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Chapter Nine

Statistical Thinking in Empirical Enquiry

Advancing technology is inexorably shifting the demand for statisticians from

being operators of mechanical procedures to being thinkers. Coupled with

this is a perceived lack of development of statistical thinking in students. This

chapter discusses the thought processes involved in statistical problem

solving in the broad sense from problem formulation to conclusions. It draws

on the literature and in-depth interviews, with statistics students and

practising statisticians, which aimed at uncovering their statistical reasoning

processes. From these interviews from all four exploratory studies, a four-

dimensional statistical thinking framework for empirical enquiry has been

identified. It includes an investigative cycle, an interrogative cycle, types of

thinking and dispositions. There are a number of associated elements such as

techniques for thinking and constraints on thinking. The characterisation of

these processes through models, that can be used as a basis for thinking tools

or frameworks for the enhancement of problem-solving, is begun in this

chapter. Tools of this form would complement the mathematical models used

in analysis. The tools would also address areas of the process of statistical

investigation that the mathematical models do not, particularly in areas

requiring the synthesis of problem-contextual and statistical understanding.

The central element of published definitions of statistical thinking is

“variation.” The role of variation in the statistical conception of real-world

problems, including the search for causes, is further discussed.

9.1 Introduction
“We all depend on models to interpret our everyday experiences. We interpret what we

see in terms of mental models constructed on past experience and education. They are

constructs that we use to understand the pattern of our experiences” Bartholomew (1995,

p. 6).

“Models, of course are never true, but fortunately it is only necessary that they be useful”

Box (1979, p. 2).

This chapter abounds with models. Hopefully some are useful!
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My supervisor, a statistician, wrote the following about our 1995 encounter: This

research had its genesis in a clash of cultures. Chris Wild is a statistician. Like many other

statisticians, he has made impassioned pleas for a wider view of statistics in which

students learn “to think statistically” (Wild, 1994). Maxine Pfannkuch is a mathematics

educator whose primary research interests are now in statistics education. Conception

occurred when Maxine asked “What is statistical thinking?” It is not a question a

statistician would ask. Statistical thinking is the touchstone at the core of the statistician’s

art. But, after a few vague generalities, Chris was reduced to stuttering.

The desire to imbue students with “statistical thinking” has led to the recent upsurge of

interest in incorporating real investigations into statistics education. However, rather than

being a precisely understood idea or set of ideas, the term “statistical thinking” is more

like a mantra that evokes things understood at a vague, intuitive level, but largely

unexamined. Statistical thinking is the statistical incarnation of “commonsense”. “We

know it when we see it”, or perhaps more truthfully, its absence is often glaringly

obvious. And, for most statisticians, it has been much more a product of experience, war

stories and intuition than it is of any formal instruction that they have been through. In his

vote of thanks for Bartholomew (1995), T.M.F. Smith joked, “It seems to me that

statistics is a latent variable; it is a term which is commonly used to describe a

phenomenon but is difficult to define and is not directly measurable.” However well this

captures the essence of statistics, it does so even better for statistical thinking!

There is a paucity of literature on statistical thinking. Moore (1997) presented the

following list of the elements of statistical thinking, as approved by the Board of the

American Statistical Association (ASA) in response to recommendations from the Joint

Curriculum Committee of the ASA and the Mathematical Association of America: the need

for data; the importance of data production; the omnipresence of variability; the measuring

and modelling of variability. However, this is only a subset of what the statisticians I

have talked to understand by “statistical thinking” or “thinking statistically.” In the quality

area, the term is often used and much has been written about statistical thinking, but the

term is used in a specialised sense to address a specific audience. To a large extent, it is a

codename under which a particular set of insights about process improvement has been

promoted. Snee (1990, p. 118) (see also Britz et al., 1997) defined statistical thinking as

“ thought processes, which recognise that variation is all around us and present in

everything we do, all work is a series of interconnected processes, and identifying,

characterising, quantifying, controlling, and reducing variation provide opportunities for

improvement.” Mallows (1998) has attempted to broaden these conceptions.

The usual panacea for teaching students to think statistically is, with apologies to Marie-

Antoinette, “let them do projects”. Although this enables students to experience more of
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the breadth of statistical activity, experience is not enough. The cornerstone of teaching in

any area is the development of a theoretical structure with which to make sense of

experience, to learn from it and transfer insights to others. An extensive framework of

statistical models has been developed to deal with technical aspects of the design and

analysis that are applicable once the problem and variables have been defined and the

basic study design has been decided. An enormous amount of statistical thinking must be

done, however, before this stage is ever reached and in mapping between information in

data and context knowledge, throughout the whole statistical process. There is little in the

way of scaffolding to support such thinking (see Mallows, 1998). Experience in the

quality arena and research in education have shown that the thinking and problem solving

performance of most people can be improved by suitable structured frameworks (Pea,

1987, p. 91; Resnick, 1989, p. 57).

We have begun trying to identify important elements from the rich complexity of statistical

thinking. In addition to the literature and my own and my supervisor’s experience, the

discussion draws upon intensive interviews with students of statistics and practising

professional statisticians. One set of eleven students, referred to as “students” were

individually given a variety of statistically based tasks ranging from textbook-type tasks to

critiquing newspaper articles in two one-hour sessions. They were interviewed while they

solved the problems or reacted to the information. Another set of five students, referred to

as “project students”, were leaders of groups of students doing real projects in

organisations which involved taking a vaguely indicated problem through the statistical

enquiry cycle (see Fig. 9.1(a)) to a solution that could be used by the client. Each was

interviewed for one hour about their project. The six professional statisticians were

interviewed for ninety minutes about “statistical thinking” and projects they had been

involved in. The “project students” and statisticians interviews were structured around the

statistical enquiry cycle and were in the form of a conversation, which reflected on their

approach and thinking during the process of an investigation. This chapter is an attempt to

synthesise a more comprehensive picture from all these interviews and the literature.

We are not concerned with finding some neat encapsulation of “statistical thinking.” The

concerns are deeper than this. This is an investigation into the complex thought processes

involved in solving real-world problems using statistics with a view to improving such

problem solving. We are thus interested in thinking patterns involved in problem solving,

strategies for problem solving, and the integration of statistical elements within the

problem solving. This discussion is organised into a statistical thinking framework in

Section 9.2. Section 9.3 explores “variation.” It looks at statistical approaches to real-

world problems from the starting point of omnipresent variation. Section 9.4 takes

lessons learned in Section 9.2 and gives a fragment of a thinking tool for improving

investigative skills. Section 9.5 draws overall conclusions.
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Figure 9.1  A 4-dimensional Framework for Statistical Thinking in Empirical Enquiry

9.2 A Statistical Thinking Framework for Empirical Enquiry
Applied statistics is part of the information gathering and learning process which, in an

ideal world, is undertaken to inform decisions and actions. Every problem an applied

statistician works on is embedded in a larger problem, the “real problem” (R. J. MacKay,

1996, personal communication). Surrounding this larger problem is a body of “context”

knowledge. Statistical investigation is carried out because people deem their context

knowledge insufficient for their desired uses, be it as a basis for decision making and

action or simply for understanding. Statistical investigation is used to expand the context

knowledge-base. Thus, the ultimate goal of statistical investigation is learning in the

context sphere. Learning is much more than collecting information, it involves
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synthesising the new ideas and information with existing ideas and information into an

improved understanding.

From the interviews we have built up the four dimensional framework shown in Fig. 9.1

which seeks to organise some of the elements of statistical thinking during data-based

enquiry. The thinker operates in all four dimensions at once. For example the thinker

could be categorised as currently being in the plan stage of the Investigative Cycle

(Dimension 1), dealing with some aspect of variation in Dimension 2 (Types of Thinking)

by criticising a tentative plan in Dimension 3 (Interrogative Cycle) driven by scepticism in

Dimension 4 (Dispositions). (See Chapter 8.)

9.2.1 Dimension One: The Investigative Cycle

The first dimension in Fig. 9.1(a) concerns the way one acts and what one thinks about

during the course of a statistical investigation. For this there is an adaptation of the

PPDAC model of MacKay and Oldford (1994). The statisticians I interviewed were

particularly interested in giving prominence to the early stages of PPDAC, namely, to

grasping the dynamics of a system, problem formulation, and planning and measurement

issues (see Chapter 7). Cox’s (1997) evaluation of the current state of statistics

illuminates much of PPDAC. Section 9.4 gives some detail on the measurement

component of the plan stage.

A PPDAC cycle is concerned with abstracting and solving a statistical problem grounded

in a larger “real” problem. Most problems are embedded in a desire to change a “system”

to improve something. Even ostensibly curiosity-driven research is usually justified by

the idea that the accrued understanding will have long term practical benefits. A

knowledge-based solution to the real problem requires better understanding of how a

system works and perhaps also how it will react to changes to input streams, settings or

environment. Certain learning goals must be met to arrive at the desired level of

understanding. A PPDAC cycle is set off to achieve each learning goal. Knowledge

gained and needs identified within these cycles may initiate further investigative cycles.

The conclusions from the investigations feed into an expanded context knowledge base

which can then inform any actions (Fig. 9.2).
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Figure 9.2 The Setting for Statistical Investigation

9.2.2 Dimension Two: Types of Thinking

A number of types of thinking emerged from the statisticians’ interviews and were

subsequently refined and modified when I applied them to the student and project-student

interviews (see Chapter 8). The resulting categories are shown in Fig. 9.1(b). Some types

of thinking are common to all problem solving. These general types of thinking are related

to the statistical context in Section 9.2.2.2. First, however, the types of thinking that are

inherently statistical are concentrated upon.

9.2.2.1 Types Fundamental to Statistical Thinking

The types of thinking categorised under this heading in Fig. 9.1(b) are, we believe, the

foundations on which statistical thinking rests.

Recognition of the need for data: The recognition of the inadequacies of personal

experiences and anecdotal evidence leading to a desire to base decisions on more reliable

data is a statistical impulse.

Transnumeration: The most fundamental idea in a statistical approach to learning is

that of forming and transforming data representations of aspects of a system to arrive at a

better understanding of that system. I have coined the word transnumeration to refer to

this idea. It is defined as “numeracy transformations made to facilitate understanding.”

Transnumeration occurs when ways of obtaining data (through measurement or

classification) are found that capture meaningful elements of the real system. It occurs

every time a new way of looking at the data is found that conveys new meaning. Many

graphical representations may be looked through to find several really informative ones.

Looking for new insights, the data may be re-expressed via transformations and

reclassifications. A variety of statistical models might be tried. And at the end of the

process, transnumeration happens yet again when data representations are discovered that
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help convey the new understandings about the real system to others. Transnumeration is a

dynamic process of changing representations to engender understanding. Mallows (1998)

would appear to be advancing a similar idea.

Variation: The recognition of the role of variation and acting in a way that takes that

variation into account, is what makes thinking statistical, in the modern sense anyway.

The ASA resolution, and Moore and Snee’s discussions of statistical thinking all

emphasise the importance of variation. The last element of the list following “variation”,

namely “for the purposes of explanation, prediction, or control” is in the original

statement of Snee (1990), albeit with a process-improvement spin, but has been dropped

from the ASA statement. It is a critical omission. Variation is not measured and modelled

in a vacuum. The purpose influences the way in which it is done. In Section 9.3, the

variation theme is considered in much greater detail.

A distinctive set of models:  The main contribution of the discipline of statistics to

thinking has been a distinctive set of models, or frameworks, for thinking about certain

aspects of investigation. Statistics deals with the process of scientific investigation in a

generic way. The giants who laid the foundations for the subject, (e.g. Pearson and

Fisher) were complete scientists who are still revered in fields other than statistics. Since

the 1930’s, most activity in statistics has concentrated on those parts of the process that

most obviously benefit from a generic approach. In particular, methods for study design

and analysis have been developed that flow from mathematical models which include

random components (see Mallows, 1998). Recently, however, there is a growing desire

to nudge statistics a little further back towards its roots in scientific inference (Cobb,

1991; Biehler, 1994a). Large parts of the investigative process, such as problem analysis

and measurement, have been largely abandoned by statisticians and statistics educators to

the realm of the particular. However, there are more valuable generic lessons that can be

uncovered about these other parts of the investigative process using other modelling tools.

There is a need to expand the reach of the models used in statistics.

Context knowledge, statistical knowledge and synthesis: The raw materials on

which statistical thinking works are statistical knowledge, context knowledge and the

information in data. The thinking itself is the synthesis of these elements to produce

implications, insights and conjectures. One cannot indulge in statistical thinking without

some context knowledge. The arid, context-free landscape on which so many examples

used in statistics teaching are built, may ensure that large numbers of students never even

see, let alone engage in, statistical thinking. One has to bring to bear all relevant

knowledge, regardless of source, on the task in hand, and then to make connections

between existing context-knowledge and the results of analyses to arrive at meaning. In

large scale investigations it is seldom that the required knowledge is all resident in one
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person. Major investigations are team efforts which bring together people of differing

expertise. Fig. 9.3 emphasises the synthesis of ideas and information from the context

area and from statistics.

IDEAS

Broad
QUESTIONS

Precise
QUESTIONS

PLAN
for data

collection

STATISTICAL
Knowlege

CONTEXT
Knowlege

(a)  From inkling to plan

Context
Sphere

Statistical
Sphere

Questions for data

Finding out

What does this mean?

Features seen in data

(b)  Shuttling between spheres

Figure 9.3 Interplay between Context and Statistics

Fig. 9.3(a) traces the (usual) evolution of an idea from earliest inkling through to the

formulation of a statistical question precise enough to be answered by the collection of

data, and then on to a plan of action. The earliest stages are driven almost entirely by

context knowledge. Statistical knowledge contributes more as the thinking crystallises.

Fig. 9.3(b) illustrates the continual shuttling backwards and forwards between thinking in

the context sphere and the statistical sphere. This goes on all the time throughout PPDAC.

For example, at the analysis stage questions are suggested by context knowledge that

require consulting the data — which temporarily pushes one into the statistical sphere —

whereupon features seen in the data propels one back to the context sphere to answer the

questions, “Why is this happening?” and “What does this mean?”

9.2.2.2 General Types of Thinking Applied in a Statistical Context

Strategic thinking

By strategic thinking, it is meant thinking aimed at deciding upon what one will do (next

or further into the future) and how one will do it. This includes such things as: planning

how to attack a task; breaking tasks down into subtasks; setting deadlines for subtasks;

division of labour; and anticipating problems and planning to avoid them. An important

part of strategic thinking is having an awareness of the constraints one is working under

and taking them into account in planning.

Real statistics is less about the pursuit of the “correct” answer in some idealistic sense

than about doing the best one can within constraints. Many factors limit the quality and

effectiveness of the thinking. Some of these factors are internal to the thinker. Lack of

knowledge obviously constrains thinking. Unfortunately, what we “know” is not only

our greatest asset but also our biggest curse because the foundations of what we “know”
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are often not soundly based. Our preconceptions can lead us astray in many ways, for

example, by blinding us to possibilities because what we “know” determines where we

look, and by desensitising us to important information. The challenging of something we

“know” and take for granted can remove an obstacle and lead to new insight. This often

occurs when people with different backgrounds discuss the same problem. Consulting

statisticians see it at work in their clients when a quite innocent question surprises the

client, loosens a previously held preconception, and leads to the client seeing the problem

in a new way. We tend to solve problems by following “precedents”. In applied research,

this happens all the time and often the statistical methods of the precedents are inadequate.

As far as dispositions (Dimension 3) are concerned, someone who is not curious,

imaginative, sceptical and engaged will be less effective than someone who is. There is

also an ability factor operating. Faced with the same set of information, some people will

be better at making useful connections and grasping the essential features than others.

And inadequate communication skills limit the ability to extract vital information and ideas

from clients and others.

Other constraints are due to the environment the thinker is operating in. These include the

general time, money and materials constraints, the imperfection of all human

communication which results in misunderstandings and gaps in transmission of essential

knowledge, and limitations of the data available. Very often, the problem we would like

to solve is simply not soluble on the basis of the information we can get. For example, it

may be impossible to capture with feasible measurement processes the characteristics we

would like to capture. It may be impossible to sample the desired population or even a

good approximation to that population, and so on.

The majority of applied statistical work done by statisticians is done on problems owned

by someone else. In other words, the statistician is in the position of having to satisfy

“clients.” This brings additional constraints which run deeper than time-and-materials

constraints. Major decisions are made by, or must be cleared with, the client. The

problem territory tends to be mapped out and even ring-fenced by the client. The client is

often the chief source of context information so the statistician is not only constrained by

the quality of communication and the extent of the client’s knowledge, but will also tend

to take on board the client’s preconceptions. As the client is the final arbiter, the

statistician is constrained by what the client can understand and accept. This can be

strongly influenced by a number of what might be described as psychological factors.

Statisticians have to gradually build up the client’s trust in their judgement and abilities.

An important consideration in “building trust” is not taking clients too far from territory in

which they feel secure. An important element in client security is, in the words of

General, “what has been done in the field before.” I have called this the first-in-the-field

effect. Early work in a field tends to take on an authority of its own whether or not it is



202

warranted. It can influence every decision in the investigative process, right through to

presentation. A related psychology of measurement effect concerns the sanctity of the

measured variable. To the client, the way in which a variable has been measured takes on

a meaningfulness and inviolability that a statistician might disregard, given the arbitrary

elements in the initial choice of the variable. The use of transformations in analysis is an

area in which these issues come into sharp focus. Chapter 7 gives a much more detailed

and wide-ranging discussion, derived from the statisticians’ interviews, of the realities of

working with clients (Pfannkuch & Wild, 1998b).

Modelling

Constructing models and using them to understand and predict the behaviour of aspects of

the world that concern us seems to be a completely general way of thinking. All models

(e.g. statistical and process models) are oversimplifications of reality in which

information is necessarily discarded. We hope that we have caught the essential features

of a situation and the loss of information does not invalidate our conclusions. Fig. 9.4

illustrates the way in which we learn about the context reality as a statistical investigation

proceeds. As the initial quotation from David Bartholomew makes clear, “understanding”

builds up in mental models of the context reality. These models are informed by

information from the context reality. In an ideal world, we would be continually checking

the adequacy of the mapping between model and reality by “interrogating” the context

reality. Some of the information we seek and get from the context reality is statistical data.

We build statistical models to gain insights from this information (“interpret”) which feed

back into the mental model. “Statistical models” here is more general than something like

logistic regression. It refers to all of our statistical conceptions of the problem that

influence how we collect data about the system and analyse them. Fig. 9.4 also

incorporates the role of statistical knowledge and experience. Most obviously, it is a

major determinant of the statistical conceptions we form in order to obtain and analyse

data. Additionally, depending on the problem and the education and experience of the

thinker, statistical elements can also be part of the way we think about the world and thus

be integral parts of our mental models of the context reality.
 Degree of abstraction
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MODELS
of the data
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Inform Interrogate
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 INFORM

MENTAL
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Interrogate

 Extract
 Elements
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Figure 9.4 Learning via Statistics
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Applying techniques

The most basic problem solving technique of all is to find a way of mapping a new

problem onto a problem that has already been solved so that the previously devised

solution can be applied or adapted. The whole discipline of statistics is itself a

manifestation of this strategy. Statistical theory improves the efficacy and efficiency of

this mapping process by creating problem archetypes and linking them to methods of

solution. Additionally, applied statisticians are always borrowing problem-solving ideas

from previous experience with other problems and other data sets. The problem with the

use of precedents that is noted in Section 9.2.2.2 is the way that established practice tends

to reign even though the precedents may be deficient. The practising statisticians

interviewed had stories of clients wanting to copy statistical methods from previously

published papers where the methods were manifestly inadequate, even in papers from

prestigious journals.

Implementation of the problem-archetype strategy, and indeed the practical application of

any technique, algorithm or concept, involves the three steps shown in Fig. 9.5.

Instruction tends to focus on step 2, mechanical application. However, steps 1

(recognition) and 3 (interpretation in context) are: first, vital to step 2 having any utility,

and second, inordinately more difficult. This is particularly true for the recognition step.

Recognising that a new problem is the same in essential ways as a problem previously

seen in a quite different context is an incredibly difficult skill to acquire and, for many

people, requires long experience. This aspect should not be minimised. (The project

students needed to make constant external checks with their supervisor about whether

they were on the right track.)

 Recognise
applicability

Apply
method

Interpret
result

Figure 9.5 Using any Technique

To use statistics, we recognise elements of our context that can be usefully mapped onto a

model (a process of abstraction from the particular to the generic), use what has been

determined by abstract reasoning about operating within that model, and then we map the

results back to context (from the generic to the particular). The approach is efficient when

it works but its utility rests entirely on the ability to perform the mappings. The enabling

skills of recognising useful common structure in diversity are extremely difficult to

establish. One can deal with the mechanics of procedures by simply talking about them,

establishing them with a few exercises and then moving on. Statistical thinking, which
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occurs at the interface between statistical activity and context-matter knowledge, is much

more difficult to foster. Synthesis, insight, critical thinking and interpretation happen in

the realm of the particular and require exposure to large numbers of disparate situations to

establish useful mental habits (cf. Wild, 1994).

It is characteristic of statistics that we apply relatively sophisticated statistical models to

the analysis of data and experimental design. Of all the statisticians interviewed, however,

only the one operating in quality improvement seemed to use any formal tools to analyse

the nature of the problem itself. For the others, it seemed to be a process of imaginative

construction of a mental model of the system, without discernible organisation. Most of

them were working on data obtained from others, and their needs for system modelling

were presumably lower. Problem solving models will be discussed in Section 9.4.

The type of thinking “seeking explanations” has not been discussed in this section,

but will be an important theme in Section 9.3.

9.2.3 Dimension Three: The Interrogative Cycle

The Interrogative Cycle illustrated in Fig. 9.1(c) is in constant use in statistical problem

solving. From a detailed analysis of the project-students’ and students’ transcripts, it

appears that the thinker is always in one of the interrogative states while problem solving

(see Chapter 8). The cycle applies at macro-levels, but also at very detailed levels of

thinking because the interrogative cycle is recursive. Sub-cycles are initiated within major

cycles, e.g. the “checking” step of any cycle can initiate a full interrogative sub-cycle. The

ordered depiction on a wheel is an idealisation of what perhaps should happen. In reality

steps are often missed. The components are now explored in more detail.

Generate: By this is meant imagining and brainstorming to generate possibilities, as an

individual or in a group. It might be applying this to a search for possible causes,

explanations and mechanisms, to the ways parts of a system might interrelate and to other

building blocks of mental and statistical models. It might be applied to the types of

information needed to be sought to fill an information gap or to check out an idea, or to

plan an approach to a problem or sub-problem. The generation of possibilities may be

from the context, the data or statistical knowledge and apply to the present problem, or

may be registered for future investigation (hypothesis generation).

Seek: Generation tends to be followed by a seeking or recalling of information. This

may be internal or external. For internal seeking, we observe people thinking “I know

something about this” and digging in their memories for the relevant knowledge. External

seeking consists of obtaining information and ideas from sources outside the individual or

team. Working statisticians talk to other people about their problems — clients,
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colleagues, context-matter experts, people “working in the system”. Seeking includes

reading relevant literature. At the macro-level it includes the collecting of statistical data,

while at a more detailed level it includes querying the data in hand.

Interpret: By this is meant taking and processing the results of the seeking.

Read/see/hear → Translate → Internally summarise → Compare → Connect

This process applies to all forms of information including graphs, summaries and other

products of statistical analysis. “Connect”, the endpoint of “interpret” refers the

interconnecting of the new ideas and information with our existing mental models and

enlarging our mental models to encompass these interrelationships. Some of the problems

observed in student thinking involved making one connection and then rushing to “judge”

rather than trying to make multiple connections or going through the criticism phase.

Criticise:  The criticism phase applied to incoming information and ideas involves

checking for internal consistency and against reference points. We ask, “Is this right?”

“Does this make sense?” “Does this accord with what else I or others know?” We check

against internal reference points — arguing with ourselves, weighing up against our

context knowledge, against our statistical knowledge, against the constraints we are

working under, and we anticipate problems that are consequences of particular choices.

We may also check against external reference points such as: other people (i.e. talk to

clients, colleagues, experts, “workers in the system”); available literature and other data

sources (e.g. historical data).

We can similarly try to take a mental step back and monitor our own thinking. Educational

theorists talk about metacognition, of recognising and regulating one’s normal modes of

thought (see Shaughnessy, 1992). Reference points to check against here include the

following: (1)The purpose of the thinking: For example, “Does this address the question

the client wants answered?”, or some sort of agreed objectives. (2) Belief systems: “Am I

being unduly guided by unwarranted preconceptions — my own, my client’s, or my

community’s?” Chapter 7 has some good cautionary tales from the experiences of the

statisticians. (3) Emotional responses: One of the project students was worried about how

the company treatment of her seemed to be influencing the way she was approaching the

problem and viewing the data. (4) Ability: “Have I the ability to solve this particular

problem?”

Judge: This is the decision endpoint of criticism. What we keep, what we discard or

ignore, what we continue to tentatively entertain, what we now believe. We apply

judgement to such things as: the reliability of information; the usefulness of ideas; the

practicality of plans; the “rightness” of encapsulation; conformance with both context-
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matter and statistical understanding; the relative plausibility of competing explanations; the

most likely of a set of possible scenarios; the need for more research; and the many other

decisions involved in building and reasoning from models.

The result of engaging in the interrogative process (Fig. 9.6) is a distilling and

encapsulating of both ideas and information. Internal interrogative cycles (Fig. 9.6(a))

help us extract essence from inputs, discarding distractions and detail along the way (Fig.

9.6(b)).

Seek

Interpret Criticise

Judge

Generate

(b)  DISTILLATION & ENCAPSULATION(a)  INTERROGATIVE CYCLE

IDEAS INFORMATION

DISTIL
& DISCARD

DISTIL

DISTIL

DISTIL

DISTIL

DISTIL

ENCAPSULATE

DISTIL
& DISCARD

DISTIL
& DISCARD

DISTIL

Figure 9.6 The Interrogative Process

9.2.4 Dimension Four: Dispositions

In this subsection, personal qualities categorised in Fig. 9.1(d) which affect, or even

initiate, entry into a thinking mode are discussed. The nature of these dispositions

emerged from the statisticians’ interviews and could subsequently be recognised at work

in the students.

Curiosity and awareness:  Discoveries are triggered by someone noticing something

and reacting to internal questions like “Why?”, or “How did that happen?”, or “Is this

something that happens more generally?”, or “How can I exploit this?” Being observant

(aware) and curious are the well-springs of the question generation process that all

innovative learning results from. Wild (1994) formed the slogan “Questions are more

important than answers” to emphasise this point. The statistician Quality stressed the

importance of “noticing variation and wondering why” for generating ideas for improving

processes and service provision. We hazard that this very basic element of statistical

thinking is actually at the root of most scientific research. “Noticing and asking why” is

also critical for successful data exploration and analysis.
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Engagement.: When we become intensely interested in a problem or area, a heightened

sensitivity and awareness develops towards information on the peripheries of our

experience that might be related to the problem. This experience appears fairly general.

People are most observant in those areas that they find most interesting. Engagement

intensifies each of the “dispositional” elements curiosity, awareness, imagination and

perseverance. How does one become engaged? Spontaneous interest is innate.

Background knowledge helps — it is hard to be interested in something one knows

nothing about. Being paid to do a job helps, as does the problem being important to

people one cares about. This may be the main difficulty in getting statistics students to

think. They simply do not find the problems they are asked to think about interesting

enough to be really engaged by them. The effects on performance of engagement were

observed with some tasks and not others in the statistics students.

Imagination: It is hard to overemphasise the importance of imagination to statistical

thinking. This is somewhat ironic given popular stereotypes of statisticians. The

formation of mental models that grasp the essential dynamics of a problem is a deeply

imaginative process, as is viewing a situation from different perspectives, and generating

possible explanations or confounding explanations for phenomena and features of data.

Scepticism:  By scepticism, is meant a tendency to be constantly on the lookout for

logical and factual flaws when receiving new ideas and information. It is a quality all the

statisticians interviewed both possess and value. Some writers refer to this as “adopting a

critical attitude.” Gal et al. (1995) and Pfannkuch (1996) discussed critical thinking in the

interpretation of statistically based reports and media articles. Scepticism here was

basically targeted towards, “Are the conclusions reached justified?” There may be worries

about the motivation, predispositions and objectiveness of the writer which would effect

the level of trust in anything that had been done. Experienced statisticians are likely to

evoke automatically technical “worry questions” concerning the appropriateness of the

measurements taken, the appropriateness of the study design, the quality of the data, the

suitability of the method of analysis, and whether the conclusions are really supported by

the data. Postulated explanations create worries about whether this really is the only

plausible explanation.

Another aspect involves a sense of number and scepticism. A precursor step towards “Is

this information/conclusion justified?” is “Is this information/conclusion even credible?”

One of the statisticians told the simple story of reported attendance rates at a free outdoor

concert in Auckland. If the figures were correct, that would mean that one in every three

Aucklanders, one in nine New Zealanders, would have needed to have attended and that

was, frankly, incredible. The information is discounted at this first hurdle. However it
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should be noted that one is much less inclined to be sceptical when conclusions fit one’s

own preconceptions. A conscious effort may be required to counter this.

Being logical:  The ability to detect when one idea follows from another and when it

does not, and to construct a logical argument is clearly important to all thinking. Synthesis

of new information with existing knowledge is largely a matter of seeing implications.

Logical reasoning is the only sure way to arrive at valid conclusions. To be useful,

scepticism must be supported by an ability to reason from assumptions or information to

implications that can be checked against data.

A propensity to seek deeper meaning means not simply taking things at face value

and being prepared to dig a little deeper. Of the other “dispositions”, openness helps us

to register and consider new ideas and information that conflict with our own assumptions

and perseverance is self evident.

Can “dispositions” be taught? Schoenfeld (1983) analysed the mathematical

problem solving experience within individuals in terms of a “manager” and an

“implementer” working in tandem. The manager continually asks questions of a strategic

and tactical nature deciding at branch points such things as which perspective to adopt and

which direction to take or abandon. We have described the characteristics above as

“dispositions”. They tend to initiate manager functions. It was first thought that

dispositions were innate characteristics of the thinker but this was modified with the idea

of “engagement”. A person’s “dispositions” are problem dependent — they change

according to the degree to which the person is engaged by the problem. One of the

statisticians interviewed was adamant that some people are sceptical, others are credulous,

and there is little one can do about it. There is scope for less pessimism. It would seem

that credulousness in a particular area is a result of ignorance. As one gains experience

and see ways in which certain types of information can be unsoundly based and turn out

to be false, one becomes more sceptical. Moreover, what is wanted in operational terms

from scepticism is simply a prompting to raise certain types of question concerning the

reliability of information. In Gal et al.’s (1995) discussion of the critical reading of

statistical information in reports, they advocated that students be educated to “have ‘in

their heads’ a critical list of ‘worry’ questions”. One can also be taught to notice and

recognise particular types of things such as patterns in data. Seeking meaning in these

patterns involves following up questions of the why-what-how variety which students

could also be taught to “have in their heads”. These issues are pursued further in Section

9.4.
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9.3. Variation, Randomness and Statistical Models
9.3.1 Variation as the Starting Point

The centrepiece of the quality and ASA definitions of statistical thinking is “variation” or

“variability”. Any serious discussion of statistical thinking must examine the role of

“variation.” The “variation” terminology and message seems to have arisen in one small

area of statistical application, namely that of quality, and its penetration into other areas

would appear to be slight. If “variation” is indeed to be the standard about which the

statistical troops are to rally, we need to arrive at a common conception of statistics in

terms of “variation”. This section attempts such a conception. Moreover, a view of

statistics “from the outside” is attempted.

The first three “variation” messages are: variation is omnipresent; variation can have

serious practical consequences; and statistics gives a means of understanding a variation-

beset world. Subsequent messages concern how statistics goes about doing that.

Omnipresence: Variation is an observable reality. It is present everywhere and in

everything. Variability affects all aspects of life and everything we observe. No two

manufactured items are identical, no two organisms are identical or react in identical

ways. In fact, individual organisms are actually systems in constant flux. The

aforementioned refers only to real variation inherent to the system. Fig. 9.7 depicts how,

when we collect data from a system, this real variation is supplemented by variation added

in various ways by the data collection process.

VARIATION
in data

REAL
(Characteristic

of system)

INDUCED
(by data

collection)

Measurement

“Sampling”

Accident

Measurers
Devices

Collection

Processing

Figure 9.7 Sources of Variation in Data

Practical impact:  Having established that variation is everywhere, the important

practical impacts of this variation on people’s lives and the way they do business must be

demonstrated. It is variation that makes the results of actions unpredictable, that makes

questions of cause and effect difficult to resolve, that makes it hard to uncover

mechanisms. Variation is the reason why people have had to develop sophisticated

statistical methods to filter out any messages in data from the surrounding noise.
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9.3.2 Predict, Explain and Control

Fig. 9.8 categorises rational responses to variation in a system in the world of action.

This is idealistic. The way people actually do react to variation can be quite another story!

(See Joiner, 1994)

  Ignore

Anticipate
Design systems/

processes/products
to be insensitive to

 Change system/
process to increase
“desirable” outcomes

  Allow for   Change Pattern
(“Control”)

Practical Responses to Variation

Figure 9.8 Practical Responses to Variation

First, we can “pretend that the variation does not exist”, e.g. behave as though every

object or organism is the same or differs in some deterministically known way. In some

circumstances this works admirably. If it didn’t we would have to write off all of applied

mathematics and every field it fertilises. Second, we can investigate the existing pattern of

variation and come up with ways of working around it — as in our system of clothing

and shoe sizes, the operation of the insurance industry, and when planning public

services. Variation is “allowed for” at the design stage in quality-management approaches

to manufacturing, where one wishes to design a product that is “rugged” or “robust” to

the variability of uses to which it will be put, and conditions to which it will be subjected.

Third, we can try to “change the pattern” of variation to something more desirable, e.g. to

increase average crop yield or reduce a death rate. We do this by isolating manipulable

causes, or by applying external treatments. The former approach is often used in quality

improvement or in public health, the latter is a frequently used in agriculture or in medical

research aimed at the treatment of individual patients.

Statisticians model variation for the purposes of prediction, explanation, or control.

Control is changing the pattern of variation to something more desirable as has just been

discussed. Prediction is the crucial informational input to “allow for” in Fig. 9.8.

Explanation, gaining some level of understanding of why different units respond

differently, improves our ability to make good predictions and it is necessary for control.

Causal and mechanistic explanation is the goal of basic (as opposed to applied) science.

As soon as we ask “Why?”, we are looking for causes. (The idea of a “cause” will be

pursued later.) While on the one hand variation may obscure, it is the uncontrolled

variation in a system that typically enables us to uncover causes. We do this by looking

for patterns in the variation. Fig. 9.9 picks up this idea in a way that relates back to the

goals in Fig. 9.8.
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Statisticians look for sources of variability by looking for patterns and relationships

among variables (“regularities”). If none are found, the best one can do is estimate the

extent of variability and work around it. Regularities may or may not correspond to

causes. In terms of solving practical problems, causes that cannot be manipulated are

operationally equivalent to any other observed regularity, although they will give us more

confidence in our predictions. The presence of regularities enables us to come up with

predictions and measures of variability that are more locally relevant, e.g. more relevant to

an individual patient. Manipulable causes open the option of control.

  Look for regularities

React to existing variability
• Local estimates
• Improved prediction

          for individuals

React to existing variability
• Global estimates
• Bad prediction

          for individuals

Change system
• Improve pattern
                  of response

No

    S   Some     S   None

Yes

NoYes

 Cause?

Explanation

 Can manipulate?

Figure 9.9 Responses to Regularities

9.3.3 The Quest for Causes

In the first two exploratory studies, two groups of first-year students were given media

clippings and similar items containing statistical information, and then interviewed

individually about their responses. Initially, the approach to the student transcripts was

that of teachers marking term papers, of looking for mistakes and gaps, for what the

students had “done wrong”. One item was based on Tversky and Gilovich (1989). The

streaks that sports fans see in sports data, and then proffer all sorts of causal explanations

for (e.g. falters under pressure), can often be explained entirely in terms of a random,

e.g. binomial, model (see also Moore, 1990; Falk & Konold, 1992; and Biehler, 1994b).

The item given, in phase two of the second exploratory study, concerned a basketball

player with a 70% success rate of free throws succeeding with only 2 out of 5 throws.

Under a binomial model, this is not a particularly unusual event. We think of this as “the

statistics teachers’ point”. The students proffered all sorts of causal explanations. As

statistics teachers, my supervisor and I thought they had missed the point. Mark that one

wrong! For the interview group (see Appendix Two), the item was loaded entirely in

favour of the statistics teachers’ point: “The team manager attributed her performance to

normal variation, that she scored 70% in the long run and that 70% was only an average

so that you had to expect some low scores now and again.” Even then the tip of the

deterministic-causal-thinking iceberg was seen. One student said, “the manager's
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comments are OK if that is the way he wants to look at the score and not on ‘we want to

win’”  and then he gave possible causes.

This comment eventually overturned our attitude. The student was right. There is a real

problem underlying this item. Coaches and managers of sports teams are seeking to learn

from their observations so that they can work on improving player skills and strategy, and

better deploy their pool of available players. A random model is of no help at all in this

regard. The statistics teacher’s concerns do not replace the need to search for causes and

predictors of good and bad performance. It is that search that is of primary importance.

The real problem underlying the statistical problem very often involves searching for and

isolating causes of some response. A variety of stories including medical stories and

prison suicides were given to the students. Whenever the students had contextual

knowledge about a situation, and their experience had given them some notion of the

nature of the real problem, they came up with a range of possible causal explanations with

little or no prompting. This appears to be a well developed impulse that has not been

explicitly taught. It is a first and direct step towards solving the primary problem. The real

purpose of many of the new statistical ideas we teach is simply to moderate the search for

causes by preventing a premature jumping to conclusions — “Hey, not so fast . . .”. This

role is secondary and subtle. It is probably not surprising then, that even after some

statistical instruction, the randomness ideas are much weaker in students than the impulse

to postulate causes. Probabilistic thinking is not so much an alternative to deterministic

thinking, as some statistics educators (Shaughnessy, 1992) and statisticians (Hoerl et al.,

1997) have suggested, but something to be grafted on top of the natural thinking modes

that directly address the primary problem. As an interesting aside, if an explanation or

cause has already been suggested to students for a particular set of data or if the data have

been presented stratified in some particular way, it can take a great deal of prompting for

the student to go beyond the explanation given, to think that there may be other

explanations and start coming up with ideas. This latter is a quite different incarnation of

“Hey, not so fast, . . .”

What does statistics education have to say about causation? By far the loudest message is,

“correlation is not causation.” This is the statistician as Cassandra, the harbinger of doom

saying “this way lies disaster.” True, we usually go on to make the important point that

the randomised experiment is the most convincing way of establishing that a mooted

relationship is causal. But, as stressed by Holland (1986), Cox (1992) and few others

outside of quality and epidemiology, this greatly undersells the true importance of the

search for causes. Solving most pressing practical problems involves finding and

calibrating change agents. Statistics education should really be telling students something

every scientist knows, “The quest for causes is the most important game in town.” It
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should be saying, “Here is how statistics helps you in that quest. Here are some general

strategies and some pitfalls to beware of along the way . . .” It should not just be

preventing people from jumping to false conclusions but also be guiding them towards

valid, useable conclusions — replacing Cassandra by a favourite literary detective. Like

Cassandra, these people are well aware of the dangers, but unlike Cassandra they are also

aware of much, much more than this.

Thinking about causes

It is ironic that the uncontrolled variability in a system provides us with the best

opportunities to do the detective work that uncovers causes. By checking for relationships

between upstream variables and downstream responses, we can identify possible causal

factors. Observation precedes experimentation. All ideas for possible causal relationships

originate in observation, whether anecdotal, from formal studies, or some historical

combination of the two, now incorporated in context-matter theory or folklore. And it

should be continually stressed, randomised experiments provide the most convincing way

of confirming or refuting the causal nature of an observed relationship.

Conducting any sort of study to detect causes and estimate their effects proceeds from

ideas about profitable places to look, and from ideas which draw almost exclusively on

context-matter knowledge and intuition. Ideas about possible causes and other factors that

might be important predictors of the behaviour of the response are translated into a set of

variables to measure (transnumeration) and data are collected to facilitate investigation of

relationships between measured variables and the responses of interest. The primary tools

of analysis in the search for causes are models of the regression type. That is, models for

exploring how Y-behaviour changes with changes in X-behaviour. (The humble scatter

plot falls into this class.)

Cox (1992) distinguishes between: response variables (those whose behaviour we want

to find causal explanations for); intermediate response variables (which measure

intermediate effects that happen along the way from initial state to response state) and

explanatory variables (those we want to use to explain or predict the behaviour of the

response). Explanatory variables are further categorised into possibly causal variables,

intrinsic properties of entities under study, and non-specific (e.g., different countries).

Intrinsic variables are those whose values cannot be manipulated. Intrinsic variables are

often included to improve our ability to detect relationships, improve the precision of

estimation of effects and to explore how a cause may act differently for different types of

entity (interactions). Detection of strong relationships between non-specific variables and

a response lead to a search for new explanatory variables, for variables associated with

the non-specific variable which could conceivably explain the response. For example,

when disease rates differ greatly between countries, we start looking among factors that
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differ between the countries as possible causes. It should be noted that the above

distinctions between variables are much more than distinctions for analysis. As a set they

constitute a general thinking tool which adds clarity to the way in which the context-matter

problem is conceived. They are an example of the way in which statistical knowledge or

training can feed into a core mental model of the context reality that is understandable by

statisticians and non-statisticians alike, the “inform” arrow linking statistical knowledge

and mental model in Fig. 9.4.

Some consequences of complexity

Most real systems are enormously complex with variation in innumerable components,

each of which could contribute to the response of interest. We are incapable of handling

such complexity and need strategies to “sift” the large numbers of possibilities for a much

smaller number of promising leads. The quality control distinction between special cause

and common cause variation can be seen in this light. It gives a means of distinguishing

situations (special-cause variation) in which the seemingly instinctive human reaction of

looking around for something unusual occurring in the system just prior to the problem

event is likely to be a profitable strategy for locating the cause, from situations (common-

cause variation) in which this strategy is unlikely to be profitable and may even be

harmful.

The main statistical “sifting” strategy is to restrict attention to variables which have strong

associations with the response of interest. We have no hope of identifying a cause and

characterising its effects if it acts in complexly different ways for different individuals or

at different times. The only causes that we can hope to find are those that act in a

reasonably uniform or regular way. Moreover, we will only detect the existence of a

cause if we think of some way of looking at the situation that will reveal that regularity

(transnumeration). There must be sufficient “natural variability” in a cause-variable in the

system for the effect of this variability on the response to be seen. Causal variables that

we miss using the above strategy are unlikely to be good agents for making substantial

changes unless settings are used that lie far beyond the range of variability seen in that

variable in the data.

From association to causation

It is at this point that Cassandra makes her entrance. And the world really does need her

warnings. It is clear that people do jump far too quickly to causal conclusions. But

“correlation is not causation” is simply a “Hey, not so fast” warning and we need to

supply ways of moving on from there. The search process has not given us a set of

causes. It has only given us a set of promising contenders for causal status. Our main

worry at this point stems from the fact that we have not considered the universe of

relevant variables, but just that subset that happened to come to mind. We are worried that
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other unconsidered factors, those sinister lurking variables of textbook fame, may be

producing the relationships we are seeing. Thus, we challenge the causal assumption,

whether our own or somebody else’s. We rack our brains for other possible explanations

and for strategies for testing these explanations. This behaviour has to be learned. It

comes naturally to very few students. We have from Biology the idea of turning this into

a classroom game, the game of statistics. Whatever explanation you have for something, I

will try to top you with an alternative. The goal of the scientist is to reach a position at

which there are no other plausible explanations at the current level of understanding. To

do this, we need strategies which use observation, experimentation and analysis to

discount all other plausible alternatives.

Where experimentation is not possible and one must make decisions based upon using

observational studies, there is a range of ideas about what strengthens the impression that

a causal contender is in fact a cause. The criteria of A.B. Hill (1965, see also Gail 1996)

are a good starting point. In epidemiology and quality, the finding of causes with a view

to improving systems is not a philosophical problem but a pressing practical imperative.

Substantial literatures have grown up in these fields. Cox (1992, 1993) and Holland

(1986) also view questions of causation with practical applications clearly in mind. In

view of the fundamental importance of the search for causes, there is a real need to

synthesise this material into accounts which are more accessible for practising

investigators and for teachers.

Levels of “causal proof”

Decisions to take action tend to be made on the basis of a “best guess” in the light of the

available information. They seldom wait for incontrovertible evidence of causality. The

results can be spectacularly good. Take cot death in New Zealand. Research showed

strong relationships between cot-death rates and certain behaviours, e.g. the way the baby

was put down to sleep. There was no incontrovertible proof that the behaviours caused

cot death but the idea was sufficiently plausible to mount publicity campaigns and the

advice given to new mothers by doctors. Cot death rates halved. There is a level of

assurance at which decision makers are prepared to take what they consider to be a small

chance and take action. There are many factors affecting this level of assurance. The

degree of causal proof it takes will probably depend on many factors including the

difficulty of making (and reversing) changes to the system, the consequences of making a

wrong call, and the number of people who must be convinced before action is taken. We

are all brought up on the smoking-cancer debate as the primary example of the difficulties

in establishing causality. In that debate, there were (and are) entrenched and powerful

vested interests with a high political profile. Not surprisingly, the level of proof required

in such circumstances is extremely high. An industrial production manager would have

made the call long before, with the greater attendant risk of getting it wrong.
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9.3.4 Modelling Variation

A number of the statisticians interviewed said that the biggest contribution of statistics is

the isolation of “signal” in the presence of “noise”. The base problem with statistical data,

is how to make some sort of sense of information that is of mind-boggling complexity.

The main statistical approach to solving this problem begins by trying to find patterns in

that data. Context knowledge may give us some ideas about where to look and what to

expect. Statistical methodology gives us tools to use in the search. Common experience

tells us that studies conducted under very similar conditions always give results which are

different in detail, if not in broad thrust — patterns seen in data from one study are never

repeated identically in another. Some broad features of a pattern may be repeatable but

other more detailed features are not. The base problem, then, is to come up with strategies

for separating phenomena which are “likely” to persist more generally from those that are

purely local, to sift the enduring from the ephemeral. Patterns which persist provide the

basis for forecasting, control and insight. Statisticians have evolved particular sets of

strategies for “solving” this problem — strategies based, in the main, on probabilistic

modelling. We often say that an important function of probability models and statistical

inference is to counteract a human tendency to “see” patterns where none exist. As the

statistician Biology put it so vividly in his interview, “The human being is hard-wired to

see a pattern even if it isn’t there. It’s a survivor trait. It lets us see the tiger in the reeds.

And the downside of that is that our children see tigers in the shadows on the wall.” It is

not entirely true that no patterns appear in purely random phenomena. These patterns are

real to the brain in the sense that we can recognise features that would help us reproduce

them. However, such patterns are (i) ephemeral, and (ii) tell us nothing useful about the

problem under study. In other words, they are meaningless. Part of our reasoning from

random models is to say that we will not classify any data-behaviour as “enduring” if it

closely resembles something that would happen reasonably frequently under a purely

random model. One of the frustrations with teaching EDA to students is that it has so little

to say about the boundaries between the ephemeral and the enduring. Experienced

statisticians have intuitive internal calibrations, but it is conjectured that they originate

largely from experience with formal models.

The distinction between “explained” and “unexplained” variation is important here. We

generally try to find meaning in explained variation, the patterns which we have not

discounted as ephemeral, the “signal”. Unexplained variation, or “noise”, is what is left

over once we have “removed” all the patterns. It is thus, by definition, variation in which

we can find no patterns. We model unexplained variation as being generated by a

(structureless) random process. We have no idea whether this variation really is random;

this is not something that bothers us. If random sampling really has occurred, there is an

element of randomness in the noise. However, measurement error and components of the

variation in the original process typically contribute to the unexplained variation and there
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is no way of knowing whether these behave randomly or not. In fact, randomness is just

a set of ideas, an abstract model, a human invention which we use to model variation in

which we can see no pattern. The very physical models we use to illustrate randomness

are, with sufficient knowledge, actually deterministic (see Stewart, 1989). It is all part of

an attempt to deal with complexity that is otherwise overwhelming, and it tends to be a

model-element of last resort. The level at which we impose randomness in a model is the

level at which we give up on the ability to ask certain types of question, questions related

to meaning and causation. Of course, this is not to say that the random parts of a model

are useless. Important uses were discussed in Section 9.3.2 but their utility comes from

being used to predict rather than to understand.

One of the themes that teachers of statistics stress is the “real or random” idea. Can I have

some confidence that this an enduring feature? Or is it just one of the myriad of

possibilities lurking within the unexplained variation that I do not yet know enough about

to grapple with? The question stands without any reference to statistical theory or

randomness. The statistical strategy for answering the question is to say that if a data

feature looks like something that would happen sufficiently frequently under a purely

random process, we will decide that this feature could well be ephemeral and,

consequently, that we should not try to attach any meaning to it. Language such as “real

or random” or referring to the possibility that “the observed difference is due to chance”

actively obscure the distinction between the underlying problem and a statistical approach

to its solution. In talking about his project on mangroves the student Ray said: “My

teacher explained it [t-test] to me that the results I got were due to chance. I still don’t

think that statement makes any sense. I can understand what chance is when you are

rolling a dice. I don’t really understand what chance is when you relate it to biological

data. Everything you could possibly measure is going to be due to some environmental

impact.”

Some writers in quality have taken to saying, “all variation is caused”; e.g. Joiner and

Gaudard (1990), Pyzdek (1990). The latter repudiates the “outdated belief that chance

causes should be left to chance.” These claims seem to be predominantly motivated by

concerns about human psychology. Tomorrow, with new information, insight or

technology, we may be able to find patterns in what today looks random, to trace causes

from those patterns, and to improve the system (Pyzdek gives examples where this has

occurred). The propensity to do so may well be lost if the idea is internalised that this

variation is “just random”. In commenting on the difficulties people have with coming to

grips with statistics, Shaughnessy (1992, p. 478) wrote “the real world for many people

is a world of deterministic causes . . . there is no such thing as variability for them

because they do not believe in random events or chance.” We do not need to ask them to.

Variability is a demonstrable reality. Randomness need not relate to any belief system
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about the true underlying nature of reality. It is simply a response to complexity that

otherwise overwhelms us. The unexplained variation may well be the result of “a

multiplicity of causes”, to use the phrase of Falk and Konold (1992). Few would dispute

that much unexplained variability is of this type. But, the statistical response is that if we

can see no structure there, we will model it as having been generated randomly. In

deference to Pyzdek, Joiner, etc., however, modelling the unexplained variation as

random is not a serious statement about its true nature. It is simply a part of a working

model.

From these models, we make inferences. We assume that the data have been randomly

generated according to the model and use probability as the link between

population/process and data. This is the very heart of the statistics we teach. The models,

including their random components, stand or fall on the practical usefulness of the

answers they produce. There are some clear success stories, e.g. the insurance industry.

To use models with random components, we have to be able to: first, recognise that such

models provide a useful framework for considering the problem; second, build and fit an

appropriate model; and third, deduce implications from that model. The third step

involves some understanding of how random models behave. There is an emerging

literature on the difficulties in gaining that understanding. The properties of randomness

are not well understood and run counter to some deeply ingrained beliefs and intuitions

about random behaviour which are inordinately difficult to overturn; see, for example,

Pfannkuch and Brown (1996), Garfield and Ahlgren (1988), Konold (1994). The

inferential paradigms are also subtle and difficult to grasp, but this will not be discussed

here (see Mallows, 1998; and Cox, 1997).

One of the stories shown to the students, and my and my supervisor’s reaction to it,

niggled at us for a long time. It is a news story about an apparent jump in prison suicides,

the sort that leads to accusatory finger pointing and the pushing of different causal

explanations by different sectional interests. We automatically did a quick check against

Poisson variation. The figure was within reasonable limits. We sensed a tendency, as a

consequence of this calculation, not just to disregard the hype, but to disregard the

problem — non-significance as, “nothing’s going on here so let’s move on to something

else.” How common is this as a “statistician’s reaction” to such stories? There is a very

deep flaw here. Prison suicides are an important problem. People should be looking for

causes. It took a long time to realise that the Poisson calculation (assume that it is valid) is

really about common-cause variation versus special-cause variation; about whether to look

among recent changes for a cause (the popular strategy) or to decide that the problem

would only respond to much more in-depth study. It was to the latter that non-

significance really pointed.
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Relating the “variation” words

This section is concluded by putting some summarising organisation into the “variation”

terminology. Special-cause versus common-cause variation is a distinction which is

useful when looking for causes, whereas explained versus unexplained variation is a

distinction which is useful when exploring data and building a model for them. An

understanding of variation in data could be built on these suppositions: (1) variation is an

observable reality; (2) some variation can be explained; (3) other variation cannot be

explained on current knowledge; (4) random variation is the way in which statisticians

model unexplained variation; (5) this unexplained variation may in part or in whole be

produced by the process of observation through random sampling; (6) randomness is a

convenient human construct which is used to deal with variation in which patterns cannot

be detected.

9.4. Thinking Tools
Gal et al. (1995) used the term “worry questions” when discussing the critical appraisal of

reports — questions to invoke worries about the way information had been obtained and

how inferences had been drawn from it. Trigger questions (e.g. “Why?” and “How?”) are

their creative cousins. They tend to initiate new thinking in certain directions. The term

“trigger question” is used here for both roles. Such questions can be very effective. Many

times in the interviews when no thinking was taking place, some small prompt opened

flood gates of thought.

Experienced statisticians working in a collaborative or consulting environment learn to

generate trigger questions which elicit pertinent context information, ideas and

explanatory inferences from clients. The dialogue between consultant and client can be a

fraught affair. The success of the whole venture may depend upon the quality of the

trigger questions. However, an idealisation of the dialogue between statistical consultant

and client may be a useful model for the thinking that should go on within each

individual. No one taught the statistical consultants interviewed to ask the questions they

do. The consultants’ statistics education had relied on the process: stimulus + experience

+ disposition → pertinent trigger questions → gaining critical ideas and knowledge about

the context. This completely unstructured approach puts an enormous premium on

experience. If statistical thinking is something that we teach rather than simply to be

absorbed by osmosis, then we have to give it structure. Structure provides a framework

for discussion. Structure can prompt thinking. It can prevent crucial areas from being

overlooked. Structure provides something to fall back on, some ideas about what else you

can try, when you hit a brick wall.
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The idea from the quality armory that we have found most powerful is the simple idea of

interconnected processes, with associated process diagrams, as a framework for

analysing problems. It gives a structured way of breaking down activities, or mental

processes, into components. It emphasises principal steps and their interrelationships and

hides detail which can be uncovered subsequently when analysed as (sub)processes.

Joiner’s 7-Step Process (see Joiner 1994) is a thinking tool for working through for a

quality improvement project. It leads the thinker through the steps of a project in time

order and, within each step, gives lists of questions to prompt the crucial types of

thinking that should occur there. The above approach is not new. Polya (1945) used it in

How to Solve It, the most famous of all works on mathematical problem solving. In the

quality arena, we see many serious attempts to capture essential elements of expert

experience through creating thinking models/tools which can be used to approach specific

types of problem. Underlying all of the above are two simple principles, which have been

combined here as: systemise what you can, stimulate what you cannot. Procedures and

thinking tools cannot accomplish everything — knowledge and creativity will always be

needed to answer the questions — but we should be able to achieve much more than we

do now.

Schoenfeld (1987) distinguishes between a description which characterises a procedure

and a prescription which characterises a procedure in sufficient detail to serve as a guide

for implementing the strategy. PPDAC is a high-level description of a systematic

approach to investigation. It identifies major elements. It can be used as the foundation for

something that is much more of a prescription. One can zoom in on each step of the

process and gain more detail about what needs to be done and how to do it. This is a huge

undertaking so what is presented here is merely indicative. A similar approach could be

used for the interrogative cycle. The principles involved in the model fragments are:

• Systemise what you can, stimulate what you cannot;

• Use trigger questions to do the stimulation;

• Work from overviews and zoom in for the next level of detail;

• Keep the number of steps in any view of the process small to emphasise the

most important relationships.

An ideal way of implementing this type of model is an internet-type application in which,

at any level, one drills down for more detail by clicking on a node in the process diagram.

The area this has been applied to, in Figs 9.10 and 9.11, is drilling down into the “Plan”

node of PPDAC and then further down again into the “Measurement” node of the model

of “Plan”. It is stopped at this level of detail and sets of trigger questions are used about

measurement (derived from the interviews) which are very general. Context-matter

disciplines have built up enormous amounts of expertise about how to measure the things

that are of great importance for research in their discipline. It is simply pointed to with the
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questions. Models targeted at a particular application area could build in much more of

that local expertise or more of the synthesis between problem-context knowledge and

statistical knowledge. Still, a general model such as this could be useful for someone

doing applied research in a less developed area, and for building in statistics students a

more holistic feel for statistical investigation and the broad issues that need to be

addressed. It pre-packages some of the “strategic thinking” of breaking major tasks down

into subtasks.

An attractive model element that is not incorporated here, though it might be useful to do

so, are lists of the tools that are helpful at particular nodes of a process. For examples, see

Hoerl and Snee (1994). Process analysis tools may provide us with a means of building

up new bodies of “statistical theory” addressing critically important areas of the statistical

process that statistics teachers are currently rather silent about. The results will be

oversimplifications and sometimes gross oversimplifications, but then so are all the

mathematical models. The theories should give students two opportunities to learn about

and make sense of the statistical endeavour. First the theory provides a scaffolding to use

for forming a picture of some very complex processes. Second, once such a picture has

been established, a more sophisticated understanding can be gained by considering ways

in which the models are inadequate.

This subsection is concluded with a story related to me by several of the interviewed

project students that sheds light on the complementary roles of theory and experience. The

students first learnt some theory about quality improvement (including the role of

statistical tools) via lectures and readings and found it all rather abstract and rather

meaningless. On their first practical project they floundered. The theory did not seem to

help and was applied badly if at all. But from those experiences the theory started to make

sense. And by the second project it had started to work for them — its value had become

obvious.
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PLAN

What information is
already available?

Plan Collection
of new data

Measurement

“Sampling” Design

Data Collection Process

• What to measure and
how to measure it

• What  units to take measurements on
— sampling and exptal design issues

Data Management

PLAN

Piloting and
adjustment

Plan analysis
and reporting

PLAN

Figure 9.10 Drilling Down into the “Plan” Node of PPDAC
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MEASUREMENT Meas-
urement

What features of the system are you interested in?
For each feature:

What ideas about this feature are you trying to capture?
Can you substitute something more specific?
How well does this capture the idea?
Is the idea you wish to capture by measurement inherently multidimensional
in important ways or should a single measurement do?

Do these “key characteristics” adequately capture the essence of the real system?

Is there a generally accepted way of measuring this charactersitic in the field?
Is this currently accepted in the field as the best way to measure this entity?
If there is an accepted method and you want to use something else:

What is your justification?
Have others tried to measure this?  How did they do it?

Are there known problems with their measure?

Can I draw on the experience of others in measuring similar charactersitics?

To what extent does this measurement really capture the characteristic I want
to measure?
What are the practical implications of the extent to which it fails?
Will repeat measurements on the same units give very similar results?
Will different people making such measurements obtain very similar results?
Will different measuring instruments give very similar results?
If not, what impact will this have on the usefulness of any conclusions?

Will I be able to analyse data containing measurements like this?
Will this measure make the analysis unnecessarily difficult?
Will another choice confer greater statistical efficiency?

Will others be able to understand this measure?
Will the audience for the results accept that this is a sensible way to measure this?
Will I be able to understand the results of an analysis based on these measures?
Will I be able to communicate the results of an analysis based on these measures?

Can I implement these measures in practice on the scale needed for the study?
Is the equipment/personnel required for this measure available? affordable?
Is the measure unacceptably or unnecessarily difficult? expensive? invasive?
Are there cheaper/easier/less invasive alternatives that will serve almost as well?

People: Do these measures take account of the psychological, cultural and perceptual
differences of the people to be measured?

Can I do better?

Identify Key Characteristics

Decide how to measure them

Anticipate problems

Experience
in the field

Validity &
reliability

“Audience”
reaction

Analysis

Practical
implement-

ation

A fall-back

(Including Classification)

Figure 9.11 Drilling Down Further into the “Measurement” Node of “Plan”



224

9.5 Discussion
The ultimate aim of statistical investigation is learning in the context domain of a real

problem. Learning consists of the construction of mental models of the system under

study. Statistics is itself a collection of abstract models (“models” is used in a very broad

sense) which permit an efficient implementation of the use of archetypes as a method of

problem solution. One abstracts pertinent elements from the problem context that map

onto a relevant archetypical problem type, uses what has been worked out about solving

such problems, and maps the answers back to context domain. There is a continual

shuttling between the two domains and it is in this shuttling or interplay, that statistical

thinking takes place — where the statistical rubber meets the real-world road. When it

works, we gain real traction. Our abstraction processes bring clarity to thinking and

efficiency to problem solving. However, when we use archetypes to solve problems an

enormous amount rides on the ability to do the mappings. And this is where the wheels so

often fall off. Statistics education spends little time on developing the mappings. We must

take more cognisance of the fact that the getting from the first stirrings of a practical

problem to something like y = β Tx + ε, the point at which the theory of analysis typically

kicks in, does not involve driving blithely across some small crack in the road, but rather

it involves the perilous crossing of a yawning chasm down which countless investigations

and analyses plummet to be lost without trace.

Since statistical thinking involves the synthesis of statistical knowledge and context

knowledge, it cannot take place until both are present. The more relevant knowledge one

has and the better one can connect it, the better one can do. In a very real sense, statistical

thinking as a separate entity does not exist. There is only holistic thinking that can and

should be informed by statistical elements. The most universal of those elements have

been attempted to be captured here. Statistical thinking cannot be taught on its own,

because it cannot stand on its own. It has to be developed as an integrated part of general

problem solving skills. Statistical thinking is not either present or absent. It is all a matter

of the degree to which the statistical elements that could be informing the thinking are in

fact doing so. In many research environments, statistical thinking is like breathing —

everyone does it all the time, seldom being aware that it is happening. Statistics, the

discipline, should be teaching people to “breathe” more effectively. We are dealing with

complex and sophisticated thinking processes. We cannot expect, and indeed should be

highly suspicious of instant solutions.

Several dimensions of statistical thinking in empirical enquiry have been identified (Fig.

9.1). These are: (1) the investigative cycle; (2) types of thinking: strategic, seeking

explanations, modelling, applying techniques, and foundational subcategories which refer

to the use of statistical conceptions and synthesising statistical and context

understandings; (3) the interrogative cycle of generate, seek, interpret, criticise, judge;
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and (4) dispositional elements that are related to the entry into interrogative modes (e.g.

curiosity, scepticism, imagination etc) and can be affected by the extent to which the

thinker is engaged by the problem. Factors constraining the effectiveness of the thinking

were further discussed. Omnipresent variation is presented as providing the raison d’être

for statistical thinking. In Section 9.3, the observable reality of variation in the concrete

world was taken as a starting point and there was an endeavour to cut through many of

the confusions surrounding such abstract notions as “random variation” and their

application to practical problem solving. A foundational idea that was identified is that of

“transnumeration” — the idea of making data representations of a system and continually

transforming them to engender understanding — which is also basic to a statistical

approach.

In Section 9.4, some techniques people have used to improve thinking were discussed. It

seems that the rest of statistics can only benefit by following the lead of statisticians in

quality and develop thinking tools that help us to think about, and to think through, parts

of the statistical process that we are presently rather silent about or deal with entirely

through discursive discussion. We can develop other forms of statistical model, other

forms of statistical theory to deal with these areas. The process model and the simple

principle “systemise what you can and stimulate what you cannot systemise” would

appear to be useful analytical tools for forming such models. It is stressed that thinking

tools are not a substitute for experience with investigation and data. Indeed, recalling what

the project students said, thinking tools do not make any sense until one has had some

experience. Probably their most important purpose is to help us understand our

experience and extend the range of situations to which we can apply them. But they may

also re-initiate thinking that has become stalled.

I can see multiple uses even for a very simple model like the interrogative cycle (Fig.

9.1(c)). It could be used: to monitor thinking during problem solving; to help students

become aware of their own thinking; as a tool for evaluating student thinking; and as a

reference point against which to check learning opportunities provided to students. (Do

they, at least collectively, provide good opportunities for the students to experience all of

these modes? — It turns out that many of the tasks I gave students did not! Nor did they

measure up in terms of types of thinking.) Much of what has been identified relates to

general problem solving skills and could be applied to any subject. One might therefore

think that a general thinking skills course such as those developed by de Bono (e.g. 1973)

is all that is needed. According to Resnick (1987), however, there is no empirical

evidence that these skills are transferred to specific subject areas. She believes that

thinking processes should be embedded into the discipline itself because, “it provides a

natural knowledge base and environment in which to practice and develop higher order

[thinking] skills as . . . one must reason about something . . . [and] . . . each discipline
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has characteristic ways of reasoning” (Resnick, 1987, p. 35). To carry out this

embedding, we must first understand how these broad thinking skills are specifically used

in statistics. The areas that appear to need the most work are the up-front areas of problem

formulation and plan. This is very apparent in Chapter 7. Mallows (1998) suggests a

structure for deciding what data might be relevant to the problem based on a concept of

“similarity”. Also fundamental are W. E. Deming’s (e.g. 1986) distinctions between

enumerative and analytic studies, further developed by Hahn and Meeker (1993).

Can thinking tools work? The people in quality and Polya and his successors in

mathematics believe so. Are they panaceas? There is nothing certain or cut-and-dried in

applied statistics. The real world is a messy, complicated place. We cannot expect more

from our new tools than from our traditional ones. Most of the work in the writing and

the teaching of statistics, however, has gone into constructing its upper levels. But, with

advancing technology inexorably shifting demand from mechanics to thinkers, we now

need to do some work on the foundations to ensure that the whole structure is sound.

This chapter is concluded with a quotation from Biology.

 “The real work is not doing things, the real work is thinking hard.”


