
one wants to calculate the MUBs. Is the fact (if it is
a fact) that SICs generate a ray class field similarly
uninformative? Or can we work backwards, from the
field to the geometry?

The construction I describe next gives some insight into both those
questions.
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Question 1

Suppose we are given an arbitrary square-free positive integer m
and we want the set of conductors for which the ray class field over
Q(
√
m) is a minimal SIC field.

It turns out that the set is infinite for all m. Moreover, if we know
the smallest conductor (dimension) d1 then we can calculate all
the others using the formula

dn = 1 + 2Tn

(
d1 − 1

2

)
where Tn is a Chebyshev polynomial of the first kind. Calculating
d1 is less straightforward, but there is an algorithm for that also7.

So the answer is: SICs generate a large class of ray class fields, but
by no means all.

7Interestingly, there is a quantum algorithm giving an exponential speed-up.
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Question 2

Let’s look at the sequence of dimensions d corresponding to given
D a little more closely. For D = 5 the sequence is

4, 8, 19, 48, 124, 323, 844, 2208, 5779, 15128, . . .

Looking at this sequence we see that it contains subsequences in
which each element is a multiple of the one before:

4, 8, 48, 2208, . . .

19, 323, . . .

4, 124, 15128, . . .

One can show there are infinitely many such infinite subsequences.
We call them dimension towers.
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Question 2: Embeddings (1)

It is easily seen that if n1 is a divisor of n2 then Q(e
2πi
n1 ) is a

subfield of Q(e
2πi
n2 ).

This is a general property of ray class fields. In particular, if E1, E2

are ray class fields over Q(
√
D) with conductors d1, d2, and if d1 is

a divisor of d2, then E1 is contained in E2.
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Question 2: Embeddings (2)

As we go up a dimension tower the fields embed. So do the SICs
themselves embed?

Amazingly, it turns out that they do, in a very intricate and
surprising way which one would not have guessed. At least that is
the case in the handful of cases we have been able to check.

This raises the prospect of an inductive proof: calculate a SIC for
the bottom of the tower by brute force, and then lever one’s way
up.

It also gives a semi-positive answer to question 2. Knowing the
field doesn’t give you the geometry on a plate, just like that. But
it seems to give you some useful clues.

Number-Theoretic Aspects of Maximal Sets of Complex Equiangular Lines



Units (1)

Another important number-theoretic feature has to do with the
unit group.

The rationals are the set of all quotients of pairs of ordinary
integers n, m. It turns out that an analogous statement holds for
an arbitrary algebraic number field: its elements are quotients of
pairs of generalized, or algebraic integers.

Algebraic integers are the object of study in algebraic number
theory. Just as ordinary number theory studies the divisibility
properties of ordinary integers, so algebraic number theory studies
the divisibility properties of algebraic integers. In particular, those
properties are central to the theory of ray class fields.
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Units (2)

However, going from ordinary to algebraic integers introduces a
novelty. There are exactly two ordinary integers n with the
property that n−1 is also an integer (namely ±1). But in the case
of the algebraic integers in an algebraic number field there are
usually infinitely many. They form an Abelian group under
multiplication, which is called the unit group.

For example, the unit group for Q(
√

2) is the set of all numbers of
the form

±(
√

2 + 1)n

for n an arbitrary integer.
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Units and SICs

Let Dj ,k be the Weyl-Heisenberg displacement operators and Π a
SIC-fiducial. Then

Tr(Dj ,kΠ) =

{
1 j = k = 0
e
iθj,k√
d+1

otherwise

where the e iθj,k are phases. It turns out that they are units, in
every case examined.
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Units and SICs (2)

Let V be the group generated by the SIC phases, and let U be the
set of all units which also happen to be phases. Then it turns out,
in the 7 cases where we have been able to calculate the full unit
group8, that either

U = V ,

or else

U = V ⊕ Vc ,

where Vc is another sub-group having the same rank.
There are indications that the same is true in the cases where we
haven’t been able to calculate the full unit group.

8Calculating the full unit group is impracticable once the degree gets at all
large. Interestingly this is another case where there is a quantum algorithm
giving an exponential speed-up.
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Units and SICs (2)

We used the program Magma to calculate the unit group. Magma
doesn’t return an arbitrary set of generators, but a very special set
which is LLL reduced.

It turns out (in the 7 cases examined) that the SIC phases have
extremely simple expressions in terms of the set of generators
Magma returns. Indeed, in some cases they are in the set.

This is one of several features suggesting that the SIC phases may
be a very special set of numbers. Perhaps the numbers which play
the same role for ray class fields over a real quadratic field that the

numbers e
2πi
n do for cyclotomic fields.
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Hilbert again

It has occurred to many people that SIC existence might possibly
boil down to a set of identities involving special functions9

These considerations give some added interest to that idea. If you
could find such a set of identities you would not have solved a
Hilbert problem (because minimal SICs don’t generate the full set
of ray class fields). But it would certainly make the algebraic
number theorists prick up their ears.

9See, for instance, G. S. Kopp, “Indefinite Theta Functions and Zeta
Functions,” PhD thesis, University of Michigan (2017).
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