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Preface: These notes were written to supplement the graduate level PDE course at

Montana State University. Sobolev Spaces have become an indispensable tool in the theory

of partial differential equations and all graduate-level courses on PDE's ought to devote

some time to the study of the more important properties of these spaces. The object of these

notes is to give a self-contained and brief treatment of the important properties of Sobolev

spaces. The main aim is to give clear proofs of all of the main results without writing an

entire book on the subject! Why did I write these notes? Much of the existing literature on

the subject seems to fall into two categories, either long treatises on the subject with the

most general assumptions possible (and thus unsuitable for part of a PDE course), or very

sketchy discussions confined to a chapter of a PDE text.
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In these notes, Ω  is a domain (i.e. an open, connected set) in Rn .

1. The Spaces W j , p (Ω) and W0
j , p (Ω)

Definitions: Suppose 1 ≤ p < ∞ . Then

(i) Lloc
p (Ω) = {u: u ∈Lp (K) for every compact subset K  of Ω }

(ii) u is locally integrable in Ω  if u ∈Lloc
1 (Ω) .

(iii) Let u and v be locally integrable functions defined in Ω . We say that v is 
the α th weak derivative of u if for every φ ∈C0

∞(Ω)
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uDα φ dx
Ω∫ = (−1)|α | vφ dx

Ω∫ ,

and we say that Dαu = v  in the weak sense.
(iv) Let u and v be in Lloc

p (Ω) . We say that v is the α th strong derivative of u if

for each compact subset K  of Ω  there exists a sequence {φ j} in C|α | (K) 

such that φ j → u  in Lp (K) and Dαφ j → v  in Lp (K).

THEOREM 1 If Dαu = v  and Dβv = w in the weak sense then Dα+ βu = w  in the weak

sense.

PROOF Let ψ ∈C0
∞ (Ω)  and φ = Dβψ . Then

uDα +βψ dx
Ω∫ = (−1)|α | φv dx

Ω∫ = (−1)|α | vDβψ dx
Ω∫ = (−1)|α |+|β | ψw dx

Ω∫ . ð

Definition (mollifiers): Let ρ ∈C0
∞ (Rn )  be such that

(i) Supp ρ ⊂ B1(0) , (recall that "supp" denotes the support of a function, and 

Br (p)  denotes an open ball of radius r and center p).

(ii) ρ(x) dx =1∫ ,

(iii) ρ(x) ≥ 0 .

If ε > 0 then we set (provided that the integral exists)

Jεu(x ) =
1

ε n ρ(
x − y

ε
)u(y) dy

Ω∫ .

Jεu  is called a mollifier of u. Note that if u is locally integrable in Ω  and if K  is a

compact subset of Ω  then Jεu ∈C∞(K) provided that ε < dist(K,∂Ω). Suppose now that

u ∈Lloc
p (Ω) . Clearly

Jεu(x ) = ρ(y)u(x − εy) dy
B1(0)∫ ,

so for p > 1 we have (if 1 / p +1 / q = 1)

| Jεu(x)|≤ {ρ(y)}1/ q{ρ(y)}1/ p |u(x − εy)| dy
B1 (0)∫
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≤ ( ({ρ(y)}1/ q )q dx)1/ q ( ({ρ (y)}1/ p| u(x − εy)|)p dy)1/ p

B1(0)∫B1 (0)∫ .

Hence | Jεu(x)|p ≤ ρ(y)|u(x − εy)|p dy
B1 (0)∫ , and this trivially holds if p = 1 too. Integrating

this, we see that

| Jεu(x)|p

K∫ dx ≤ ρ(y) |u(x − εy)|p dx dy
K∫B1(0)∫

≤ ρ (y) |u(x)|p dx dy
K0
∫B1 (0)∫

= |u(x)|p dx
K0

∫ ,

where K0  is a compact subset of Ω , K ⊂ Interior(K0 ) and ε < dist(K,∂K0 ) . i.e. we have

|| Jεu||
L p (K)

≤||u||
Lp (K0 )

. (1)

LEMMA 2 If u ∈Lloc
p (Ω)  and K is a compact subset of Ω  then || Jεu − u||

Lp (K )
→ 0  as

ε → 0 .

PROOF Let K0  be a compact subset of Ω  where K ⊂ Interior(K0 ) and let

ε < dist(K,∂K0 ) . Let δ > 0 and let w ∈C∞(K0 )  be such that || u − w||
Lp (K0 )

< δ . Then

applying (1) to u − w , we obtain

|| Jεu − Jεw||
Lp (K )

< δ . (2)

But Jε w(x) − w(x) = ρ(y){w(x − εy) − w(x)} dy
B1(0 )∫ , and this goes to zero uniformly on K

as ε → 0. Hence, if ε  is sufficiently small, we have

|| Jεw − w||
Lp (K )

< δ . (3)

Hence, by (2) and (3)

|| Jεu − u||
Lp (K )

≤||w − u||
Lp ( K)

+|| Jεu − Jεw||
Lp (K )

+|| Jεw − w||
Lp ( K)

< 3δ . (4)

Since δ  is arbitrary, || Jεu − u||
Lp (K )

→ 0  as ε → 0. ð
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The proof of the following theorem contains some other important approximating

properties of mollifiers.

THEOREM 3 Suppose that u and v are in Lloc
p (Ω) . Then Dαu = v  in the weak sense if and

only if Dαu = v  in the strong Lp  sense.

PROOF Suppose that Dαu = v  in the strong Lp  sense. Let φ ∈C0
∞(Ω) and let

K = supp φ . Let ε > 0 and take ψ ∈C|α |(K)  so that || ψ − u||
Lp ( K)

< ε  and

|| Dα ψ − v||
Lp (K )

< ε . Then

| uDαφ dx
K∫ − (−1)|α | vφ dx

K∫ |≤| ψDα φ dx
K∫ − (−1)|α | φDαψ dx

K∫ |

+ | (u − ψ )Dα φ dx|
K∫ +| (v − Dα ψ)φ dx

K∫ |

≤||u − ψ ||
Lp ( K)

|| Dαφ ||
Lq (K )

+||v − Dαψ ||
Lp ( K)

|| φ ||
Lq (K )

≤ ε(||Dα φ ||
Lq (K )

+|| φ ||
Lq (K )

),

where q is the conjugate exponent of p (if p = 1 then q = ∞  and if p > 1 then

1 / p +1 / q = 1). But ε  is arbitrary, so the LHS must be zero. So Dαu = v  in the weak

sense.

Conversely, suppose that Dαu = v  in the weak sense and let K  be a compact subset
of Ω . Then Jεu ∈C∞(K) if ε < dist(K,∂Ω) and we have for all x in K

Dα Jεu(x) = ε −n Dx
αρ(

x − y

ε
)u(y) dy

Ω∫
= ε −n (−1)|α | Dy

αρ(
x − y

ε
)u(y) dy

Ω∫
= ε −n ρ (

x − y

ε
)v(y) dy

Ω∫
= Jεv(x).

But by Lemma 2, || Jεu − u||
Lp (K )

→ 0  and || Dα Jεu − v||
Lp ( K)

=|| Jεv − v||
Lp ( K)

→ 0  as ε → 0.

Thus Dαu = v  in the strong sense. ð

Definitions (i) |u| j, p
Ω = ( | Dα u(x)| p dx

Ω∫|α |≤ j∑ )1/ p .

(ii) ˆ C j, p (Ω) = {u ∈C j(Ω): | u| j, p
Ω < ∞}.

(iii) H j , p (Ω)  = completion of ˆ C j, p (Ω) with respect to the norm | | j, p
Ω .
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H j , p (Ω)  is called a Sobolev space. We will encounter other such spaces as well.

Recall that the completion of a normed linear space is a larger space in which all Cauchy

sequences converge (i.e. it is a Banach space). It is constructed by first defining a space of
equivalence classes of Cauchy sequences. Two Cauchy sequences {xm}, {ym} are said to
be in the same equivalence class if lim

m → ∞
|| xm − ym ||= 0 . A member x  of the old space is

identified with the equivalence class of the sequence {x, x,x, . . .} of the new space and in

this sense the new space contains the old space. Further, the old space is dense in its

completion. Moreover, if a normed linear space X is dense in a Banach space Y, then Y is

the completion of X.
Recall that for 1 ≤ p < ∞ , Lp (Ω) is the completion of C0

∞(Ω) with respect to the

usual "p norm". This knowledge allows us to see what members of H j , p (Ω)  "look like".

Members of Lp (Ω) are equivalence classes of measurable functions with finite p norms,

two functions being in the same equivalence class if they differ only on a set of measure

zero.

Suppose that {um} is a Cauchy sequence in ˆ C j, p (Ω). Then for |α|≤ j , {Dα um} is a

Cauchy sequence in Lp (Ω). Hence, there are members uα  of Lp (Ω) such that Dαum → uα

in Lp (Ω). Hence, according to our definition of strong derivatives, u0  is in Lp (Ω) and uα

is the α  strong derivative of u0 . Hence we see that

H j , p (Ω) = {u ∈Lp (Ω): u  has strong Lp  derivatives of order ≤ j  in Lp (Ω) and there exists a

sequence {um} in ˆ C j, p (Ω) such that Dαum → Dαu  in Lp (Ω)}.

Definition W j , p (Ω) = {u ∈Lp (Ω): the weak derivatives of order  ≤ j  of u are in

Lp (Ω)}

Note that by Theorem 3, an equivalent definition of W j , p (Ω)  is obtained by writing "strong

derivatives" instead of "weak derivatives". Because of this, we see easily that

H j , p (Ω) ⊂ W j , p(Ω) . In fact, H j , p (Ω) = W j, p (Ω). This is not obvious because for

members of  H j , p (Ω)  we can find sequences of nice functions such that Dαum → Dαu  in

the topology of Lp (Ω), while according to our definition of strong derivatives, such limits

exist only in the topology of Lloc
p (Ω)  for members of W j , p (Ω) . Before proving that

H j , p (Ω) = W j, p (Ω), we need the concept of a partition of unity.
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LEMMA 4 Let E ⊂ Rn  and let G be a collection of open sets U such that

  E ⊂{∪U: U ∈G} . Then there exists a family F of non-negative functions f ∈C0
∞(Rn ) such

that 0 ≤ f (x) ≤1  and

(i) for each   f ∈F , there exists   U ∈G  such that supp f ⊂ U ,

(ii) if K ⊂ E  is compact then  supp f ∩ K  is non-empty for only finitely many

  f ∈F ,

(iii)
  

f (x)
f ∈F∑ =1 for each x ∈E  (because of (ii), this sum is finite),

(iv) if   G ={Ω1, Ω2 , . . .} where each Ω i  is bounded and Ω i ⊂ E  then the family

F of such functions can be constructed so that    F = {f 1, f 2, . .}  and
supp f j ⊂ Ω j .

The family of functions F is called a partition of unity subordinate to the cover G.

PROOF Suppose first that E is compact, so there exists a positive integer N  such that
E ⊂ ∪ i =1

N Ui , where each   Ui ∈G . Pick compact sets Ei ⊂Ui  such that E ⊂ ∪ i =1
N Ei . Let

gi = Jε i
χ Ei

, where ε i  is chosen to be so small that  supp gi ⊂ Ui . Then gi ∈C0
∞(Ui ) and

gi > 0 on a neighborhood of Ei . Let g = gii =1

N∑ , and let S =  supp g ⊂ ∪ i =1
N Ui . If

ε < dist(E,∂S) then k = Jεχ S  is zero on E and h = g + k ∈C∞(Rn ). Further, h > 0 on Rn

and h = g  on E. Thus   F = {f i : f i = gi / h} does the job.

If E is open, let

Ei = E ∩ B i (0) ∩ {x: dist(x,∂E) ≥
1

i
}.

Thus Ei  is compact and E = ∪i =1
N Ei . Let   Gi  be the collection of all open sets of the form

U ∩ [Interior(Ei +1) − Ei −2 ], where   U ∈G  and E0 = E−1 = ∅ . The members of   Gi  provide

an open cover for the compact set Ei − Interior(Ei−1 ), so they possess a partition of unity

  F i  with finitely many elements. We let

 
  
s(x) = g(x)

g∈F i
∑i =1

∞∑

and observe that only finitely many terms are represented and that s > 0  on E. Now we let

F be the collection of all functions of the form
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f (x) =
g(x)
s(x)

, x ∈E

0, x ∉E

 
 
 

This F does the job.

If E is not open, note that any partition of unity for ∪ U  is a partition of unity for

E.
For the proof of (iv), let H be the partition of unity obtained above and let f i  = sum

of functions h in H such that  supp h ⊂ Ω i , but  supp h ⊄ Ω j , j < i . Note that each h is

represented in one and only one of these sums and that the sums are finite since each Ω i  is
a compact subset of E. Thus the functions f i  provide the required partition of unity.   ð

THEOREM 5 (Meyers and Serrin, 1964) H j , p (Ω) = W j, p (Ω).

PROOF We already know that H j , p (Ω) ⊂ W j , p(Ω) . The opposite inclusion follows

if we can show that for every u ∈W j ,p  and for every ε > 0 we can find w ∈ ˆ C j, p  such that
for |α|≤ j , || Dα w − Dαu||

L p (Ω)
< ε .

For m ≥1 let

Ωm = {x ∈Ω : || x||< m, dist(x,∂Ω) >
1

m
}

and let Ω0 = Ω−1 = ∅ . Let {ψ m} be the partition of unity of part (iv), Theorem 4,

subordinate to the cover {Ωm+ 2 − Ω m}. Each uψ m  is j times weakly differentiable and has

support in Ωm +2 − Ω m . As in the "conversely" part of the proof of Theorem 3, we can pick

εm > 0  so small that wm = Jε m
(uψm ) has support in Ωm +3 − Ω m −1 and |wm − uψm | j, p <

ε
2m .

Let w = Σm =1
∞ wm . This is a C∞  function because on each set Ωm +2 − Ω m  we have

w = wm − 2 + wm −1 + wm + wm +1 + wm +2 . Further,

|| Dα w − Dαu||
L p (Ω)

=||Σm =1
∞ Dα (wm − uψ m)||

L p (Ω)

      ≤ Σm =1
∞ || Dα (wm −uψ m)||

Lp (Ω)

      ≤ Σm =1
∞ ε / 2m = ε .

ð
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Remarks
(i) The proof shows that in fact C∞(Ω) ∩ ˆ C j, p (Ω)  is dense in W j , p (Ω) .

(ii) Clearly members of C∞(Ω) ∩ ˆ C j, p (Ω)  are not necessarily continuous on ∂Ω  or

even bounded near ∂Ω . It would be very useful to have the knowledge that

C∞(Ω )∩ ˆ C j , p (Ω)  or C j(Ω ) ∩ ˆ C j, p (Ω)  is also dense in W j , p (Ω) . But the following

example shows that this cannot always be expected.

Problem 1 Let Ω = {(x, y) : 1 < x2 + y2 < 2, y ≠ 0  if x > 0}, i.e. an annulus minus the

positive x-axis. Let w(x, y) = θ , the angular polar coordinate of (x,y). Clearly w  is in

W1,1(Ω) because it is a bounded continuously differentiable function. Show that we cannot

find a φ ∈C1(Ω ) such that |u − ϕ |1,1 < 2π . (Note that Ω  is the whole annulus).

The reason for the failure of the domain in Problem 1 is that the domain is on each

side of part of its boundary. The following definition expresses the idea of a domain lying

on only one side of its boundary.

Definition A domain Ω  has the segment property if for each x ∈∂Ω  there exists an

open ball U centered at x and a vector y such that if z ∈Ω ∩ U  then z + ty ∈Ω  for

0 < t < 1.

We will not need the following theorem, so we don't prove it. For a proof, see Adam's

book. However, see Lemma 9 for the simpler version of the result that we will need.

THEOREM 6 If Ω  has the segment property then the set of restrictions to Ω  of functions
in C0

∞(Rn )  is dense in Wm, p (Ω) .

THEOREM 7 Change of Variables and the Chain Rule. Let V, Ω  be domains

in Rn  and let T: V → Ω  be invertible. Suppose that T and T −1  have continuous, bounded

derivatives of order ≤ j . Then if u ∈W j ,p (Ω)  we have   v = u o T ∈W j , p (V)  and the

derivatives of v are given by the chain rule.

PROOF Let  y denote coordinates in Ω  and let x denote coordinates in V

( y = T(x) ). If f ∈Lp(Ω) then   foT ∈Lp(V ) because

  
| foT|p dx

V∫ = | f |p J dy
Ω∫ ≤ const. | f |p dy

Ω∫ (5)
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(Here J is the Jacobian of T −1 ).

If u ∈W j ,p (Ω), let {um} be a sequence in ˆ C j, p (Ω) converging to u in W j , p (Ω)  and

set   vm = umoT . By the chain rule, if |α|≤ j

  
Dx

αvm = (Dy
βum )oT Rα ,ββ ≤ α∑

where the Rα ,β  are bounded terms involving T and its derivatives. But for |β|≤ j

Dy
βu ∈Lp (Ω)  ⇒ (Dy

βu)oT ∈Lp (V) ⇒ (Dy
βu)oTRα ,β ∈Lp (V)  since the Rα ,β  are bounded.

Further,

  
|| Dx

α vm − Σβ ≤α (Dy
βu)oTRα ,β ||

Lp (V )
=|| Σβ ≤α (Dy

βum − Dy
βu)oTRα ,β ||

Lp (V )

  
≤ Σβ ≤α ||(Dy

βum − Dy
βu)oTRα ,β ||

Lp (V )

  
≤ const.Σβ ≤α ||(Dy

βum − Dy
βu)oT||

Lp (V )

≤ const.Σβ ≤α || Dy
βum − Dy

βu||
Lp (Ω)

by (5). So (α = 0  case),   vm → v = uoT  in Lp (V ) and   Dx
αvm → Σβ ≤α (Dy

βu)oT Rα ,β  in

Lp (V ). This shows that v ∈W j, p (V)  and   Dx
αv = Σβ ≤ α (Dy

βu)oT Rα ,β . ð

Definition W0
j , p (Ω) =completion of C0

∞(Ω) with respect to the norm | | j, p
Ω .

Remarks (i)  Clearly W0
j , p (Ω) ⊂ W j , p(Ω) because C0

∞(Ω) ⊂ ˆ C j , p(Ω).

(ii)  Saying that f ∈W0
j, p (Ω)  is a generalized way of saying that f and its

derivatives of order ≤ j −1 vanish on ∂Ω . e.g. W0
1, p (Ω) ∩ W2, p (Ω)  is a

useful space for studying solutions of the Dirichlet problem for second

order elliptic PDE's.
(iii) C0

j(Ω) ⊂ W0
j, p (Ω) because if f ∈C0

j(Ω), we know that if ε  is

sufficiently small then Jε f ∈C0
∞ (Ω)  and Jε f → f  in | | j, p

Ω  norm.

Problem 2 Show that W j , p (Rn ) = W0
j, p (Rn ) . Hint: Why is it enough to show that

ˆ C j, p (Rn ) ⊂ W0
j , p (Rn ) ?

Problem 3 Show that if Ω  is a domain in Rn , f ∈W0
j, p (Ω)  and if f is extended to be

zero outside Ω  then the new function is in W j , p (Rn ).

Problem 4 Show that if y ∈C1[0,1] and y(0) = y(1) = 0 then y ∈W0
1, p (0,1) . Use this

fact to show that for any f ∈Lp(0,1) there is a unique y ∈W0
1, p (0,1) ∩ W2, p(0,1)  such that

y"−y = f . Hint: Solve the problem first with f ∈C0
∞(0,1) and then take limits.
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2. Extension Theorems

Most of the important Sobolev inequalities and imbedding theorems that we will
derive in the next section are most easily derived for the space W0

j , p (Ω)  which (see

Problem 3) can be viewed as being a subspace of W j , p (Rn ). Direct derivations of these

results for the spaces W j , p (Ω)  are tedious and difficult because of the boundary behavior

of the functions (Adams uses the direct derivation approach in his book). In this section we

investigate the existence of extension operators that allow us to extend functions in

W j , p (Ω)  to be functions in W j , p (Rn ). This will allow us to easily deduce the Sobolev

imbedding theorems for the spaces W j , p (Ω)  from the corresponding results for W j , p (Rn ).

LEMMA 8 Let u ∈Rn  and f ∈Lp(Rn ) . Set f δ (x) = f (x +δu) . Then lim
δ → 0

f δ = f  in

Lp (Rn ) .

PROOF Given ε > 0, let φ ∈C0
∞(Rn ) be such that || f − φ ||

L p < ε . Since φδ → φ
uniformly on a sufficiently large ball containing the supports of all φδ  (say, for δ ≤ 1), we

can pick δ  so small that || φ − φδ ||
Lp < ε . Then

|| f − fδ ||
Lp ≤|| f − φ ||

L p +|| φ − φδ ||
Lp +||φδ − f δ ||

L p < 3ε . ð

LEMMA 9 Let R+
n = {x ∈Rn : xn > 0} . C∞(R +

n ) ∩ ˆ C j, p (R+
n )  is dense in W j , p (R+

n ).

PROOF Suppose f is in W j , p (R+
n ) let ε > 0 and pick φ ∈C∞(R+

n ) ∩ ˆ C j, p (R+
n )  so that

|| Dα φ − Dα f ||
Lp ( R+

n )
< ε  for all |α|≤ j . We take the vector of Lemma 8 to be

u = (0,0,0, . . ,1)  and define functions ψ α ∈Lp (Rn ) as

ψ α (x ) =
Dα φ(x) , xn > 0

0 , xn ≤ 0

 
 
 

Observe that for each δ > 0, φδ ∈C∞(R +
n ) ∩ ˆ C j, p (R+

n ) . By Lemma 8, we can pick δ > 0

so that, for all |α|≤ j , || ψδ
α − ψ α ||

Lp ( Rn )
< ε . But this implies that || Dα φδ − Dαφ ||

Lp (R+
n )

< ε .

Hence

|| Dα φδ − Dα f ||
Lp ( R+

n )
≤|| Dαφδ − Dαφ ||

Lp (R+
n )

+||Dα φ − Dα f ||
Lp ( R+

n )
< 2ε . ð
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LEMMA 10 There exists a linear mapping E0: W j, p (R+
n ) → W j, p (Rn)  such that E0 f = f

in R+
n  and |E0 f | j , p

Rn

≤ C| f | j, p
R+

n

, where C depends on only n and p.

PROOF If f ∈C∞(R +
n ), define

E0 f (x) =
f (x) , xn ≥ 0

ck f (x1, x2, . . , xn −1, −kxn )
k =1

j +1∑ , xn < 0
 
 
 

where the constants ck  are chosen so that E0 f (x) ∈C j (Rn ) , i.e.

(−k)m ckk =1

j+1∑ =1, m = 0,1,2, . . , j .

It is easy to check that there is a constant C depending on only n and p such that

|| Dα E0 f ||
Lp (Rn )

≤ C|| Dα f ||
Lp ( R+

n )
. (6)

If now f ∈W j, p (R+
n ) , take a sequence f m ∈C∞(R +

n ) ∩ ˆ C j, p (R+
n )  converging to f  in

W j , p (R+
n ) (we can do this by Lemma 9). Then f m  is a Cauchy sequence and (6) implies

that E0 f m  is a Cauchy sequence in W j , p (Rn ). We denote the limit by E0 f . Since

|| Dα E0 f m ||
Lp (Rn )

≤ C|| Dα f m ||
Lp (R+

n )
, taking limits shows that f satisfies (6). ð

Definition A domain Ω  is of class Cm  if ∂Ω  can be covered by bounded open sets Ω j

such that there are mappings ψ j : Ω j → B , where B is the unit ball centered at the origin

and
(i) ψ j(Ω j ∩ Ω) = B ∩ R+

n

(ii) ψ j(Ω j ∩ ∂Ω) = B ∩ ∂R+
n

(iii) ψ j ∈Cm(Ω j)  and ψ j
−1 ∈Cm(B ).

(Because of (iii), all derivatives of order ≤ m  of ψ j  and its inverse are bounded).

THEOREM  11 If Ω  is a bounded domain of class Cm  then there exists a bounded linear

extension operator E:Wm , p(Ω) → Wm , p (Rn ) .

11



PROOF Since ∂Ω  is compact (boundaries are always closed), we might as well
assume that the number of sets Ω j  covering ∂Ω  is a finite number N . Let U = ∪ j =1

N Ω j  and

let d = dist(∂Ω,∂U ). Setting Ω0 = {x ∈Ω: dist(x,∂Ω) > d / 2} , we see that

Ω0,Ω1,Ω2 , . . ,Ω N  cover Ω . These sets also cover Ω , which is compact, so by the first

part of the proof of Lemma 4, there exists a finite partition of unity  θ0,θ1,θ2 , . . ,θN  for  Ω
and supp θ j ⊂ Ω j . Recall that the support of a function is the closure of the set on which

that function is non-zero. Hence, supp θ j  is even bounded away from ∂Ω j .

Let f ∈Wm, p (Ω) . Then fθ j ∈Wm, p (Ω ∩ Ω j ), so by our chain rule theorem

(Theorem 7)   w j = ( fθ j ) o ψ j
−1 ∈Wm, p (R+

n ∩ B). Clearly supp w j  is bounded away from

∂B , so we can extend w j  to be a member of Wm, p (R+
n )  by letting it be zero in R+

n − B . We

can further extend w j  to all of Rn  by use of the extension operator E0  of Lemma 10. Let

˜ w j = E0w . If ρ <1 is chosen so that supp  θ j o ψ j
−1 ⊂ B ρ (0) , then we observe from the way

that E0  was constructed that supp ˜ w j ⊂ B ρ(0). Consequently, supp   
˜ w joψ j ⊂ ψ j(B ρ (0))  is

bounded away from ∂Ω j . Further, again by Theorem 7, this function is in Wm, p (Ω j ). We

extend it to be in Wm, p (Rn )  by defining it to be zero outside Ω j . If we call the extended

function g j , it is clear from our construction that g j = fθ j  on Ω ∩ Ω j  and that

|g j |m, p
Rn

≤ C| f |m , p
Ω , where C is independent of f. Finally, we let g0  denote the function

obtained by extending fθ0  to be zero outside Ω  and define Ef = Σ j = 0
N g j . ð

Remarks The theorem can be improved in a number of ways:

(i) We can allow Ω  to be unbounded if ∂Ω  is bounded (e.g. Ω  is the exterior of a

bounded domain).

(ii) We can allow Ω  to be of class Cm −1,1 instead of Cm  (i.e. the derivatives of order
m −1 of the functions ψ j  are Lipschitz continuous. The proof of this requires a

better version of Theorem 7 which we don't have time to prove here. Note that for

the case m = 1, the boundary could have corners.

(iii) Calderón has proved an extension theorem for domains satisfying the cone property

(see the definition below) and a few other minor assumptions. The proof is much

too time-consuming for us and it relies on the Calderón-Zygmund inequality, which

also has a very lengthy proof. (See [Ad] for this).

Definition A domain Ω  is said to satisfy the cone property if there exist positive
constants α , h such that for each x ∈Ω  there exists a right spherical cone Vx ⊂ Ω with

height h and opening α .

12



3. Sobolev Inequalities and Imbedding Theorems

THEOREM 12 If Ω ⊂ Rn  satisfies the cone condition (with height h and opening α ) and if

p > 1, mp > n  then Wm, p (Ω) ⊂ CB(Ω)  and there is a constant C depending on only α , h,

n and p such that for all u ∈Wm , p(Ω) , sup|u| ≤ C|u|m , p .

Note: Ω  does not have to be bounded as Friedman suggests in his Theorem 9.1!

PROOF Initially, suppose that u is in ˆ C m, p (Ω). Let g ∈C∞(R) be such that g( t) =1

if t ≤1 / 2  and g( t) = 0  if t ≥1. Let x ∈Ω  and let (r, θ) denote polar coordinates centered

at x. Here, θ = (θ1, θ2 , . . , θn−1 ) denotes the angular coordinates and we can describe the

cone with vertex x in polar coordinates as Vx ={(r,θ) : 0 ≤ r ≤ h, θ ∈A}. Clearly, we have

u(x) = −
∂
∂r

{g(r / h)
0

h

∫ u(r,θ)} dr

        =
(−1)m

(m −1)!
r m −1 ∂m

∂rm {g(r / h)
0

h

∫ u(r,θ )} dr ,

after m-1 integrations by parts. Next, we integrate with respect to the angular measure dSθ ,

noting that the left-hand-side becomes a constant times u(x).

    u(x) = c r m −1 ∂m

∂r m {g(r / h)
0

h

∫ u(r,θ )}drdSθA∫
= c r m− n ∂m

∂rm {g(r / h)
0

h

∫ u(r,θ )} r n−1drdSθA∫
= c r m −n ∂m

∂r m {g(r / h)u(r,θ )}dV
V x
∫ .

Applying Hölder's inequality to this, we obtain

   |u(x)| ≤ const.||r m −n ||
Lq (V x )

|| ∂m

∂rm {g(r / h)u(r,θ)}||
Lp (V x )

≤ const. || rm − n||
Lq (V x )

|u|m, p
Ω .

But r m −n  is in Lq(Vx)  if n −1+ (m − n)q > −1, which is the case because q = p
p−1  and

mp > n . Thus, we obtain sup|u| ≤ C|u|m , p . To extend this result to arbitrary u ∈Wm , p(Ω),

take a sequence {uk} of functions in ˆ C m, p (Ω) converging to u in the | |m, p
Ω  norm. Then

sup|u j − uk |≤ C|u j −uk |m , p , showing that the sequence is a Cauchy sequence in CB(Ω).

13



Thus u is in CB(Ω) and taking the limit of sup|u j | ≤ C|u j |m , p  shows that u satisfies the same

inequality. ð

Problem 5. Modify the proof to show that the theorem also applies to the case p = 1,

m = n .
Problem 6. Show that a similar theorem holds for W0

m, p (Ω)  and the cone condition is

not required. Note that here we can even conclude that W0
m, p (Ω) ⊂{u ∈CB (Ω ) : u = 0  on

∂Ω}.

COROLLARY 13 If Ω ⊂ Rn  satisfies the cone condition (with height h and opening

α ) and if p > 1, (m − k)p > n then Wm, p (Ω) ⊂ CB
k(Ω)  and there is a constant C depending

on only α , h, n, k and p such that for all u ∈Wm , p(Ω)  sup
|α |≤k

| Dα u| ≤ C|u|m , p .

PROOF Apply the previous theorem to the derivatives Dαu  for |α|≤ k . ð

Problem 7 What can you conclude if p = 1 and m − k = n ? See Problem 5.

Problem 8 What is the corresponding theorem for W0
m, p (Ω) ? See Problem 6.

THEOREM 14 If Ω ⊂ Rn  is any domain and p > n then W0
1, p (Ω) ⊂ C0,α (Ω ) , where

α =1 − n
p  and there exists a constant C depending on only p and n such that for all

u ∈W0
1, p(Ω)

|u(x) − u(y)|

|| x − y||α
≤ C || Diu||

Lp (Ω)
i=1

n

∑ .

PROOF Let u ∈C0
∞ (Ω) . We might as well assume that u ∈C0

∞ (Rn ) . Let

d =|| x − y|| , Sx = Bd (x), Sy = Bd (y)  and S = Sx ∩ Sy. Then

|u(x) − u(y)| vol(S) = |u(x) − u(y)| dz
S∫

       ≤ |u(x) − u(z)|+|u(z) − u(y)| dz
S∫

       ≤ |u(x) − u(z)| dz
Sx
∫ + |u(z) − u(y)| dz

Sy
∫

But if (r,θ ) are the polar coordinates of z in a coordinate system centered at x, we get

|u(x) − u(z)|≤ ∫0
r | ∂u

∂ρ | dρ , which implies

14



|u(x) − u(z)| dz
Sx

∫ ≤ |
∂u

∂ρ
| dρ rn −1drdSθ0

r

∫0

d

∫∫
≤ |

∂u

∂ρ
| dρ rn−1drdSθ0

d

∫0

d

∫∫
=

dn

n
|
∂u

∂ρ
| dρ

0

d

∫ dSθ∫
=

dn

n
ρ1− n|

∂u

∂ρ
| ρn −1dρ

0

d

∫ dSθ∫
=

dn

n
ρ1− n|

∂u

∂ρ
| dz

Sx
∫

≤
dn

n
||ρ1−n ||

Lq (Sx )
||

∂u

∂ρ
||

Lp (Sx )

where q =
p

p −1
. A simple calculation shows that

||ρ1− n||
Lq (Sx )

= const. d
1−

n

p

and it is easy to see that

||
∂u

∂ρ
||

Lp (Sx )
≤ const. || Diu||

Lp (Ω)
i =1

n

∑ .

Also, vol(S) = const. dn  and the integral over Sy  can be estimated in a similar fashion.

Putting this together yields

|u(x) − u(y)| ≤ Cd
1−

n

p || Diu||
Lp (Ω)

i=1

n

∑

which is precisely the inequality that we wanted. Further, we know from Theorem 12
applied to Rn  that sup|u| ≤ C|u|1, p . Combining this with the previous inequality shows that

for u ∈C0
∞ (Ω)  we have || u||

C 0, α (Ω ) ≤ C|u|1, p . Thus, if we now let u ∈W0
1, p(Ω) and take a

sequence {um} of functions in C0
∞(Ω) converging to u in | |1,p  norm, it follows that {um}

converges in C0,α (Ω ) . Thus u ∈C0,α (Ω ) , and taking limits shows that u satisfies the

inequality in the statement of the theorem. ð
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THEOREM 15 If Ω ⊂ Rn  is any domain and p < n then W0
1, p (Ω) ⊂ Lr (Ω) , where

r =
np

n − p
 and there exists a constant C depending on only p and n such that for all

u ∈W0
1, p(Ω)

|| u||
Lr (Ω)

≤ C || Diu||
L p (Ω)

i =1

n

∑ .

Remark The proof relies on a simple generalization of Hölder's inequality which can

be proved by induction by using Hölder's inequality. The inequality states

|u1u2u3 . . um | dx
Ω∫ ≤||u1||L p1 ||u2||Lp2 . . ||um ||

Lpm (7)

where 
1

p1

+
1

p2

+
1

p3

+ . . . +
1

pm

= 1.

PROOF  of Theorem 15. It suffices to prove the result for u ∈C0
1(Rn ). First we prove

the result for the case p = 1. For each i we have

|u(x)| ≤ | Diu| dxi−∞

xi

∫ ≤ | Diu| dxi− ∞

∞

∫ .

Multiplying these n inequalities together and taking the n −1 th root gives

|u(x)|
n

n −1 ≤ ( | Diu| dxi−∞

∞

∫ )
1

n−1

i =1

n

∏ (8)

Observe that | Diu| dxi−∞

∞

∫  does not depend on xi , but it does depend on all n −1 of the

remaining variables. We integrate each side of (8) with respect to x1  and use the

generalized Hölder inequality with pi = m = n −1 to obtain

|u(x)|
n

n−1 dx1−∞

∞

∫ ≤ ( | D1u| dx1−∞

∞

∫ )
1

n −1 ( | Diu| dxi− ∞

∞

∫ )
1

n −1

i= 2

n

∏ dx1− ∞

∞

∫

  ≤ ( | D1u| dx1− ∞

∞

∫ )
1

n−1 ( | Diu| dxi− ∞

∞

∫ dx1− ∞

∞

∫ )
1

n−1

i = 2

n

∏ .
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The RHS is still a product of n −1 functions of x2 , so we integrate each side with respect

to x2 , again applying (7) with pi = m = n −1. Continuing in this manner, we finally obtain

|u(x)|
n

n−1 dx
Rn∫ ≤ ( | Diu| dx

Rn∫
i =1

n

∏ )
1

n−1

i.e. || u||
L

n

n−1

≤ ( | Diu| dx
Rn∫

i =1

n

∏ )
1

n (geometric mean)

≤
1

n
|Diu| dx

Rn∫
i=1

n

∑ (arithmetic mean)

Here we have used the fact that an arithmetic mean is no less than a geometric mean of the

same numbers. This proves the result for the case p = 1.

For p > 1, let γ =
(n −1)p

n − p
= 1 +

n(p −1)

n − p
. Since γ > 1 and u ∈C0

1(Rn ), it follows

that |u|γ ∈C0
1(Rn) . Clearly

Di |u|γ =
(n −1) p

n − p
|u|

n( p−1)

n− p (±Diu) .

We apply the p = 1 case to |u|γ  and obtain

( |u|
np

n− p dx
Rn∫ )

n −1

n ≤
1

n

(n −1)p

n − p
|u|

n( p−1)

n− p | Diu| dx
Rn∫

i =1

n

∑

≤
(n −1)p

n(n − p)
( (|u|

n( p−1)

n− p )
p

p−1 dx
Rn∫ )

p−1

p || Diu||
Lp

i =1

n

∑

=
(n −1)p

n(n − p)
( |u|

np

n− p dx
Rn∫ )

p−1

p || Diu||
L p

i =1

n

∑

Hence

( |u|
np

n− p dx
Rn∫ )

n − p

np ≤
(n −1) p

n(n − p)
|| Diu||

Lp

i =1

n

∑ ,

which is the desired result. As usual, to obtain the same result for a function u ∈W0
1, p(Ω),

we just take a sequence of  functions in C0
1  converging to u. ð
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Remark According to the theorem, W0
1, p (Ω) ⊂ Lr (Ω), where r is given above. But

obviously W0
1, p (Ω) ⊂ Lp (Ω), so by the following interpolation lemma, W0

1, p (Ω) ⊂ Lq (Ω)

for all q satisfying p ≤ q ≤ r . If Ω  is bounded then clearly this holds for all q satisfying

1 ≤ q ≤ r .

LEMMA 16 If s ≤ q ≤ r  and φ ∈Ls (Ω) ∩ Lr (Ω) , then φ ∈Lq (Ω)  and

|| φ ||
Lq ≤|| φ ||

Ls

λ ||φ ||
Lr

1− λ ,

where λ =
s(r − q)

q(r − s)
.

PROOF Apply Hölder's inequality to the integral of |φ |q , using the facts that

|φ |(1− λ )q ∈L
r

(1− λ )q  and |φ |λ q ∈L
s

λq . ð

Problem 9 Modify the proof of Theorem 15 to show that if p = n >1 then

W0
1, p (Ω) ⊂ Lr (Ω) for every r ≥ p . Hint: First prove this for the case r >

n2

n −1
 by setting

γ = r
n −1

n
 and applying the p = 1 result to |u|γ . The r −

n

n − 1
 norm that shows up on the

RHS after applying Hölder's inequality (as we did in our proof above) can be estimated in

terms of the n = p  norm and the r norm by use of Lemma 16. Finally, obtain the result for

all r ≥ p  by applying Lemma 16 to the result that you have just proved.

COROLLARY 17 For every domain Ω  in Rn  there exists a constant C depending on

only n and p such that

a) if kp < n  then W0
k, p (Ω) ⊂ L

np

n −kp (Ω)  and for each u ∈W0
k , p (Ω)

|| u||
L

np

n−kp

≤ C|u|k , p
Ω

b) if kp > n  then W0
k, p (Ω) ⊂ Cm ,α (Ω ) , where m is the integer satisfying

0 < k − m −
n

p
<1  and α = k − m −

n

p
. Further, if u ∈W0

k , p (Ω)  then

|| u||
C m ,α (Ω ) ≤ C|u|k ,p

Ω .
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PROOF a)  If |β|≤ k −1 and u ∈W0
k , p  then Dβu ∈W0

1, p , which is contained in L
np

n− p

by Theorem 15. Thus W0
k, p ⊂ W0

k −1,
np

n− p . Iterating this process once more, we find

W0
k, p ⊂ W0

k − 2,
np

n−2 p . Continuing the iterations culminates in the desired result.

b)  Since (k − m −1)p < n , case (a) implies that W0
k −m −1, p ⊂ L

np

n− (k − m−1)p = L
n

(1− α) . Thus if

u ∈W0
k , p  and |β|≤ m +1, then Dβu ∈W0

k −m −1, p . Hence W0
k, p ⊂ W0

m +1,
n

(1− α) . But this shows

that if u ∈W0
k , p  and |β|≤ m  then Dβu ∈W0

1,
n

(1−α ) , which is contained in C0,α (Ω )  by

Theorem 14. Thus W0
k, p (Ω) ⊂ Cm ,α (Ω ) . ð

Remarks A few "particular cases" have been left out because they require separate

proofs (see Problem 10 below). They are:

i) If kp = n  and p > 1 then W0
k, p (Ω) ⊂ Lq (Ω)  for all q satisfying p ≤ q < ∞ .

ii) If kp = n  and p = 1 (so that k = n) then W0
k, p (Ω) ⊂ CB (Ω ) .

iii) If kp > n , p > 1 and 
n

p
 is an integer then W0

k, p (Ω) ⊂ W0

k −
n

p
,q

(Ω) for all q satisfying

p ≤ q < ∞ .

iv) If kp > n  and p = 1 (so 
n

p
 is obviously an integer) then W0

k, p (Ω) ⊂ CB
k − n (Ω ).

All of the particular cases listed above have the appropriate norm inequalities associated

with them.

Problem 10 Use the results of Problems 5, 6, 7, 8 and 9 to prove the particular cases

listed above.

COROLLARY 18 If Ω  is a bounded C1  domain in Rn  (or any other domain such that

there exists a bounded extension operator E : W1, p (Ω) → W1, p (Rn) ) then the statements

concerning the spaces W0
k, p (Ω)  in Corollary 17 and in the remark following the corollary

also apply to the spaces W k, p (Ω) . However, the constant C may also depend on Ω .
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PROOF The cases for k = 1 dealt with in Theorems 14 and 15 are easily seen to

have their counterparts here because of the extension operator. Inspection of the proof of

Corollary 17 shows how the results for k >1 may be derived from the results for k = 1

without any additional assumptions on the domain. ð

Remark One can show that extension operators exist for Lipschitz domains and even

domains satisfying certain cone conditions (see the remarks following the proof of

Theorem 11). This Sobolev imbedding theorem is thus valid for such domains.

Definition Let A and B be Banach spaces. If A ⊂ B , we say that A is continuously

imbedded in B (in symbols, this is written A\o(\s\do3( →),⊂ )B)if there is a constant C

such that || x||B ≤ C|| x||A  for all x ∈A .

The theorems in this section provide examples of imbeddings and are called

Sobolev Imbedding Theorems. e.g. W0
1, p (Ω) \o(\s\do3( →),⊂ ) L

np

n− p  for p < n .

 It is easy to see that A\o(\s\do3( →),⊂ )B is equivalent to the identity mapping from

A into B being continuous (i.e. bounded).

4. Compactness Theorems

Definition Suppose that A\o(\s\do3( →),⊂ )B. We say that A is compactly imbedded

in B if every sequence bounded in A has a subsequence that converges in B.

e.g. If K  is compact then any bounded sequence in C1(K)  is a set of equicontinuous

functions so, by the Arzela-Ascoli Theorem, it has a subsequence that converges in C(K) .

i.e. C1(K)  is compactly imbedded in C(K) .

Recall that if A and B are Banach spaces and if M : A → B  is a bounded linear

mapping then M is said to be compact if for every bounded sequence {xm} in A the

sequence {Mxm} has a subsequence that converges. Thus, saying that A is compactly

imbedded in B is equivalent to saying that the identity mapping from A into B is compact. It

is easy to see that if M : A → B  and P : B → C  are bounded linear mappings and A, B and

C are Banach spaces then PM  is compact if one of the mappings A or B is compact.

Consequently, we obtain the very useful result that if A\o(\s\do3( →),⊂ )B and B\o(\s\do3(

→),⊂ )C then the imbedding A\o(\s\do3( →),⊂ )C is compact if one of the other two

imbeddings is compact.
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LEMMA 19 Suppose that Ω  is a bounded domain. If

a) 0 < λ ≤ 1 then Cm, λ (Ω )  is compactly imbedded in Cm(Ω ).

b) 0 < ν < λ ≤1 then Cm, λ (Ω )  is compactly imbedded in Cm, ν (Ω ) .

PROOF  It suffices to prove the results for m = 0 because, once this is done, we can

apply this case to the derivatives of the functions and deduce the result for general m.. Let
{ f j} be a sequence in C0,λ (Ω )  such that || f j ||C

0,λ ≤ M . But this implies

| f j(x) − f j (y)|≤ M || x − y||λ , showing that the sequence is a bounded, equicontinuous set

of functions. By the Arzela-Ascoli Theorem, there exists a subsequence { f jk
} that

converges in C(Ω ). Thus C0,λ (Ω )  is compactly imbedded in C(Ω ).

We show below that the same subsequence also converges in C0,ν (Ω ). Suppose

that ψ ∈C0,λ (Ω ). Then

[ψ ]0, ν = sup
| ψ(x) − ψ (y)|

||x − y||ν = sup
|ψ (x) − ψ (y)|

|| x − y||λ
 
 
  

 

ν
λ
| ψ(x) − ψ(y)|

1− ν
λ

≤ 2
1− ν

λ ([ψ ]0, λ )
ν
λ (max |ψ | )

1− ν
λ

We apply this to f jk
− f j r

, noting that [ f j k
− f jr

]0, λ ≤ [ f jk
]0,λ + [ f jr

]0, λ ≤ 2M , and obtain

[ f j k
− f jr

]0, ν ≤ 2M
ν
λ (max | f jk

− f jr
| )

1− ν
λ ,

showing that the subsequence is a Cauchy sequence in C0,ν (Ω ) (because it converges in

C(Ω )). Thus the subsequence converges in C0,ν (Ω ). ð

COROLLARY 20 If Ω  is bounded, kp > n  and 0 < k − m −
n

p
<1  then W0

k, p (Ω)  is

compactly imbedded in Cm,β (Ω )  if β < k − m −
n

p
.

PROOF Let α = k − m −
n

p
. Then W0

k, p (Ω)\o(\s\do3( →),⊂ )Cm,α (Ω ) \o(\s\do3(

→),⊂ )Cm,β (Ω ) , and the second imbedding is compact.
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COROLLARY 21 If Ω  is a bounded C1  domain (or any other domain for which there

is a bounded extension operator  E : W1, p (Ω) → W1, p (Rn) ), kp > n  and 0 < k − m −
n

p
<1

then W k, p (Ω)  is compactly imbedded in Cm,β (Ω )  if β < k − m −
n

p
.

PROOF Let φ ∈C0
∞(Rn ) be such that supp φ  is contained in some ball B containing

Ω  and φ = 1 on Ω . Then we can define ˜ E : W1, p (Ω) → W0
1, p (B)  by ˜ E ( f ) = φE( f ) . By

Corollary 20, W0
1, p (B) is compactly imbedded in C0,β(B ). Hence W1, p (Ω)  is compactly

imbedded in C0,β(Ω ). The result for general k can be deduced from the k = 1 case by

considering derivatives of the functions (as in the proof of Corollary 17 (b), deduce that if

u ∈Wk , p (Ω)  and |β|≤ m  then Dβu ∈W
1,

n
(1−α ) (Ω) , which is contained in C0,α (Ω ) ).  ð

Remark The statements of Corollaries 20 and 21 continue to hold if we replace the

condition 0 < k − m −
n

p
<1 by the condition 0 < k − m −

n

p
≤1, i.e. we can include the

case of 
n

p
 being an integer. The proof of this is left to the next problem.

Problem 11 Show that if Ω  is bounded then the statements in the Remark above hold
for the spaces W0

k, p (Ω). Hint: You need to use the particular cases (iii) and (iv) following

the proof of Corollary 17. For the case p = 1, you need to use the fact that Cm +1(Ω )  is

compactly imbedded in Cm,β (Ω ) , which follows easily from Lemma 19 and the fact that

Cm +1 is continuously imbedded in Cm,1(Ω ). Can you see how to modify your proof so that

it deals with W k, p (Ω) if Ω  is a bounded C1  domain ?

Definition A subset E of a metric space is said to be totally bounded if for each ε > 0,

E can be covered by finitely many balls of radius ε .

The following theorem is a standard result that can be found in most books on topology

and in many books on functional analysis (e.g. Rudin's "Functional Analysis", Appendix

A4). We omit the proof.

THEOREM 22 Let E be a subset of a complete metric space X. Then the following

statements are equivalent.

(i) E  is compact.
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(ii) Every sequence in E has a convergent subsequence.

(iii) E is totally bounded.

The Theorem gives us two other very useful characterizations of compact mappings and

imbeddings.

THEOREM 23 If Ω  is bounded and p < n, then W0
1, p (Ω)  is compactly imbedded in

Lq(Ω)  for all q <
np

n − p
.

PROOF Consider first the case q = 1. Let A be a bounded set in W0
1, p (Ω) . We may

consider the members of A as members of W1, p (Rn )  with supports contained in Ω . Let

Ah = {Jhu : u ∈A}. Note that we have

| Jhu(x)|≤ h− n ρ(
x − z

h
)|u(z)| dz

Ω∫ ≤ h− n (maxρ)|| u||
L1 (Ω)

and | Di Jhu(x)|≤ h−n −1 | Diρ(
x − z

h
)||u(z)| dz

Ω∫ ≤ h− n−1(max| Diρ|)||u||
L1 (Ω)

.

Since Ω  is bounded, || u||
L1 ≤ const.||u||

L p . The inequalities above show that Ah  is a

bounded equicontinuous set of functions in C(Ω ). By the Arzela-Ascoli Theorem, every

sequence in Ah  has a subsequence that converges in C(Ω ). Obviously, such subsequences

also converge in L1(Ω), so we see that Ah  is totally bounded in L1(Ω).

If u ∈A then

  u(x) − Jhu(x) = ρ(z)(u(x) −u(x − hz)) dz
|z|≤1
∫

= ρ(z) −
∂
∂r

u(x − r
z

|| z||
) dr

0

h| |z||

∫ dz
|z|≤1
∫ .

Thus |u(x) − Jhu(x)|≤ ρ(z) | Diu(x − r
z

|| z||
)|

i =1

n

∑ dr
0

h ||z ||

∫ dz
|z |≤1
∫ .

Integrating this with respect to x, we find
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   |u(x) − Jhu(x)| dx
Ω∫ ≤ ρ(z) | Diu(x − r

z

||z||
)|

Rn∫
i =1

n

∑ dx dr
0

h ||z ||

∫ dz
|z |≤1
∫

= ρ(z) | Diu(x)|
Ω∫

i =1

n

∑ dx dr
0

h| |z||

∫ dz
|z|≤1
∫

= ρ(z)h||z|| | Diu(x)|
Ω∫

i=1

n

∑ dx dz
|z|≤1
∫

≤ h |Diu(x)|
Ω∫

i=1

n

∑ dx

≤ hB,        (9)

where B is a constant depending on our bound of members of A in W0
1, p (Ω)  (again we use

the fact that the L1  norm is weaker than the Lp  norm on a bounded domain).
Let ε > 0. Since Ah  is totally bounded in L1(Ω), we can cover Ah  by a finite

number of balls Bi  of radius ε / 2. Let h =
ε

2B
. By (9), if Jhu ∈Bi , then u is contained in

a ball of radius ε  centered at the center of Bi . Thus, A is covered by a finite number of

balls of radius ε . i.e. A is totally bounded in L1(Ω). Thus W0
1, p (Ω)  is compactly imbedded

in L1(Ω).

Suppose φ ∈W0
1, p (Ω). Then φ ∈L

np

n − p  by Theorem 15 and we get from Lemma 16

(with s = 1 and r =
np

n − p
) that

|| φ ||
Lq ≤|| φ ||

L1

λ || φ ||
L

np

n− p

1− λ ≤ C|| φ ||
L1

λ (|| || Diφ ||
L p

i =1

n

∑ )1− λ

Now let {um} be a bounded sequence in W0
1, p (Ω)  and assume |um |1, p ≤ M . Since W0

1, p (Ω)

is compactly imbedded in L1(Ω), we can extract a subsequence {um j
} that converges in

L1(Ω). Applying the inequality above to um j
− umk

, noting that |um j
− umk

|1, p ≤ 2M , we

obtain

|| um j
− umk

||
Lq ≤ const.||um j

− umk
||

L1

λ ,

showing that the subsequence is a Cauchy sequence in Lq(Ω) . Hence the subsequence

converges in Lq(Ω)  and W0
1, p (Ω)  is compactly imbedded in Lq(Ω) . ð
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COROLLARY 24 If kp < n  and Ω  is bounded then W0
k, p (Ω)  is compactly imbedded

in Lq(Ω)  for all q <
np

n − kp
.

PROOF W0
k, p (Ω) is continuously imbedded in W0

1,
np

n− (k −1) p (Ω), which is compactly

imbedded in Lq(Ω)  if q <
np

n − kp
, by Theorem 23. ð

COROLLARY 25 The same compactness results hold for W k, p (Ω)  if Ω  is a bounded,

C1  domain (or any other type of bounded domain for which there is an extension operator

E : W1, p (Ω) → W1, p (Rn) .

PROOF See the proof of Corollary 21. ð

Remark The case kp = n  is missing from the previous results. But since W k, p  is

continuously imbedded in W k, r  for all r < p  (provided that the domain is bounded), it

follows from Corollary 25 that W k, p  is compactly imbedded in Lq(Ω)  for all q < ∞ . The

same applies to W0
k, p (Ω).

5. Interpolation Results

The following results are very useful in PDE theory. We make use of Theorem 26

in our proof of Gårding's Inequality in our study of elliptic problems.

THEOREM 26 Let u ∈W0
k , p (Ω) . Then for any ε > 0  and any 0 <|β |< k

|| Dβu||
Lp ≤ ε |u|k , p +Cε

−|β |

k −|β | ||u||
Lp

where C is a constant depending only on k.

PROOF We prove the result for |β|= 1, k = 2. The general result is easily obtained

from this case by induction. In fact, we show that for each i

||
∂u

∂xi

||
Lp ≤ ε ||

∂2u

∂x i
2 ||

Lp +
72

ε
||u||

Lp (10)
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First suppose that u ∈C0
2 (R) and consider an interval (a,b) of length b − a = ε . If

y ∈(a,a + ε / 3)  and z ∈(b − ε / 3,b), then by the Mean Value Theorem there is a

p ∈(a,b) such that

| ′ u ( p)|=|
u(z ) − u(y)

z − y
|≤

3

ε
(|u(z)|+|u(y)|)

Consequently, for every x ∈(a,b), we obtain

| ′ u (x)|=| ′ u ( p) + ′ ′ u (t) dt
p

x

∫ |≤
3

ε
(|u(z)|+|u(y)|) + | ′ ′ u (t)| dt

a

b

∫ .

Integrating with respect to y and z over the intervals (a, a + ε / 3)  and (b − ε / 3,b)

respectively, we obtain

| ′ u (x)|≤ | ′ ′ u (t)| dt
a

b

∫ +
18

ε 2 |u(t)| dt
a

b

∫ ,

so by Hölder's inequality and the inequality (A + B)p ≤ 2p−1(A p + B p ),

| ′ u (x)|p ≤ 2p −1({ | ′ ′ u (t)| dt
a

b

∫ }p +
(18)p

ε 2p { | u(t)| dt
a

b

∫ }p )

≤ 2p−1({ | ′ ′ u (t )|p dt
a

b

∫ }{ 1 dt
a

b

∫ }p−1 +
(18)p

ε 2 p { |u(t)|p dt
a

b

∫ }{ 1 dt
a

b

∫ }p−1 )

= 2p−1 (ε p−1 | ′ ′ u (t)|p dt
a

b

∫ +
(18)p

ε p+1 |u(t)|p dt
a

b

∫ ).

Integrating this with respect to x over the interval (a,b) gives

| ′ u (x)| p dx
a

b

∫ = 2 p−1(ε p | ′ ′ u (t)|p dt
a

b

∫ +
(18)p

ε p |u(t)|p dt
a

b

∫ ).

We now subdivide R into intervals of length ε  and obtain by adding all of these

inequalities that

| ′ u (x)|p dx
−∞

∞

∫ ≤ 2p −1(ε p | ′ ′ u (t)| p dt
− ∞

∞

∫ +
(18)p

ε p |u(t)|p dt
− ∞

∞

∫ ) (11)
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Suppose now that u ∈C0
∞ (Rn ) . Then we can apply (11) to u regarded as a function of xi

and integrate with respect to the remaining variables to obtain

|
∂u

∂xi

|p dx
Rn∫ ≤ 2p−1(ε p |

∂2u

∂x i
2 |p dx

Rn∫ +
(18)p

ε p |u|p dx
Rn∫ )

Taking the pth root of this and using (Ap + Bp )1/ p ≤ A + B, we obtain (10). (Actually, we

don't quite obtain (10). We actually obtain the inequality (10) for 2ε  instead of ε . But

since ε  is an arbitrary positive constant, (10) holds). Finally, (as usual) to obtain the result
for u ∈W0

∞(Ω), we take a sequence of functions in C0
∞  converging to u. ð

COROLLARY 27 The interpolation inequality stated in Theorem 26 also applies to

members of W k, p (Ω) , provided that Ω  is a bounded C2  domain (or any other domain for

which there is a bounded extension operator E : W2, p (Ω) → W2,p (Rn ) . Here the constant C

may also depend on p and Ω .

PROOF Because of the extension operator, an inequality of the form (10) holds for

functions in W2, p (Ω). The full result follows by induction from this case. ð

6. The Spaces H k(Ω)  and H0
k(Ω).

Definitions H0
k(Ω) = W0

k, 2(Ω) and H k(Ω) = W k, 2(Ω). These spaces are Hilbert spaces

with inner product

(u,v)k = Dβu(x)Dβv (x) dx∫
|β|≤ k
∑ .

If Ω = Rn , we get a very useful representation of such functions in terms of the

Fourier-Plancherel Transform. Recall that for functions f ∈L2 (Rn ) , we define the Fourier-

Plancherel transform of f as

ˆ f (ξ) = lim
R→ ∞

(2π )− n/ 2 e−ix .ξ f (x) dx
||x | |≤ R
∫ .
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The limit exists in the topology of L2(Rn ), || f ||
L2 =|| ˆ f ||

L2 , and f can be recovered by using

the inversion formula

f (x) = lim
R→ ∞

(2π )− n/ 2 e ix .ξ ˆ f (ξ ) dξ
| |ξ ||≤ R
∫ .

Again, the limit here exists in the topology of L2(Rn ). The reason for the limits in these

formulas is that the integrands are not necessarily in L1(Rn ). Clearly, the Fourier-

Plancherel transform is an isometric (i.e. norms are equal) isomorphism (i.e. bounded

linear mapping with a bounded inverse) from L2(Rn ) onto L2(Rn ).

Integration by parts shows that for f ∈C0
∞(Rn ), the transform of 

∂f

∂x j

 is iξ j
ˆ f (ξ ).

From this, we see by induction that the transform of Dβ f  is (iξ )β ˆ f (ξ). If now we let

f ∈H k(Rn ) and take a sequence of C0
∞  functions converging to f, we find that (iξ )β ˆ f (ξ)

is in L2(Rn ) for all |β|≤ k  and the transform of Dβ f  is (iξ )β ˆ f (ξ). Thus, we see that if

f ∈H k(Rn ) then ˆ f ∈ ˆ H k(Rn ), where

ˆ H k(Rn ) ={g ∈L2 (Rn ) : (1+||ξ ||) k g(ξ ) ∈L2(Rn )}.

It is easy to see that C0
∞  is dense in ˆ H k  and if g is in C0

∞  then g is the transform of an

infinitely differentiable, rapidly decaying function f (a function in the Schwarz class, to be

precise). Taking limits, we see that if g is in ˆ H k  then g is the transform of a function f

belonging to H k . Further, if we define an inner product on ˆ H k  as

(u,v) ˆ H k
= ξ 2βu(ξ )v (ξ) dξ∫

|β |≤k
∑ ,

we find that || f ||k =|| ˆ f || ˆ H k
. Thus, the Fourier-Plancherel transform is an isometric

isomorphism from H k  onto ˆ H k . Questions about functions in H k  are thus transformed

into equivalent (and often simpler) questions about functions in ˆ H k .

Problem 12 Consider the initial value problem for the wave equation

d2u

dt 2 = ∆u , u(0) = f ∈H k , 
du

dt
(0) = g ∈H k −1 .
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(We think of u as being a function of t taking values in H k ). Construct a candidate u for a

solution using Fourier transforms.

a) Show that u is a continuous H k -valued function of t.

b) Show that u is a continuously differentiable H k −1-valued function of t.

c) Show that 
du

dt
 is a continuously differentiable H k −2 -valued function of t and that

d2u

dt 2 = ∆u  in H k −2 .

d) How large does k have to be in order for u to be a classical (i.e. C2 ) solution.

Hints:  Clearly it suffices to answer the equivalent questions about ˆ u . Use the Dominated

Convergence Theorem to help you answer a), b), c). For d), use the Sobolev Imbedding

Theorem.

7.  Trace Theorems.

In PDE Theory, one often needs to know how functions behave on boundaries of

domains. If f is a function defined on a domain Ω , we call the restriction of f to ∂Ω  the

trace of f. If all we know about f is that it is in some Lp  space, then the trace of f is not

well-defined because ∂Ω  has measure zero. However, if  kp > n  and Ω  is a bounded C1

domain in Rn , then we know by Corollary 18 that functions in W k, p (Ω) are continuous on

Ω  and thus they have well-defined traces that are bounded functions. In this section, we

concern ourselves with the important case   kp < n.
In the following results, a vector x in Rn  is denoted by x = ( ′ x , xn ) , where ′ x 

belongs to Rn−1.

LEMMA 27 If u ∈W1,1 (Rn ) , then for every ζ ∈R , the function v( ′ x ) = u( ′ x ,ζ )  is in

L1(Rn−1) , and
|| v||

L1( Rn−1 )
≤||u||

L1 (Rn )
+|| Dnu||

L1 (Rn )
.

Remark. One needs to be careful when talking about traces of equivalence classes of
functions. The trace certainly exists for u ∈C0

∞ (Rn ) . For u ∈W1,1 (Rn ) , we know that we

can find a sequence of functions in C0
∞(Rn ) that converges to u. The norm inequality

asserted in the lemma shows that the sequence of traces of these functions converges in

L1(Rn−1) . It is in this sense that the trace of u exists in L1(Rn−1) .
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PROOF It suffices to prove the result for the case ζ = 0 and u ∈C0
∞ (Rn ) . By the

Mean Value Theorem for integrals

|u( ′ x , xn )| d ′ x dxn

Rn−1
∫

0

1

∫ = |u( ′ x ,σ)| d ′ x 
Rn−1
∫

for some σ ∈[0,1]. But

|u( ′ x ,0)|=|u( ′ x ,σ ) − Dnu( ′ x ,t) dt
0

σ

∫ |

≤|u( ′ x ,σ)|+ | Dnu( ′ x ,t)| dt
0

1

∫ .

Integrating this over Rn−1 gives

|| v||
L1( Rn−1 )

≤ |u( ′ x ,σ)| d ′ x 
Rn−1
∫ + | Dnu( ′ x ,t)| dt

0

1

∫
Rn−1
∫ d ′ x 

= |u( ′ x ,σ )| d ′ x 
Rn−1
∫

0

1

∫ dt + | Dnu( ′ x ,t)| dt
0

1

∫
Rn−1
∫ d ′ x .

This completes the proof of the lemma.

LEMMA 28 If u ∈W1, p(Rn )  where  p < n, then for every ζ ∈R , the function

v( ′ x ) = u( ′ x ,ζ )  is in Lr (Rn −1) , where

r =
(n −1)p

n − p
= 1+

n(p −1)

n − p

and there is a constant C depending on only n and p such that

|| v||
Lr (Rn−1)

≤ C |u|1, p
Rn

.

PROOF We can assume that p > 1 because the p = 1 case is dealt with in the

previous lemma. We first show that if u ∈W1, p(Rn ) then  w =|u|r ∈W1,1 (Rn )  and

|| w||
L1 ≤ const. || Du||

Lp

r −1 ||u||
Lp , || Diw||

L1 ≤ const. || Du||
Lp

r . (12)
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It suffices to prove this result for the case u ∈C0
∞ (Rn ) . Let q = p / (p −1) . Then

(r −1)q = np / (n − p) , so by the Sobolev Imbedding Theorem (Th. 15),

|| |u|r −1 ||
Lq

q ≤ const. ||Du||
L p

np / (n− p)

and combining this with Hölder's Inequality, we get the first of (12):

|| w||
L1 = |u|r dx = |u|r−1 |u| dx ≤||u||

Lp || |u|r −1 ||∫∫ Lq
≤ const.|| Du||

Lp

r −1 ||u||
Lp .

Since Diw = ±r|u|r−1 Diu , we obtain the second of (12):

|| Diw||
L1 = r|| |u|r −1 ||

Lq || Diu||
Lp ≤ const. || Du||

L p

r .

We now apply Lemma 27 to w  and immediately obtain the inequality

|| v||
Lr (Rn−1)

≤ const.(|| Du||
Lp

r−1 ||u||
L p +|| Du||

Lp

r )1/ r

≤ const.(|| Du||
Lp

1−1/ r ||u||
Lp

1/ r +||Du||
L p )

≤ const.(||u||
Lp +||Du||

Lp ).

LEMMA 29 If u ∈Wk , p (Rn )  where  kp < n , then for every ζ ∈R , the function

v( ′ x ) = u( ′ x ,ζ )  is in Lr (Rn −1) , where

r =
(n −1)p

n − kp

and there is a constant C depending on only n, k and p such that

|| v||
Lr (Rn−1)

≤ C |u|k , p
Rn

.

PROOF By Sobolev's Imbedding Theorem (Th. 15) applied to the first order

derivatives of u, we have u ∈W1,np / (n−(k −1)p )(Rn) . Now apply Lemma 28.
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Reminder: Parametrized Surface Integrals.

If X(u) = (x1(u1,u2 ), x2 (u1,u2 ), x3 (u1,u2 )) is a parametrization for a smooth surface

S  in R3 , it is well-known from elementary calculus that one may integrate functions defined

on S  using the formula

  
f (x) dS

S
∫ = f o X(u) K(u) du1du2

Ξ
∫∫ ,

where Ξ  is the domain of X and

K(u) =||
∂X

∂u1

×
∂X

∂u2

|| = ((
∂(x3, x2 )

∂(u1,u2 )
)2 + (

∂(x1,x3 )

∂(u1,u2 )
)2 + (

∂(x1, x2 )

∂(u1,u2 )
)2 )1/ 2 .

Differential Geometry yields a generalization of this formula. Suppose now that Ξ
is a domain in Rn−1 and that X: Ξ → Rn  is a parametrization for a smooth hypersurface S .

Then surface integrals over S  may be calculated using

  
f (x) dS

S
∫ = f o X(u) K(u) du

Ξ
∫ ,

where

 
  
K(u) = ( (

∂(x1,x2,K, ˆ x k,K, xn )

∂(u1,u2 ,K,un )
)2

k =1

n

∑ )1/ 2 .

Here the ˆ x k  notation means that the xk  term does not appear.

THEOREM 30 Suppose that Ω  is bounded and is of class C k . If u ∈Wk , p (Ω)  where

kp < n , then the restriction v of u to ∂Ω  is in Lr (∂Ω) , where

r =
(n −1)p

n − kp

and there is a constant C depending on only n, k and p and Ω  such that

|| v||
Lr (∂Ω)

≤ C |u|k , p
Ω .
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Remark. See the remark following the statement of Lemma 27 for clarification of the

phrase "restriction v of u to ∂Ω ". The same remark applies because we know that an

extension operator E: W k , p(Ω) → Wk , p (Rn )  exists, and thus the restriction to Ω  of

functions in C0
∞(Rn ) is dense in W k, p (Ω).

PROOF Let E: W k , p(Ω) → Wk , p (Rn )  be the extension operator of Theorem 11.

Since any u ∈Wk , p (Ω)  is associated with an element Eu ∈Wk , p (Rn ), we might as well just

study the properties of the trace on ∂Ω  of C0
∞(Rn ) functions.

Let Ω j  and ψ j be as in the definition of C k  domains. Since ∂Ω  is compact, we

might as well assume that there is a finite number of the Ω j , 1 ≤ j ≤ N , covering ∂Ω . Let

θ j  1 ≤ j ≤ N , be a partition of unity for ∂Ω  subordinate to this cover. If u ∈C0
∞ (Rn ) , then

  (θ ju)o ψ j
−1 ∈C0

k (B) and we can extend   (θ ju)o ψ j
−1  to be in C0

k (Rn ) by defining the

function to be zero outside B. By Lemma 29, the trace w j  of   (θ ju)o ψ j
−1  on the hyperplane

P: yn = 0  satisfies

  
|| w j ||Lr (P )

≤ C|(θ ju)oψ j
−1|k , p

B ≤ Cj |u|k , p
Rn

,

where C depends on only n, p, and k and C j  is independent of u..

  X j (y) = ψ j
−1(y1,K,yn−1,0)  is a parametrization for the hypersurface S j = (∂Ω) ∩ Ω j  and

we may estimate the trace   v j = wj oψ j  of θ ju  on this hypersurface using this

parametrization (see the "reminder" preceding the statement of the theorem).

|v j(x)|r dS
S j

∫ = |w j (y)|r K j(y) dy
P∩B
∫ ≤ Rj | wj |

r dy
P∩ B
∫ ,

where Rj = max(K j ). Comparing this to the preceding inequality, we see that there is a

constant M j  independent of u such that

|| v j ||Lr (S j )
≤ M j |u|k, p

Rn

.

The function v satisfies a similar inequality because v = v j∑ . Finally, it is clear that the

result holds for arbitrary u ∈Wk , p (Ω)  (see the remark following the statement of the

theorem).
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Problem 13 Modify the proof of Lemma 27 to show that if u ∈W1, p(Rn ), then for every

ζ ∈R , the function v( ′ x ) = u( ′ x ,ζ ) is in Lp (Rn−1) , and there exists a constant K

depending only on n and p such that|| v||
Lp (Rn−1 )

≤ K|u|1, p
Rn

.

Problem 14 Deduce from the previous problem and Lemma 28 that the function v of

Lemma 28 belongs to Lq(Rn−1 ) for all q satisfying p ≤ q ≤ r .

Appendix: Some Spaces of Continuous Functions.

Here, we define the spaces of continuous functions that appear in these notes. Caution:

Notation and definitions of such function spaces vary from text to text. Recall that we

stated that Ω  is a domain in Rn . The connectedness of Ω  is not needed in the following

definitions, so we need only assume that Ω  is an open subset  of Rn .

1. C(Ω) is the set of functions continuous in Ω .

2. C(Ω ) is the set of functions continuous in Ω .
3. C k (Ω)  is the set of functions which have derivatives of order ≤ k that are

continuous in Ω .

4. C k (Ω ) is the set of functions in C(Ω ) which have derivatives in Ω  of  order ≤ k

that can be extended to be members of C(Ω ).

5. C∞(Ω) is the set of functions in C k (Ω)  for all k.

6. C∞(Ω ) is the set of functions in C k (Ω ) for all k.

7. C0(Ω)  is the set of functions in C(Ω) that have supports that are compact subsets

of Ω  (recall that the support of a function is the closure of the set on which the

function fails to vanish). Since Ω  is open, such functions necessarily vanish in a

neighborhood of the boundary of Ω .
8. C0

k (Ω)  is the set of functions in C k (Ω)  that have supports that are compact subsets

of Ω .
9. C0

∞(Ω) is the set of functions in C0
k (Ω)  for all k.

10. CB(Ω) is the set of bounded functions in C(Ω). This is a Banach space when

equipped with the "sup norm".

11. CB(Ω ) is the set of bounded functions in C(Ω ). This is a Banach space when

equipped with the "sup norm". If Ω  is bounded, this space coincides with C(Ω ).
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12. CB
k (Ω)  is the set of functions in CB(Ω) with derivatives of order ≤ k belonging to

CB(Ω). This is a Banach space if we define the norm of a member f of this space as

sup
|β|≤ k, x ∈Ω

| Dβ f (x)|.

13. CB
k (Ω ) is the set of functions in both CB

k (Ω)  and C k (Ω ). This is a Banach space,

equipped with the same norm as in (12). If Ω  is bounded, this space coincides with

C k (Ω ).

14. C k ,α (Ω ) , where 0 < α ≤1, is the set of functions in CB
k (Ω ) that have derivatives of

order ≤ k that are uniformly Hölder continuous with exponent α . C k ,α (Ω )  is a

Banach space with norm

|| f ||
C k,α = sup

|β|≤ k, x ∈Ω
| Dβ f (x)|+[ f ]k,α ,

where [ f ]k ,α = sup
x , y∈Ω, x ≠ y, |β |= k

| Dβ f (x) − Dβ f (y)|

|| x − y||α
.
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