AN INTRODUCTION TO SOBOLEV SPACES

© Steve Taylor, Montana State Univer sity.

Preface: These notes were written to supplement the graduate level PDE course at
Montana State University. Sobolev Spaces have become an indispensable tool in the theory
of partia differential equations and all graduate-level courses on PDE's ought to devote
some time to the study of the more important properties of these spaces. The object of these
notesisto give a self-contained and brief treatment of the important properties of Sobolev
spaces. The main aim is to give clear proofs of al of the main results without writing an
entire book on the subject! Why did | write these notes? Much of the existing literature on
the subject seems to fall into two categories, either long treatises on the subject with the
most general assumptions possible (and thus unsuitable for part of a PDE course), or very
sketchy discussions confined to a chapter of a PDE text.
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In these notes, Q isadomain (i.e. an open, connected set) in R".
1.  The Spaces W'*(Q) and W.*(Q)

Definitions: Suppose 1< p <o. Then
@) P (Q) ={u:u OL°(K) for every compact subset K of Q}
(i)  uislocallyintegrablein Q if u 0L, (Q).
(iii)  Letuandv belocaly integrable functions defined in Q. We say that v is
the o th weak derivative of u if for every @ OC; (Q)



IQuD“ @dx = (—1)'“'Ichp dx,

and we say that D"u = v in the weak sense,
(iv) Letuandvbein L] (Q).Wesay thatv isthe a th strong derivative of u if
for each compact subset K of Q there exists asequence {¢;} in C*'(K)

suchthat @, — u in L°(K) and D¢, - v in L°(K).

THEOREM 1 If D°u=v and DPv =w in theweak sense then D*Pu=w in the weak
sense.

PROOF Let y OC(Q) and ¢ = D°y . Then
IQuD‘”BLp dx = (—1)""-[Q ovdx = (-1)" 'J’QVDBqJ dx = (-1)° '*'B'J'lew dx.

Definition (mollifiers): Let p OG; (R') besuch that
(i) Supp p O B,(0), (recall that "supp" denotes the support of afunction, and
B (p) denotes an open ball of radius r and center p).

(i) [p(x)dx=1,

@iii)  p(x)=0.
If € >0 then we set (provided that the integral exists)

Ju09= = [, Huy) oy

J.u iscalled amollifier of u. Note that if u is locally integrable in Q and if K isa
compact subset of Q then J.u OC”(K) provided that € < dist(K,0Q). Suppose now that
uldL (Q). Clearly

Ju() = [, ,,PMu(x —ey) dy,
sofor p>1wehave(ifl/ p+1/q=1)

[J.u(x)l= [ P {p(y)} " lu(x - ey)| dy

1 (0)



=[50 (G dx)lqumm AP} Plu(x—ey)))® dy)*™.

Hence | J.u(x)|° < IB (O)p(y)|u(x —¢y)|° dy, and thistrivialy holds if p=1 too. Integrating

this, we see that

IKngU(X)lp dXSIBl(O)p(Y)IKlu(X‘EY)lp dx dy
< Ia(O)p(y)IKo lu(x)|” dx dy
:J’KO lu(x)|” dx,

where K, isacompact subset of Q, K U Interior (K,) and € < dist(K,dK,) . i.e. we have

13.UlLs g <lull - (1)

LP(K)

LEMMA 2 If udLp 0 as

loc

(Q) and K is a compact subset of Q then |[J.u—u]|

LP(K) —

€ - 0.

PROOF Let K, be a compact subset of Q whereK O Interior(K,) and let
€ <dist(K,0K,). Let d>0 and let wOC”(K,) be such that |Ju—w|| <d. Then

LP(Ko)

applying (1) to u —w, we obtain

13,u= 3, Wil )< B 2)

But J, w(x) — w(x) :IB (O)p(y){w(x —¢gy) —w(x)} dy, and this goes to zero uniformly on K

ase — 0. Hence, if € issufficiently small, we have

||sz—w||Lp(K)<6. )]
Hence, by (2) and (3)
13 u=ulle i, Slw=ull s HIIu= I W5 oy HIT W =W, <30 4
Since o isarbitrary, ||J8u—u||Lp(K) ->0ase - 0.



The proof of the following theorem contains some other important approximating
properties of mollifiers.

THEOREM 3 SQupposethat uandvarein L (Q). Then D“u=v inthe weak senseif and

loc

onlyif D*u=v inthestrong L” sense.

PROOF Suppose that D*u=V in the strong L° sense. Let @ OC;(Q) and let
K = supp @. Let €¢>0 and take ¢ OC(K) so that ||@ -ul, . <& and
ID*W =V, <€ Then

LP(K)

| J'KuD"(p dx — (-1)! Ji v X, D% @ dx — (-1)! IchD“qJ dx|
*f (u-p)D @ axt[ (v-D W) df
<u =Wl ID @l a ey HIV =D W sy 10l
< €(|ID° @lha ey H @l oy )

where q is the conjugate exponent of p (if p=1 then q=co and if p>1 then
1/ p+1/q=1). But € is arbitrary, so the LHS must be zero. So D°u=vV in the weak
sense.

Conversely, suppose that Du = v in the weak sense and let K be a compact subset
of Q. Then JuOC"(K) if € < dist(K,0Q) and we have for al x inK

D*Ju(x) =& ™[, D;’p(%)U(y) dy
— e Rl Do XY
=& ()7, Dyp(=")uly) dy

=e " [,p (V) dy
= J.Vv(X).

But by Lemmaz2, | J,u=ulls ., ~ 0 and [[D*J.u=V|l, =&V =V, ~ 0 as € - 0.

Thus Du = v in the strong sense.

Definitions () |ufl,= (3 .., [,ID u()’ dx)*’P.
(i)  C"(Q)={uDC(Q)|uf,<o%}.
(i) H""(Q) =completion of C"*(Q) with respect to thenorm | |2,.



H'?(Q) is called a Sobolev space. We will encounter other such spaces as well.
Recall that the completion of a normed linear space is a larger space in which al Cauchy

sequences converge (i.e. it is aBanach space). It is constructed by first defining a space of
equivalence classes of Cauchy sequences. Two Cauchy sequences {x.}, {V,} aresad to
be in the same equivalence class if lim |[x. —V,|[|=0. A member x of the old space is

identified with the equivalence class of the sequence {x, x,X, ...} of the new space and in
this sense the new space contains the old space. Further, the old space is dense in its
completion. Moreover, if anormed linear space X isdense in a Banach space Y, then Y'is
the completion of X.

Recall that for 1< p<o, L”(Q) isthe completion of C;(Q) with respect to the
usual "p norm". This knowledge allows us to see what members of H'"*(Q) "look like".
Members of L°(Q) are equivalence classes of measurable functions with finite p norms,
two functions being in the same equivalence class if they differ only on a set of measure
zero.

Suppose that {u_} isaCauchy sequencein C"P(Q). Then for |al< j, {D" ul} isa
Cauchy sequencein L°(Q). Hence, there are members u® of L°(Q) such that Du_, - u°
in L”(Q). Hence, according to our definition of strong derivatives, u’ isin L°(Q) and u”
isthe a strong derivative of u°. Hence we see that

H*P(Q) ={u OL"(Q):u hasstrong L° derivatives of order <j inL"(Q) and there exists a
sequence{u,} in C"?(Q) suchthat D“u,, -~ D%u in L°(Q)}.

Definition W'"(Q) ={uOL°(Q): the weak derivatives of order < j of u arein
L°(Q)}

Note that by Theorem 3, an equivalent definition of W"?(Q) is obtained by writing "strong
derivatives' instead of "weak derivatives'. Because of this, we see easly that
H"P(Q) OW(Q). In fact, H'*(Q)=W"(Q). This is not obvious because for
members of H'*"(Q) we can find sequences of nice functions such that D“u_ — D%u in
the topology of L°(Q), while according to our definition of strong derivatives, such limits
exist only in the topology of L° (Q) for members of W'"(Q). Before proving that

loc

H'P(Q) = W"P(Q), we need the concept of a partition of unity.



LEMmMA 4 Let EOR" and let G be a collection of open sets U such that
E 0{0OU: U G} . Then there exists a family F of non-negative functions f OC; (R") such

that 0 < f(x) <1 and
(1) for each f OF , thereexists U OG suchthat supp f O U,
(i) if KO E iscompact then supp f n K isnon-empty for only finitely many
f OF,
(iii) ZfEF f(x) =1 for each x OE (because of (ii), this sumisfinite),
(iv) ifG={Q,,Q,,..} whereeach Q, is bounded and Q, O E then the family

F of such functions can be constructed so that F ={f,f,, ..} and
supp f, 0Q;.

The family of functions F is called a partition of unity subordinate to the cover G.

PROOF Suppose first that E is compact, so there exists a positive integer N such that
EDODOLU,, where each U, 0G. Pick compact sets E U, such that EDOLE. Let
g = J, Xg » where €; is chosen to be so small that supp g; OU,. Then g OCy(U;) and
g >0 on a neighborhood of E. Let g= 2219' and let S= supp gOOLU,. If
e <dist(E,0S) thenk = J.x iszeroon E and h=g+kOC"(R"). Further, h>0 on R"
andh=g onE Thus F ={f,: f, =g, / h} doesthejob.

If Eisopen, let

E =EnB(O)n{x dist(x,aE)Z%}.

Thus E, is compact and E= [}, E . Let G, be the collection of all open sets of the form
U n [Interior(E.,,) —E_,], where U UG and E, = E_; =0 . The members of G, provide
an open cover for the compact set E — Interior (E_;), so they possess a partition of unity
F, with finitely many elements. We let

)=y . 909

and observe that only finitely many terms are represented and that s>0 on E. Now we let
F be the collection of al functions of the form



o)  ypE
f(X)=0s(x)’
00, xOE

This F does the job.

If Eisnot open, note that any partition of unity for 0O U is a partition of unity for
E.

For the proof of (iv), let H be the partition of unity obtained above and let f, = sum
of functionsh in H such that supp h0 Q;, but supp hJQ,, j <i. Note that each h is

represented in one and only one of these sums and that the sums are finite since each ﬁi is
acompact subset of E. Thus the functions f, provide the required partition of unity.

THEOREM 5 (Meyersand Serrin, 1964)  H''*(Q) = W'*(Q).

PROOF We already know that H'**(Q) O W"P(Q) . The opposite inclusion follows

if we can show that for every u OW'® and for every € > 0 we can find w OC*P such that
for o< j, [ID"w=Dull, o, <€

For m>1 let
. 1
Q. ={xO0Q:[|x|< m dist(x,0Q) > E}

and let Q,=Q_ =0. Let {Y,} be the partition of unity of part (iv), Theorem 4,
subordinate to the cover {Q_., — Q. }. Each uy  is| times weakly differentiable and has
supportin Q ., — ﬁm. Asinthe"conversely" part of the proof of Theorem 3, we can pick
g, >0 sosmall that w,, =J, (uy,,) hassupport in Q .. -Q, ,and |w_ ‘melj,p<%-

Let w=3"_w_. This is a C” function because on each set Q_., - Q_ we have
w=w_,+w ,+w_ +w_ . +w,_ . Further,

DW= DUl g =1%o D° (W, = U s g
< Z:=1" Da (Wm - UllJ m)“
<X €l2"=¢.

LP(Q)



Remarks

()  Theproof showsthat infact C*(Q) n C"P(Q) isdensein W"P(Q).

(i)  Clearly members of C*(Q)n éj‘p(Q) are not necessarily continuous on 9dQ or
even bounded near 0Q. It would be very useful to have the knowledge that
C*(Q)n C*(Q) or C'(Q)nC'"(Q) is aso dense in WP(Q). But the following
example shows that this cannot always be expected.

Problem1 Let Q={(x,y):1<x*+y*<2,yz0 if x>0, i.e. an annulus minus the
positive x-axis. Let w(x,y)=0, the angular polar coordinate of (x,y). Clearly w is in
W-(Q) because it is a bounded continuously differentiable function. Show that we cannot
find a OCY(Q) such that [u-¢|,, < 2. (Note that Q isthe whole annulus).

The reason for the failure of the domain in Problem 1 is that the domain is on each
side of part of its boundary. The following definition expresses the idea of a domain lying
on only one side of its boundary.

Definition A domain Q has the segment property if for each x 00Q there exists an
open ball U centered at x and a vector y such that if zOQn U then z+tydQ for

O<t<l

We will not need the following theorem, so we don't prove it. For a proof, see Adam's
book. However, see Lemma 9 for the simpler version of the result that we will need.

THEOREM 6 If Q hasthe segment property then the set of restrictions to Q of functions
in C;(R") isdensein W™"(Q).

THEOREM 7 Change of Variables and the Chain Rule. Let V, Q be domains
in R"andlet T: V - Q be invertible. Suppose that T and T™* have continuous, bounded
derivatives of order <j. Then if uOW™®(Q) we have v=uoT OW""(V) and the

derivatives of v are given by the chain rule.

PROOF Let y denote coordinates in Q and let x denote coordinates in V
(y=T(x)).If f OL°(Q) then fol OL"(V) because

J'V| foT|° dx:J'Q [fI°Jdy< const.IQ|f|p dy (5)



(Here Jisthe Jacobian of T™).
If uOW °(Q), let {u } beasequencein C""(Q) convergingto uin W"(Q) and
set v, =u,ol . By thechainrule, if |a|< |

Dlv, = zBSG(DyBum)oT R

where the R, ; are bounded terms involving T and its derivatives. But for |B|< j
DPu OL*(Q) O (DYu)eT OL"(V) O (D{u)oTR, ; OL°(V) since the R,, are bounded.
Further,

D5V, = 25 (Df U)STR, 115y =N Z g (D Uy = DJU)STR, 115

< %5 1D U, = DJU)eTR, glls )

< const. %, ||(Dyu, = Dyu)eT|ls,y,

< const. %, || DJu,, = Djulls o,
by (5). So (o =0 case), v,, » V=uol in L°(V) and Dyv, - %, (Diu)oT R,; in
L°(V). Thisshowsthat v OW"?(V) and D{v=3%,_, (D{u)oT R, ;.

Definition  W'"(Q) =completion of Cg (Q) with respect to thenorm | |7

Remarks (i)  Clearly W'P(Q) OWP(Q) because CJ’(Q) O C'"*(Q).
(i)  Sayingthat f DWCJ)"’(Q) isageneralized way of saying that f and its
derivatives of order < j —1 vanish on dQ. eg. W"(Q) n WP(Q) isa
useful space for studying solutions of the Dirichlet problem for second
order elliptic PDE's.
(i)  CHQ)UOW'(Q) because if f OC)(Q), we know that if € is
sufficiently small then J, f OG; (Q) and J. f - f in| |?p norm.

Problem 2 Show that W'*(R") =W/?(R'). Hint: Why is it enough to show that
C'P(R') OW,P(R)?

Problem 3 Show that if Q isadomainin R", f OW)?(Q) and if f is extended to be
zero outside Q then the new functionisin W'*(R").

Problem 4  Show that if yOC'[0,1] and y(0) = y(1) =0 then yOW,"(0,1). Use this
fact to show that for any f OLP(0,1) there is a unique y OW,?(0,2) n W*P(0,1) such that
y'—y= f . Hint: Solve the problem first with f OC; (0,1) and then take limits.



2. Extension Theorems

Most of the important Sobolev inequalities and imbedding theorems that we will
derive in the next section are most easily derived for the space W,'"(Q) which (see

Problem 3) can be viewed as being a subspace of W'?(R"). Direct derivations of these
results for the spaces W''"(Q) are tedious and difficult because of the boundary behavior
of the functions (Adams uses the direct derivation approach in his book). In this section we
investigate the existence of extension operators that alow us to extend functions in
W'P(Q) to be functions in W"*?(R"). This will alow us to easily deduce the Sobolev
imbedding theorems for the spaces W'*(Q) from the corresponding results for W'*(R").

LEMMA 8  Let uOR' and f OL°(R"). Set f,(x) = f(x +3u). Then !_)imof6 =f in
L°(R").

PROOF Given £ >0, let @ OCy(R") be such that || f —¢@||,<e. Since @; - @
uniformly on a sufficiently large ball containing the supportsof al ¢; (say, for o <1), we
canpick & sosmall that |[@— ||, <€.Then

I = fsllo <IIT =@l o= @5l +llps = F51|- <3
LEMMA O  Let R' ={xOR": x >0. C*(R") n C"P(R") isdensein W (R)).

PROOF Suppose f isin WP (R') let € > 0 and pick  OC”(R") n C'"*(R') so that
ID"@-D*f||,x,<€ for al |alsj. We take the vector of Lemma 8 to be

u=(0,0,0,..,1) and definefunctions Y° OL°(R") as

D“@((x) ,x,>0

GX:D
llJ()DO , X, <0

Observe that for each 8 >0, @; OC”(R") n C'""(R'). By Lemma 8, we can pick 8> 0
so that, for al |al< j, [[Ws = W* [l gy < € But thisimplies that |[D® @ — D@l gy <€

Hence

1D% G5 = D* Fll,s g, SHD @5 = D@l gy +ID" @ D gy < 2¢

10



LemMA 10 Thereexistsalinear mapping E,;; W*(R") -~ W'"?(R") such that E,f = f

in R’ and |Eof|f1ps C|f |J.Ff*np, where C depends on only n and p.

PROOF If fOC”(R"), define

f o f(X) ' % 20
B f(x) = Ezll(:ckf(xl,xz,..,&_l,-lo(n) % <0

where the constants ¢, are chosen so that E;f(x) OC'(R),i.e.

Zj+1(_k)mck =1, m=012,..,j.

k=1
It is easy to check that there is a constant C depending on only n and p such that

ID" o fllis gry < CIID" Fllip -

(6)

If now fOW'™P(R'), take a sequence f,_ OC”(R")n C"*(R') converging to f in
W P(R') (we can do this by Lemma 9). Then f_ isa Cauchy sequence and (6) implies
that E,f_ is a Cauchy sequence in W'P(R'). We denote the limit by E,f. Since

1D Eg fll o ey < ClID® f ol o o, » taKing limits shows that f satisfies (6).

Definition A domain Q isof class C™ if dQ can be covered by bounded open sets Q,
such that there are mappings Y ;: ﬁj — B, where B is the unit ball centered at the origin

and
i) v(@QnQ=BnR
(i)  W,(Q,n0Q) =BnoR’
(i) @, 0C™(Q)) and y* OC"(B).

(Because of (iii), all derivatives of order < m of Y, and itsinverse are bounded).

THeorReM 11 If Q is a bounded domain of class C™ then there exists a bounded linear

extension operator E:W™°(Q) - W"?(R").

11



PrRoOOF Since 0Q is compact (boundaries are aways closed), we might as well
assume that the number of sets Q; covering 9Q isafinite number N. Let U = Dszle and

let d=dist(0Q,0U). Setting Q,={x0Q:dist(x,0Q)>d/2Z, we see that
Q,,9Q,,Q,,..,Q, cover Q. These sets also cover Q, which is compact, so by the first
part of the proof of Lemma 4, there exists afinite partition of unity 6,,0,,8,,..,8, for Q
and supp 6; 0 Q,. Recal that the support of a function is the closure of the set on which
that function is non-zero. Hence, supp 0, is even bounded away from 0Q;.

Let f OW™(Q). Then 6, OW™"(Qn Q;), so by our chain rule theorem
(Theorem 7) w; =(f6,) oy, OW""(R! n B). Clearly supp w, is bounded away from
0B, so we can extend w; to be amember of W™"(R") by letting it be zero in R -B. We
can further extend w; to all of R" by use of the extension operator E, of Lemma 10. Let
vT/J. = Eow. If p <1 ischosen so that suppb, quj'l O EP(O) , then we observe from the way
that E, was constructed that supp W, [ B, (0). Consequently, supp W,dp; Oy (B, (0)) is
bounded away from dQ; . Further, again by Theorem 7, this function is in W'“‘p(Qj ). We
extend it to be in W™"(R") by defining it to be zero outside Q. If we call the extended
function g;, it is clear from our construction that g, =19, on Qn Q; and that
lg, &, < CI f[2 ., where C is independent of f. Finally, we let g, denote the function
obtained by extending 6, to be zero outside Q and define Ef = ZJ.Nzo g

Remarks  Thetheorem can be improved in a number of ways:

() We can allow Q to be unbounded if dQ is bounded (e.g. Q isthe exterior of a
bounded domain).

(i)  Wecanalow Q to be of class C" " instead of C™ (i.e. the derivatives of order
m -1 of the functions Y, are Lipschitz continuous. The proof of this requires a
better version of Theorem 7 which we don't have time to prove here. Note that for
the case m = 1, the boundary could have corners.

(iii)  Caderon has proved an extension theorem for domains satisfying the cone property
(see the definition below) and a few other minor assumptions. The proof is much
too time-consuming for us and it relies on the Calderén-Zygmund inequality, which
also has avery lengthy proof. (See [Ad] for this).

Definition A domain Q is said to satisfy the cone property if there exist positive

constants o , h such that for each x JQ there exists a right spherical cone V, O Q with
height h and opening a .

12



3. Sobolev Inequalities and lmbedding Theorems

THEOREM 12 If Q O R" satisfies the cone condition (with height h and opening o ) and if
p>1, mp>n then W"?(Q) 0O C,(Q) and thereis a constant C depending on only a, h,
nand p such that for all u OW™®(Q), sup|u|< Clul, ,

Note: Q does not have to be bounded as Friedman suggestsin his Theorem 9.1!

PROOF Initially, supposethat uisin ém’p(Q). Let g JC”(R) be such that g(t) =1
ift<l/2andg(t)=0ift=>1.Let x(OQ and let (r, B) denote polar coordinates centered
at x. Here, 8 =(0,,0,,..,0,_,) denotes the angular coordinates and we can describe the
cone with vertex x in polar coordinatesas V, ={(r,0):0<r <h,8 OA}. Clearly, we have

u(x) = —Ihi{g(r /hu(r,8) dr

_ (=D

= e /e 0y o

after m-1 integrations by parts. Next, we integrate with respect to the angular measure dS,,
noting that the left-hand-side becomes a constant times u(x).

ux) =cf, J'ohr m‘la‘i—m{g(r / h)u(r,8)} drds,

=of, L“r"*”(%{g(r / hu(r,8) r™drds,
= cJ’V rm'”;—mm{g(r/ h)u(r,0)} dV .

Applying Holder'sinequality to this, we obtain

lu(x)|< const.lIr ™" ., IIZ={9(r / Mu(r, O}l

< const. ||rm'“||Lq(Vx) |ufy, , -

But r™" isin LY(V,) if n=1+(m-n)q>-1, which is the case because q=3% and
mp >n. Thus, we obtain sup|u|< Clul,, ,. To extend this result to arbitrary u OW™?(Q),
take a sequence {u,} of functions in ém'p(Q) converging to u in the | |an norm. Then
suply; —uJs Clu, —u showing that the sequence is a Cauchy sequence in C;(Q).

klm,p’

13



Thusuisin Cy(Q) and taking the limit of suplu;|< Clu;|, , showsthat u satisfies the same
inequality.

Problem 5. Maodify the proof to show that the theorem aso applies to the case p=1,
m=n.

Problem 6. Show that a similar theorem holds for W,""(Q) and the cone condition is
not required. Note that here we can even conclude that W™(Q) O{uOC,(Q):u=0 on

o0} .

COROLLARY 13 If Q0 R" satisfies the cone condition (with height h and opening
a)andif p>1, (m-Kk)p>n then W""(Q) O C'B‘(Q) and thereisa constant C depending
ononly a, h, n, kand p such that for all u OW™"(Q) ISl|J<p|3| D u<Clul, ,.

PrROOF Apply the previous theorem to the derivatives D°u for |a|< k.

Problem 7 What can you concludeif p=1 and m—-k =n? See Problem 5.
Problem 8 What isthe corresponding theorem for W,""(Q) ? See Problem 6.

THEOREM 14 If QO R" is any domain and p>n then W-°(Q) OC**(Q), where

n

a =1-5 and there exists a constant C depending on only p and n such that for all

uOW(Q)

UG —u)l _ ~
oo =C DUl -
lIx= ¥l Z R

PROOF Let uOG (Q). We might as well assume that u0C; (R'). Let
d=lx-yl, S, =B,(x), § =B,(y) ad S=S, n S,. Then

Ju(x) = u(y) vol (8) = [(Ju(x) - u(y)l dz
< [(uCq) — u(I+u(2) - u(y)l dz
< [ M09 ~u(2)| dz+ [ Ju(2) ~ u(y)l dz

But if (r,0) are the polar coordinates of z in a coordinate system centered at x, we get
lu(x) —u(2)I< [, 24| dp, which implies

ap

14



d r du n-1
I%|u(x)—u(z)|dzsIJ;IO|£|dpr drdS,
<[ J’Od J’Od '%' dp r"™drds,
:imﬂmpd%
=—Hp Ip” ‘dpd$y

- jsxpl‘”|—|dz

1-
"l

dn

where q = pi—l A simple calculation shows that

n
1-=—

M| aw . =const.d P

"p Lq(S5<)

and it is easy to see that
ou .

Also, vol(S) =const. d" and the integral over S, can be estimated in a similar fashion.
Putting this together yields

=8

Ju(x) —u(y)l=Cd pZIIDUIILp(Q)

which is precisely the inequality that we wanted. Further, we know from Theorem 12
applied to R" that supju|< Clul,,- Combining this with the previous inequality shows that
for udCG (Q) we have || u||cqa(§)s Clul,,- Thus, if we now let u OWP(Q) and take a
sequence {u,} of functionsin C;(Q) converging to uin | |, , norm, it follows that {u,}
converges in C%“(Q). Thus uC>*(Q), and taking limits shows that u satisfies the
inequality in the statement of the theorem.

15



THeOREM 15 If QOR" is any domain and p<n then W"(Q) 0L (Q), where

r :nnTpp and there exists a constant C depending on only p and n such that for all
uOW"(Q)
”u”Lf(Q) < CZ” Diu”LP(Q) .
1=1
Remark The proof relies on asimple generalization of Holder's inequality which can

be proved by induction by using Holder's inequality. The inequality states

Jo Tty - Ul A<l N1 - - Ul o )
1 1 1 1
where —+ —+—+.. . +—=1.
Pr P B Prn
Proor of Theorem 15. It suffices to prove the result for u DC&(R”). First we prove

the result for the case p = 1. For each i we have
X% 00
uCdl< [ 1Duldx < [ |Duld .

Multiplying these n inequalities together and taking the n —1 th root gives
noon g 2
luel <] ([_,IDuldx)™ )
1=1

Observe that J'_0;|Diu| dx does not depend on x , but it does depend on all n—1 of the

remaining variables. We integrate each side of (8) with respect to x, and use the
generalized Holder inequality with p, = m=n -1 to obtain

o _n o 1 . n - 1
[, O dx, < ([ 1Dl dx)™ [ D(I_JDiUl o ) dx,

[]¢. f.IDuld dx)

1 1
n-1 n-1

<([__IDul c)

16



The RHSis still aproduct of n—1 functionsof x,, so we integrate each side with respect
to x,, again applying (7) with p. = m=n—1. Continuing in this manner, we finally obtain

IRn Ju(x)["? dxs(ljlj’w |D.u] dx) ™

n 1

<( IR” |Duy| dx)" (geometric mean)

1=1

i.e. [lul

n
LT

<

3I|—\

I |D,ul dx (arithmetic mean)
iI=1

Here we have used the fact that an arithmetic mean is no less than a geometric mean of the

same numbers. This proves the result for the case p=1.

(n Dp_, . nP-D
-p n-p

For p>1, lety = . Since y >1 and uOG(R"), it follows

that |u OG,(R") . Clearly
n(p-1)
n- n-
o =02 B 2Dy,
We apply the p=1 caseto |u]’ and obtain

n(p-1)

([, 10 &0 <3l %’MT"M dx
_(n-1p peele B
< IO)zqn(|u| )™ ) * (Dl
_(n-Dp & = 5
= Ty ([ 1 0 7 IDull,

Hence

e

([, 107 &)™ <(” =25 1ol

which isthe desired result. As usual, to obtain the same result for a function u D\NOLP(Q),
we just take a sequence of functionsin Cé converging to u.

17



Remark According to the theorem, WS°(Q) O L' (Q), where r is given above. But
obviousy WP(Q) O L°(Q), so by the following interpolation lemma, W"(Q) O LY(Q)
for al q satisfying p<g<r. If Q isbounded then clearly this holds for al g satisfying
l<qg<sr.

LEMMA 16 If ssq<r andOL’(Q)n L(Q), then ¢ OL*(Q) and

A 1-A
ol <l @Il s 1ll ™

where A :M.
q(r —s)
PROOF Apply Holder's inequality to the integral of |@[*, using the facts that

|(P|(H)q OLEMe gnd |(P|M 0 LA_q_

Problem 9 Modify the proof of Theorem 15 to show that if p=n>1 then

2

W,P(Q) O L'(Q) for every r = p. Hint: First prove this for the case r > nn 1

Y= rnT_l and applying the p=1resultto [u] . The r _nll norm that shows up on the

by setting

RHS after applying Holder's inequality (aswe did in our proof above) can be estimated in
terms of the n = p norm and the r norm by use of Lemma 16. Finaly, obtain the result for
al r = p by applying Lemma 16 to the result that you have just proved.

COROLLARY 17 For every domain Q in R" there exists a constant C depending on

only n and p such that
np

a) if kp<n then WP(Q) O L"™*(Q) and for each u OW,"(Q)

Q
lul » =Clul,
L

b)  if kp>n then W*P(Q) 0 C™(Q), where mistheinteger satisfying
0< k—m—% <landa =k —m—%. Further, if u OW"(Q) then

Q
" u”cmﬂ s Clulk,p '
@

18



np

PROOF a) If |B|l< k-1 and u OW® then D°u OW.P, which is contained in L"P
k-1,
by Theorem 15. Thus WS° OW, "P. lterating this process once more, we find
k-2, —2
WP OW, "?P. Continuing the iterations culminates in the desired result.

np n

b) Since (k-m-1)p<n, case (a) implies that W™ P O L™ ™ = | “9  Thus if

m+]_,L
uOWS® and |Bls m+1, then D°u OW ™", Hence WP OW, “~. But this shows

11— _
that if uOW,® and |Bl<m then D°uOW, ™, which is contained in C°“(Q) by
Theorem 14. Thus WP(Q) O C™ (Q) .

Remarks A few "particular cases' have been left out because they require separate
proofs (see Problem 10 below). They are:

i) If ko =n and p>1then WP(Q) O LY(Q) for all q satisfying p< g <oo.
i) Ifkp=nand p=1(sotha k =n)then W (Q)OC,(Q).
k-2,
iii) If kp>n, p>1and % isan integer then WP(Q) O W, p0I(Q) for al g satisfying
pPsq<om.

iv) Ifkp>nandp=1(s0 % is obviously an integer) then WP (Q) O C5™"(Q).

All of the particular cases listed above have the appropriate norm inequalities associated
with them.

Problem 10 Use the results of Problems 5, 6, 7, 8 and 9 to prove the particular cases
listed above.

COROLLARY 18 If Q isabounded C' domainin R" (or any other domain such that
there exists a bounded extension operator E:W'?(Q) — W?(R")) then the statements
concerning the spaces V\{)k"’(Q) in Corollary 17 and in the remark following the corollary

also apply to the spaces W*P(Q). However, the constant C may also depend on Q.
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PROOF The cases for k =1 dealt with in Theorems 14 and 15 are easily seen to
have their counterparts here because of the extension operator. Inspection of the proof of
Corollary 17 shows how the results for k >1 may be derived from the results for k=1
without any additional assumptions on the domain.

Remark One can show that extension operators exist for Lipschitz domains and even
domains satisfying certain cone conditions (see the remarks following the proof of
Theorem 11). This Sobolev imbedding theorem is thus valid for such domains.

Definition Let A and B be Banach spaces. If ALl B, we say that A is continuously
imbedded in B (in symboals, this is written A\o(\s\do3( - ),LI)B)if there is a constant C
such that ||x||; < C|| x|, for al x JA.

The theorems in this section provide examples of imbeddings and are called
np

Sobolev Imbedding Theorems. e.g. W,"(Q) \o(\s\do3( - ), L) LnTp for p<n.
Itiseasy to see that A\o(\s\do3( - ),LI)B isequivalent to the identity mapping from
A into B being continuous (i.e. bounded).

4. Compactness Theorems

Definition  Suppose that A\o(\s\do3( - ),L1)B. We say that A is compactly imbedded
in B if every sequence bounded in A has a subsequence that convergesin B.

eg. If K is compact then any bounded sequence in C'(K) is a set of equicontinuous
functions so, by the Arzela-Ascoli Theorem, it has a subsequence that converges in C(K).
i.e. C'(K) iscompactly imbedded in C(K).

Recall that if A and B are Banach spaces and if M: A - B is a bounded linear
mapping then M is said to be compact if for every bounded sequence {x,} in A the
sequence { Mx_} has a subsequence that converges. Thus, saying that A is compactly
imbedded in B is equivalent to saying that the identity mapping from A into B is compact. It
iseasy toseethatif M: A - B and P: B - C are bounded linear mappingsand A, B and
C are Banach spaces then PM is compact if one of the mappings A or B is compact.
Consequently, we obtain the very useful result that if A\o(\s\do3( - ),L1)B and B\o(\s\do3(
- ),)C then the imbedding A\o(\s\do3( - ),LI)C is compact if one of the other two
imbeddings is compact.

20



LEMMA 19 Supposethat Q isa bounded domain. If
a) 0< A <1 then C™"(Q) is compactly imbedded in C™(Q).
b) 0<v <A <1 then C™"(Q) is compactly imbedded in C™"(Q).

PROOF It sufficesto prove the results for m = 0 because, oncethis is done, we can

apply this case to the derivatives of the functions and deduce the result for general m.. Let
{f} be a sequence in C"(Q) such that |f|l. <M. But this implies

|f;(¢) = f, (V)= M||x- y|", showing that the sequence is a bounded, equicontinuous set
of functions. By the Arzela-Ascoli Theorem, there exists a subsequence {f,} that
convergesin C(Q). Thus C° (Q) is compactly imbedded in C(Q).

We show below that the same subsequence aso converges in C*'(Q). Suppose
that Y OC**(Q). Then

I R T B (TR Te) N
Wy == 00 PO xmyp o PO RO)

<2 7 Wl (max [g]) *

We apply thisto f; - f,

ionotingthat [ f;, —f, ],, <[f; ]o, +[f; o, <2M, and obtain
v 1-Y
[f, —f Lo, <2M*(max|f, —f, [) *,

showing that the subsequence is a Cauchy sequence in C*'(Q) (becauseit converges in
C(Q)). Thus the subsequence convergesin C*'(Q).

COROLLARY 20 If Q is bounded, kp>n and 0< k—m—% <1 then WP(Q) is

compactly imbedded in C™* (Q) if B < k- m—%.

PROOF Let o =k—m—%. Then WEP(Q)\o(\s\do3( - ),L)C™ (Q)\o(\s\do3(

~),)C™(Q), and the second imbedding is compact.
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COROLLARY 21 If Q isabounded C' domain (or any other domain for which there
isa bounded extension operator E:W"?(Q) - W**(R")), kp>n and 0<k-m —% <1

then W*P(Q) is compactly imbedded in C™* (Q) if B <k - m—ﬂp.

PROOF Let @ OC; (R") be such that supp ¢ is contained in some ball B containing
Q and =1 on Q. Then we can define E:W*P(Q) - WAP(B) by E(f) = @E(f). By
Corollary 20, W,°(B) is compactly imbedded in C°F(B). Hence W"?(Q) is compactly
imbedded in C**(Q). The result for general k can be deduced from the k =1 case by
considering derivatives of the functions (as in the proof of Corollary 17 (b), deduce that if

M L Ty
u OWP(Q) and |B|< m then D’u OW (Q), whichiscontainedin C™" (Q)).

Remark The statements of Corollaries 20 and 21 continue to hold if we replace the

condition 0 < k_m_% <1 by the condition 0< k—m—% <1, i.e. we can include the

case of % being an integer. The proof of thisisleft to the next problem.

Problem 11 Show that if Q is bounded then the statements in the Remark above hold
for the spaces W?(Q). Hint: You need to use the particular cases (iii) and (iv) following

the proof of Corollary 17. For the case p=1, you need to use the fact that C™'(Q) is
compactly imbedded in C™" (Q), which follows easily from Lemma 19 and the fact that
C™" is continuously imbedded in C™(Q). Can you see how to modify your proof so that
it dealswith W*"(Q) if Q isabounded C' domain ?

Definition A subset E of ametric spaceissaid to be totally bounded if for each € >0,
E can be covered by finitely many balls of radius € .

The following theorem is a standard result that can be found in most books on topology
and inmany books on functional analysis (e.g. Rudin's "Functional Analysis’, Appendix
A4). We omit the proof.

THEOREM 22 Let E be a subset of a complete metric space X. Then the following

statements are equivalent.
(i) E iscompact.
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(i) Every sequence in E has a convergent subseguence.
(iii)  Eistotally bounded.

The Theorem gives us two other very useful characterizations of compact mappings and
imbeddings.

THEOREM 23 If Q isbounded and p < n, then W-P(Q) is compactly imbedded in

L%Q) for all q< n”_p .

PROOF Consider first the case g =1. Let A be a bounded set in W, (Q) . We may

consider the members of A as members of W-"(R") with supports contained in Q. Let
A, ={J,u:uJA. Note that we have

3Gl ™, PN dzs b (maxp)ul,

e X-z .
and |D Ju(x)lsh l.[QlD.p(T)llU(Z)l dz < h™""(max| Dp)[ull,: q,
Since Q is bounded, |l <const.||ul|,. The inequalities above show that A, is a
bounded equicontinuous set of functions in C(Q). By the Arzela-Ascoli Theorem, every

sequence in A, has a subsequence that convergesin C(Q). Obviously, such subsequences
also convergein L'(Q), sowe seethat A, istotaly bounded in L'(Q).

If uJA then

u(x) = Ju(x) = J' pP(2)(u(x) —u(x—-hz)) dz
|z|l<1
hizl

—J' ()J' ——u( —r—)drdz

|z|l<1 " "

hliz] &
Th -J < D -r—)|dr dz.
us lu(x) hU(><)I<|Z_'[l p(Z)‘[O le (X r” ||)I r dz

Integrating this with respect to x, we find
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[, W)= Jul ks [ p(Af, . "iJ’ |Du(x—r—)| dx dr dz

k1

N,

o] )I ! "i‘[ |Du(x)| dx dr dz

1

1
Ny
n

p(z)hllzllz [, 1Du() o dz

|71

<h IQ |D, u(x)] dx

=1

< hB, (9)

where B is a constant depending on our bound of members of A in W-P(Q) (again we use

the fact that the " norm is weaker than the L” norm on a bounded domain).
Let € >0. Since A, is totally bounded in L'(Q), we can cover A by a finite

number of balls B of radius e / 2. Let h:%. By (9), if J.uIB, then u is contained in

aball of radius € centered at the center of B. Thus, A is covered by a finite number of
balls of radiuse . i.e. A istotally bounded in L'(Q). Thus V\/Olp(Q) Is compactly imbedded
in L'(Q).

e

Suppose @ OW;P(Q). Then @ OL" " by Theorem 15 and we get from Lemma 16

(withs=1and r = ——) that
n-p

loll. <lloll el = < Clioll. (I > Dl )
L""P 1=1

Now let{u.} bea bounded sequence in Wy"(Q) and assume |u, |, ,< M. Since W,"(Q)
is compactly imbedded in L'(Q), we can extract a subsequence {u,} that converges in
L(Q). Applying the inequality above to U, —U, , noting that |u, —u, | <2M, we

obtain

Ity = U Il,o < cONSEY Uy, = U [

showing that the subsequence is a Cauchy sequence in LY(Q). Hence the subsequence
convergesin L(Q) and W,°(Q) is compactly imbedded in LY(Q).
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COROLLARY 24 If kp<n and Q is bounded then W?(Q) is compactly imbedded

in L%(Q) for all < —2—.

n—kp

np

1,
PROOF WP(Q) is continuously imbedded in W, " “"??(Q), which is compactly

imbedded in L(Q) if q < —>
n—kp

, by Theorem 23.

COROLLARY 25 The same compactness results hold for W*P(Q) if Q is a bounded,

C' domain (or any other type of bounded domain for which there is an extension operator

E:W-"(Q) - W-"(R").
PROOF See the proof of Corollary 21.

Remark The case kp =n is missing from the previous results. But since W*? is
continuously imbedded in W*" for all r < p (provided that the domain is bounded), it
follows from Corollary 25 that W*P is compactly imbedded in L%(Q) for al q< . The
same appliesto WP (Q).

5. Interpolation Results

The following results are very useful in PDE theory. We make use of Theorem 26
in our proof of Garding's Inequality in our study of elliptic problems.

THEOREM 26 Let u OW,°(Q). Thenfor any £ > 0 and any 0 <|B|< k

Bl
k_
ID"ull,» < elul , +Ce"'|jul,,

where C is a constant depending only on k.

PrROOF We provetheresult for |B|=1, k=2. The general result is easily obtained
from this case by induction. In fact, we show that for each i

129 <o &Yy + 2
ox T oY g

[ull » (10)
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First suppose that u OC?(R) and consider an interval (a,b) of lengthb-a=¢. If
yO(@a+e/3) and zO(b-¢€/3,b), then by the Mean Vaue Theorem there is a
p O(a,b) such that

(Pl “W<(Mammm>

Consequently, for every x [1(a,b), we obtain
X 3 b
U ()1=|u'(p) + [ u (1) dt< 2 (U@)Fu)]) v @l de.

Integrating with respect to y and z over the intervals (a,a+e/3) and (b—¢/3,b)
respectively, we obtain

WIS [l @l +=3 flul t,

so by Holder'sinequality and the inequality (A + B)? < 2° (AP +BP),

(18)

Iu'(X)I"S2“’_1({‘[:Iu”(t)lOlt}p {jlu(t)l dt}*)

sf%ﬂwﬁwmmgm“1“&{jumwmymwl

Integrating this with respect to x over theinterval (a,b) gives

(18)

’[:|u'(><)|p dx =27 (e J':|u”(t)|p e+ . uOP dt).

We now subdivide R into intervals of length € and obtain by adding all of these
inequalities that

(18) i

I_°;|u'(x)|p dx < 2P (g® fm|u" )] dit + 2 f @) dt) (12)
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Suppose now that u JG; (R') . Then we can apply (11) to u regarded as a function of x
and integrate with respect to the remaining variables to obtain

ou - 0°u 18)°
flo 55 T 00 276" 122 x5 IuF )

Taking the pth root of this and using (A® + B?)"? < A+ B, we obtain (10). (Actually, we
don't quite obtain (10). We actually obtain the inequality (10) for 2¢ instead of €. But

since € isan arbitrary positive constant, (10) holds). Finaly, (as usual) to obtain the result
for u OW,'(Q), we take a sequence of functionsin C; converging to u.

COROLLARY 27 The interpolation inequality stated in Theorem 26 also applies to
members of W*?(Q), provided that Q isa bounded C* domain (or any other domain for
which there is a bounded extension operator E : W°(Q) — W??(R"). Here theconstant C

may also depend onp and Q.

PROOF Because of the extension operator, an inequality of the form (10) holds for
functionsin W*?(Q). Thefull result follows by induction from this case.

6. The Spaces H"(Q) and H,(Q).

Definitions Hy(Q) =W2(Q) and H(Q) =W**(Q). These spaces are Hilbert spaces

with inner product

V), = DPu(x) DP7(x) dx..
(u,v) l%{[ u(x) D"V (x) dx

If Q=R', we get avery useful representation of such functions in terms of the
Fourier-Plancherel Transform. Recall that for functions f OL?(R") , we define the Fourier-

Plancherel transform of f as

f (&) = lim (2m)™"? J’e‘ixf f(x) dx.
Roe IR
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The limit exists in the topology of L*(R"), | fll. :||f||L2, and f can be recovered by using

the inversion formula

f()=lim (2m) ™2 Ie‘“f (5)dE .
o IET<R

Again, the limit here exists in the topology of L*(R"). The reason for the limits in these
formulas is that the integrands are not necessarily in L'(R"). Clearly, the Fourier-
Plancherel transform is an isometric (i.e. norms are equal) isomorphism (i.e. bounded
linear mapping with a bounded inverse) from L*(R") onto L*(R").

Integration by parts showsthat for f JC; (R"), the transform of ng IS i&; f(E).

j

From this, we see by induction that the transform of D°f is (i) f(£). If now we let
f OH*(R") and take a sequence of C,’ functions converging to f, we find that (i8)P £(§)
isin L*(R") for all |B|< k and the transform of D*f is (i ) f(E). Thus, we see that if
f OH*(R") then f OH“(R"), where

HYR") ={g OL(R"): @HIEI)“ (&) DL (R}

It is easy to seethat C; isdensein H* and if gisin C; then g is the transform of an

infinitely differentiable, rapidly decaying function f (a function in the Schwarz class, to be
precise). Taking limits, we see that if g isin H* then g is the transform of a function f
belonging to H. Further, if we define an inner product on H* as

UV)g = 3 [EPU(E)W(E) dE ,

Bl<

we find that ||f||k:||f||Hk. Thus, the Fourier-Plancherel transform is an isometric

isomorphism from H* onto H*. Questions about functions in H* are thus transformed
into equivalent (and often simpler) questions about functionsin H*.

Problem 12 Consider theinitial value problem for the wave equation

d2U K du k-1
—=Au, u(0)=fOH", —(0)=gOH"".
e (0) (=0
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(Wethink of u as being afunction of t taking values in H*). Construct a candidate u for a
solution using Fourier transforms.

a) Show that u is a continuous H*-valued function of t.

b) Show that u is a continuously differentiable H**-valued function of t.

C) Show that z—l: is a continuously differentiable H*-valued function of t and that

@ =Au in H?,

dt

d) How large doesk haveto bein order for uto beaclassical (i.e. C*) solution.
Hints: Clearly it sufficesto answer the equivalent questions about U. Use the Dominated
Convergence Theorem to help you answer a), b), ¢). For d), use the Sobolev Imbedding

Theorem.
7. Trace Theorems.

In PDE Theory, one often needs to know how functions behave on boundaries of
domains. If f is a function defined on a domain Q, we call the restriction of f to dQ the
trace of f. If al we know about f is that it isin some L” space, then the trace of f is not
well-defined because 0Q has measure zero. However, if kp>n and Q is a bounded C*
domainin R", then we know by Corollary 18 that functionsin W*"(Q) are continuous on
Q and thus they have well-defined traces that are bounded functions. In this section, we
concern ourselves with the important case kp < n.

In the following results, a vector x in R" is denoted by x =(x',%,), where X’

belongsto R"™.

Lemma 27 If uOWY(R), then for every ¢ OR, the function v(x') =u(x',Z) isin
L(R"™), and
"V”|_1( R™) S||u"|_1(}:q") +|| DnullLl(R”) '

Remark. One needs to be careful when talking about traces of equivalence classes of
functions. The trace certainly exists for u OG; (R') . For u OW-(R'), we know that we

can find a sequence of functions in C; (R") that converges to u. The norm inequality

asserted in the lemma shows that the sequence of traces of these functions converges in
L'(R™™). Itisin this sense that the trace of u existsin L'(R™™).
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PROOF It suffices to prove the result for the case =0 and uOG; (R'). By the
Mean Vaue Theorem for integrals

1

J’ ‘!’|u(x',xn)| dx'dx, = J’|u(x’,0)|dx’
0 R R
for some o [[0,]]. But

|u(x',0)|:|u(x’,0)—} D, u(x',t) dt|

1

<Ju(x,0)}+ [ 1DU(X D)t
0

Integrating this over R"™ gives

1

||v||L1(RM)sJ|u(x’,0)|dx’+ J’ J'|Dnu(x',t)| dtdx’
o ”

19

1 1
= " ox'dt + Dn "t dtdx’ .
J;R‘[!u(x o)| dx RLJ;| u(x’,t)| dtdx

This completes the proof of the lemma.

Lemma 28 If uOW'P(R") where p<n, then for every C OR, the function
v(x') =u(x',2) isin L'(R'™), where

=(n=Yp_, nlp-1)

n-p n-p

and there is a constant C depending on only n and p such that
R
"V”|_r (R < C |u|Lp'

PrROOF We can assume that p>1 because the p=1 case is dealt with in the
previous lemma. We first show that if u OW"°(R") then w =|u] OW"(R") and

lIwll,. < const. || Dull;"[[ull,» , 1D, < const. || Dull,, . (12)

Lpl
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It suffices to prove this result for the case uOG (R'). Let q=p/(p-1. Then
(r=)g=np/(n-p), so by the Sobolev Imbedding Theorem (Th. 15),

IHul ™ II% < const.||Dul %™

and combining this with Holder's Inequality, we get the first of (12):
Il = fluf dx :J’IuIHIUI dx <[|ull,, Il1uf ™1l , < const.||Dulf;" [l -
Since Dw = zr|u|"™" D,u, we obtain the second of (12):

—_ -1
IDwil, = rllul ™ [l IDull,» < const. | Dulf, -

We now apply Lemma 27 to w and immediately obtain the inequality

-1 1/
Il gy < cOnst. (| Dull,” [lull,» HIDull )™

1-1/ 1/
< const. (| Dulf " lull. +IIDull. )

< const. ([|ull » +[Dul| , ).

LeEmma 29 If uOWP(R') where kp<n, then for every { OR, the function
v(x') =u(x,2) isin L'(R"™), where

n-kp

and there is a constant C depending on only n, k and p such that

R
"V”|_r (R < C |u|k,p y

PROOF By Sobolev's Imbedding Theorem (Th. 15) applied to the first order
derivatives of u, we have u OW-™ " P (R"  Now apply Lemma 28.
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Reminder: Parametrized Surface Integrals.

If X(u) = (x,(u,u,), % (u,u,), X (u,u,)) is a parametrization for a smooth surface

Sin R, it iswell-known from elementary calculus that one may integrate functions defined
on S using the formula

J' f(x) dS:J’I f oX(u) K(u) du,du, ,

where = isthe domain of X and

L OX X (%) 0% Xe)s . D0 %). oo
KO =53 F Gy * Gy ey

Differential Geometry yields a generalization of this formula. Suppose now that =
isadomainin R and that X:= — R’ is a parametrization for a smooth hypersurface S.

Then surface integrals over S may be calculated using

J’ f(X) dS:J’ f oX(u) K(u) du,

S

where

e 00X %0, K X K X0) 22
Ok )

Here the X, notation means that the x_ term does not appear.

THEOREM 30 Suppose that Q is bounded and is of class C*. If uOW“"(Q) where
kp < n, thentherestriction v of uto dQ isin L' (0Q), where

n-kp

and thereis a constant C depending on only n, k and p and Q such that

Q
"V”|_r (0Q) < C |u|k,p'
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Remark. See the remark following the statement of Lemma 27 for clarification of the
phrase "restriction v of u to dQ". The same remark applies because we know that an
extension operator E:W“P(Q) — W'P(R") exists, and thus the restriction to Q of
functionsin C;'(R") isdensein W*P(Q).

PROOF Let E:W“P(Q) - WP(R') be the extension operator of Theorem 11.
Since any u OW*?(Q) isassociated with an element Eu OW*"(R"), we might aswell just
study the properties of the trace on 0Q of C; (R") functions.

Let Q; and g, be as in the definition of C“ domains. Since dQ is compact, we
might as well assume that there is afinite number of the Q;, 1< j <N, covering 0Q. Let
0, 1< ] <N, beapartition of unity for 0Q subordinate to this cover. If u 0CG (R'), then
(6,u)oy;" OC4(B) and we can extend (8,u)oy;" to be in C;(R') by defining the
function to be zero outside B. By Lemma 29, the trace w; of (6,u)o qu'l on the hyperplane
P:y, =0 satisfies

-1,B R"
"Wj IlLf(p) < Cl(er)OLIJj |k,pS Cj |u|k,p’

where C depends on only n, p, and k and C; is independent of u..
X (¥) = W, (¥.,K.,Y,..,0) is a parametrization for the hypersurface S = (9Q) n Q; and
we may estimate the trace v, =w, oy, of 6,u on this hypersurface using this

parametrization (see the "reminder" preceding the statement of the theorem).

[Vl ds= [ w,()F KD ay<R [ Iw[ dy,

PnB PnB

where R =max(K;). Comparing this to the preceding inequality, we see that there is a
constant M, independent of u such that

Vil s )< M, Jul, -
The function v satisfies a similar inequality because v = Z v, . Finaly, it is clear that the

result holds for arbitrary u OW*"(Q) (see the remark following the statement of the
theorem).
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Problem 13 Modify the proof of Lemma 27 to show that if u OW"P(R"), then for every
{ OR, the function v(x')=u(x',2) is in L°(R™™), and there exists a constant K
depending only on n and p such that]|vi| , -, < KUl

Problem 14 Deduce from the previous problem and Lemma 28 that the function v of
Lemma 28 belongsto LY(R™™) for al q satisfying p< q<r.

Appendix: Some Spaces of Continuous Functions.

Here, we define the spaces of continuous functions that appear in these notes. Caution:
Notation and definitions of such function spaces vary from text to text. Recall that we
statedthat Q is a domain in R". The connectedness of Q is not needed in the following
definitions, so we need only assumethat Q isan open subset of R".

1 C(Q) isthe set of functions continuousin Q.

2. C(Q) isthe set of functions continuousin Q .

3. C*(Q) is the set of functions which have derivatives of order < k that are
continuousin Q.

4. C*(Q) isthe setof functions in C(Q) which have derivatives in Q of order < k
that can be extended to be members of C(Q).

5. C”(Q) isthe set of functionsin C*(Q) for all k.

6. C”(Q) isthe set of functionsin C*(Q) for all k.

7. C,(Q) isthesetof functions in C(Q) that have supports that are compact subsets
of Q (recall that the support of a function is the closure of the set on which the
function fails to vanish). Since Q is open, such functions necessarily vanish in a
neighborhood of the boundary of Q.

8. C¥(Q) isthe set of functionsin C*(Q) that have supports that are compact subsets
of Q.

0. C; (Q) isthe set of functionsin Cg(Q) for al k.

10. Cs(Q) is the set of bounded functions in C(Q). This is a Banach space when
equipped with the "sup norm".

11.  C4(Q) is the set of bounded functions in C(Q). This is a Banach space when
equipped with the "sup norm". If Q is bounded, this space coincides with C(Q).
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12. Ci(Q) isthe set of functions in C,(Q) with derivatives of order < k belonging to
Cs(Q). ThisisaBanach space if we define the norm of amember f of this space as
sup |DP f(x)|.

IBl<k X(Q

13.  C5(Q) isthe set of functions in both C£(Q) and C*(Q). This is a Banach space,
equipped with the same norm asin (12). If Q isbounded, this space coincides with
c"@Q).

14.  C**(Q),where 0<a <1, isthe set of functionsin C5(Q) that have derivatives of
order < k that are uniformly Hélder continuous with exponent a. C*“(Q) is a
Banach space with norm

I fllewe = lmgkaemlDB FOH Flq s

|DPf(x) —DPf(y)]
oy Ik Ix- I .

where [flia =
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