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Abstract

An understanding of mathematics often requires one to develop representational fluency – the
ability to think of concepts across a number of different representations. There is evidence
that the graphic calculator with its intrinsic use of a number of representations may be
employed to enhance this fluency for certain mathematical concepts. In this study we
investigated the value of the TI–92 super–calculator for building understanding of some of the
concepts associated with the Newton–Raphson method for finding zeros of functions, since
this can easily become purely a symbolic algorithm with little understanding of its geometric
basis. The results of this study with 16–17 year old students suggest that students developed
an understanding of some concepts involved with the method, as well as a positive view of the
role of the calculator.

Background

Many mathematics educators are becoming increasingly aware that student learning is often
restricted by taking place within the limited confines of a single representation. This word representation
has a number of different uses in the literature, but the idea presented by Kaput (1987,
p. 23) proposes that “any concept of representation must involve two related but functionally separate
entities. We call one entity the representing world and the other the represented world.” In a later paper
(Kaput, 1989, p. 169) he also refers to a representation system as a correspondence between two notation
systems (for example equations, graphs and tables of ordered pairs) co-ordinating the “syntax of one
notation system with the structure of another.”, and later still (Kaput, 1998) used the terms representation
system and notation system interchangeably. Of all the presentations and perspectives on representation,
this is the one which resonates best with us. This concept of different representations of mathematical
ideas introduces an important class of mathematical activity involving “translations between notation
systems, including the coordination of action across notation systems.” (Kaput, 1992, p. 524). This
involves manipulation of mathematical processes and concepts both within and between these different
representations. Lesh (2000, p. 74) has suggested the idea of representational fluency, or the ability to
think across representational boundaries as being  “at the heart of what it means to “understand” many of
the more important underlying mathematical constructs”. Such ‘fluency’ also includes the ability to
interact with these representations, using them as conceptual tools (Thomas and Hong, 2001), but doing
so, as Kaput (1998, p. 273) suggests being aware of the potential “inadequacy of linked representations
and the strong need to provide experiential anchors for function representations.” It appears that truly
successful mathematics students are those who have not only the ability to perform mathematical
procedures well but also have this representational fluency as part of their mathematical thinking. Among
researchers expressing this opinion are Moshkovitch, Schoenfeld & Arcavi (1993, p. 97), who suggest
that we should ask “Can the student move flexibly across representations and perspectives when the task
warrants it?… Does any curriculum we propose make adequate connections across representations and
perspectives? If not it had better be revised”. The implications for curriculum development if we want our
students to develop this fluency are clear.

Graphic calculators, including those with computer algebra systems (CAS) which are sometimes
called super-calculators, provide an environment with dynamic, linked, interactive representations which
may be used to enable students to interact with representations and access inter-representational thinking
in the school and tertiary mathematics curriculums. They also provide an opportunity to promote
investigation and discovery in mathematics classrooms through a multi–representational approach to
problem solving (Hong, Thomas & Kwon, 2000), and have particular value in investigations of functions,
since they can represent them as dynamically linked algebraic symbolic forms, ordered pairs, graphs and
tables of values. A key advantage of graphic calculators over computers is that they are generally more
accessible to students in many schools due to the price differential and low availability of computer
rooms (Kissane, 1995; Thomas, 1996). There are, of course, still equity issues surrounding their use,
which need to be addressed but given that such technology may be able to change the way students think
about mathematics, and bring about opportunities for new content, new curricula, and new teaching



techniques (Abramovich & Brown, 1999) it is worth pursuing. However, despite considerable effort to
change classroom practice to emphasise problem solving strategies, visualisation, pattern recognition, and
other more conceptually oriented techniques (Goldin, 1998), much of school mathematics is still devoted
to the manipulation of formal notational systems. Even with the introduction of calculators into a teaching
programme there may be very change and continued research is necessary (see e.g. Ruthven, 1990;
Dunham & Dick, 1994; Penglase & Arnold, 1996; Graham & Thomas, 2000) to provide evidence of
whether, and where and how, graphic calculators can usefully be integrated into the mathematics
curriculum in order to improve understanding.

In Korea there has tended to be an emphasis on mathematics as a collection of procedural skills
and calculators have not been used in the secondary school mathematics environment. Hence the present
research presented an opportunity to consider the value of graphic calculators in a setting where their use
has been minimal. The study adopted the approach of students using the super–calculator to learn the
Newton–Raphson (NR - also called Newton's) method of approximating zeros of functions, since this a
topic which has often been learned as a symbolic procedure with little presentation of the geometrical
basis of the method and hence there was an opportunity to generate inter–representational thinking. Our
module sought to do this by improving concept formation across representations, developing
mathematical reasoning, and linking different mathematical ideas via investigation.

Method

The Form 6 students (age 16~17 years) involved in this research project comprised a class from a
high school in Bundang, Korea. None of the students was experienced in using calculators in their
mathematics learning since they were not used at all in the school, neither had they previously covered
the NR method, since it is not in the curriculum of Korean schools, but is a tertiary topic. However the
class had studied calculus prior to the research. For Korean students the university entrance examination
is a major aim of their school study, not just because of its entry importance but also because the status of
one’s university will influence one’s social position for the future. Since the super–calculators and the
learning of NR method were both extra–curricular and had no direct influence on the students’ entrance
examination performance it was difficult to motivate them to make time for the research.

Instruments

A module of work, containing a description of the basic facilities of the TI-92 and addressing the
concepts involved in the NR method, was prepared using a ‘Press’, ‘See’, and ‘Explanation’ format (see
Figure 2). In the NR numerical method of solving equations, an initial value x=x1 near a solution is
chosen, the tangent to the graph at (x1, f(x1)) is drawn, and the next approximation is taken as the point
where the tangent line intersects the x-axis. In the module two methods were presented: first a visual
method using the TI-92 and based on the idea that we can often get nearer to a root α by drawing tangents
at estimates; secondly, an algebraic one using the equivalence of the gradient of the tangent,
f′ (x1) = f x
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 Two tests comprising questions on the NR method were compiled, based on standard school
calculus textbooks. These tests were essentially parallel tests using different numerical values, divided
into sections A and B, comprising questions highlighting process–oriented skills and conceptual
understanding, respectively. In order to assess students’ knowledge of the background pre–requisites for
understanding Newton’s method the tests also included questions on differentiation, limit and the use of
the NR formula x x
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. Section A in the tests comprised questions such as:
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A3. Calculate the second approximation x2 to the root of f(x) = 0, using the Newton–Raphson
method, when  f(x) = sinx – x, and x1 =

π
2 .

A4. What is the value of x at the point on the curve y = x2 + 7x – 8 where the gradient is equal to 1?

In contrast, section B sought to address students’ thinking about concepts when finding zeros or
solving equations. We wanted to know if they knew how and why the method worked and could apply
this understanding.



B3. If, in the Newton–Raphson method, for a function
y=f(x), f(x)>0, x1 = 2 and f′(x1)>0, where x1 is the first
approximation to the root, is x2>x1 or is x2<x1, where x2

is the second approximation to the root? Explain your
answer.

B4. a) Explain why x1 in the diagram alongside is an
unsatisfactory first estimate in the Newton-Raphson
method for the root x=a of y=f(x).

b) When would x1 be a satisfactory first estimate?

a

x1

 b

 f(x)

B7. How could you use the Newton–Raphson method to
find the x-value of the intersection of the graphs of
y=2e–x+cosx and y=2? Explain your method clearly.

B5. For the function f(x) shown below the 2nd

approximation x2 to the root x = a is exactly 0.8 closer
than the first approximation x1. What is: (a) the
relationship between f′(x1) and f(x1)?  (b) the gradient of
the chord joining the points where x = x1 and x = x2?

x1

B6.b) Draw a continuous function below where, if x1 and
x2 are the 1st and 2nd approximations to the root x=a using
the Newton–Raphson method, then x1 < a, and x2 > a.

c) What determines whether x2 and x3 etc. are less than a
or greater than a?

Figure 1. Some section B post–test questions on the Newton–Raphson method.

A selection of four of the section B questions on the Newton–Raphson method is shown in
Figure 1. The ideas behind some of these questions included improving representational fluency through
a geometric appreciation of:

• when the first estimate is likely to be unsatisfactory
•  the relationship between the gradient of the function at the first estimate and the relative position of the

second estimate
• the relationship of the sign of f and f′ to the position of the estimates.

For example, in B3, B4 and B5 a general function f(x) rather than an explicit function was given
discouraging students from immediately working through a procedure, but requiring an understanding
and application of the relationship between the sign of f(x) and f′(x) and the relative position of the
estimate of the zero.

Procedure

The first researcher met twice with the students’ normal classroom teacher to answer his questions
and to make sure that he felt comfortable with the TI–92 calculator and the material to be presented. Prior
to the pre–test the class teacher gave a tutorial of 50 minutes duration to familiarise the students with
differentiation of exponential and trigonometric functions, which they had not previously met, as well as
an outline of the NR method. Following this the teacher taught the class for four hours, divided into two
intensive sessions on two consecutive days, covering basic facilities of the calculators including graphs
and tables, how to find limits and a gradient function and how to implement the NR method both visually
and symbolically on the TI–92. The research project took place on November 18th and 19th, with the
post–tests on November 20th. Each student had access to their own TI–92, which they kept with them for
the whole of the time of the study, including their time at home. During lessons, which were observed by
a researcher, the class teacher stood at the front and the class sat in traditional rows of desks. He
demonstrated each step, employing a calculator viewscreen and projecting the image on his calculator
using an overhead projector, while the students followed in the module and copied his working onto their
own calculator. Following this the students, working individually but discussing progress with others,
attempting the questions and investigations in the module. One problem which arose was that the Korean
students had some anxiety caused by the calculator commands, since these commands appeared only in
English. As each one was projected it was necessary for the teacher to translate it into the Korean version
for the students. Some confusion ensued until the students became more accustomed to the English
commands. The psychological anxiety caused by this could have affected their self-confidence and hence
their ability to build mathematical understanding (Kota & Thomas, 1998).

A section of the module illustrating the layout, the teaching approach used, and giving one of the
two methods used for solving the equation sinx = 2x – 1, is presented in Figure 2.



Example. Solve the equation sinx=2x–1 using the Newton-Raphson method. Give the answer to 4 d.p.
The first step  is to define the function  y = sinx – 2x + 1 and sketch its graph:
Press See Explanation

Method 1. The function is defined using
y1 = sinx – 2x + 1

The first tangent line starts at the point
x1= 1. The equation of the tangent is
given as y = –1.46x+1.301. This will be
used to find x2 (which should be closer
to the root than x1), by seeing where it
crosses the x-axis.
We can see that the next point
x2= 0.8911

The equation of the tangent is given as
y  = –1.372x + 1.218 at the point
x2=0.8911. This will be used to find x3

(which should be closer to the root than
x2).

This was then repeated until x = 0.8882 was obtained.

Figure 2. A section of the module on the Newton–Raphson Method showing the layout.

After the teacher’s explanation, the students spent the rest of the time working on the practice
exercises and investigations while the teacher circulated and assisted with any problems. An example of
the type of investigative questions the students worked on using the calculators during the module is
given below.

A function f(x) is such that: f(x)=0 has only 2 solutions x=a and x=b. Starting the Newton–Raphson method
with x0>b it converges to x=a, where b>a. Can you  (i) Sketch such a function f(x)? (ii) Find a possible
formula for such a graph?

In order to answer a question such as this one can use basic concepts and principles to investigate
possible solution functions, visualising their graphs. This requires linking data represented algebraically
to a graphical representation, including tangents. Finally one has to model the solution symbolically,
moving in the opposite representational direction. Following the second tutorial the students were given
the post-test, an attitude test and a questionnaire about the teaching programme, their learning and the
calculator.

Results

Qualitative and quantitative analyses of the data were both used to try to determine:
• any differences in student performance on procedural and conceptual questions
• student attitudes to the work on the calculator
• any other apparent influences on learning.

Table 1
A comparison between the overall, section A and B pre– and post–test results

N=20 Pre-Test Mean Post-Test Mean t p-value
Overall 5.8 13.05 6.16 <0.00001
Section A 3.15 7.15 10.28 <0.00001
Section B 2.7 5.90 3.26 <0.005

Firstly, as Table 1 shows, there was a significant overall improvement in the results of the
students, in both the procedural and conceptual questions. This indicated that the work on the calculator
module had influenced the learning of the NR method. Since these students had not studied the NR
method previously other than for the 50 minute preliminary lesson, these results are not too surprising,



but they do indicate that the programme using the calculator is a suitable method for learning both the
skills involved and the concepts underlying the NR procedure. We are currently involved in comparing
these results with another group of students who had previously learned the NR method without
calculators and then used the same module afterwards.

Of course the benefit of this approach is not likely to be universal and so we compared the student
performance on the individual questions to gauge where the improvement particularly occurred. Table 2
shows that the students did significantly better on questions A1–3, and B1, B3, B4, B6, and B7, while
Questions A4 and B5 proved very resistant to improvement.

Table 2
The Korean pre– and post–test section A and B mean individual question scores

Question Number
(Max score)

Pre–test
mean

Post–test
mean

t p

A1 (3) 0.75 2.45 8.36 <0.000001
A2 (3) 1.6 2.9 6.72 <0.000001
A3* (2) 0.05 0.85 4 <0.0005
A4 (2) 0.75 0.95 0.78 n.s.
B1 (4) 1.3 2.4 2.60 <0.05
B2 (2) 1.2 1.35 0.65 n.s.
B3* (2) 0.15 0.65 2.03 <0.05
B4* (3) 0 0.4 1.90 <0.05
B5*(2) 0 0.05 1.45 n.s.
B6* (4) 0 0.45 2.02 <0.05
B7* (2) 0 0.6 2.85 <0.05.
* The questions on the Newton–Raphson Method

Question A4 is a standard calculus problem and the reason for the poor result here is not readily
apparent. To answer question B5 (see Figure 1) students were required to carry out two procedures, doing
so in the context of a geometrical representation of the NR method. It appears that the level of
representational fluency required here to relate analytical and geometrical properties in a single context is
difficult to acquire and requires further attention.

Individual students

A consideration of the work of some individual students will be informative in terms of their
representational thinking about the method. Question B6 required students to be able to relate the relative
position of the first and second approximations to the concavity of the graph of the function.

Lee 4 Post–Test Lee 5 Post–Test

[x3 less than x2, x4 less than x3, x5 less than x4, and xi+1 less than xi is
getting closer to the root, finally xi becomes x = a]

Figure 3.  Student Lee 5’s pre-test and post-test working for question B6.

Neither Lee 4 nor Lee 5 made any attempt on this at the pre-test, however, at the post-test they
both drew a graph concave down for x<a , showing conceptual understanding of the geometric
significance of the first approximation (see Figure 3). Lee 5 actually shows the first approximation, on the
left of a, and a tangent that crosses to the right of the root a, before subsequent approximations approach
a. Lee 4 marks x1 and then describes how each successive approximation after the first is less than the one
before. Lee 4’s section B showed a 74% improvement, with 2 (10%) in the pre-test but 16 (84.5%) out of
19 in the post-test. She made no attempt at question B7 on the pre-test, however, in the post-test her two
solution methods (in Figure 4) clearly show that she understood how the method works geometrically as
well as algebraically.



Post–Test Solution

Translation from Korean:

[Method 1: i) Define  y=2ex+cosx-2
of a point of intersection on x-axis.
ii) Define x=1, (iii) next(1)=0.541,
iv) next(.541)=0.5538, v)
next(0.5538)=0.5538

Method 2: i) Draw the graph
y=2ex+cosx-2 ii) Find the tangent
line on x1=1, -1.577x+0.8533=0,
x=0.5411 iii) Find the tangent line
on x2=0.5411, –1.679x+0.93=0,
x=0.5539, iv) Find the tangent line
on x3=0.5539, -1.675x+0.9279=0,
x=0.554, Find the tangent line on
x4=0.554, -1.675x+0.9279=0,
x=0.554.]

Figure 4. Student Lee 4’s conceptual improvement on the Newton–Raphson method.

In both of these she uses a calculator method from the module. In the first she uses a calculator
version of the ‘standard’ algorithm, including the English word ‘next’ which was introduced in the
module, while the second involves finding the equation of the tangent and using its intersection with the
x-axis to find the next approximation. While there is no diagram drawn, her use of the words ‘tangent
line’ and understanding of the approach show her geometric understanding, and thus representational
fluency is apparent in the solution. The working of Nam 2 and Kim 2 on question B7 (see Figure 5) also
displays a conceptual knowledge of the geometrically based process of NR.

Nam 2 Post–Test Kim 2 Post–Test

Figure 5. Post-test solutions to question B7 showing links to tangents.

Unable to tackle the question in the pre-test, here they have both correctly identified the function
to use and Kim 2 has also written the normal algebraic formula. However, in the working, which has
clearly been accompanied by the GC, like Lee 4 they too list the successive approximations accompanied
by the equation of their tangents requiring an inter-representational perspective on the method. Question
B4 (see Figure 1) presented a graph and required students to relate this to an algebraic expression for the
range of values of x for which the first approximation x1 would enable one to approach the root a. As
Figure 6 shows, student Lee 4 didn’t seem to understand the meaning of this question in the pre-test, he
just defined the gradient function f′ (x) as ax +b, however, his solution in the post-test shows that he could
relate the idea that the approximation needed to lie between a and b to an inequality. Of course x1 may lie



a little further to the left of a too, but he has the essence of the solution, probably referring to x2.

Pre–Test Post–Test

[When f′(x) = ax + b, b ≠ 0]

Figure 6. Student Lee 4’s pre-test and post-test working for question B4.

We do not need to speculate about the students’ understanding of the geometric principles behind
the NR method since a number of them described their conceptual understanding in response to the
question  “How does the Newton–Raphson method work?”:

Lee 5: To find the root for the given function, find the gradient of the tangent line f′(x), keep going the
same way; finally we can find the closest root.

Lee 3 Take some point x1, draw the tangent line at the point. Find the other intersection point x2 on
the graph. In the same way, finally find the intersection point x on the x-axis.

Chun Define some value x1, draw the tangent line at x1. In the same way, define again the other value
x and draw the tangent line on the value.

Lee 2 Start with the initial point. Draw the tangent line. Take the approximation closer to the root.

All of these, and others, refer to tangents, and while the translation causes some problems, they
clearly have the idea of using these to get closer to the root. They are developing representational fluency.
When asked how the module had affected their understanding of the NR method they replied:

Lee 5 When I directly drew the graph, I could understand what the Newton-Raphson method is.
Um It was quite helpful. Sketching the graph and tangent line, the root could be found easily.
Lee 4 I could directly draw the tangent line and confirm what the method of Newton-Raphson is.

They also appreciated when things might go wrong:

Lee 4 If the differentiated value is 0, then we can not find the second approximation x2 to the root.
Um If the tangent line for the value does not intersect the x-axis, we can not find the root.
Son If the first approximate root is not defined appropriately, Newton-Raphson method can not

be used any more.

Student Attitudes

The Korean students had never used a calculator in their mathematics learning and live in a
country where the prevailing opinion has been that mathematics for secondary school students should be
conducted without technological aids, and hence it was of great interest to consider their view of the
calculators. After their tutorials, when asked ‘Were there any advantages in using the TI–92 graphic
calculator?’, 11 (55%) of the students replied that they made complicated calculations easy to solve, 6
(30%) of the students replied that the drawing of graphs was convenient, 3 (15%) of the students replied
that the calculator was useful to get the concepts. However, when asked what difficulties they had
encountered 7 (35%) of them replied that the commands on the calculator were difficult because they
were in English, and 6 (30%) responded that using of calculator was confusing and difficult, primarily
due to problems locating the correct keys for a given function. Generally their view of the technology was
very positive and this was confirmed by the responses to the Likert attitude scale questions. Each question
was scored with an integer from 1 to 5, and scores were reversed on negative questions so that in every
case the higher the score the more positive the attitude to calculators. Overall the mean score was 3.96
(t=4.17, p<.0005), and the mean scores for some of the questions are given below.

I think the calculator is a very important tool for learning mathematics 4.0
I feel comfortable using a calculator for solving mathematical problems 4.0
Students should use calculators more often in mathematics 4.0
I want to improve my ability to use a calculator 4.5
All students should learn to use calculators 4.0
Mathematics is easier if a calculator is used to solve problem 4.7
When I use a calculator, my learning improves 4.0
Using calculators makes students better problem solvers 4.6

Of course this was a small scale study with a group of users new to the calculators, so it is difficult
to separate out motivational aspects due to the novelty of the GC use from genuine progress in learning.



However, the study does suggest: that novice users can benefit in terms of both procedural and conceptual
knowledge from the GCs; that the GC can be successfully applied to novel curriculum areas; that the
students liked the calculator methods presented in the module of work and leaned to apply them; and that
the technology is motivating for the students. Considering the short learning time these results are
encouraging and suggest that it is worth pursuing this approach to representational fluency, helping
students to make connections across representations. However, it is our opinion that much thought and
care needs to be put into preparing well structured learning material and to assisting classroom teachers in
its presentation. We hope that other studies may be undertaken to replicate the outcomes described here in
other curriculum areas.
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