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Abstract

We consider a two-dimensional noninvertible map that was introduced by Bamón,
Kiwi and Rivera as a model of a wild Lorenz-like attractor in a vector field of dimension
at least five; such an attractor contains an expanding equilibrium and a hyperbolic set
with robust homoclinic tangencies. Advanced numerical techniques enable us to study
how the stable, unstable and critical sets of the map change within the conjectured
region of wild chaos in the transition from Lorenz-like to Rovella-like dynamics, that
is, when the equilibrium becomes contracting. We find numerical evidence for the
existence of wild Rovella-like attractors, wild Rovella-like saddles and regions of mul-
tistability, where a Rovella-like attractor coexists with two fixed-point attractors. We
identify bifurcations generating these different types of dynamics and compute them
in two-parameter bifurcation diagrams.

1 Introduction

In 2006, Bamón, Kiwi and Rivera-Letelier [1] constructed an explicit two-dimensional non-
invertible map as the reduction of a wild Lorenz-like attractor in a vector field of dimension
n ≥ 5. The term wild refers to the existence of a hyperbolic set that has robust homoclinic
tangencies, that is, there are C1-open sets of parameter values such that the correspond-
ing hyperbolic set has a tangency between its stable and unstable manifolds. We refer to
the existence of a wild hyperbolic set as wild chaos. This type of chaos can only exist
in higher-dimensional systems, such as vector fields of dimension at least four, diffeomor-
phisms of dimension at least three or noninvertible maps of dimension at least two. The
attractor is called Lorenz-like, because it is a higher-dimensional analogue of the geometric
Lorenz attractor [2, 3, 4, 5], which is a geometric model of the attractor in the famous
three-dimensional Lorenz system [6]. The dynamics on the Lorenz-like attractor in [1] can
be reduced to the dynamics of the two-dimensional noninvertible map in a similar way as
the dynamics on the geometric Lorenz attractor can be reduced to the one-dimensional
noninvertible Lorenz map; see Section 2.1 for details. The two-dimensional noninvertible
map constructed in [1] (for the special case c = 1) is given by

f : C\{0} → C,

z 7→ (1− λ+ λ|z|a)
(
z

|z|

)2

+ c,
(1)

with c ∈ C, a ∈ R+ and λ ∈ [0, 1]. For a < 1 in (1), the attractor of the associated vector
field is expanding, that is, it contains an equilibrium with one unstable eigenvalue λu > 0,
and two stable eigenvalues λss < λws < 0 such that −λws < λu, which is also true for the
geometric Lorenz attractor.
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One of the challenges in the study of wild chaos is that there are only very few concrete
examples; see [7, 8] for an example of a three-dimensional diffeomorphism with wild chaos.
More specifically, the map constructed in [1] is one of the few examples of a system with
a wild Lorenz-like attractor that is given by an explicit formula; see [9, 10, 11] for other
examples. The region of existence of the wild Lorenz-like attractor constructed in [1] is a
very small region near the point (a, λ) = (1, 1) for fixed c = 1. Our numerical investigations
in [12] suggest that the region of existence of this attractor extends to a much larger set
of parameter values a, λ ∈ (0, 1) and for c ∈ C. Furthermore, we found that the transition
to wild chaos in this map is organised by a specific bifurcation structure consisting of
infinite sequences of four types of tangency bifurcations; see Section 2.3. These bifurcations
are interactions of different invariant sets that organise the dynamics of the map on the
plane. These sets include the stable and unstable sets of a saddle fixed point, which
are generalisations of stable and unstable manifolds in the setting of noninvertible maps,
and the critical set, which arises due to the noninvertibility of the map; see Section 2.2.
Continuation of these bifurcations shows that the mentioned bifurcation structure can be
found along different routes into the region of existence of the wild Lorenz-like attractor;
this is why we see it as the geometric mechanism for generating wild chaos in this map;
see also [13].

In [14] Rovella studies a family of geometric Lorenz attractors that are contracting
instead of expanding, that is, the eigenvalues of the equilibrium satisfy −λws > λu; see
also [15]. In [16] Araújo et al. study a higher-dimensional analogue, which can be reduced
to a two-dimensional noninvertible map in a similar way as the vector field considered in [1].
The attractors constructed in [14, 15, 16] are referred to as contracting Lorenz attractors
or Rovella-like attractors. The geometric Lorenz attractor and the higher-dimensional
Lorenz-like attractor constructed in [1] are robust, that is, every sufficiently close vector
field has a similar attractor nearby. In particular, these attractors are robustly transitive,
which means that the attractor itself and all attractors of nearby vector fields contain a
dense orbit. On the other hand, the Rovella attractor in [14] and the higher-dimensional
Rovella-like attractor in [16] are non-robust in the sense that there are arbitrarily close
vector fields that do not exhibit such an attractor. Nevertheless, they are persistent in the
following way: each generic parametrised family of vector fields in certain sub-manifolds
of the space of vector fields admits a positive Lebesgue measure set of parameter values
that correspond to a vector field with a nearby transitive attractor. However, for a dense
subset of nearby vector fields the attractor breaks down into one or two attracting periodic
points and a hyperbolic set, with wandering orbits linking them [14].

In [1, 12, 13], the map is considered for the parameter a := −λws/λu < 1, where the
underlying attractor is Lorenz-like. In this paper, we study the map (1) in the transition
from a wild Lorenz-like attractor for a < 1 to a wild Rovella-like attractor for a > 1. In
particular, we want to find out whether, or in which form, the geometric ingredients for
wild chaos persist and what new dynamical features appear during this transition. To
address these questions, we study the changes of the stable, unstable and critical sets when
the parameters are varied along a specific path in parameter space; importantly, this path
stays within the region where we believe wild chaos exists. More specifically, we restrict to
c ∈ R+ and represent the three-dimensional parameter space of (c, a, λ) ∈ R+×R+× [0, 1]
by four two-parameter bifurcation diagrams: those in the (a, λ)-plane for fixed c = 0.1
and fixed c = 1, and those in the (c, λ)-plane for fixed a = 0.8 and a = 2. We find
that the bifurcation curves that bound the region of existence of wild chaos for a < 1,
as conjectured in [12], extend to the region of a > 1. This suggests that wild chaos
continues to exist even though the equilibrium in the underlying vector field changes from
expanding to contracting, meaning that the associated attractor changes correspondingly
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from a Lorenz-like to a Rovella-like attractor.
In order to understand what this means for the dynamics of the map (1), we choose

a specific path of parameter values (a, λ) ∈ (0, 2] × [0, 1] for c = 1 that lies between the
bifurcation curves that form the boundary of wild chaos for a < 1; along this path, a is
monotonically increasing. We then study the changes in the invariant sets of (1) in the
phase space when (a, λ) moves along this parameter path. We start in the corresponding
parameter region for a < 1, in which the map (1) admits a wild Lorenz-like attractor. Here
the stable, unstable and critical sets are entangled in a complicated way due to the tangency
bifurcations generating wild chaos in the map (1) for a < 1. As a increases to a > 1, infinity
becomes attracting in the map (1) and the Julia set, defined as the boundary of the basin
of infinity, forms an additional invariant set of (1). In [17] we studied the map (1) for
fixed a = 2, where it acts as a nonanalytic perturbation of the complex quadratic family
z 7→ z2+c. We found that the four tangency bifurcations between the (un)stable and critical
sets interact with the Julia set in novel ways that lead to drastic changes in the topology
of the Julia set. For a > 1 on the chosen parameter path within the wild chaotic region,
the Julia set coexists with the other invariant sets and the stable, unstable and critical sets
maintain their geometric properties. However, now the dynamics is Rovella-like, and so
we conjecture the existence of a wild Rovella-like attractor. As a increases further along
the path, the invariant sets still have the same geometric properties, but two symmetric
repelling fixed points turn into attractors in a Neimarck–Sacker bifurcation. These seem
to be the only attractors and we find numerical evidence for the existence of a chaotic
saddle, which we refer to as a wild Rovella-like saddle. We find that the disappearance
of the wild Rovella-like attractor and the appearance of the wild Rovella-like saddle is
caused by a boundary crisis of the Rovella-like attractor with a repelling invariant circle,
which appears at the Neimarck–Sacker bifurcation. The parameter region between these
bifurcations is a region of multistability, where the Rovella-like attractor coexists with the
fixed-point attractors.

This paper is organised as follows. In Section 2, we discuss the basic properties and
the Lorenz-like construction of the map (1). We then introduce the invariant sets that
organise its dynamics in Section 2.2 and review the four types of tangency bifurcations
and their meaning in the underlying vector field in the formation of wild chaos for a < 1
in Section 2.3. In Section 3, we investigate the transition from the wild Lorenz-like to
Rovella-like dynamics by studying the corresponding regions in the bifurcation diagrams
in parameter space, and then investigate in Section 3.2 the transitions in the phase portraits
along the chosen parameter path. We end with a discussion in Section 4.

2 Background and notation

The map (1) acts on the plane by opening up the origin to a circle of radius 1−λ, wrapping
the plane twice around it and translating by c. Hence, it maps the punctured complex plane
C\{0} outside the disk D1−λ(c) in a 2-to-1 fashion. We call the origin J0 := {0} the critical
point and the circle J1 := ∂D1−λ(c) the critical circle of (1).

The map (1) is symmetric under rotation by 2π, that is, f(z) = f(−z) for all z in
C\{0}; for c ∈ R it is also symmetric under complex conjugation, that is, f(z) = f(z) for
all z in C\{0}. The points in the disk bounded by J1 have no preimage, and the points
outside this disk have two symmetric preimages given by

f−10,1 (z) := ±
(
|z − c| − 1 + λ

λ

)1/a√ z − c
|z − c|

.
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The k-th preimage f−k(z) of z consists of up to 2k points, each of which is given as a
sequence of preimages f−1sk ◦ · · · ◦ f

−1
s1 (z) for (sl)1≤l≤k ∈ {0, 1}k.

2.1 The Lorenz-like construction of the map

We now discuss the Lorenz-like nature of the map (1) as constructed in [1]. Let us first
recall the construction of the geometric Lorenz attractor as an abstract geometric model of
the Lorenz attractor in three-dimensional vector fields; see [2, 3, 4, 5, 18, 19]. An attractor
of a three-dimensional vector field is a geometric Lorenz attractor if it has the following
properties:

1. The attractor contains an equilibrium x that has eigenvalues λss < λws < 0 < λu
such that −λws < λu.

2. The vector field admits a two-dimensional Poincaré section Σ, such that the Poincaré
return map f̂ defined on Σ\Ĵ0 is a local diffeomorphism. The curve Ĵ0 consists of
the points that go to x and do not return to Σ under the flow, that is, Ĵ0 is the last
intersection of the stable manifold of x with Σ.

3. There is a one-dimensional stable invariant foliation on Σ that is uniformly contracted
by f̂ . The intersection curves of the stable manifold of x lie dense in the leaves of
this foliation and the quotient of Σ by this foliation is a compact interval I.

4. The quotient map of f̂ acting on I is a one-dimensional noninvertible map f , which
is discontinuous, has unbounded derivative at the critical point J0 := Ĵ0 ∩ I, and is
smooth and uniformly expanding on I\{J0}. This one-dimensional map f is called
the Lorenz map.

Tucker [20] proved that the attractor in the Lorenz system [6] (for the classical parameter
values) has these properties and, therefore, that it is indeed a geometric Lorenz attractor.

Bamón, Kiwi and Rivera-Letelier [1] construct an analogue of the geometric Lorenz
attractor in an n-dimensional vector field for n ≥ 5. In order for this attractor to allow
for richer dynamics than the geometric Lorenz attractor, the equilibrium has to have an
unstable dimension of at least two. More precisely, they require the equilibrium to have
eigenvalues λss < λws < 0 < λu, as in the geometric Lorenz attractor, but here, the
multiplicity of λu is two and the multiplicity of λss is n − 3. Furthermore, in addition
to the expanding condition −λws < λu, they require λu < −λss. In their construction,
the Poincaré section Σ and the Poincaré return map f̂ are (n − 1)-dimensional, and the
uniformly contracting foliation is (n−3)-dimensional. Correspondingly, the quotient map f
of f̂ by this foliation is a two-dimensional noninvertible map acting on the two-dimensional
quotient space. This map is not defined at the critical point J0 and the expanding condition
means that it has unbounded derivative at J0.

The Lorenz-like attractor in [1] is, in fact, constructed by extending the two-dimensional
noninvertible map (1) for c = 1 and a = −λws/λu to an (n−1)-dimensional diffeomorphism
f̂ that is contracting on the other n− 3 variables. This diffeomorphism is then suspended
to yield an n-dimensional vector field in an abstract way; that is, in contrast to the Lorenz
system, there is no formula for the vector field. In fact, for n > 5, the n-dimensional
vector field is an embedding of the five-dimensional version into a transversally contracting
five-dimensional submanifold of the n-dimensional space. Therefore, we will only consider
the case n = 5 from now on.
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2.2 Invariant sets

The dynamics of the map (1) on the plane is organised by several invariant sets. First of
all there are the preimages of the critical point, which form the backward critical set

J − :=
⋃
k≥0

f−k(J0),

and the images of the critical circle, which form the forward critical set

J + :=
⋃
k≥0

fk(J1);

together, they form the critical set J := J − ∪ J +. If one thinks of the critical circle J1
as the multivalued image of the critical point J0, then the critical set J is invariant under
the map (1) and its inverse.

The critical point J0 corresponds to the last intersection of the stable manifold of
the equilibrium x with the Poincaré section Σ. Therefore, the backward critical set J −
corresponds to all intersections of this manifold with Σ, and correspondingly to the entire
stable manifold of x for the underlying five-dimensional vector field. Similarly, the critical
circle J1 corresponds to the last intersection of the unstable manifold of the equilibrium x
with the Poincaré section Σ in the Poincaré map, and the forward critical set corresponds
to all intersections of this manifold with Σ and, thus, to the entire unstable manifold of x
for the vector field.

Other important invariant sets are the stable and unstable sets of saddle fixed points
and saddle periodic points; these are the generalisations of stable and unstable manifolds
of saddle periodic orbits to the setting of noninvertible maps. For most of the parameter
regions considered in this paper the map (1) admits a saddle fixed point p on the positive
real axis, which corresponds to a saddle periodic orbit Γ of the underlying five-dimensional
vector field; see [12] for details. Accordingly, the stable and unstable sets of p correspond
to stable and unstable manifolds of Γ; by construction, these manifolds have dimensions
four and two, respectively.

For a small enough neighbourhood V of p, we define the local stable manifold W s
loc(p)

as
W s

loc(p) := {z ∈ C : fk(z) ∈ V for all k ≥ 0},
which is tangent to the stable eigenspace of p [21]. The stable set W s(p) is given by all
preimages of W s

loc(p), that is,

W s(p) :=
⋃
k≥0

f−k(W s
loc(p)).

Since the map (1) has two branches of preimages, W s(p) consists of infinitely many dis-
connected branches and, in particular, it is not an immersed manifold [22]. We call the
branch containing p the primary branch W s

0 (p) ⊇ W s
loc(p). For c ∈ R+, as considered in

this paper, W s
0 (p) is contained in the positive real axis, and for c ∈ R+ and a < 1 they

coincide. In particular, W s
0 (p) intersects the critical circle J1 in the points c± (1−λ) and,

therefore, the points in J − lie in the closure of W s(p). More specifically, they form the
branch points of the set W s(p) in the sense that at least four branches of W s(p) connect
at each point in J −; see already Section 3.2.

For a neighbourhood V of p, the local unstable manifold W u
loc(p) is defined as the

local stable manifold with respect to the local inverse f−1loc of the map (1) that satisfies
f−1loc (p) = p, that is,

W u
loc(p) := {z ∈ C : (f−1loc )k(z) ∈ V for all k ≥ 0},
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which is tangent to the unstable eigenspace at p. The unstable set W u(p) is given by all
images of the local unstable manifold W u

loc(p), that is,

W u(p) :=
⋃
k≥0

fk(W u
loc(p)).

For a diffeomorphism, the set W u(p) is an immersed manifold, but for the noninvertible
map (1) it is a single continuous curve that may have self-intersections at points z ∈W u(p)
for which both preimages f−10 (z) and f−11 (z) lie in W u(p).

For a < 1, infinity can be viewed as a repelling fixed point of (1), while for a > 1 it is
an attractor. Therefore, for a > 1, there is an additional invariant set, namely the Julia
set Y, which we define as the boundary of the basin of attraction of infinity, that is,

Y := ∂B(∞).

The set Y is a chaotic repellor and repelling (pre-)periodic points appear to be dense in it;
see [17] for details. In the underlying five-dimensional vector field, the suspension of Julia
set Y is a chaotic saddle, but its exact role in this setting is still unknown. In particular,
it remains an interesting question for future research when and in which way its stable
manifold bounds the basin of the Rovella-like attractor in the vector field.

In order to study the changes in the dynamics of the map (1), we consider the changes
in the geometry of the fixed points and the invariant sets W s(p), W u(p), J and Y, which
organise the dynamics on the plane. For each (c, a, λ), we refer to the representation of these
sets as the phase portrait of the map (1). In order to be able to study the phase portraits
globally on the entire plane, we project it onto the Poincaré disk via the stereographic
transformation

T : C ∪ {∞} → D1(0)

z 7→ z

1 + |z|
.

(2)

This transformation maps the origin to itself and infinity onto the unit circle.

2.3 Tangency bifurcations

The following four types of tangency bifurcations between the stable and unstable sets
W s(p) and W u(p) and the forward and backward critical sets J + and J − play a crucial
role in the transition to wild chaos in the map (1). These are quadratic tangencies of
respective objects and, hence, they are of codimension one; see [12, 13] for more details
and illustrations.

• Homoclinic tangencies: the stable and unstable sets W s(p) and W u(p) are tangent.
There is a first homoclinic tangency, which entails an infinite sequence of homoclinic
tangencies accumulating on each other. After the first homoclinic tangency, the sets
W s(p) and W u(p) form a homoclinic tangle and W u(p) accumulates on itself. A
homoclinic tangency in the map (1) corresponds to a homoclinic bifurcation of the
equilibrium x in the underlying vector field.

• Forward critical tangencies: the stable set W s(p) and the forward critical set J + are
tangent and, as a result, branches of W s(p) connect up at the points in the backward
critical set J −. There is no first forward critical tangency, but an infinite sequence
of forward critical tangencies accumulating on each homoclinic tangency. Therefore,
immediately after the first homoclinic tangency, W s(p) has reconnected at the points
in J − in such a way, that it accumulates on itself. A forward critical tangency in (1)
corresponds to a heteroclinic bifurcation that connects x to the periodic orbit Γ in
the vector field.
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• Backward critical tangencies: a sequence of points in the backward critical set J − lies
on the unstable set W u(p), and images of the corresponding curve segments in W u(p)
form cusps at the circles in the forward critical set J +. There is a first backward
critical tangency, which entails an infinite sequence of backward critical tangencies
accumulating on each other. After the first backward critical tangency, W u(p) forms
loops around all circles in J +. A backward critical tangency in (1) corresponds to a
heteroclinic bifurcation that connects Γ to x in the vector field.

• Forward-backward critical tangencies: a sequence of points in the backward critical
set J − lies in the forward critical set J +, and images of the corresponding curve
segments in J + form cusps at the circles in J +. There is no first forward-backward
critical tangency, but an infinite sequence of forward-backward critical tangencies
accumulating on each backward critical tangency. Therefore, immediately after the
first backward critical tangency, J + forms infinitely many loops around all its circles.
There is a last forward-backward critical tangency, given by |c| = 1 − λ, when the
critical point J0 lies on the critical circle J1 and all preimages of J0 in J − disappear
into J0. A forward-backward critical tangency gives rise to periodicity of the critical
set J in the following sense: if J0 is contained in the disk bounded by a circle
Jk ⊂ J + then there is a point in J−k+1 ∈ J − that lies in the disk bounded by J1.
If one thinks of this point as the image of J0, the point J0 is k-periodic. Hence,
a forward-backward critical tangency in the map (1) corresponds to a homoclinic
bifurcation of the periodic orbit Γ in the vector field.

Homoclinic tangencies are also encountered in diffeomorphisms, but the three tangency
bifurcations of the critical set J are related to the noninvertibility of the map (1). The
first homoclinic tangency is the onset of (regular) chaos in (1), in the sense that it is
the same mechanism that generates chaos in diffeomorphisms. After this bifurcation, the
closure W u(p) of the unstable set W u(p) forms a chaotic attractor. In [12] we conjecture
that the first backward critical tangency forms the onset of wild chaos in the map (1) for
a < 1, and W u(p) becomes a wild Lorenz-like attractor. Immediately after this bifurcation
all four types of tangency bifurcations have occurred in infinite sequences, leading to the
complicated accumulation of the sets W s(p), W u(p), J − and J +. In the underlying
vector field, this corresponds to a complicated accumulation of homoclinic and heteroclinic
connections between the periodic orbit Γ and the equilibrium x, which lie in the same
hyperbolic set. Therefore, we see this bifurcation structure as the geometric mechanism
generating wild chaos in this system.

3 Transition from wild Lorenz-like to wild Rovella-like dy-
namics

We now study the changes in the dynamics, when the expanding condition −λws < λu
in the construction of Lorenz-like attractor, discussed in Section 2.1, is replaced by the
contracting condition −λws > λu. In terms of the map (1), this means that the parameter
a = −λws/λu is increased from a < 1 to a > 1. We start by investigating four two-
parameter bifurcation diagrams in the (c, a, λ)-space in Section 3.1, and then study in
Section 3.2 the changes to the phase portrait along a specific curve through parameter
space. The transition from Rovella-like attractor to saddle-type dynamics is the subject of
Section 3.3.
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3.1 Bifurcation diagrams

Figure 1 is an illustration of the bifurcation structure of the map (1) in the (c, a, λ)-space.
Panel (a) shows how the bifurcation diagrams in the four planes defined by a = 0.8, a = 2,
c = 0.1 and c = 1 intersect each other in (c, a, λ)-space. The light-grey curves denote
a = 0.8, a = 1, c = 0.1 and c = 1, at which the four planes intersect. Panels (b)–(e) show
the corresponding two-parameter bifurcation diagrams in the (a, λ)-plane for c = 1 and
c = 0.1, and in the (c, λ)-plane for a = 2 and a = 0.8, respectively. We computed these
bifurcation diagrams by formulating the bifurcation conditions as boundary conditions for
appropriate boundary value problems and continuing the solutions in two parameters with
Cl MatContM [23, 24, 25]; see [12] for details.

In Figure 1, the curve labelled L is a curve of saddle-node bifurcations at which the
saddle fixed point p meets a repelling fixed point s on the real line and disappears; the
points p and s only exist for parameter values to the left of L in panels (b) and (d), and
below the lower segment and above the upper segment of L in panel (c). At the line defined
by a = 1 in panels (b) and (c) the point s appears at infinity; it only exists for a > 1.
One could think of this bifurcation as a branch point and we denote it by BP. In fact,
infinity becomes attracting for a > 1 and the Julia set Y appears at infinity as its basin
boundary. More precisely, at the same time when s appears at infinity, infinitely many
other repelling periodic points appear at infinity as well, and their closure coincides with
Y; see [17]. The curves labelled BP and L both emanate from the point (a, λ) = (1, 1).
The curve labelled P is a curve of pitchfork bifurcation of the fixed point p, where two
complex-conjugate fixed points q+ and q− = q+ appear near p in the upper and lower
half-plane, respectively; for parameter values above P in panels (d) and (c) and below P
in panel (e) p is an attractor and q± do not exist; for parameter values on the other side
of P, the fixed point p is a saddle and q± are attractors initially. The curve labelled NS is
a curve of Neimarck–Sacker bifurcations of the fixed points q+ and q−; these are repellors
for parameter values above NS in panels (b), (d) and (e) and below NS in panel (c); for
parameter values on the other side of NS they are attractors. The line labelled FB is the
curve of last forward-backward critical tangencies, given by |c| = 1 − λ; for parameter
values below FB the critical point J0 lies inside the disk bounded by the critical circle J1;
therefore, J0 does not have any preimages and the backward critical set J − consists of J0
only; for parameter values above FB the critical point J0 lies outside the disk bounded by
J1 and J − contains infinitely many points accordingly. In addition, the fixed points q±

only exist above FB and disappear into J0 when |c| = 1− λ.
The curves labelled H and B in Figure 1 are the curves of first homoclinic and first

backward critical tangencies, respectively. The stable and unstable sets W s(p) and W u(p)
form a homoclinic tangle for parameter values to the right of H in panel (b) and to the left
of H in panels (c)–(e). Similarly, the unstable set W u(p) forms loops around the circles
in the forward critical set J + for parameter values to the right of B in panel (b) and to
the left of B in panels (c)–(e), respectively. Note that H and B lie on the sides of L for
which the saddle point p exists. Similarly, NS lies on the sides of FB, for which the points
q± exist, and P lies on the sides of L and FB, for which both p and q± exist. The curves
NS, P and FB emanate from the points (c, λ) = (0, 1) and (c, λ) = (0.25, 1) in panel (d),
and from the same point (c, λ) = (1, 0) in panel (e), respectively. Hence, these points form
organising centres for the bifurcation diagram in the (c, λ)-plane.

We conjecture in [12] that the first homoclinic and the first backward critical tangency
are responsible for the onset of wild chaos for a < 1. These geometric ingredients of wild
chaos are also present in the region bounded by B, BP and L in Figure 1(b), and the
regions bounded by B, FB and L in Figure 1(c) and (d). For a > 1 in these regions, the
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Figure 1: The organisation of (c, a, λ)-space (a), as represented by bifurcation diagrams
in the (a, λ)-plane for c = 1 (b) and c = 0.1 (c), and in the (c, λ)-plane for a = 2 (d)
and a = 0.8 (e). Shown are curves of saddle-node bifurcations (L, black), of branch
point bifurcations (BP, black), of pitchfork bifurcations (P, blue), of Neimarck–Sacker
bifurcations (NS, cyan), of last forward-backward critical tangencies (FB, green), of first
homoclinic tangencies (H, purple), and of first backward critical tangencies (B, red). The
respective planes intersect in the grey vertical lines.

9



0.2

0.4

0.6

0.8

1

a

λ

1

0.8

0.6

0.4

0.2

0
0.6 0.8 1 1.2 1.4 1.6 1.8 2

W

(a)

(b)

(c)
✟✟✯

(d)

•

L
NS

NS

BP

H

B

FB

Figure 2: The bifurcation diagram in the (a, λ)-plane for fixed c = 1 from Figure 1(b); also
shown is the conjectured region of wild chaos (shaded blue) and the path W (grey) with
selected parameter points (a)–(d).

equilibrium x of the underlying vector field is no longer expanding; hence, the dynamics
is no longer Lorenz-like, but Rovella-like. This suggests the existence of wild Rovella-like
dynamics in these parameter regions.

3.2 Dynamics along a parameter path

We now investigate the transition of the phase portrait of the map (1) as the parameters
a and λ are moved along a path within the (conjectured) wild chaotic region, where c = 1
fixed. Figure 2 shows an enlargement of the bifurcation diagram from Figure 1(c); we
shaded the parameter region between B and L where wild chaos is conjectured to exist.
The curve W is the parameter path within this region along which we investigate the
changes in the phase portraits of (1); the path W lies half-way between B and L. The
points on W labelled (a)–(d) are chosen to illustrate the different regions for the dynamics
and Figure 3 shows the associated four phase portraits. In Figure 3 we plot the saddle
fixed points p and the repelling fixed point s on the positive real axis; the fixed points q+

and q− in the upper and lower half-planes, respectively; the stable set W s(p) up to the
8-th preimage of the primary branch W s

0 (p); the unstable set W u(p) up to arclength 10 on
each side of p; the backward critical set J − up to the 6-th preimage of the critical point
J0; the forward critical sets J + up to the 8-th image of the critical circle J1; and the Julia
set Y as the boundary of the basin of attraction of infinity.

Figure 3(a) shows the phase portrait of (1) for (a, λ) = (0.88, 0.83), which is in the
conjectured region of existence of the wild Lorenz-like attractor. Infinity is repelling and
p, q+ and q− are the only fixed points; p is a saddle and q± are repellors. The stable and
unstable sets W s(p) and W u(p) form a homoclinic tangle. The set W s(p) has infinitely
many branches, formed by the preimages of the primary branch W s

0 (p), which is the positive
real line. Every branch of W s(p) is accumulated by an infinite sequence of other branches
in W s(p). The sets W u(p) and J + form infinitely many loops around the circles in the
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(a) (b)

(c) (d)

Figure 3: Phase portraits for the parameter points labelled (a)–(d) on the path W in
Figure 2, namely, for (a, λ) = (0.88, 0.83) in (a), (a, λ) = (1.178, 0.46) in (b), (a, λ) =
(1.38, 0.32) in (c), and (a, λ) = (2, 0.13) in (d). Shown are the fixed points p (black cross),
s (red square) and q± (red squares when repelling, blue triangles when attracting), the
stable set W s(p) (blue curves), the unstable set W u(p) (red curve), the backward critical
set J − (green dots), the forward critical set J + (green curves), the Julia set Y (black)
and the basin of attraction of infinity (grey).
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forward critical set J +. Numerical simulations (not shown) suggest that the closure W u(p)
of the unstable set W u(p) is, in fact, a chaotic attractor, which we denote A; its basin
of attraction B(A) is the entire punctured plane except for the points q±. Indeed, we
conjecture that A is a wild Lorenz-like attractor [12].

Figure 3(b) shows the phase portrait for (a, λ) = (1.178, 0.46). Since a > 1, infinity is
now attracting and admits a basin of attraction; the Julia set Y is its basin boundary. The
repelling fixed point s has appeared at infinity and lies in Y. The branches of W s(p) do not
go to infinity any longer, but end at preimages of s on Y. Moreover, pre-periodic repelling
points appear to lie dense in Y. Nevertheless, Y does not coincide with the closure of all
(pre-)periodic repelling points, because the repelling fixed points q± lie far away from Y.
We note that the geometric ingredients of wild chaos that we identified are still present:
the sets W s(p) and W u(p) form a homoclinic tangle and accumulate on themselves, W u(p)
forms infinitely many loops around the circles in J +, and the circles in J + form infinitely
many loops around other circles in J +. The chaotic attractor A = W u(p) still seems to
be present, but now its basin B(A) is bounded by Y and q±. Figure 3(b) seems to suggest
that W u(p) is a wild Rovella-like attractor, that is, the corresponding attractor in the
underlying vector field contains a contracting equilibrium and a hyperbolic set with robust
homoclinic tangencies. However, we cannot rule out the possibility that there are periodic
attractors of very high period in which case the set W u(p) is not necessarily a chaotic
attractor; then W u(p) could contain a chaotic saddle, that is, a chaotic hyperbolic set of
the map (1), such that each point in this set admits onedimensional stable and unstable
sets; see the discussion in Section 4.

The transition of the chaotic attractorA from a wild Lorenz-like attractor in Figure 3(a)
to a wild Rovella-like attractor in Figure 3(b) occurs when the parameter a crosses the
line a = 1 within the wild chaotic region; we will discuss the persistence of the emerging
Rovella-like attractor in more detail in Section 4.

Figure 3(c) shows the phase portrait for (a, λ) = (1.38, 0.32). The basin of attraction
of infinity has increased, and the fixed points p and s ∈ Y have moved closer together
on the real line. The fixed points q± have turned into attractors at the Neimarck–Sacker
bifurcation NS at (a, λ) ≈ (1.2738, 0.3925); see the bifurcation diagram in Figure 2. The
fixed points q± are the only attractors in Figure 3(c) and their basins of attraction are
bounded by W s(p). In particular, the set W u(p) now contains the attractors q± and
does no longer form a chaotic attractor. Numerical simulation (not shown) suggests that
W u(p) now contains a chaotic saddle S. The set S is given by the closure of all saddle
periodic points, and its stable and unstable sets contain the stable and unstable sets of the
saddle periodic points, respectively. More specifically, this means that W u(p) = W u(S).
Therefore, the set W u(p) illustrates the geometry of S in Figure 3(c). Since the geometric
ingredients of wild chaos in terms of the geometric properties of the sets W u(p), W s(p),
J − and J + are still present, we refer to S as a wild Rovella-like saddle. Note that the
term wild refers to properties of an associated hyperbolic set in the vector field, which is
not necessarily contained in an attractor.

Figure 3(d) shows the phase portrait for (a, λ) = (2, 0.13). We note that the geometric
properties of the sets q±, W u(p), W s(p), J − and J + are still as in panel (c), and, therefore,
we still conjecture the existence of the wild Rovella-like saddle S. However, the branches
of W s(p), the segments in W u(p) and the two fixed points p and s on the real line now
lie very close together. This can be explained by the fact that near (a, λ) = (2, 0.13) the
curves of first homoclinic tangency H, first backward critical tangency B and saddle-node
bifurcation L lie very close together; see Figure 2.
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Figure 4: Phase portraits in the box [0.21, 0.29]×[0.393, 0.473] for (a, λ) = (1.2718, 0.3939),
(a, λ) = (1.2738, 0.39259), (a, λ) = (1.2739, 0.39248), (a, λ) = (1.2741, 0.39236), (a, λ) =
(1.2744, 0.39221), and (a, λ) = (1.2746, 0.39206) in panels (a)–(f), respectively. Shown are
the fixed point q+ (red square when repelling, blue triangle when attracting), segments
(red curves) of the unstable set W u(p), points (light red) in the higher-order preimages of
these segments and the repelling invariant circle C+ (black curve).

3.3 Role of the Neimarck–Sacker bifurcation

We now consider in more detail the transition between a wild Rovella-like attractor A and
a wild Rovella-like saddle S. One may conclude that this transition occurs when a crosses
NS, but the Neimarck–Sacker bifurcation is a local bifurcation of the fixed points q±, which
does not affect the Rovella-like set. The transition from attractor to a saddle occurs, in
fact, for parameter values very close, but to the right of NS. To this end, we study W u(p)
— illustrating the attractor A and the saddle S as explained above — in a small region
of phase space near the fixed point q+; similar dynamics occurs at the complex-conjugate
point q−. Figure 4 illustrates the situation for six parameter values (a, λ) ∈W very close to
NS. We plot the fixed point q+, segments of the unstable set W u(p), and, in panels (c)–(e)
only, a repelling invariant circle C+ born at the Neimarck–Sacker bifurcation NS. We also
show many additional points in W u(p) that are computed as higher-order preimages of the
shown segments of W u(p); these points constitute a good approximation of W u(p).

Figures 4(a) and (b) show the situation before the Neimarck–Sacker bifurcation at
(a, λ) = (1.2718, 0.3939) and (a, λ) = (1.2738, 0.39259), respectively; the fixed point q+ is
a repellor and A = W u(p) seems to be a wild Rovella-like attractor; its basin of attraction
B(A) is the entire punctured plane except for the points q± and their preimages, which
form the basin boundary ∂B(A). The attractor A has a hole near q+ given by the open
bounded region (white) of points near q+ that do not lie in A; this hole coincides with
the union of the point q+ and the set B(A)\A near q+. Note that the hole is bounded by
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W u(p), as illustrated in panel (a); in panel (b), on the other hand, some of the higher-order
preimages of the segments in W u(p) now lie closer to q+, but A is still bounded away from
q+ and the boundary is formed by higher-order images of the segments of W u(p).

Figures 4(c) and (d) show the situation just after the Neimarck–Sacker bifurcation
for (a, λ) = (1.2739, 0.39248) and (a, λ) = (1.2741, 0.39236), respectively. The point q+

is now an attractor and, since the Neimarck–Sacker bifurcation is subcritical, a repelling
invariant circle, which we denote C+, has appeared around q+. The open disk bounded by
C+ forms the immediate basin of q+, whereas points in the hole of A and outside the disk
bounded by C+ are in B(A)\A. More precisely, the basin boundary ∂B(A) is now formed
by C+, its complex-conjugate C− := C+ and all their preimages. As was the case before,
we cannot rule out the existence of periodic attractors of higher periods but our numerical
observations suggest that set A = W u(p) is still a wild Rovella-like attractor, which now
co-exists with the attractors q±.

As shown in Figure 4(e), at (a, λ) ≈ (1.2744, 0.39221), the wild Rovella-like attractor
A meets the invariant circle C+. This bifurcation is a boundary crisis of A, because C+
lies in its basin boundary ∂B(A). At the moment of bifurcation, the open disk bounded by
C+ still forms the immediate basin of q+, which now coincides with the hole in A. Hence,
the set B(A)\A is now empty near q+. We remark here that the boundary crisis is likely
induced by a tangency between W u(p) and the stable manifold of a periodic orbit on C+
that has a very high period, that is, the circle C+ is no longer quasiperiodic; the precise
nature of the dynamics on C+ is beyond the scope of this paper and we refer to [26, 27] for
more details.

Figure 4(f) shows the situation at (a, λ) = (1.2746, 0.39206), that is, after the bound-
ary crisis bifurcation. The invariant circle C+ and the hole in W u(p) have disappeared.
Now all points in the shown region, including the segments and points in W u(p), lie in
the immediate basin of the attractor q+. Therefore, W u(p) now contains the fixed-point
attractor q+, which means that the chaotic attractor A formed by W u(p) has disappeared.
Globally, the fixed points q+ and q− seem to be the only attractors, but there could also
be higher-periodic attractors; see the discussion in Section 4. In the case that q± are the
only attractors, their basins are bounded by W s(p) = W s(S); see Figures 3(c) and (d).
However, the set W u(p) now seems to contain a chaotic saddle S, which is formed by the
closure of infinitely many saddle periodic points. These points attract the points in their
stable sets, but eventually repel all other points. In particular, the saddle fixed point p
lies in S and W u(p) = W u(S), as explained in Section 3.2, so we can see W u(p) as an
illustration of a wild Rovella-like saddle S. As a result, most points follow the ‘ghost’ of
the former chaotic attractor W u(p) for many iterations, but eventually converge to one of
the attractors q+ or q−; this phenomenon is called transient chaos [28, 29].

4 Discussion

We investigated the dynamics of the map (1) when the equilibrium of the underlying vector
field changes from expanding to contracting and the corresponding dynamics changes from
Lorenz-like to Rovella-like. In [12] we conjectured that the region of existence of wild
chaos for a < 1 is bounded by curves of first backward critical tangencies, saddle-node
bifurcations and the line λ = 1. We presented two-parameter bifurcation diagrams that
show how these bifurcation curves extend to the region of the Rovella-like dynamics for
a > 1 in this map. Phase portraits along a path within the conjectured parameter region
of wild chaos illustrate the transition from a wild Lorenz-like attractor for a < 1, via a
wild Rovella-like attractor for a > 1 to a wild Rovella-like saddle for a > 1. The latter
transition involves a Neimarck–Sacker bifurcation, a boundary crisis and a small region of
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multistability between them.
The transition from wild Lorenz-like to wild Rovella-like dynamics in the map (1) is rem-

iniscent of the transition from simple to chaotic dynamics in the original three-dimensional
Lorenz system as the parameter ρ is increased; see [29, 30]. More specifically, for small
ρ after a first homoclinic bifurcation, there is a region of preturbulence due to a chaotic
saddle: all points outside the stable manifold of this saddle eventually go to one of two
attracting equilibria after possibly very long transients. A chaotic attractor then appears
at a heteroclinic bifurcation, which induces a boundary crisis; then one finds a region of
multistability, where the chaotic attractor coexists with the attracting equilibria, before
these become repelling in a Hopf bifurcation and the chaotic attractor is the only attractor.
We find a corresponding bifurcation structure in the map (1) when a is decreased along
the chosen path: first there is a wild chaotic saddle and two attracting fixed points; the
wild chaotic attractor appears at a boundary crisis, followed by a region of multistability,
before the attracting fixed points become repelling in a Neimarck–Sacker bifurcation and
the wild chaotic attractor is the only attractor.

We conjecture that a wild Rovella-like attractor exists in the map (1). Further analytical
investigations and detailed numerical studies would be necessary to provide evidence that
it is persistent and non-robust as is the case for the Rovella attractor studied in [14] and
the higher-dimensional Rovella-like attractor studied in [16]. In particular, there could be
higher-periodic attractors within the conjectured region of wild chaos for a > 1 already
above the curve NS. If these exist, we would expect that these periodic attractors undergo
the same transition as the fixed-points attractors q±. Namely, we would expect that they
appear in Neimarck–Sacker bifurcations, followed by small regions of multistability, where
they coexist with a wild Rovella-like attractor that turns into a wild Rovella-like saddle at a
boundary crisis. However, other bifurcations could also be involved in the (dis-)appearance
of these attractors. We searched for these periodic attractors in the vicinity of forward-
backward critical tangencies of the map (1), because these bifurcations correspond to (dis-
)appearing periodicity in the critical set; an example is the last forward-backward critical
tangency, at which the points q± disappear at the critical point. However, above the curve
NS, we find periodic saddles and repellors only; below NS we also found higher-periodic
attractors, but these seem to disappear in a sequence of period-doubling bifurcations as
one moves the parameters towards NS. The difficulty is that higher-periodic attractors —
if they even exist above NS — would be of very high period and would only exist in very
small parameter regions.

Another interesting question for future research is to study in more detail the conse-
quences for the underlying vector field of interactions of the Julia set and the wild Rovella-
like attractor in the map (1). These two sets correspond to hyperbolic sets with different
stable dimensions in the vector field. In particular, the repelling periodic points in the
Julia set and saddle periodic points in the attractor correspond to saddle periodic or-
bits with stable manifolds of dimensions three and four, respectively. Therefore, their
interactions could lead to the formations of so-called heterodimensional cycles, that is, het-
eroclinic cycles between hyperbolic sets with different stable dimensions; this phenomenon
is also referred to as a heteroclinic cycle with unstable dimension variability [31]. It is
expected that the concept of robust heterodimensional cycles is related to the creation
of wild chaos [32, 33, 34, 35]; see [36] for an introduction to the overall topic of robust
non-hyperbolicity.

Another approach to study the involvement of heterodimensional cycles and wild chaos
in the formation of robust non-hyperbolicity would be to search for similar bifurcations
in other systems. One of the first examples of an explicit four-dimensional vector field
with a heterodimensional cycle between two saddle periodic orbits is studied in [37]. This
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paper also provides a numerical method for finding such cycles in other four-dimensional
vector fields and for continuing them in system parameters. However, it is unclear if the
heterodimensional cycle in their example is robust and how it relates to wild chaos in this
system.
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