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Chapter Two

Historical Overview: The Emergence of Statistical

Thinking

"Statistical literacy can be interpreted as meaning an ability to interact

effectively in an uncertain (non-deterministic) environment" (Hawkins, 1996,

p. 2).

2.1 Introduction
Statistics and statistical thinking are major factors in everyday life and in many

occupations. Media reports present, for example, opinion polls, social statistics and

medical and financial data. Nearly every occupation deals with data, both quantitative and

qualitative. Therefore there is a need to have statistically literate citizens and to create a

way of reasoning that will produce an informed society.

A premise emerging from an ongoing debate about the nature of statistics is that statistical

thinking is a fundamental independent intellectual method (Moore, 1990; Ullman, 1995).

Falk and Konold (1992) hold the opinion that probabilistic thinking is an inherently new

way of processing information as the world view shifts from a deterministic view of

reality. This presumes that there is a deterministic view of reality which believes all

observed phenomena have a cause and a non-deterministic view of reality which believes

that randomness will explain certain phenomena. If a non-deterministic perspective is

taken then the reaction is not to look for causes but to attribute the observed phenomena to

randomness. Neither of these two polarised views captures the middle ground proposed

by Joiner and Gaudard (1990, p. 35), albeit from a quality assurance perspective:

"Variation is not a new concept. What is new is the awareness of variation
and how it affects everyday activities is infiltrating the workplace. . . .
Knowledge of the theory of variation alters people's view of the world
forever. It influences practically every aspect of how companies are
managed.”

This variation perspective searches for causes in order to reduce the variation but

recognises that some variation will be dealt with by attributing it to randomness. The

focus is on how one acts and thinks in the presence of variation.

Thus it would appear that applied statistics depends on different reasoning processes to

that encountered in pure mathematics (Begg, 1995; Hawkins, 1996). Herein lies a

problem that statistics is often taught and treated like a mathematical discipline within the
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classroom. Many authors are stating that statistics cannot be taught like mathematics and

that statistics should be moving away from mathematics back towards its roots as a

scientific enquiry process (Cobb, 1991; Biehler, 1994a). Furthermore, with the advent of

exploratory data analysis techniques there is a debate about the place of probability in data

handling. Some people are of the opinion that probability should be removed from the

teaching of introductory statistics while others believe that close links between probability

and statistics should be developed in the teaching process (Shaughnessy, Garfield &

Greer, 1996).

According to Porter (1986, p. 315) “the intellectual character of statistics” had been

crystallised by 1900 and modern statisticians generally perceived “the history of their field

as beginning with Galton, if not Pearson.” Since statistics is a relatively new

phenomenon, a brief historical overview up to 1900 will give some context and

understanding on how statistics has been viewed and used, which may provide some

insights into its present day views and uses. These insights may be helpful for the

interpretation of the research data. Also, in order to understand and appreciate the nature

of the debates on statistical thinking and on the teaching of statistics, the historical roots of

statistics and the major conceptual barriers in thinking, that had to be overcome for the

advancement of statistics as an independent discipline, should be considered.

2.2 Early History from the Renaissance Period
Although census data have been collected for millennia, the origin of statistics in its

modern sense can be plausibly traced from the Renaissance period. Historically statistics

is inextricably linked with probability, the roots of which can be traced to the solution of

gambling or betting problems and to the handling of statistical data for mortality tables and

insurance rates (Lightner, 1991).

One root of statistics is firmly placed in games of chance, which have been recorded as far

back as 3500 B.C., and yet over some thousands of years no link was made with

mathematics. It is theorised that this was because there was no concept of ‘randomness’,

as it was generally believed that the outcomes of events were predetermined by some

supernatural force. It was not until the Renaissance, when philosophical thinking began to

change, that mathematicians turned their attention to chance in gambling games. A proto-

typical Renaissance man Cardano (1501-1576) gambled daily and was the first to write a

mathematical analysis of the probabilities of drawing aces out of a deck of cards and of

throwing sevens with two dice. However the problem that is credited with giving rise to

mathematical probability is the "problem of points". This problem dealt with the division

of the stakes of a game of chance, between two equally skilled players, when the game
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was interrupted prior to its completion. Cardano unsuccessfully worked on the problem.

De Mere, who made a precarious living at gambling, presented the problem to Pascal in

1654 and a solution was finally found in conjunction with Fermat. Thus through working

on this problem, Pascal and Fermat, jointly laid the foundations for probability theory and

ultimately statistical theory.

The other root of statistics is found in the analysis of quantitative data. Significant

statistical investigations began only when insurance merchants needed probabilistic

estimations of events. John Graunt in 1662 was the first person to draw statistical

inferences from data. Through analysing data on the number of burials in various London

church parishes he observed that: more male births occurred than female births; women

tended to live longer than men; and the number of persons dying (except during

epidemics) was fairly constant from year to year. Besides calculating insurance or annuity

rates, the political arithmeticians, as they were known, were promoting the notion that

state policy should be well informed by the use of data. They hoped that the use of data

would consolidate state power and thus sideline the power of the church and nobility. The

political arithmeticians in Britain, Germany and France had no reliable method of

measuring population size as “census data were non-existent” (Porter, 1986, p. 20) and

birth registers were incomplete, so they assumed that a prosperous community had an

increasing population. Therefore cities almost always showed a declining population

which was attributed to idleness and corruption. British and German authors moralised on

the Catholic church and blamed the celibacy of priests for the depopulation of the popish

lands. Sussmilch (1740) used parish records to estimate population numbers and wrote

three volumes on population based on the biblical tenet ‘be fruitful and multiply’. He

believed that alcohol, gambling, prostitution, urban life, celibacy of priests and war were

anathemas for increasing the population. He promulgated notions that the state should

provide medical care as it would reduce the death rate, and that the distribution of property

to all heirs would promote marriage and discourage emigration. He advocated that the

state should expand its apparatus for the collection of population numbers and to use this

information for creating state policies.

An analysis of the thinking, from the first root, reveals determinism in beliefs about

games of chance, and from the second root, that commonly held community assumptions

or deterministic beliefs could be used to create “data”. Thus, behind the collection of data,

there could be people who had reasons or personal beliefs for carrying out such an

investigation. These two roots gave rise to the development of statistics into two separate

parallel paths, with many linkages (Cheung, 1998), and to a fundamental conflict in

defining probability. The gambling root gave rise to an abstract theoretical mathematical

definition of probability whereas the other root in data gave rise to a practical statistical

definition of probability based on actual experience (Green, 1982). It should be noted at
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this stage that these and other definitions of probability still cause much debate today but,

for the purposes of this research, only the main arguments will be alluded to.

2.3 Early Attempts to Reconcile the Mathematical Definition

and the Statistical Definition of Probability
Early works on probability were concerned with games of chance which provided simple

and idealised situations to model probability. According to Laplace in 1812, in his

publication Analytic Theory of Probabilities, the probability of an event is the number of

ways it can occur, divided by the total number of things that can happen, assuming that all

of the latter are equally likely. The a priori computation of chance for a game employing

dice was straightforward, as was the chance of obtaining a red ball from an urn known to

contain r red balls and b black balls. The a posteriori question of determining r and b

based on observations of drawings from the urn proved to be more troublesome. In Ars

Conjectandi, published posthumously in 1713, Jacob Bernoulli (1654-1705) attempted to

reconcile the difference between the a priori mathematical probability and the a posteriori

statistical probability. He attempted to give a formal mathematical treatment to the notion,

that the greater the repeated experimental trials, the closer one is to obtaining the unknown

proportion. This has come to be regarded as the first law of large numbers. In today's

parlance, Bernoulli found that he needed 25,550 experiments to learn the proportions of r

and b, with a margin of error of 2%, and that this would be correct more than 99.9% of

the time. To go from a qualitative intuitive judgement to a quantitative one was a large

step. De Moivre achieved a substantial simplification of Bernoulli's first attempt at the

quantification of uncertainty by approximating the binomial probability to the error

function, or in today’s terms, to the integral of the normal distribution.

Stigler (1986) believes that no-one applied or extended these ideas as they did not provide

an answer to the fundamental question of inference for empirical situations. It is

interesting to note that Bernoulli asked: "what about problems such as disease, weather,

games of skill, where the causes are hidden and the enumeration of equally likely cases

impossible? In such situations it would be a sign of insanity to attempt to learn anything in

this manner" (cited in Stigler, 1986, p. 65). There would appear to be a conflict in relating

the urn device problem to the real-world problem. A stumbling block towards developing

these connections or abstracting common properties seems to be the lack of

equiprobability in the real-world problem, and the notion that prediction is impossible

when there is such a multitude of causes. Another possible reason is that the use of

graphs as thinking tools was not employed extensively until the nineteenth century

(confirmed by personal communication, Garry Tee, well-known mathematical historian,

June, 1998).
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2.4 The Transition towards Inferential Statistics

2.4.1 Breaking with the Gambling Interpretation of Probability

Probability and statistics entered a transitional period as mathematicians began to realise

that "many concepts from probability could not be separated from statistics, for

statisticians must consider probabilistic models to infer properties from observed data"

(Lightner, 1991, p. 628).

Stigler (1986) posited that the chief conceptual step taken towards the application of

probability to quantitative inference involved the inversion of the probability analyses of

Bernoulli and De Moivre. He stated that there were two critical key ideas that encouraged

Bayes' ground-breaking inference work in 1764. The first key idea was to not think in

terms of games of chance, and the second key idea was from Simpson in 1755, who had

a conceptual breakthrough in an astronomy problem. It is interesting to note that Bayes’

work was conceived around a geometric diagram.

The astronomers' problem was that if 5 observers recorded 5 different times for the

passage of a star past a crosshair in a telescope, how were the numbers to be reconciled?

The astronomers' answer was to discard any number that appeared to be way out and then

take the arithmetic mean. Simpson focussed on the errors made in the observations, on

the differences between the recorded observation and the actual position of the body being

observed. This was the critical step to open the door to an applicable quantification of

uncertainty. He assumed a specific hypothesis for the distribution of errors. He was able

to focus his attention on the mean error rather than the mean observation.

The methods developed by Gauss, Laplace and Legendre, such as the Normal distribution

(known as the error distribution), the central limit theorem, the method of least squares,

the combination of observations and the use of mathematical probability to assess

uncertainty and make inferences, became commonplace in astronomy and geodesy but not

in the social sciences. The reason for this was that astronomers could compare their

observations with fact, and their predictions with the eventual reality, whereas the social

scientists required massive amounts of empirical data before they were confident of using

these methods. Also major conceptual barriers had to be overcome before this technology

could spread to the social sciences.

2.4.2 The Statistical Interpretation of Probability

The main break with the mathematical or gambling interpretation of probability occurred

in the 1840s when probability was explained in terms of the regularities produced by

chance phenomena. In 1854 Boole insisted that a measure of probability was derived
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from the observation of repeated instances of the success and failure of events, and that

the gambler's a priori reasoning was inapplicable. John Venn in 1888 gave probability its

first full frequentist interpretation. He argued that gambling problems did not illustrate the

theory of chance. He viewed probability as a science concerned with real data for

purposes such as insurance and therefore it was based on experience. That is, historical

relative frequencies with an underlying stability over time would provide probabilities of

similar events in the future. He required that a probability of an event be determined by

placing it in a series, and the probability value be applied to the series, not to the

individual occurrence. For example, the probability of a male, between the ages of 20 and

25, being involved in a car accident would be predicted from that group’s historical data.

The predicted probability would then apply to that group of males, not each individual

male. This was a fundamental shift in the interpretation of probability in that it was

applied to a group.

2.4.3 Recognition of the Power of Statistics to Reveal

As the notion of probability for such purposes as insurance was being reinterpreted for

statistics, there was also the notion present, that the improvement of the human condition

could be achieved through knowledge gained from gathering and analysing data. Thus at

the beginning of the nineteenth century there was a subtle shift in thinking for ‘statistics’

to be seen as a science of the state. The statists, as they were now known, conducted

surveys of trade, industrial progress, labour, poverty, education, sanitation and crime.

They considered that their task was to chart the course of economic and social evolution

so that the confusion of politics could be replaced by an orderly reign of facts. There was

a new set of attitudes, a new sense of power and dynamism in society after the French

Revolution. Writers who wanted to instigate reform in orphanages, prisons and poor

houses collected data which they misinterpreted and manipulated to promote their cause.

For example, Taillandier, without any information on literacy rates of the population,

found that 67% of prisoners were illiterate and therefore considered that he had strong

proof that ignorance was the cause of crime. Hence he, along with others, promoted the

idea that public education would lead to a reduction in crime. Statistical societies were set

up. The French moral statists sought to control deviant behaviour by their ‘numbers’ and

the British statistical society wrote a set of questions to investigate the effect of reforms on

crime, education and public health.

However, people like Quetelet, a pioneer in social statistics, were reacting to the statistical

reformers and started writing about the abuse of statistics to promote preconceived ideas.

Politicians increasingly took cognisance of the ‘facts’ because they were silenced by the

‘numbers’ and without numbers legislation was considered to be ill-informed and

haphazard. Alexandre Jonnes wrote that "statistics does not have the power to act, but it
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does have the power to reveal" (1856, cited in Porter, 1986, p. 29). “The idea of using

statistics for such a purpose - to analyse social conditions and the effectiveness of public

policy - is commonplace today, but at that time it was not” (Cohen, 1984, p. 102). The

analysis of social data was hampered by inadequate data and a lack of statistical tools.

Florence Nightingale (1820-1910) is regarded as a pioneer in this field as she sought to

gather accurate hospital statistics through the development of a hospital statistical form in

1860. She also developed new graphical representations that, for example, dramatically

revealed the extent to which deaths in the Crimea war had been preventable.

The interpretation of data is an aspect that is still debated vigorously today. The challenges

about data interpretation, in terms of generalisability and other plausible explanations, are

familiar arguments. However, the foundations of statistics as a science of data were being

established through the frequentist interpretation of probability, and through the notion

that knowledge about a situation could only be gained through data collection and

analysis, not from personal opinion.

2.5 Breaking the Social Science Barrier

2.5.1 Expanding the Frequentist Interpretation of Statistical Probability

Quetelet from the 1820s onwards pursued a numerical social science of laws. He studied

with Laplace and Fourier and argued that the true foundation of statistics had been

established by mathematicians and astronomers. Quetelet applied the long run relative

frequency idea of probability to social statistics. He looked at suicide and crime rates and

was amazed to find large scale regularity. He interpreted this as proof that statistical laws

could be applied to groups though not individuals. Through realising that general effects

in society are produced by general causes and that chance could not influence events when

considered collectively, he was able to recast Bernoulli's law of large numbers as a

fundamental axiom of social physics. Porter (1986, p. 55) suggested that Quetelet's major

contribution was in: "persuading some illustrious successors of the advantage that could

be gained in certain cases by turning attention away from the concrete causes of individual

phenomena and concentrating instead on the statistical information presented by the larger

whole."

Writers and politicians were impressed with these statistical regularities. Lord Stanley, the

leader of the Conservative party, claimed as an axiom that "the moral and physical

condition of the human race was governed by constant statistical laws" (1856, cited in

Porter, 1986, p. 57). Buckle, the author of the History of Civilisation in Britain, argued

that these were general laws and gave examples of applications for society. For instance,
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in a given society a certain number of persons must put an end to their own lives, and if a

particular individual did not yield to temptation, others would be impelled until the annual

quota of crime had been reached.

Quetelet's revelations, through the application of the statistical frequentist interpretation of

probability to social science data, led to much philosophising and debate about the ‘free

will of man’. Thus a new way of processing information was instigating a new awareness

of reality and a re-evaluation of determinism.

2.5.2 Moving from Data to a Statistical Model

There were deep conceptual barriers to overcome to adopt statistical methods to social

data. In Quetelet's work on conviction rate data he could see the stability of the conviction

rates in the categories and he wondered how he could measure the importance of the

deviation from the average. He required a means of sorting the influences of different

causes but lacked a statistical methodology. Since Quetelet was aware of the numerous

causes and the year-to-year variations he was reluctant to aggregate counts. When

Poisson analysed the conviction rate data his analysis differed in three respects: he fitted a

probability model; he dealt directly with counts aggregated over the years; and he used

Laplace's method of ratio estimation to measure the uncertainty of the overall rates he

computed. He predicted using the model and he assumed juries remained stable over time.

Stigler (1986) believes that Poisson had this breakthrough because he was from an

empirical science background and as an experimental scientist he was in control of his

environment with relatively few variables whereas Quetelet had experience with census

data. The central conceptual problem to extend statistics methodology from astronomical

to social data was the isolation of social data into homogeneous categories. In order to

apply the techniques of the theory of errors, the social scientists had to perceive the data

within classes as amenable to analysis, and variation within a class as analogous to

random fluctuations.

2.5.3 Interpreting the Statistical Model

In 1844 Quetelet announced that the astronomer's error law applied also to the distribution

of human traits such as height. (His ‘average man’ was famous). He believed that nature

designed according to a uniform pattern and then exhibited error. The analogy is that a

statue is made and then 100 copies of it are made. The copies will exhibit error in height.

He made a distinction between constant causes (average man) and perturbing causes (e.g.

nutrition, climate). He lined up a table of the astronomical error function against the chest

sizes of Scottish soldiers and these could be seen to be empirically the same. In the case
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of the heights of Frenchmen, who presented for conscription, he announced that there had

been a fraud as the error curve fitted well except there was a surplus of heights just below

1.57 m, the height for exemption. Quetelet believed that all naturally occurring

distributions of properly collected and sorted data followed a normal curve. His method

lacked discriminatory power as too many data sets revealed evidence of normality. The

method did not provide a key to evaluating and finding useful ways of classifying data for

analysis and was not sensitive to more subtle types of inhomogeneities such as age or

diet.

However, Quetelet's work created a climate of awareness that empirical observations

could be modelled by theoretical distributions, and fostered a belief in the explanatory

potential of statistical models. The striking fits convinced contemporaries that something

like a 'central limit effect' was at work. It was proof that there was an averaging of

random causes and it showed that nature could be counted to obey laws of probability.

What Quetelet also did was to shift interest within probability from error to variation, and

thus he provided the impetus for a reinterpretation of the error law as a law of genuine

variation rather than mere error. Social science was promoting changes in statistical

thinking.

2.6 The Recognition of Variation
In 1889 Galton was the first to use statistical methods of error analysis to analyse real

variation in biology. For Galton the conformity of data to the normal curve was to be a

‘test’ for the appropriateness of classifying the data together in one group. The non-

appearance of the curve was indicative that the data should not be treated together. His

interest in hereditary, inspired by the findings of Darwin (his first cousin), led him to the

assumption that if measurable quantities such as stature or exam scores followed the curve

then the process could be inverted with respect to qualities that eluded direct

measurement. Qualities such as talent or genius could be assigned a value on a statistical

scale. For example 100 people's talent could be ordered and then assigned a score based

on the normal curve. This notion was “to become the most used (abused) method of

scaling in psychological tests” (Stigler, 1986, p. 271). The argument still remains weak

today that a statistical scale is appropriate for talent because it is appropriate for stature.

“The method is so arbitrary that it is difficult to understand why it was ever taken

seriously” (Tee, 1991, p. 14). Such an issue, as to whether the measurement method

does capture the relevant characteristic, would benefit from more debate in society today.

Galton's conundrum was that he could not connect the curve to the transmission of

abilities from generation to generation. If the normal curve arose in each generation as the
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aggregate of a large number of factors operating independently what opportunity was

there for a single factor, such as a parent, to have a measurable impact? Why did

population variability not increase from year to year? The curve stood as a denial of the

possibility of inheritance.

The breakthrough came with his pondering upon the size of pears on pear trees within a

garden. His thinking was based on the question of what was influencing the size of the

fruit. As an example, he considered the location ( exposure to sunlight) of the pear trees

and conjectured that the pear trees could be divided into three classes (tending to produce

large fruit, moderate fruit and small fruit). The question then arose as to how a mixture of

produce from all three sources could produce a normal curve. He theorised that the

moderate phase occurred approximately twice as often as the extreme phases. He

developed the quincunx as an analogy which “demonstrated” that the resulting mixture of

normal distributions was itself normal (Fig. 2.1). Galton could conceive his data as a

mixture of very different populations. In the view of Stigler (1986, p. 281), this was “the

single major breakthrough in statistics in the late nineteenth century.” From a

mathematical perspective and definition this fact was known to such mathematicians as

Laplace and De Moivre. It was Galton's conceptual use that was new and ingenious. It is

interesting to note that in the use of the quincunx today the notion of the pins being an

analogy for a physical factor has been lost. The context of the real situation has been

stripped away to be usurped by a mathematical abstract approach.

Later Edgeworth provided a test to ascertain whether the walls from which two baskets of

pears had been gathered had important differences. This necessitated determining the

dispersion of the appropriate smaller curves, because that for the entire garden would be

too large to serve as a basis for comparison. He estimated the variability internal to the

subpopulations. He assessed the meaningfulness of the differences between the smaller

populations. These tests were known to the astronomers who used them in a deterministic

setting. Using Galton's conceptualisation of a large population being a mixture of smaller

populations, Edgeworth extended these tests to measurements of quantities that were in

effect randomly determined. These tests could be viewed as forerunners to the modern

day t-tests and analysis of variance tests.

The conceptual breakthrough had been achieved and the classical theory of measurement

errors had been rationalised for variation.
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Figure 2.1 Galton’s Two-stage Quincunx
(Drawings by Karl Pearson, based on Galton’s writings, cited in Stigler, 1986, p. 279)

2.7 The Re-evaluation of Statistical Thinking
Debates about the use of statistics continued with the argument that statistical regularities

proved nothing about the causes of things. There was recognition that, in statistics, the

effects of constant causes were often masked and could be confused by other factors not

considered, and that it was essential to sort out the effects of the perturbing causes before

drawing conclusions. When Einstein declared that ‘God did not play dice’ he was

reflecting the viewpoint of his times that scientific laws were based on causal assumptions

and reflected a causal reality. The defence of human freedom inspired a wide ranging re-

evaluation of statistical thought in the late nineteenth century. Statistics came to be seen

not as a method of physical science applied to society but as a new scientific strategy.

Chance was recognised as a fundamental aspect of the world in a way that it was not

before. The acceptance of indeterminism constituted one of the noteworthy intellectual

developments of the time. According to Porter (1986, p. 319) the evolvement of statistical

thinking “has been not just to bring out the chance character of certain individual

phenomena, but to establish regularities and causal relationships that can be shown to

prevail nonetheless.”
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2.8 Summary
• Statistical thinking has its foundations in a frequentist interpretation of probability,

and in the realisation that the gathering and analysing of data is needed for the

acquisition of knowledge about a situation. That is, it is based in an empirical

scientific method.

• Statistical thinking requires an ability to focus on the group propensity rather than

individual cases in certain situations.

• Shifting attention away from gambling problems to other problem situations, and

focussing on the error, were key steps for the development of inferential statistics.

• The type of data that is collected, and the way the data are manipulated and

interpreted, are enmeshed in the prevailing attitudes, beliefs and prejudices of the

society or the data analyser.

• During the nineteenth century the transition from descriptive statistics to inferential

statistics came from a growing awareness, and from new conceptualisations, of

how probabilistic models could be used to infer properties from observed data in a

variety of domains of application.

• At the end of the nineteenth century the theory of measurement errors was

reinterpreted as the theory of variation.

• The use of statistical ideas and models to explain human behaviour resulted in a

new conceptualisation of the human condition as a group. The interplay between

the statistical model and the real situation resulted in a new conceptual view of the

world, causing a shift from a deterministic view of reality.

• Statistical reasoning evolved from new ways of perceiving and interpreting the

mathematical models and definitions, and through the development of new tools

for analysis.

This brief historical overview, and identification of some key factors in the development

and nature of statistical thinking up to the beginning of this century, has provided me with

some contextual background for interpreting and reviewing current statistics education

research. A review of the literature, which I believed to be relevant to understanding the

particular ways of thinking in the statistics discipline, is presented in the next chapter.


