Chapter Nine
Statistical Thinking in Empirical Enquiry

Advancing technology is inexorably shifting the demémdstatisticians from
being operators ofmechanicalprocedures to beinghinkers. Coupledwith
this is a perceived lack of development of statistical thinkingtudents This
chapter discussesthe thought processes involved irstatistical problem
solving in the broad sense from problem formulation to conclusiodsaws
on the literature and in-deptinterviews, with statistics students and
practising statisticians, whichimed atuncovering their statisticalkasoning
processes. Frorese interviews fronall four exploratorystudies, a four-
dimensional statistical thinkinframework for empirical enquiry hasbeen
identified. It includes an investigatiwycle, aninterrogativecycle, types of
thinking and dispositions. There are a number of assoadeatentssuch as
techniquedor thinking and constraints on thinkinglhe characterisation of
these processes through models, that can be used as a basis for thinking tools
or frameworks forthe enhancement giroblem-solving, is begun in this
chapter. Tools of this form woulcbomplement the mathematicalbdels used
in analysis.Thetools would also addresareas of therocess ofstatistical
investigation that themathematicalmodels do not, particularly in areas
requiring thesynthesis ofproblem-contextual and statisticahderstanding.
The central element ofpublished definitions ofstatistical thinking is
“variation.” The role of variation in the statistical conception of real-world
problems, including the search for causes, is further discussed.

Introduction

“We all depend on models toterpret oureveryday experiences. \W@erpret what we
see in terms ofnentalmodelsconstructed on past experienaad education.They are
constructs that we use to understandphttern ofour experiencesBartholomew(1995,

p. 6).

“Models, of course are never true, but fortunately it is only necessary that they be useful”
Box (1979, p. 2).

This chapter abounds with models. Hopefully some are useful!
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My supervisor, astatistician, wrotethe following about our 1995 encounter: This
research had its genesis in a clash of cultures. Chris Wild is a statistician. Like many other
statisticians, he hamade impassioned pleafor a wider view ofstatistics in which
studentdearn “to think statistically’(Wild, 1994). Maxine Pfannkuch is anathematics
educatorwhose primary research interests amew in statistics education. Conception
occurred whenMaxine asked“What is statistical thinking?” It is not auestion a
statistician would ask. Statistical thinking is the touchstone at the core of the statistician’s
art. But, after a few vague generalities, Chris was reduced to stuttering.

The desire to imbustudents witH'statistical thinking”hasled to the recentipsurge of
interest in incorporating real investigations into statistics educadiowever,rather than
being a precisely understoatka orset ofideas,the term “statistical thinking” is more
like a mantra thaevokes things understood at a vagusuitive level, but largely
unexamined Statistical thinking is the statistical incarnation “‘ebmmonsense”. “We
know it when wesee it”, or perhapsnore truthfully, its absenceis often glaringly
obvious. And, for most statisticians, it has been nmolne a product of experience, war
stories and intuition than it is of any formal instruction that they havetheeungh. In his
vote of thanksfor Bartholomew(1995), T.M.F. Smith joked, ‘it seems to mehat
statistics is alatent variable; it is aterm which is commonly used tdescribe a
phenomenon but is difficult to defiaad isnot directly measurable Howeverwell this
captures the essence of statistics, it does so even better for statistical thinking!

There is a paucity of literature on statistidhinking. Moore (1997) presented the
following list of the elements of statisticéhinking, as approved bthe Board of the
American Statisticahssociation (ASA) inresponse taecommendations frorthe Joint
Curriculum Committee of the ASA and the Mathematical Association of Amehieaneed
for data; the importance of data production; the omnipresenearability; the measuring
and modelling of variability However,this is only a subset of whd#te statisticians |
have talked to understand by “statistical thinking” or “thinking statistically.” In the quality
area, thderm is oftenused andnuchhasbeen written about statistictidinking, but the
term is used in a specialised sense to address a specific audience. Tceeatdmtyet is a
codenamainder which garticular set ofnsights abouprocessimprovementhas been
promoted. Snee (1990, p. 118) (see &8stz etal., 1997)defined statistical thinking as
“thought processes, whichecognisethat variation is all around us andpresent in
everything wedo, all work is aseries of interconnectedrocessesand identifying,
characterising,quantifying, controllingand reducingvariation provide opportunities for
improvement.Mallows (1998) has attempted to broaden these conceptions.

The usual panacdar teachingstudents to thinlstatisticallyis, with apologies tdMarie-
Antoinette,“let them doprojects”. Although this enablestudents texperience more of
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the breadth of statistical activity, experience is not enough. The cornerstone of teaching in
any area is the development of a theoretisttlicture with which tomake sense of
experience, to learn from it and transfiesights to others. Amxtensive framework of
statistical model$asbeen developed to dealith technicalaspects of thedesign and
analysisthat are applicable once the problamd variables have been defined and the
basic study design has been decided. An enormous amostattistical thinkingmust be
done, however, before thstage is ever reached and in mapping between information in
data and context knowledge, throughout the whole statistical process. Tliteeinsthe

way of scaffolding to support such thinking (see Mallow898). Experience in the
quality arena and research in education have shown that the thinking and solvie
performance of most peopt&an be improved by suitable structuredmeworks(Pea,
1987, p. 91; Resnick, 1989, p. 57).

We have begun trying to identify important elements from the rich complexity of statistical
thinking. Inaddition to the literature and ngwn and my supervisor’'s experience, the
discussion draws upomtensive interviews with students of statistics and practising
professional statistician€ne set of elevenstudents,referred to as “students” were
individually given a variety of statistically based tasks ranging from textbook-type tasks to
critiquing newspaper articles in two one-hour sessions. They were interviewedheljile
solved the problems or reacted to the information. Another set of five students, referred to
as “project students”, wereleaders ofgroups of students doingeal projects in
organisations which involved taking a vaguelgdicated problenthroughthe statistical
enquirycycle (seeFig. 9.1(a)) to asolutionthat could baused bythe client.Each was
interviewed for one hourabout theirproject. The six professionalstatisticians were
interviewedfor ninety minutes about “statistical thinking” and projects they had been
involved in. The “project students” and statisticians interviews were structured around the
statistical enquincycle and were irthe form of a conversation, whicteflected on their
approach and thinking during the process of an investigation. This chaptetismapt to
synthesise a more comprehensive picture from all these interviews and the literature.

We are not concerned with finding someat encapsulation of “statistidhinking.” The
concerns are deeper than this. This is an investigationthatoomplex thoughtrocesses
involved in solving real-world problems usistatistics with a view to improvinguch
problem solving. We are thus interested in thinking patterns involved in praialeing,
strategiesfor problem solving, and the integration of statistical elements within the
problemsolving. This discussion is organisedo a statistical thinkingramework in
Section9.2. Section9.3 explores “variation.” It looks astatistical approaches teal-
world problems fromthe starting point of omnipresenariation. Section9.4 takes
lessonslearned in Sectio®.2 and gives a fragment of a thinking tolr improving
investigative skills. Section 9.5 draws overall conclusions.
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Figure 9.1 A 4-dimensional Framework for Statistical Thinking in Empirical Enquiry

9.2 A Statistical Thinking Framework for Empirical Enquiry
Applied statistics is part of the information gatheramgl learningprocess which, in an
ideal world, is undertaken to inform decisions aadtions.Every problem an applied
statistician works on is embedded in a larger problem, the “real prolffend. MacKay,
1996, personal communication). Surrounding tlasger problem is &dody of “context”
knowledge. Statistical investigation is carried out because pedpkm their context
knowledge insufficientor their desireduses, be it as a basis fdecision making and
action or simply for understandin§tatistical investigation iased to expanthe context
knowledge-base. Thushe ultimate goal of statisticahvestigation islearning in the
context sphere. Learning is much more than collectingpformation, it involves
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synthesisinghe new ideas and information with existing ideas and information into an
improved understanding.

From the interviews we have built up the four dimensional framesiookvn in Fig. 9.1
which seeks to organise sometbé elements of statistical thinkirduring data-based
enquiry. The thinker operates iall four dimensions at once. Fexample the thinker
could be categorised as currently being in the plan stage of the Investigative Cycle
(Dimension 1), dealing with some aspect of variation in Dimension 2 (Types of Thinking)
by criticising a tentative plan in Dimension 3 (Interrogative Cycle) driven by scepticism in
Dimension 4 (Dispositions). (See Chapter 8.)

9.2.1 Dimension One: The Investigative Cycle

The first dimension irFig. 9.1(a)concernghe way oneacts and what one thinks about
during the course of astatistical investigation. For thighere is an adaptation of the
PPDAC model of MacKay and Oldfor(l994). The statisticians | interviewed were
particularly interested in giving prominence to the eathBges of PPDAC, namely, to
grasping the dynamics of a system, problem formulation, and planningeasiirement
iIssues (seeChapter 7). Cox’s (1997)evaluation of the current state of statistics
iluminates much ofPPDAC. Section 9.4 gives somedetail on the measurement
component of the plan stage.

A PPDAC cycle is concerned with abstracting and solvistasstical problengrounded

in a larger “real” problem. Most problems are embedded in a desire to change a “system”
to improvesomething Even ostensibly curiosity-driven research is usually justified by
the idea that the accrueshderstanding will have londerm practical benefits. A
knowledge-based solution tbe real problenrequiresbetter understanding of how a
system works and perhaps also howwilt react tochanges to inpustreams, settings or
environment. Certain learninggoals must bemet to arrive at the desiredevel of
understanding. A2PDAC cycle is set off to achieve each learningoal. Knowledge
gained and needdentified within these cycles mapyitiate further investigativecycles.
The conclusions fronthe investigations feed into an expanded corkexiwledge base
which can then inform any actions (Fig. 9.2).
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Figure 9.2 The Setting for Statistical Investigation

9.2.2 Dimension Two: Types of Thinking

A number of types of thinking emerged frotine statisticians’ interviews and were
subsequently refined and modified when | applied them to the student and project-student
interviews (see Chapter 8). The resulting categories are shown in Fig. 9.1(b). Some types
of thinking are common to all problem solving. These general types of thinkingjatesl

to the statistical context in Secti@n2.2.2. First, howeverthe types of thinkingthat are
inherently statistical are concentrated upon.

9.2.2.1 Types Fundamental to Statistical Thinking
The types of thinking categorised under this headingig 9.1(b) are, weelieve, the
foundations on which statistical thinking rests.

Recognition of the need fodata The recognition of the inadequacies of personal
experiences and anecdotal evidence leading to a desire to base decisions i@fiailere
data is a statistical impulse.

Transnumeration The most fundamentaidea in a statisticahpproach to learning is
that of forming and transforming data representations of aspects of a system to arrive at a
betterunderstanding ofhat system. Ihave coined thevord transnumerationo refer to
this idea. It isdefined as “numeracy transformatiomade to facilitateunderstanding.”
Transnumeration occursvhen ways of obtaining data(through measurement or
classification) ardound that capture meaningful elements of the atem. It occurs
everytime anew way of looking athe data ifound that conveys new meanindviany
graphical representations may be lookeugh to find severakally informativeones.
Looking for new insights, the data may beae-expressedvia transformations and
reclassifications. A variety oétatistical models might beied. And at the end of the
process, transnumeration happens yet again when data represeatatidissoverethat
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help convey the new understandings about the real system to others. Transnumeration is a
dynamicprocess of changing representations to engender understavidifoyvs (1998)
would appear to be advancing a similar idea.

Variation: The recognition of the role of variation and acting iway that takesthat
variation intoaccount, is what makes thinking statistical,the modernsense anyway.
The ASA resolution, andMoore and Snee’s discussions dftatistical thinking all
emphasise the importance \@riation. The last element of the ligbllowing “variation”,
namely “for the purposes of explanation, prediction, eontrol” is in the original
statement of Snee (1990), albeit with a process-improvespamtbut hasbeen dropped
from the ASA statement. It is a criticamission.Variation isnot measured anchodelled
in a vacuumThe purposeinfluences theway in which it is done. IrSection9.3, the
variation theme is considered in much greater detail.

A distinctive set of models The main contribution of the discipline of statistics to
thinking hasbeen a distinctive set @hodels, or frameworks, fdhinking aboutcertain
aspects of investigation. Statistics deals wité process ofscientific investigation in a
genericway. The giantswho laid the foundations forthe subject, (e.g. Pearson and
Fisher) were complete scientists wéa@ still revered in fields other thatatistics.Since
the 1930’s, mostactivity in statisticshasconcentrated othose parts ofhe processthat
most obviously benefit from a geneapproach. In particular, methods for study design
and analysis have been developleat flow from mathematicalmodels whichinclude
random components (see Mallol€98). Recently, howeverthere is agrowing desire

to nudge statistics kttle further backtowards its roots irscientific inference(Cobb,
1991; Biehler, 1994a). Large parts of theestigativeprocess, such ggoblem analysis
and measurement, have been largely abandoned by statisticians and statistics educators to
the realm of the particulaHowever,there are more valuable gendassonghat can be
uncovered about these other parts of the investigative process using other mtmdding
There is a need to expand teachof the models used in statistics.

Context knowledge, statistical knowledge and synthedike raw materials on
which statistical thinkingworks are statisticaknowledge, context knowledge and the
information indata. The thinking itself is thesynthesis ofthese elements to produce
implications, insights and conjectur&3ne cannot indulge in statistical thinking without
some contexknowledge.The arid, context-free landscape on which so maxamples
used in statistics teaching are built, may ensure that fangders of students neveven
see, let alone engagen, statistical thinking. One has to bring tobear all relevant
knowledge, regardless of source, the task inhand,and then tomake connections
between existing context-knowledge and tasults of analyses to arrive at meaning. In
large scale investigations it is selddnat therequired knowledge isll resident in one

199



person.Major investigations areéeam efforts which bring together people of differing
expertise. Fig. 9.2mphasisethe synthesis ofideas and information frorthe context
area and from statistics.
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Figure 9.3 Interplay between Context and Statistics

Fig. 9.3(a)traces thglusual) evolution of amdeafrom earliest inklingthrough to the
formulation of a statisticajjuestion precise enough to be answeredhieycollection of

data, andhen on to a plan of actioffhe earlieststagesare driven almost entirely by
contextknowledge. Statisticalknowledge contributes more #e thinkingcrystallises.

Fig. 9.3(b) illustrates the continual shuttling backwards and forwards between thinking in
the context sphere and the statistical sphere. This goes on all the time thr&lRDAG.

For example, athe analysis stage questiomase suggested byontext knowledgehat
require consulting the data — which temporaplyshesone into the statisticalphere —
whereupon features seen in the data propels one back to the sphierd to answer the
questions, “Why is this happening?” and “What does this mean?”

9.2.2.2 General Types of Thinking Applied in a Statistical Context
Strategic thinking

By strategic thinking, it is meant thinkirgmed at decidingipon what onevill do (next
or further into the future) anlklow one will doit. This includes such things aplanning
how toattack atask; breakingasks downinto subtaskssetting deadlinesor subtasks;
division of labour; andnticipatingproblems and planning to avotdem. Animportant
part of strategic thinking is having an awarenesth@tonstraints one is working under
and taking them into account in planning.

Real statistics isessabout thepursuit ofthe “correct”answer in somedealistic sense
than about doinghe best onecan withinconstraints Many factorslimit the quality and
effectiveness of théhinking. Some othese factors are internal to ttl@nker. Lack of
knowledgeobviously constrains thinking. Unfortunately, what we “know” is not only
our greatest asset but also our biggest curse bettaifeeindations of what we “know”
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are often nosoundly basedOur preconceptiongan lead usastray in manyways, for
example, by blinding us to possibilities because what we “know” determines where we
look, and by desensitising us to important informatibime challenging of something we
“know” and take forgranted can remove an obstacle &adl tonew insight. Thisoften
occurs whemeople with differentbackgrounds discushe sameproblem. Consulting
statisticians see it avork in their clientswhen aquite innocent questiosurprises the
client, loosens a previously held preconception, and ledtis tdientseeing the problem
in a new way. We tend to solve problems by following “precedentsdppliedresearch,
this happens all the time and often the statistical methods pfebedentsre inadequate
As far asdispositions(Dimension 3) areconcerned, someone who It curious,
imaginative, sceptical and engaged willlbsseffective than someongho is. There is
also arability factor operating. Faced with the same set of information, some pedple
be better at makingseful connections and graspitite essential features thathers.
And inadequate communication skilisiit the ability to extract vital information and ideas
from clients and others.

Other constraints are due to the environment the thinker is operatifgese include the
general time, moneyand materials constraints, the imperfection of all human
communication which results in misunderstandings and gaps in transmississeafial
knowledge, andimitations of thedataavailable. Veryoften, the problem wewvould like

to solve is simply not soluble on the basigh# information we caget. For example, it
may be impossible to capture with feasible measurepr@sesseshe characteristics we
would like to capture. Itmay be impossible to sample the desired population or even a
good approximation to that population, and so on.

The majority of applied statisticatork done bystatisticians is done on problerogned
by someone else. lotherwords, the statistician is in theosition of having to satisfy
“clients.” This bringsadditional constraintsvhich run deeper than time-and-materials
constraints.Major decisionsare madeby, or must beclearedwith, the client. The
problem territory tends to be mapped out and even ring-fenced by the clientiehhés
often the chief source of context information so the statistician isntptconstrained by
the quality of communication and the extent of the cligktewledge,but will alsotend

to take onboard the client’s preconceptions. Agshe client is the finalarbiter, the
statistician is constrained by whtte client canunderstand and accept. Thean be
stronglyinfluenced by a number of what might be describegsahological factors
Statisticians have to gradually build up the cliettist intheir judgement and abilities.
An important consideration in “building trust” is not taking clients too far from territory in
which they feel secure. Animportant element in cliensecurity is, in the words of
General, “what habeen done irthe field before” | have callecthis the first-in-the-field
effect Early work in afield tends totake on an authority afs own whether onot it is
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warranted. Itcan influence every decision in the investigagprecess,right through to
presentation. Aelatedpsychology ofmeasurement effectoncernsthe sanctity of the
measured variableTo the client, the way in which a varialllasbeen measured takes on
a meaningfulness and inviolabilitilat a statistician mighdisregard,given the arbitrary
elements in the initial choice of thvariable.The use of transformations in analysis is an
area in which thesmssuescome intosharp focusChapter 7 gives a much madetailed
and wide-ranging discussion, derived from the statisticigusiviews, ofthe realities of
working with clients (Pfannkuch & Wild, 1998b).

Modelling

Constructing models and using them to understand and predict the behaviour of aspects of
the worldthat concern useems to be eompletely generalvay of thinking.All models
(e.g. statistical andprocess models)are oversimplifications of reality inwhich
information is necessarilgiscarded. We hopthat we have caught the essential features
of a situation and thkss ofinformationdoes notinvalidate our conclusions. Fig. 9.4
illustrates the way in which we learn about the conteality as a statistical investigation
proceeds. As the initial quotation frobavid Bartholomew makes clear, “understanding”
builds up in mental models of the contexteality. These modelsre informed by
information from the context reality. In an ideal world, we wouldc:twetinually checking
the adequacy of the mapping between model raatity by “interrogating” the context
reality. Some of the information we seek and get from the context reality is statiateal
We build statistical models to gain insights from this information (“interpret”) wided
back into the mental model. “Statistical models” here is more general than sontikéhing
logistic regression. It refers tall of our statistical conceptions of the problethat
influence how we collect dataabout thesystem and analysthem. Fig. 9.4 also
incorporates the role of statistidahowledge and experience. Mosbviously, it is a
major determinant of the statistical conceptionsfaren in order to obtain and analyse
data. Additionally, depending on the problem and the education and experience of the
thinker, statistical elements can also be part of the way we think abowbtiteand thus

be integral parts of our mental models of the context reality.
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Figure 9.4 Learning via Statistics
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Applying techniques

The most basic problem solvingchnique ofall is to find a way of mapping a new
problem onto a problerthat has already beersolved sothat thepreviously devised
solution can be applied orldapted. The whole discipline of statistics is itself a
manifestation of thistrategy.Statistical theoryimprovesthe efficacy and efficiency of
this mappingprocess bycreating problem archetypes and linkitiggm to methods of
solution. Additionally, applied statisticians asdways borrowing problem-solvingleas
from previous experience with other problems and aflagasets.The problemwith the

use of precedents that is noted in Section 9.2.2.2 is the way that estgigtiedtends

to reign even thoughhe precedents may be deficient. The practising statisticians
interviewed had stories aflients wanting to coptatistical method$rom previously
published papers whetee methodsvere manifestly inadequate, even in papers from
prestigious journals.

Implementation of the problem-archetygieategy, andndeed the practical application of
any technique, algorithm oconcept, involvesthe threesteps shown in Fig9.5.
Instruction tends to focus on step Bechanical application. However, steps 1
(recognition) and 3 (interpretation in context) dnest, vital to step 2 having any utility,
and secondinordinately more difficult. This iparticularly truefor the recognitiorstep.
Recognisinghat anew problem is the same in essentizys as groblem previously
seen in a quite different context is an incredibly difficult skill to acgaimd, for many
people, requires long experience. Thispectshould not be minimisedThe project
studentsneeded to makeonstant external checks with thewpervisorabout whether
they were on the right track.)

Interpret Recognise

rilt applicability
Apply/

method

Figure 9.5 Using any Technique

To use statistics, we recognise elements of our context that can be usefully mapped onto a
model (aprocess ofabstraction fronthe particular to thgeneric), use what hdseen
determined by abstract reasoning about operating within that modeheamde map the

results back to context (from the generic to the particular). The approach is etfioemt

it works but its utility restentirely on the ability tgperform themappings.The enabling

skills of recognising useful common structure in diversitg extremely difficult to
establish.One can dealith the mechanics gfrocedures by simpltalking aboutthem,
establishinghemwith a few exercises antthen movingon. Statisticalthinking, which
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occurs at the interface between statistazdivity and context-matteknowledge, ismuch

more difficult tofoster. Synthesis, insightyitical thinking and interpretation happen in

the realm of the particular and require exposure to large numbers of disparate situations to
establish useful mental habits (cf. Wild, 1994).

It is characteristic of statistics that we apply relatively sophisticated statisiozils to
the analysis of data and experimental design. Of all the statisticians interviewsasler,
only the one operating in quality improvement seemeaastanyformal tools to analyse
the nature of the probleitself. Forthe others, itseemed to be process ofimaginative
construction of anental model of theystem,without discernible organisatioMost of
themwere working ondata obtainedrom others,and theirneeds for systermodelling
were presumably lower. Problem solving models will be discussed in Section 9.4.

The type of thinking $eeking explanations has notbeendiscussed in this section,
but will be an important theme in Section 9.3.

9.2.3 Dimension Three: The Interrogative Cycle

The Interrogative Cycle illustrated Fig. 9.1(c) is inconstant use istatistical problem
solving. From adetailedanalysis ofthe project-students’ andtudents’ transcripts, it
appears that the thinker is always in one of the interrogative states while psaibamg

(see ChapteB). The cycle applies anacro-levels, but also at veetailed levels of
thinking because the interrogative cycle is recursive. Sub-cgademitiatedwithin major
cycles, e.g. the “checking” step of any cycle can initiate a full interrogative sub-cycle. The
ordered depiction on a wheel is an idealisation of wwleahaps should happen. reality

steps are often missed. The components are now explored in more detalil.

Generate By this ismeant imaginingand brainstorming to genergtessibilities, as an
individual or in agroup. It might be applying this to a searébr possiblecauses,
explanations and mechanisms, to the ways parts of a systemimegtaiateand to other
building blocks ofmentaland statisticalmodels. Itmight be applied to théypes of
information needed to beought tdfill an informationgap or to check out adea, or to
plan an approach to a problem sab-problem.The generation of possibilities may be
from the context,the data or statistickinowledge and apply tthe presenproblem, or
may be registered for future investigation (hypothesis generation).

Seek Generation tends to be followed by a seekingesalling of information. This
may be internal oexternal. Forinternal seeking, we observpeople thinking “Iknow
something about this” and digging in their memories for the relduanwledge.External
seeking consists of obtaining information and ideas from sources outside the individual or
team. Working statisticiangalk to other people about theproblems — clients,
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colleaguescontext-matterexperts,people“working in the system”. Seekingncludes
reading relevant literature. At the macro-level it includes the collecting of statcitz!
while at a more detailed level it includes querying the data in hand.

Interpret: By this is meant taking and processing the results of the seeking.

Read/see/heas Translate- Internally summarises Compare- Connect

This processapplies toall forms of information includinggraphs,summaries and other
products of statistical analysis. “Connect”,the endpoint of “interpret’refers the
interconnecting of theew ideas and information witlbur existingmentalmodels and
enlarging our mental models to encompass these interrelationships. Some of the problems
observed in student thinking involved making one connection and then rushtjadge’

rather than trying to make multiple connections or going through the criticism phase.

Criticise: The criticism phaseapplied to incoming information and ideas involves
checkingfor internal consistency and against referepoets. We ask, “Ighis right?”
“Does this make sense?” “Does this accord with what elseothars know?” Wesheck
againstinternal reference points — arguing withurselves, weighing upgainst our
context knowledge, againstour statistical knowledge, against theconstraints we are
working under,and weanticipateproblemsthat areconsequences of particulahoices.
We mayalso check againsxternal reference pointsuch as:.other peoplg(i.e. talk to
clients, colleagues, experts, “workerstlie system”)available literatureand otherdata
sources (e.g. historical data).

We can similarly try to take a mental step back and monitor our own thinking. Educational
theoriststalk aboutmetacognition, of recognising and regulatorge’s normal modes of
thought (seeShaughnessy, 1992Reference points tocheck against here include the
following: (1)The purpose dthe thinking For example;Does thisaddresghe question
the client wants answered?”, or some sort of agreed objectivétel{@) systems'’Am |
being unduly guided by unwarranted preconceptions —owmy, my client’'s, or my
community’s?” Chapter has some goodautionary tales fronthe experiences of the
statisticians. (3Emotional response®ne of the project students was worried about how
the company treatment of her seemed to be influencingidgeshe waspproaching the
problem and viewing thelata. (4)Ability: “Have | the ability tosolve this particular
problem?”

Judge This isthe decision endpoint of criticisnwWhat we keep, what we discard or
ignore, what wecontinue to tentativelyentertain, what we now believe. Wapply
judgemento such things aghe reliability of information; theusefulness ofdeas; the
practicality of plans; the“rightness” of encapsulation; conformance with both context-
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matter and statistical understanding; the relative plausibility of competing explanations; the
most likely of a set of possible scenarios; the rfeednore research; and the many other
decisions involved in building and reasoning from models.

The result of engaging in the interrogatigeocess (Fig. 9.6) is distilling and
encapsulatingof both ideas and informatiomternal interrogative cycle@-ig. 9.6(a))
help us extract essence from inputs, discarding distractions and detail alanaytffeg.
9.6(b)).

IDEAS INFORMATION
Generate <\\@~//
N ) Rl
Seek Judge v 6
\>§J§§%\'R%
Interpret Criticise

ENCAPSULATE

| (@) INTERROGATIVE CYCLE | | (b) DISTILLATION & ENCAPSULATION]

Figure 9.6 The Interrogative Process

9.2.4 Dimension Four: Dispositions

In this subsection, persongqualities categorised iRig. 9.1(d)which affect, oreven
initiate, entry into a thinking mode amdiscussed.The nature of theselispositions
emerged from the statisticians’ interviews and could subsequently be recognise# at
in the students.

Curiosity and awareness Discoveries are triggered by someone noticing something
and reacting to internguestiondike “Why?”, or “How did that happen?”, or “Is this
somethingthat happens more generally?”, tdow can | exploit this?” Beingpbservant
(aware) and curiousre thewell-springs ofthe question generatioprocessthat all
innovative learning resultBom. Wild (1994) formedthe slogan “Questionsare more
important thananswers” to emphasise thpoint. The statistician Qualitystressed the
importance of fioticing variation and wondering whfor generating ideafr improving
processes anderviceprovision. Wehazard thatthis very basicelement of statistical
thinking isactually at theoot of most scientificesearchNoticing and askingvhy” is

also critical for successful data exploration and analysis.
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Engagement When we become intensadlyterested in a problem area, aheightened
sensitivity and awareness develops towariermation on the peripheries of our
experience that might be related to lreblem. Thisexperience appears fairyeneral.
People aramost observant in those areast theyfind most interestingEngagement
intensifies each of the “dispositional’ elememtsriosity, awarenesdmagination and
perseverance. How doesne become engaged3pontaneousinterest is innate.
Background knowledge helps — it is hard to be interested in somethingtnawes
nothing aboutBeing paid to do a jolhelps, as doethe problem being important to
people one carembout. Thismay be the main difficulty in getting statististudents to
think. They simply do not findhe problems theyare asked to think about interesting
enough to beeally engaged bthem.The effects on performance of engagement were
observed with some tasks and not others in the statistics students.

Imagination: It is hard to overemphasidghe importance of imagination to statistical
thinking. This is somewhaironic given popular stereotypes of statisticians. The
formation ofmentalmodelsthatgraspthe essential dynamics of a problem is a deeply
imaginative process, as is viewing a situation from different perspectivegeaathting
possible explanations or confounding explanations for phenomena and features of data.

Scepticism By scepticism, igneant a tendency to lmonstantly on the lookout for
logical and factual flaws when receivingw ideas and information. It is guality all the
statisticians interviewed both possess and value. Some writers refer to this as “adopting a
critical attitude.” Gal et al. (1995) and Pfannkuch (1996) discusstzhl thinking in the
interpretation of statisticalljpased reports andhedia articles. Scepticism here was
basically targeted towards, “Are the conclusions reached justified?” There mayrioes
about the motivation, predispositions and objectivenesieotvriterwhich would effect
the level oftrust in anythingthat had beerdone. Experienced statisticians are likely to
evoke automatically technicélvorry questions”’concerning theappropriateness of the
measurements taken, the appropriatenessesftudy designthe quality of thedata, the
suitability of the method of analysis, and whettierconclusionsare reallysupported by
the data. Postulatedxplanationscreateworries about whether thigeally is the only
plausible explanation.

Another aspect involves sense of numbemnd scepticism. A precursor step towards “Is
this information/conclusiofustified?” is “Is this information/conclusion evenredible?”
One of the statisticians told the simglery of reportecittendance rates at a freetdoor
concert in Auckland. If the figures were corrgbat would mean thabne in eventhree
Aucklanders, one in nindlew Zealanders, wouldave needed to have attended tnad
was, frankly,incredible.The information is discounted #itis first hurdle. However it
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should be noted that one is muelssinclined to be scepticalhen conclusionéit one’s
own preconceptions. A conscious effort may be required to counter this.

Being logical: The ability to detectvhen oneidea follows from another andvhen it

does not, and to construct a logical argument is clearly important to all thinking. Synthesis
of newinformation with existing knowledge is largelynaatter ofseeingimplications
Logical reasoning ighe only sure way toarrive at validconclusions. To be useful,
scepticism must be supported byaility to reason from assumptions or information to
implications that can be checked against data.

A propensity to seek deeper meaningeans notsimply taking things atace value

and being prepared to dig a little deeper. Of the ditispositions”,opennesshelps us

to register and consider new ideas and information that conflict with our own assumptions
andperseverancas self evident.

Can “dispositions” be taught? Schoenfeld (1983) analysetthe mathematical
problem solving experience within individuals in terms of a “manager” and an
“implementer” working in tandem. The manager continualiis questions of strategic
and tactical nature deciding at branch points such things as which perspective to adopt and
which direction totake orabandon. Wehave described the characteristics above as
“dispositions”. They tend to initiate managdunctions. It was first thoughthat
dispositions were innate characteristics of the thinkethstwasmodified withthe idea

of “engagement”. Aperson’s “dispositions’are problem dependent — they change
according to the degree tehich the person isengaged by theroblem. One of the
statisticians interviewed was adamant that some people are sceptical, otoeeslEmis,
and there idittle one can do about. There isscope for less pessimism. It wolddem
that credulousness in particular area is eesult of ignorance. As one gaiegperience
and see ways in which certain types of informatian beunsoundly based and turn out
to be falsepne becomes more sceptidslloreover, what is wanted ioperational terms
from scepticism is simply a prompting to rasataintypes of question concerning the
reliability of information. In Gal etal.’'s (1995) discussion athe critical reading of
statistical information irreports,they advocated thattudents beeducated to “have ‘in
their heads’ acritical list of ‘worry’ questions”. One canalso be taught tmotice and
recognise particulaypes of things such as patterns in data. Seekiegning in these
patterns involves following up questions tbe why-what-howvariety which students
could also be taught to “have in thbeads”. Theseissuesare pursued further irbection
9.4.
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9.3. Variation, Randomness and Statistical Models

9.3.1 Variation as the Starting Point

The centrepiece of the quality aAGA definitions of statistical thinking is “variation” or
“variability”. Any serious discussion ddtatistical thinkingmust examine the role of
“variation.” The “variation” terminology and messageems to have arisen in osmall
area of statisticahpplication, namelyhat of quality, and itspenetration into other areas
would appear to beslight. If “variation” is indeed to be thetandard about which the
statisticaltroopsare torally, we need to arrive at a common conception of statistics in
terms of “variation”. This section attempssich a conception. Moreover, a view of
statistics “from the outside” is attempted.

The first three “variation” messagesre: variation is omnipresent; variation can have
serious practical consequences; and statistics gives a means of understanding a variation-
beset world. Subsequent messages concern how statistics goes about doing that.

Omnipresence Variation is anobservable reality. It is present everywhere and in
everything.Variability affectsall aspects oflife and everything weobserve. No two
manufactured items are identical, hwo organismsare identical or react in identical
ways. In fact, individual organismsare actually systems in constanflux. The
aforementioned refers only to real variation inherent tosytstem. Fig. 9.@epictshow,

when we collect data from a system, this real variation is supplemented by variation added
in various ways by the data collection process.

REAL
(Characteristic
of system)
VARIATION v -
in data Devices
\ INDUCED - — | Devices |
(by data <—| Sampling
collection i
) Collection

Figure 9.7 Sources of Variation in Data

Practical impact Having establishedhat variation iseverywhere,the important
practical impacts of this variation on people’s lives anditbg they dobusiness must be
demonstrated. It igariation that makes theesults of actions unpredictabliat makes
questions of cause aneffect difficult to resolve, that makes ithard to uncover
mechanismsVariation is thereason whypeople have had to develop sophisticated
statistical methods to filter out any messages in data from the surrounding noise.
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9.3.2 Predict, Explain and Control

Fig. 9.8 categorises rationaésponses teoariation in a system ithe world of action.
This is idealistic. The way people actuallyreact to variation can be quite anotktary!
(See Joiner, 1994)

Practical Responses to Variatio:l

Ilgnore Allow for Change Pattern
(“Control”)
Anticipate Change system/
Design systems/ process to increase
processes/products “desirable” outcomes

to be insensitive to

Figure 9.8 Practical Responses to Variation

First, wecan “pretend that the variatialoes not exist’e.g. behave as though every
object or organism is the samediffers in somedeterministicallyknown way. Insome
circumstances this works admirably. If it didn’t we would have to vaiteall of applied
mathematics and every field it fertilises. Second, we can investigate the existing pattern of
variation andcome upwith ways of working around it — as in our systemctdgthing
and shoesizes, the operation of the insurandgadustry, and when planningoublic
services. Variation is “allowed for” at the design stagguality-management approaches
to manufacturing, where omneishes to design a produitiat is“rugged” or “robust” to
the variability of uses to which it will be put, and conditions to which it willsbbjected.
Third, we can try to “change the pattern” of variation to something more deseaplep
increase average crop Yield or reduce a dedith We do this bysolating manipulable
causes, or bapplying external treatmentEhe former approach is oftersed inquality
improvement or in public health, the latter is a frequently used in agriculturencedical
research aimed at the treatment of individual patients.

Statisticians model variatiofor the purposes of prediction, explanation, or control.
Controlis changing the pattern of variation to something more desiralilasagistoeen
discussed.Prediction is the crucial informational input to “allovfor” in Fig. 9.8.
Explanation gaining somelevel of understanding of whydifferent units respond
differently, improves our ability to make good predictions and it is necessary for control.
Causal and mechanistic explanation is the goal of fasiopposed tapplied) science.
As soon as we ask “Why?”, wage lookingfor causes(The idea of a “cause” will be
pursued later. While on theone hand variatiormay obscure, it isthe uncontrolled
variation in a systerthat typically enables us tmcovercauses. We do this bgoking
for patterns irthe variation.Fig. 9.9 picks up thisdea in away that relates back to the
goals in Fig. 9.8.
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Statisticians lookfor sources ofvariability by looking for patterns and relationships
among variables (“regularities”). If nommeefound, the best onecan do is estimate the
extent of variability andvork around it. Regularities may or may natorrespond to
causes. Inerms of solvingpractical problems, causethat cannot be manipulated are
operationally equivalent to any other observed regularity, although they will give us more
confidence inour predictionsThe presence of regularities enables usdme upwith
predictions and measures of variability that are more locally relevant, e.g. more relevant to
an individual patient. Manipulable causes open the option of control.

Look for regularities

Some None
Yes No,
/ 0
Explanation
Can manipulate?

IYes No)
Change system React to existing variability] React to existing variability
« Improve pattern e Local estimates e Global estimates

of response * Improved prediction » Bad prediction

for individuals for individuals

Figure 9.9 Responses to Regularities

9.3.3 The Quest for Causes

In thefirst two exploratorystudies, two groups dirst-year students were givenedia
clippings and similar items containing statistiegaformation, and then interviewed
individually about theiresponsesinitially, the approach to the studemmanscripts was
that of teachers marking terpapers, oflooking for mistakes andaps, forwhat the
students had “donerong”. One itemwas based on Tverskand Gilovich(1989). The
streaks that sports fans see in sports data, and then proffer all szatsaifexplanations
for (e.g. falters undepressure)can often be explained entirely in terms ofaadom,
e.g. binomial, model (see also Moore, 1990; Falk & Konold, 1992; and BiaBig4b).
The itemgiven, in phase two othe second exploratorgtudy, concerned a basketball
player with a70% successate of freethrows succeeding with only 2 out of throws.
Under a binomial model, this is not a particulariyusual event. Wthink of this as‘the
statistics teachergoint”. The students profferedll sorts of causal explanations. As
statistics teachers, my supervisor and | thought they had ntiespdint. Mark that one
wrong! Forthe interviewgroup (seeAppendix Two), the itemwas loaded entirely in
favour ofthe statistics teachers’ poinfTHeteam manager attributed hgrerformance to
normal variation, that she scored 70% in fbag run andthat 70% was only amverage
so thatyou had to expectsome lowscoresnow and again’ Even then the tip of the
deterministic-causal-thinking iceberggas seen.One student said, ‘the manager's
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comments are OK if that is the way he wants to lodkeascoreand not on‘we want to
win” and then he gave possible causes.

This comment eventuallpverturned our attitud& he studentvas right.There is areal
problem underlying this item. Coaches and managers of dparts are seeking tearn

from their observations so that they can work on improving player skills and strategy, and
better deploy theipool of availableplayers. Arandom model is of no help all in this
regard. The statistics teacher’s concerns doeytace the need to searfcn causes and
predictors of good and bad performance. It is that search that is of primary importance.

The real problem underlying the statistical problesny often involves searchirfgr and
isolating causes of sonresponse. Avariety of stories includingmedical stories and

prison suicides wergiven to thestudents.Whenever thestudents hadcontextual
knowledge about a situation, atiteir experience had givedhem some notion of the
nature of the real problem, they came up with a range of possible causal explanations with
little or no prompting. This appears to bewell developed impulse thdtas notbeen
explicitly taught. It is a first and direct step towards solving the primary prodleenreal
purpose of many of the new statistical ideas we teach is simply to moderate the search for
causes by preventing a premature jumping to conclusions — “Hey, not so fasiThis

role is secondary anslubtle. It is probablynot surprisingthen, that even afteisome
statistical instruction, the randomness ideas are much weaker in sthdentise impulse

to postulatecausesProbabilistic thinking is not so much aiternative to deterministic
thinking, as some statistics educators (Shaughnessy, 1998jatisticians (Hoerl etl.,

1997) have suggestebut something to be grafted on top of the natural thinknogles

that directlyaddresshe primaryproblem. As arinterestingaside, if anexplanation or

cause has already been suggested to students for a particular set of data datdf tiawe

been presented stratified in some particulay, it can take a great deal pfompting for

the student to gdbeyond the explanationgiven, to think that there may be other
explanations and start coming up widleas. Thidatter is a quitadifferent incarnation of

“Hey, not so fast, . . .”

What does statistics education have to say about causation? By far the loudest message is,
“correlation is not causation.” This is the statisticiatCassandrathe harbinger of doom

saying “thisway lies disaster.” True, we usually go on rtieake the important poirhat

the randomised experiment is theost convincingway of establishinghat a mooted
relationship iscausal. But, as stressed Biplland (1986), Cox (1992and few others

outside of quality and epidemiology, this greatlydersellsthe true importance of the
search forcauses. Solving most pressimgactical problems involves finding and
calibrating change agents. Statistics educattoouldreally be tellingstudents something

every scientisknows, “The quest for causes ite most importanigame intown.” It
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should be saying, “Here is hostatistics helpyou inthatquest. Hereare somegeneral
strategies and some pitfalls to beware of altmgway . . .” It should not just be
preventing people from jumping to false conclusions but also be guid&mytowards
valid, useable conclusions — replaci@gssandra by a favouriléerary detectivelike
Cassandra, these people are well aware of the dangers, but unlike Cassarahea dlsey
aware of much, much more than this.

Thinking about causes

It is ironic that the uncontrolled variability in system provides us witlthe best
opportunities to do the detective work that uncovers causes. By checking for relationships
between upstream variables and downstrezsponses, wean identify possiblecausal
factors. Observation precedes experimenta#idinideasfor possiblecausal relationships
originate inobservation, whether anecdotal, frdormal studies, or soméhistorical
combination of theawo, now incorporated in context-matter theory faklore. And it

should be continually stressed, randomised experiments provide the most convincing way
of confirming or refuting the causal nature of an observed relationship.

Conducting any sort of study tetectcauses an@stimate their effectproceeds from
ideas about profitable placesltok, and from ideas whickdraw almost exclusively on
context-matter knowledge and intuition. Ideas about possible causes and othetHattors
might be important predictors of the behaviour of ibgponseare translated into a set of
variables to measure (transnumeration) dath are collected to facilitabevestigation of
relationships between measured variables and the responses of intergsimarytools

of analysis in the search for causes are models of the regressioithgpes, models for
exploringhow Y-behaviour changes with changesXrbehaviour.(The humble scatter
plot falls into this class.)

Cox (1992) distinguishelsetweenresponserariables (thosevhosebehaviour we want
to find causal explanations forjntermediate response variables (which measure
intermediate effects thdtappen along thevay from initial state toresponsestate) and
explanatory variables (those we wantue toexplain or predict the behaviour of the
response) Explanatory variables are further categorised passibly causalvariables,
intrinsic properties of entitieander study,and non-specifide.g., different countries).
Intrinsic variables aréhose whosealues cannot be manipulated. Intrinsic variables are
often included to improveur ability to detectrelationships, improvehe precision of
estimation of effects and to explore how a cause actglifferently for different types of
entity (interactions). Detection strong relationshipbetween non-specific variables and
a responsdead to asearch for nevexplanatory variabledpr variables associated with
the non-specific variablevhich could conceivablgxplain theresponse. Foexample,
when diseaseates differ greatly betweerountries, westart looking among factorthat
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differ between the countries gmssible causes. It should mted that the above
distinctions between variables are much more than distindioorenalysis. As &et they
constitute a general thinking tool which adds clarity to the way in which the context-matter
problem is conceived. Thegre an example of theay in whichstatisticalknowledge or
training can feed into a core mental model of the context reality thaderstandable by
statisticians and non-statisticians alikee “inform” arrow linking statisticalknowledge

and mental model in Fig. 9.4.

Some consequences of complexity

Most realsystemsare enormouslycomplex with variation in innumerablgomponents,
each of which could contribute the response of interest. Wae incapable of handling
such complexity and need strategies to “sift” the large numbers of possibilitiesntarha
smaller number of promising leadBhe quality control distinction betweepecial cause
andcommon causgariation can beeen in this light. It gives means of distinguishing
situations (special-cause variation) in whtble seemingly instinctive human reaction of
looking around for something unusual occurringh@system just prior tdhe problem
event is likely to be a profitable strategy for locating ¢hase, from situation€ommon-
cause variation) in which this strategy is unlikely to be profitable rangl even be
harmful.

The main statistical “sifting” strategy is to restrict attention to variables whichstaney
associations witlthe response of interest. Weve no hope of identifying a cause and
characterising its effects if it acts in complexly differewatys fordifferent individuals or

at differenttimes. The only causeshat we canhope to findare thosethat act in a
reasonably uniform or regulavay. Moreover, wewill only detect the existence of a
cause if we think of someay of looking atthe situation that will reveal that regularity
(transnumeration). There must be sufficient “natural variability” in a cause-variable in the
system forthe effect ofthis variability on theresponse to be seeGausal variableshat
we miss usinghe above strategy are unlikely to ¢g@od agents fomaking substantial
changes unless settingee usedthat liefar beyondthe range of variabilityseen inthat
variable in the data.

From association to causation

It is at this pointthat Cassandra makes her entransed theworld really doesneed her
warnings. It isclear that people do jumfar too quickly to causatonclusions. But
“correlation is not causation” is simply “édey, not so fast” warning and we need to
supply ways ofmoving on from thereThe searctprocess has najiven us a set of
causes. It has onlgiven us a set of promising contendés causalstatus.Our main
worry at thispoint stems fronthe fact that we haveot considered theniverse of
relevant variables, but just that subset that happened to come to mind. We are thatrried
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other unconsiderethctors, those sinister lurkingariables of textbookame, may be
producingthe relationships we argeeing. Thus, wehallenge the causalssumption,
whether our own or somebody else’s. We rack our brainetfar possible explanations
and for strategiedor testing these explanations. This behavibas to be learned. It
comes naturally to very few students. We have from Biolbgyidea ofturning thisinto

a classroom gam#he game of statistic¥Vhatever explanation you have for something, |
will try to top you with analternative. The goal of the scientist is to reaghosition at
which there are no other plausible explanations at the cueesitof understanding. To
do this, weneed strategies whichse observationgexperimentation and analysis to
discount all other plausible alternatives.

Where experimentation is npbssible and one mustake decisions based upon using
observational studies, there is a range of ideas about what strerntemsressionthat

a causal contender is in fact a cause. diiteria of A.B. Hill (1965, see also Gail996)
are a good starting point. In epidemiology apdlity, the finding ofcauses with a view
to improving systems is notghilosophical problem but pressingpractical imperative.
Substantial literatures haygrown up inthesefields. Cox (1992, 1993and Holland
(1986) also view questions chusation withpractical applications clearly imind. In
view of the fundamental importance of the seafch causes;there is a real need to
synthesise thismaterial into accounts whichare more accessibléor practising
investigators and for teachers.

Levels of “causal proof”

Decisions to take action tend to be made orbtes of dbestguess” inthe light of the
availableinformation. They seldom wafor incontrovertible evidence afausality. The
resultscan be spectacularlyood. Take cot death ilNew Zealand.Researchshowed

strong relationships between cot-death rates and certain behaviours, e.g. the lbatyy

was put down to sleepTherewas noincontrovertibleproof that thebehaviours caused

cot death but thédea was sufficiently plausible to mount publicity campaigns and the
advice given tonew mothers bydoctors.Cot death ratehalved. There is a level of
assurance at which decision makers are prepartdkdovhat they consider to besmall
chance andake action. There are many factors affectilgis level of assurance. The
degree of causgbroof it takes will probably depend on many factors including the
difficulty of making (and reversing) changes to the system, the consequences of making a
wrong call, and the number of people who must be convinced kefboa istaken. We

are all brought up on the smoking-cancer debate as the primary example of the difficulties
In establishing causality. Ithat debatethere were (and are) entrenched g@aogverful

vested interests with a higolitical profile. Not surprisingly the level ofproof required

in suchcircumstances is extremefiygh. An industrial production managevould have

made the call long before, with the greater attendant risk of getting it wrong.

215



9.3.4 Modelling Variation

A number of the statisticians interviewsdid that thebiggest contribution of statistics is
the isolation of “signal” in the presence of “noise”. The base problemsteatisticaldata,

is how tomakesome sort of sense @fformation that is ofmind-boggling complexity.
The main statistical approach golving this problem begins by trying to find patterns in
thatdata.Context knowledgenay give ussome ideas about where to look and what to
expect.Statistical methodologgives us tools to use the search.Common experience
tells us that studies conducted under very similar conditions always give results which are
different in detail, if not in broad thrust — patterns seedatafrom one studyare never
repeated identically ianother. Some broad features opaitern may be repeatable but
other more detailed features are not. The base problem, then, is to come up with strategies
for separating phenomena which are “likely” to persist more generally from ttreisare
purely local, to sifthe enduring fromthe ephemeraPatterns which persist provide the
basis for forecastingsontrol andinsight. Statisticians have evolved particulsets of
strategiedfor “solving” this problem — strategiebased, inthe main, onprobabilistic
modelling. We oftersaythat an importanfunction of probability models and statistical
inference is to counteract a human tendency to “see” pattdrese none exist. As the
statistician Biology put it so vividly imis interview, The human being is hard-wired to
see a pattern even if it isn’t there. It's a surviva@it. It lets ussee thdiger in thereeds.
And the downside of that is that our children see tigers irstiaelows orthe wall.” It is

not entirely true that no patterns appear in purely rangdloemomena. These patterns are
real to the brain in theensethat we carrecognise featureatwould help us reproduce
them. However, sucpatterns are (i) ephemeral, and (@)l us nothing useful about the
problem undestudy. Inotherwords, they aremeaningless. Part of our reasoning from
random models is to sdiat we willnot classify any data-behaviour as “enduring” if it
closely resembles somethitigat would happen reasonabfyequently under a purely
random model. One of the frustrations with teaching EDA to students is that it lite so
to say about theboundaries betweethe ephemeral and thenduring. Experienced
statisticians have intuitive internablibrations, but it is conjecturetthat they originate
largely from experience with formal models.

The distinction between “explained” and “unexplained” variation is impotiane. We
generally try to find meaning in explainadriation, the patternsvhich we have not
discounted as ephemeral, tlsgnal”. Unexplained variation, or “noise”, is what left

over once we have “removed” all the patterns. thiss, bydefinition, variation in which

we canfind no patterns. Wanodel unexplained variation as being generated by a
(structureless) random process. Wave no ideavhether this variatiomeally is random;

this is not something that bothers us. If random sampéatly has occurredthere is an
element of randomness in the noise. However, measurement error and components of the
variation in the original process typically contribute to the unexplained variatiotheral
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is no way of knowing whether these behave randomly or not. In fact, randompess is
a set of ideas, aabstractmodel, ahuman invention which wase tomodel variation in
which wecan see n@attern.The very physical models we use itlustraterandomness
are, with sufficient knowledge, actually deterministic (see SteW889). It isall part of

an attempt to dealith complexitythat isotherwise overwhelming, and it tends to be a
model-element of last resort. The level at which we impose randomnessodetiis the
level at which we give up on the ability &k certaintypes of question, questionslated

to meaning and causation. Gfurse, this is1ot to saythat therandom parts of anodel
areuselessimportantuses were discussed $ection9.3.2 but theirutility comesfrom
being used to predict rather than to understand.

One of the themes that teachers of statistics stress is the “real or random” idedaGan |
some confidencehat this an enduring feature? Or is it just one tbé myriad of
possibilities lurking within the unexplained variation that | do notkyetw enoughabout

to grapple with? Theguestion stands without angeference to statistical theory or
randomnessThe statistical strategfor answeringthe question is to sayhat if a data
featurelooks like somethingthat would happenrsufficiently frequently under a purely
random process, wewill decide thatthis feature could well beephemeraland,
consequently, that we should not tryattachany meaning tet. Languagesuch as‘real

or random” or referring to the possibilitiiat “theobserved difference is due ¢hance”
actively obscure the distinction between the underlying problem and a statistical approach
to its solution. Intalking abouthis project on mangrovethe student Ray saidMy
teacherexplained it [t-test] to méhat the results | gowere due to chance. | still don't
think that statemenimakes anysense. Ican understand whathance iswhen you are
rolling a dice. | don’treally understand whathance iswhen yourelate it to biological
data. Everything youcould possiblymeasure igjoing to be due tsomeenvironmental
impact.”

Some writers irguality have taken tgaying, “all variation is caused’ e.g. Joiner and
Gaudard (1990), Pyzdek (1990)he latterrepudiates the “outdated belief thatance
causes should Heft to chance.” Theselaims seem to be predominantly motivated by
concerns about humapsychology. Tomorrow, with new informationnsight or
technology, we may be able to find patterns in what tdolalys random, tdracecauses
from those patterns, and improve thesystem (Pyzdek gives examples where this has
occurred).The propensity to do smay well belost if the idea is internalised thétis
variation is “just random”. Itommenting on the difficulties people havéh coming to
grips with statistics, Shaughnessy (1992, p. 478) wribieréal world for manypeople
is a world of deterministic causes . .there is nosuchthing as variability for them
because they do not believe in random events or clialleedo not need taskthem to.
Variability is a demonstrable reality. Randomnes=ed notrelate toany beliefsystem
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about the true underlying nature @ality. It is simply a response tmomplexity that
otherwise overwhelmsis. The unexplained variation may well be the result of “a
multiplicity of causes”, to use the phrase of Falk and Kop892). Few wouldlispute
that much unexplained variability is of thigoe. But,the statisticalesponse ishat if we
can see no structutbere, wewill model it as having been generatemhdomly. In
deference toPyzdek, Joiner, etc., howevemodelling the unexplained variation as
random is not a seriowgatement about its trueture. It is simply gart of aworking
model.

From thesemodels, wemakeinferences. We assuntieat the data have been randomly
generated according to the model ande probability as the link between
population/process and data. This is the very hedhieostatistics weéeach.The models,
including their randoncomponents, stand dall on the practicalusefulness of the
answers they produce. Theare someclearsuccess stories, e.the insurancendustry.
To use models with random components, we have ableeto:first, recognisethat such
models provide a useful framework for considetting problemsecond,build and fit an
appropriate model; anthird, deduce implications fronmthat model. The third step
involves some understanding of haandom models behav@&here is an emerging
literature on the difficulties in gaining thahderstandingThe properties ofandomness
are not wellunderstood and rucounter to some deeply ingrained beliefs and intuitions
about random behaviour whidre inordinately difficult to overturrsee, forexample,
Pfannkuch andBrown (1996), Garfield and Ahlgren(1988), Konold (1994). The
inferential paradigms are also subtle and difficulgtasp,but this will not bediscussed
here (see Mallows, 1998; and Cox, 1997).

One of thestories shown tdhe students,and my and my supervisorigaction to it,
niggled at us for a long time. It is a news story about an apparent jump in prison suicides,
the sort that leads to accusatofinger pointing and theushing ofdifferent causal
explanations by different sectionaterests. Weautomaticallydid a quick check against
Poisson variationThe figurewas within reasonable limits. Weensed a tendency, as a
consequence of this calculation, not just to disredaedhype, but to disregard the
problem — non-significance as, “nothing’s going on here so let's move on to something
else.” Howcommon is this as a “statisticiarrsaction” tosuch storiesThere is a very

deep flawhere. Prison suicidesre an importanproblem. People should be looking for
causes. It took a long time to realise that the Poisson calculation (assume that it is valid) is
really about common-cause variation versus special-cause variation; about whether to look
among recent changdsr a cause (the popular strategy) or to dedidat the problem

would only respond tamuch more in-deptrstudy. It was tothe latter thatnon-
significance really pointed.
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Relating the “variation” words

This section is concluded by putting some summarising organisatiothenteariation”
terminology. Special-causeversus common-causevariation is a distinction which is
useful when looking focauses, whereasxplained versusunexplainedvariation is a
distinction which is usefulvhen exploringdata and building a modefor them. An
understanding of variation in data could be built on these suppos{tignariation is an
observablereality; (2) somevariation can be explained3) other variation cannot be
explained on current knowledggt) random variation is theway in which statisticians
model unexplained variatio®) this unexplained variation may in part or whole be
produced bythe process of observation througtmdom sampling(6) randomness is a
convenient human construct which is used to deal with variation in which patsemnast
be detected.

9.4. Thinking Tools

Gal et al. (1995) used the termvdrry questionswhen discussing the critical appraisal of
reports — questions to invoke worriabout theway information had been obtained and
how inferences had been drawn fronTiigger questionge.g. “Why?” and “How?”) are
their creativecousins.They tend to initiateew thinking incertaindirections.The term
“trigger question” is used here for both roles. Such questions can be very effiglztie.
times in the interviewsvhen no thinkingvas taking place, somsemall prompt opened
flood gates of thought.

Experienced statisticiansorking in acollaborative or consulting environment learn to
generate triggerquestions whichelicit pertinent contextinformation, ideas and
explanatory inferences from clienfBhe dialogue between consultant aiént can be a
fraught affair. The success othe whole venturemay dependuponthe quality of the
trigger questions. However, adealisation of the dialogue between statistical consultant
and client may be auseful model for the thinking that should go on withineach
individual. No one taughhe statisticatonsultants interviewed taskthe questionghey

do. The consultants’ statistics education heledd on theprocess: stimulus experience

+ disposition— pertinent trigger questions gainingcritical ideas and knowledge about

the context. Thiscompletely unstructured approach puts an enorm@usmium on
experience. Ifstatistical thinking is somethinthat we teach rather thasimply to be
absorbed by osmosithen we have to give #tructure. Structure provides a framework

for discussion.Structure can prompghinking. It can prevent crucial aredom being
overlooked. Structure provides something to fall back on, some ideas about what else you
can try, when you hit a brick wall.
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The idea from the quality armory that we hdwand most powerful ishe simple idea of
interconnectedprocesses,with associatedprocess diagrams, as a framework for
analysingproblems. It gives a structured way lofeaking down activities, or mental
processes, into components. It emphasises principal stegheanohterrelationships and
hides detail which can be uncoveregdubsequently when analysed @sib)processes.
Joiner’s 7-Step Process (see Joiner 1994)tlanking tool for working through for a
quality improvemenproject. It leadghe thinkerthroughthe steps of goroject intime
order and,within eachstep, gives lists of questions pyompt the cruciakypes of
thinking that should occur there. The above approach isewt Polya (1945) used it in
How to Solve Itthemost famous oéll works onmathematicaproblemsolving. In the
quality arena, we seenany seriousattempts to capture essential elements of expert
experience through creating thinking models/tools which can be used to apgpeeitic
types of problem. Underlying all of the above are two simple principles, whichbeawe
combined here asystemise whatou can, stimulatewhat you cannot. Procedures and
thinking tools cannot accomplish everything — knowledge @gdtivity will always be
needed to answer the questions — but we shoultbleeto achieve much more than we
do now.

Schoenfeld (1987) distinguishbstween adescriptionwhich characterises a procedure

and aprescriptionwhich characterises a procedure in sufficégtail toserve as a guide

for implementing thestrategy. PPDAC is a high-level description of a systematic
approach to investigation. It identifies major elements. It can be used as the foundation for
somethingthat is much more of prescription.One canzoom in on eaclstep of the
process and gain more detail about what needs to be done and how to do it. This is a huge
undertaking so what is presented herenesely indicative. A similar approach could be

used for the interrogative cycle. The principles involved in the model fragments are:

» Systemise what you can, stimulate what you cannot;
» Use trigger questions to do the stimulation;
» Work from overviews and zoom in for the next level of detalil;

» Keepthe number okteps in any view athe processsmall to emphasise the
most important relationships.
An ideal way of implementing this type of model is an internet-type applicatisich,
at any level, one drills down for more detail by clicking on a node iptbeess diagram.
The area this has been applied to, in Big$ and9.11, isdriling down into the “Plan”
node of PPDAC and then furthdown again into the “Measurementibde ofthe model
of “Plan”. It is stopped at thievel of detailand sets ofrigger questionsre usedabout
measurement (derived frorie interviews) whichare very general.Context-matter
disciplines have built up enormous amounts of expertise about hmeasure théhings
that are of great importance for research in their discipline. It is simply pointed to with the
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guestionsModels targeted at a particular application area could build in much more of
that local expertise or more of tlsynthesisbetween problem-context knowledge and
statisticalknowledge. Still, ageneral modebkuch as thicould be usefufor someone
doing applied research inlessdevelopedarea, and for building istatistics students a
more holistic feelfor statistical investigation and theroad issueghat need to be
addressed. It pre-packages some of the “strategic thinking” of breakingtasjerdown

into subtasks.

An attractive model element that is not incorpordteck, though itmight beuseful to do

so, are lists of the tools that are helpful at particular nodes of a process. For examples, see
Hoerl and Snee (1994). Process analysis taalg provide uswith a means of building

up new bodies of “statistical theory” addressarnigjically importantareas of the statistical
processthat statistics teachers are currently rather sikmut. The results will be
oversimplifications and sometimagoss oversimplifications, but then sare all the
mathematical models. The theorswuldgive students two opportunities tearn about

and make sense of the statistical endeavour. First the theory provides a scaffolding to use
for forming apicture of some very complgxocesses. Secondncesuch apicture has

been established, a more sophisticated understandimgge gained bgonsideringways

in which the models are inadequate.

This subsection is concluded withsgory related to me by several of the interviewed
project students that sheds light on the complementary roles of theory and experience. The
students firstlearnt some theory about quality improvement (includitige role of
statistical tools) via lectures andeadings and found ill rather abstract and rather
meaningless. Otheir first practical project thejloundered.The theory did not seem to

help and was applied badly if at all. But from those experiences the theory startakieto
sense. And by the second project it had started to worthéan —its value hacdecome
obvious.
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What information is —| Measurement |

already available? « What to measure and
how to measure it

/ : —| “Sampling” Design |
Plan Collection « What units to take measurements on
of new data — sampling and exptal design issues

—| Data Collection Proces*ss

Plan analysis
and reporting —| Data Management |

Y
Piloting and
adjustment

Figure 9.10 Drilling Down into the “Plan” Node of PPDAC
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MEASUREMENT I

(Including Classification)

Identify Key Characteristics

What features of the system are you interested in?
For each feature:
What ideas about this feature are you trying to capture?
Can you substitute something more specific?
How well does this capture the idea?
Is the idea you wish to capture by measurement inherently multidimensional
in important ways or should a single measurement do?
Do these “key characteristics” adequately capture the essence of the real system?

Decide how to measure them

Experience
in the field

A fall-back

Is there a generally accepted way of measuring this charactersitic in the field?
Is this currently accepted in the field as the best way to measure this entity?
If there is an accepted method and you want to use something else:
What is your justification?
Have others tried to measure this? How did they do it?
Are there known problems with their measure?

Can I draw on the experience of others in measuring similar charactersitics?

Anticipate problems

Validity &
reliability

Analysis

“Audience”
reaction

Practical
implement-
ation

To what extent does this measurement really capture the characteristic | want
to measure?

What are the practical implications of the extent to which it fails?

Will repeat measurements on the same units give very similar results?

Will different people making such measurements obtain very similar results?
Will different measuring instruments give very similar results?

If not, what impact will this have on the usefulness of any conclusions?

Will | be able to analyse data containing measurements like this?
Will this measure make the analysis unnecessarily difficult?
Will another choice confer greater statistical efficiency?

Will others be able to understand this measure?

Will the audience for the results accept that this is a sensible way to measure this?
Will I be able to understand the results of an analysis based on these measures?
Will | be able to communicate the results of an analysis based on these measures?

Can | implement these measures in practice on the scale needed for the study?
Is the equipment/personnel required for this measure available? affordable?

Is the measure unacceptably or unnecessarily difficult? expensive? invasive?
Are there cheaper/easier/less invasive alternatives that will serve almost as well?

People: Do these measures take account of the psychological, cultural and perceptual
differences of the people to be measured?

Can | do better?

Figure 9.11 Drilling Down Further into the “Measurement” Node of “Plan”
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9.5 Discussion

The ultimate aim of statisticahvestigation is learning in the context domain ofeal
problem. Learning consists ofthe construction ofnentalmodels of thesystem under
study. Statistics is itself a collection of abstract models (“modelséeasl in a very broad
sense) whictpermit an efficient implementation of tluse ofarchetypes as a method of
problem solution. One abstracts pertinent elements frahe problem context that map
onto a relevant archetypical probleype, uses what hdsenworked outabout solving
such problemsand mapshe answersback to contextdomain. There is a continual
shuttling between thevo domains and it is in this shuttling or interpldlyat statistical
thinking takesplace —wherethe statisticarubber meets the real-worldoad. When it
works, wegain realtraction. Our abstractionprocesses bringlarity to thinking and
efficiency to problensolving. However, when we usgchetypes to solve problems an
enormous amount rides on the ability to do the mappings. And this is where the wheels so
often fall off. Statistics education spends little time on developingyepings. Wanust
take more cognisance of the fact that the geftiam the first stirrings of apractical

problem to something like= B "x + &, the point at whiclhe theory ofanalysistypically

kicks in, does not involve driving blithely across sosnaall crack in theoad, but rather
it involves the perilous crossing of a yawning chasm down which countless investigations
and analyses plummet to be lost without trace.

Since statistical thinkingnvolves the synthesis ofstatistical knowledge andcontext
knowledge, it cannot take place until batte present.The more relevarknowledge one
has and the better one can connect it, the better one can do. Inreavsense statistical
thinking as a separate entipes notexist. There is only holistic thinkinghat can and
should be informed bytatisticalelements.The most universal of thoselements have
been attempted to be captureelre. Statistical thinking cannot be taught on dgsvn,
because it cannot stand on its own. It has to be developedirdegrated part of general
problem solving skills. Statistical thinking is not either present or absentlltagnatter
of the degree to whicthe statistical elements that could iborming the thinking are in
fact doing so. Inmany researclenvironmentsstatistical thinking idike breathing —
everyone does i#ll the time, seldom being awarhat it is happening. Statistics, the
discipline, should béeaching people to “breathe” more effectively. We are dealing with
complex and sophisticated thinkipgocesses. Weannot expect, and indeethould be
highly suspicious of instant solutions.

Several dimensions afatistical thinking irempiricalenquiry have been identifiedFig.

9.1). These are(l) the investigative cycle(2) typesof thinking strategic, seeking
explanations, modelling, applying techniques, and foundational subcategories which refer
to the use of statistical conceptions andynthesising statistical and context
understandings; (3he interrogative cycle of generate, seek, interpretjticise, judge;
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and (4)dispositionalelements that are related to the entry into interrogativdes(e.g.
curiosity, scepticismimagination etcland can be affected by the extentwbich the
thinker is engaged by th@oblem. Factors constrainirige effectiveness of the thinking
were further discussed. Omnipresent variation is presented as pratvienagsond’étre
for statisticalthinking. In Section9.3, the observableeality of variation in the concrete
world wastaken as a starting point and theras anendeavour to cuhrough many of
the confusions surrounding sucabstract notions as “randomariation” and their
application to practical problem solving. A foundational idea e identified is that of
“transnumeration” — the idea of making dagpresentations of a system asahtinually
transformingthem to engender understanding — which is also basic tstadistical
approach.

In Section 9.4, some techniques people have used to improve thinkinglis@rssed. It
seemdhat therest of statisticeanonly benefit by followingthe lead of statisticians in
quality and develop thinking tools that help us to trabkut,and to thinkthrough, parts
of the statisticaprocessthat we arepresently rather silent about deal with entirely
through discursive discussion. Wan develop otheforms of statisticalmodel, other
forms of statistical theory taleal with theseareas.The processmodel and the simple
principle “systemise whayou can and stimulatevhat you cannot systemiseivould
appear to be usefanalyticaltools for forming such models. It is stresgbdt thinking
tools are not a substitute for experience with investigation and data. Indeed, recalling what
the projectstudents saidthinking tools do notmakeany sensauntil one has had some
experience. Probablyheir most importantpurpose is tohelp us understand our
experience and extend the range of situations to whicbaweapplythem. Butthey may
also re-initiate thinking that has become stalled.

| can seanultiple usesevenfor a verysimple model like the interrogative cydEig.
9.1(c)). Itcould be used: to monitor thinking during problem solving; to help students
become aware of theawn thinking; as a toofor evaluating student thinking; and as a
reference point against which ¢beck learning opportunities provided students. (Do
they, at least collectively, provide good opportunitiestiierstudents texperienceall of
these modes? — It turns out that manyhaeftasks Igavestudents did notNor did they
measure up in terms of typestbifnking.) Much of what hasbeen identified relates to
general problensolving skills and could bapplied to anysubject.One mighttherefore
think that a general thinking skills course such as those developed by de Bono (e.g. 1973)
is all that isneeded.According to Resnicl{1987), however,there is no empirical
evidence that thesskills are transferred to specific subjeetreas. Shebelieves that
thinking processes should benbedded into the discipline itsdédecause, it provides a
natural knowledgebase ancenvironment in which tgractice anddevelophigher order
[thinking] skills as . . . onenustreason abousomething . . [and] . .. eachdiscipline
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has characteristic ways of reasoning (Resnick, 1987, p. 35). Tcaarry out this
embedding, we must first understand how these broad thinking skills are specifically used
in statistics. The areas that appear to need the most work are the up-front areas of problem
formulation andplan. This is veryapparent in Chapter 7. Mallowd998) suggests a
structure fordeciding whatdata might be relevant to the probléased on aoncept of
“similarity”. Also fundamental are W. E. Deming{®.g. 1986)distinctions between
enumerative and analytic studies, further developed by Hahn and Meeker (1993).

Can thinking tools work?The people in quality andPolya and hissuccessors in
mathematics believeo. Are they panaceas? There is nothirgytain or cut-and-dried in
appliedstatistics.The realworld is a messycomplicatedplace. We cannatxpect more
from our new toolghan fromour traditionalones.Most of thework in the writing and
the teaching of statistics, however, has go@ constructing its uppdevels. But,with
advancing technology inexorably shifting demand from mechanitisinkers, we now
need to do some work on the foundations to ensure that the whole structure is sound.

This chapter is concluded with a quotation from Biology.

“The real work is not doing things, the real work is thinking hard.”
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