Problems in engineering, computational science, and the physical and biological sciences are using increasingly sophisticated mathematical techniques. Thus, the bridge between the mathematical sciences and other disciplines is heavily traveled. The correspondingly increased dialog between the disciplines has led to the establishment of the series: *Interdisciplinary Applied Mathematics*.

The purpose of this series is to meet the current and future needs for the interaction between various science and technology areas on the one hand and mathematics on the other. This is done, firstly, by encouraging the ways that mathematics may be applied in traditional areas, as well as point towards new and innovative areas of applications; and, secondly, by encouraging other scientific disciplines to engage in a dialog with mathematicians outlining their problems to both access new methods and suggest innovative developments within mathematics itself.

The series will consist of monographs and high-level texts from researchers working on the interplay between mathematics and other fields of science and technology.
Interdisciplinary Applied Mathematics

1. Gutzwiller: Chaos in Classical and Quantum Mechanics
2. Wiggins: Chaotic Transport in Dynamical Systems
3. Joseph/Renardy: Fundamentals of Two-Fluid Dynamics:
 Part I: Mathematical Theory and Applications
4. Joseph/Renardy: Fundamentals of Two-Fluid Dynamics:
 Part II: Lubricated Transport, Drops and Miscible Liquids
5. Seydel: Practical Bifurcation and Stability Analysis:
 From Equilibrium to Chaos
6. Hornung: Homogenization and Porous Media
7. Simo/Hughes: Computational Inelasticity
8. Keener/Sneyd: Mathematical Physiology, Second Edition:
 I: Cellular Physiology
 II: Systems Physiology
10. Sastry: Nonlinear Systems: Analysis, Stability, and Control
11. McCarthy: Geometric Design of Linkages
13. Bleistein/Cohen/Stockwell: Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion
14. Okubo/Levin: Diffusion and Ecological Problems: Modern Perspectives
15. Logan: Transport Models in Hydrogeochemical Systems
17. Murray: Mathematical Biology: An Introduction
18. Murray: Mathematical Biology: Spatial Models and Biomedical Applications
19. Kimmel/Axelrod: Branching Processes in Biology
20. Fall/Marland/Wagner/Tyson: Computational Cell Biology
22. Sahimi: Heterogenous Materials: Linear Transport and Optical Properties
 (Volume I)
 and Atomic Modeling (Volume II)
24. Bloch: Nonholonomic Mechanics and Control
25. Beuter/Glass/Mackey/Titcombe: Nonlinear Dynamics in Physiology and Medicine
26. Ma/Saadato/Kosecka/Sastry: An invitation to 3-D Vision
28. Wyart: Quantum Dynamics with Trajectories
29. Karniadakis: Microflows and Nanoflows
30. Mochers: Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics
31. Samelson/Wiggins: Lagrangian Transport in Geophysical Jets and Waves
32. Wodarz: Killer Cell Dynamics
33. Pettini: Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics
34. Desolneux/Moisant/Morel: From Gestalt Theory to Image Analysis
To Monique,

and

To Kristine, patience personified.
If, in 1998, it was presumptuous to attempt to summarize the field of mathematical physiology in a single book, it is even more so now. In the last ten years, the number of applications of mathematics to physiology has grown enormously, so that the field, large then, is now completely beyond the reach of two people, no matter how many volumes they might write.

Nevertheless, although the bulk of the field can be addressed only briefly, there are certain fundamental models on which stands a great deal of subsequent work. We believe strongly that a prerequisite for understanding modern work in mathematical physiology is an understanding of these basic models, and thus books such as this one serve a useful purpose.

With this second edition we had two major goals. The first was to expand our discussion of many of the fundamental models and principles. For example, the connection between Gibbs free energy, the equilibrium constant, and kinetic rate theory is now discussed briefly, Markov models of ion exchangers and ATPase pumps are discussed at greater length, and agonist-controlled ion channels make an appearance. We also now include some of the older models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendocrine cells, the baroreceptor loop, tubuloglomerular oscillations, blood clotting, and the retina. In addition, we have expanded our discussion of stochastic processes to include an introduction to Markov models, the Fokker–Planck equation, the Langevin equation, and applications to such things as diffusion, and single-channel data.

Our second goal was to provide a pointer to recent work in as many areas as we can. Some chapters, such as those on calcium dynamics or the heart, close to our own fields of expertise, provide more extensive references to recent work, while in other chapters, dealing with areas in which we are less expert, the pointers are neither complete nor
extensive. Nevertheless, we hope that in each chapter, enough information is given to enable the interested reader to pursue the topic further.

Of course, our survey has unavoidable omissions, some intentional, others not. We can only apologize, yet again, for these, and beg the reader's indulgence. As with the first edition, ignorance and exhaustion are the cause, although not the excuse.

Since the publication of the first edition, we have received many comments (some even polite) about mistakes and omissions, and a number of people have devoted considerable amounts of time to help us improve the book. Our particular thanks are due to Richard Bertram, Robin Callard, Erol Cerasi, Martin Falcke, Russ Hamer, Harold Layton, Ian Parker, Les Satin, Jim Selgrade and John Tyson, all of whom assisted above and beyond the call of duty. We also thank Peter Bates, Dan Beard, Andrea Ciliberto, Silvina Ponce Dawson, Charles Doering, Elan Gin, Erin Higgins, Peter Jung, Yue Xian Li, Mike Mackey, Robert Miura, Kim Montgomery, Bela Novak, Sasha Panfilov, Ed Pate, Antonio Politi, Tilak Ratnanather, Timothy Secomb, Eduardo Sontag, Mike Steel, and Wilbert van Meerwijk for their help and comments.

Finally, we thank the University of Auckland and the University of Utah for continuing to pay our salaries while we devoted large fractions of our time to writing, and we thank the Royal Society of New Zealand for the James Cook Fellowship to James Sneyd that has made it possible to complete this book in a reasonable time.

University of Utah
University of Auckland

James Keener
James Sneyd

2008
It can be argued that of all the biological sciences, physiology is the one in which mathematics has played the greatest role. From the work of Helmholtz and Frank in the last century through to that of Hodgkin, Huxley, and many others in this century, physiologists have repeatedly used mathematical methods and models to help their understanding of physiological processes. It might thus be expected that a close connection between applied mathematics and physiology would have developed naturally, but unfortunately, until recently, such has not been the case.

There are always barriers to communication between disciplines. Despite the quantitative nature of their subject, many physiologists seek only verbal descriptions, naming and learning the functions of an incredibly complicated array of components; often the complexity of the problem appears to preclude a mathematical description. Others want to become physicians, and so have little time for mathematics other than to learn about drug dosages, office accounting practices, and malpractice liability. Still others choose to study physiology precisely because thereby they hope not to study more mathematics, and that in itself is a significant benefit. On the other hand, many applied mathematicians are concerned with theoretical results, proving theorems and such, and prefer not to pay attention to real data or the applications of their results. Others hesitate to jump into a new discipline, with all its required background reading and its own history of modeling that must be learned.

But times are changing, and it is rapidly becoming apparent that applied mathematics and physiology have a great deal to offer one another. It is our view that teaching physiology without a mathematical description of the underlying dynamical processes is like teaching planetary motion to physicists without mentioning or using Kepler's laws; you can observe that there is a full moon every 28 days, but without Kepler's laws you cannot determine when the next total lunar or solar eclipse will be nor when
Halley’s comet will return. Your head will be full of interesting and important facts, but it is difficult to organize those facts unless they are given a quantitative description. Similarly, if applied mathematicians were to ignore physiology, they would be losing the opportunity to study an extremely rich and interesting field of science.

To explain the goals of this book, it is most convenient to begin by emphasizing what this book is not; it is not a physiology book, and neither is it a mathematics book. Any reader who is seriously interested in learning physiology would be well advised to consult an introductory physiology book such as Guyton and Hall (1996) or Berne and Levy (1993), as, indeed, we ourselves have done many times. We give only a brief background for each physiological problem we discuss, certainly not enough to satisfy a real physiologist. Neither is this a book for learning mathematics. Of course, a great deal of mathematics is used throughout, but any reader who is not already familiar with the basic techniques would again be well advised to learn the material elsewhere.

Instead, this book describes work that lies on the border between mathematics and physiology; it describes ways in which mathematics may be used to give insight into physiological questions, and how physiological questions can, in turn, lead to new mathematical problems. In this sense, it is truly an interdisciplinary text, which, we hope, will be appreciated by physiologists interested in theoretical approaches to their subject as well as by mathematicians interested in learning new areas of application.

It is also an introductory survey of what a host of other people have done in employing mathematical models to describe physiological processes. It is necessarily brief, incomplete, and outdated (even before it was written), but we hope it will serve as an introduction to, and overview of, some of the most important contributions to the field. Perhaps some of the references will provide a starting point for more in-depth investigations.

Unfortunately, because of the nature of the respective disciplines, applied mathematicians who know little physiology will have an easier time with this material than will physiologists with little mathematical training. A complete understanding of all of the mathematics in this book will require a solid undergraduate training in mathematics, a fact for which we make no apology. We have made no attempt whatever to water down the models so that a lower level of mathematics could be used, but have instead used whatever mathematics the physiology demands. It would be misleading to imply that physiological modeling uses only trivial mathematics, or vice versa; the essential richness of the field results from the incorporation of complexities from both disciplines.

At the least, one needs a solid understanding of differential equations, including phase plane analysis and stability theory. To follow everything will also require an understanding of basic bifurcation theory, linear transform theory (Fourier and Laplace transforms), linear systems theory, complex variable techniques (the residue theorem), and some understanding of partial differential equations and their numerical simulation. However, for those whose mathematical background does not include all of these topics, we have included references that should help to fill the gap. We also make
extensive use of asymptotic methods and perturbation theory, but include explanatory material to help the novice understand the calculations.

This book can be used in several ways. It could be used to teach a full-year course in mathematical physiology, and we have used this material in that way. The book includes enough exercises to keep even the most diligent student busy. It could also be used as a supplement to other applied mathematics, bioengineering, or physiology courses. The models and exercises given here can add considerable interest and challenge to an otherwise traditional course.

The book is divided into two parts, the first dealing with the fundamental principles of cell physiology, and the second with the physiology of systems. After an introduction to basic biochemistry and enzyme reactions, we move on to a discussion of various aspects of cell physiology, including the problem of volume control, the membrane potential, ionic flow through channels, and excitability. Chapter 5 is devoted to calcium dynamics, emphasizing the two important ways that calcium is released from stores, while cells that exhibit electrical bursting are the subject of Chapter 6. This book is not intentionally organized around mathematical techniques, but it is a happy coincidence that there is no use of partial differential equations throughout these beginning chapters.

Spatial aspects, such as synaptic transmission, gap junctions, the linear cable equation, nonlinear wave propagation in neurons, and calcium waves, are the subject of the next few chapters, and it is here that the reader first meets partial differential equations. The most mathematical sections of the book arise in the discussion of signaling in two- and three-dimensional media—readers who are less mathematically inclined may wish to skip over these sections. This section on basic physiological mechanisms ends with a discussion of the biochemistry of RNA and DNA and the biochemical regulation of cell function.

The second part of the book gives an overview of organ physiology, mostly from the human body, beginning with an introduction to electrocardiology, followed by the physiology of the circulatory system, blood, muscle, hormones, and the kidneys. Finally, we examine the digestive system, the visual system, ending with the inner ear.

While this may seem to be an enormous amount of material (and it is!), there are many physiological topics that are not discussed here. For example, there is almost no discussion of the immune system and the immune response, and so the work of Perelson, Goldstein, Wofsy, Kirschner, and others of their persuasion is absent. Another glaring omission is the wonderful work of Michael Reed and his collaborators on axonal transport; this work is discussed in detail by Edelstein-Keshet (1988). The study of the central nervous system, including fascinating topics like nervous control, learning, cognition, and memory, is touched upon only very lightly, and the field of pharmacokinetics and compartmental modeling, including the work of John Jacquez, Elliot Landaw, and others, appears not at all. Neither does the wound-healing work of Maini, Sherratt, Murray, and others, or the tumor modeling of Chaplain and his colleagues. The list could continue indefinitely. Please accept our apologies if your favorite topic (or life’s work) was omitted; the reason is exhaustion, not lack of interest.
As well as noticing the omission of a number of important areas of mathematical physiology, the reader may also notice that our view of what “mathematical” means appears to be somewhat narrow as well. For example, we include very little discussion of statistical methods, stochastic models, or discrete equations, but concentrate almost wholly on continuous, deterministic approaches. We emphasize that this is not from any inherent belief in the superiority of continuous differential equations. It results rather from the unpleasant fact that choices had to be made, and when push came to shove, we chose to include work with which we were most familiar. Again, apologies are offered.

Finally, with a project of this size there is credit to be given and blame to be cast; credit to the many people, like the pioneers in the field whose work we freely borrowed, and many reviewers and coworkers (Andrew LeBeau, Matthew Wilkins, Richard Bertram, Lee Segel, Bruce Knight, John Tyson, Eric Cytrunbaum, Eric Marland, Tim Lewis, J.G.T. Sneyd, Craig Marshall) who have given invaluable advice. Particular thanks are also due to the University of Canterbury, New Zealand, where a significant portion of this book was written. Of course, as authors we accept all the blame for not getting it right, or not doing it better.

University of Utah
University of Michigan
1998

James Keener
James Sneyd
Acknowledgments

With a project of this size it is impossible to give adequate acknowledgment to everyone who contributed: My family, whose patience with me is herculean; my students, who had to tolerate my rantings, ravings, and frequent mistakes; my colleagues, from whom I learned so much and often failed to give adequate attribution. Certainly the most profound contribution to this project was from the Creator who made it all possible in the first place. I don’t know how He did it, but it was a truly astounding achievement. To all involved, thanks.

University of Utah

James Keener

Between the three of them, Jim Murray, Charlie Peskin and Dan Tranchina have taught me almost everything I know about mathematical physiology. This book could not have been written without them, and I thank them particularly for their, albeit unaware, contributions. Neither could this book have been written without many years of support from my parents and my wife, to whom I owe the greatest of debts.

University of Auckland

James Sneyd