Can We Win the Clone War?

Arkadii Slinko

Department of Mathematics
The University of Auckland

ADT - 13, Brussels, 13 November, 2013
Edith Elkind and Piotr Faliszewski helped me to fight the clone wars.
Voting as a group decision making tool

Collective decisions are often made by aggregating the preferences of individual agents by means of voting:

- each agent ranks the available alternatives, and
- a voting rule is used to select one or more winners.
Decision making environment

The structure of the set of alternatives may be quite complex.

E.g., the set of possible plans of actions, may be huge, however some plans may be very similar to each other.

It may be reasonable to establish, first, which plans differ fundamentally, and which can be viewed as minor variations of each other.
Decision making environment

The structure of the set of alternatives may be quite complex.

E.g., the set of possible plans of actions, may be huge, however some plans may be very similar to each other.

It may be reasonable to establish, first, which plans differ fundamentally, and which can be viewed as minor variations of each other.

A family on holiday, having to rent a car, may face the options:

- an automatic white car;
- an automatic blue car;
- an automatic red car;
- a manual blue car;
- a manual red car.
Renting a car quandary

The preferences of husband and wife may be:

<table>
<thead>
<tr>
<th>husband</th>
<th>wife</th>
</tr>
</thead>
<tbody>
<tr>
<td>manual blue</td>
<td>automatic white</td>
</tr>
<tr>
<td>manual red</td>
<td>automatic red</td>
</tr>
<tr>
<td>automatic white</td>
<td>automatic blue</td>
</tr>
<tr>
<td>automatic blue</td>
<td>manual red</td>
</tr>
<tr>
<td>automatic red</td>
<td>manual blue</td>
</tr>
</tbody>
</table>
Renting a car quandary

The preferences of husband and wife may be:

<table>
<thead>
<tr>
<th>husband</th>
<th>wife</th>
</tr>
</thead>
<tbody>
<tr>
<td>manual blue</td>
<td>automatic white</td>
</tr>
<tr>
<td>manual red</td>
<td>automatic red</td>
</tr>
<tr>
<td>automatic white</td>
<td>automatic blue</td>
</tr>
<tr>
<td>automatic blue</td>
<td>manual red</td>
</tr>
<tr>
<td>automatic red</td>
<td>manual blue</td>
</tr>
</tbody>
</table>

The question to resolve is: manual or automatic?
Clones in consumer surveys and recommenders systems

Suppose an electronics website runs a competition for the best digital camera by asking consumers to vote for their two favorite models from a given list.

Suppose preferences of consumers are:

60% : *Sony* > *Nikon* > *Canon*
40% : *Canon* > *Nikon* > *Sony*

If every brand is represented by a single camera, then Nikon wins; if by two cameras, then Sony wins and Nikon will have no votes!
Most voting rules are sensitive to cloning

In a Borda election with the set of candidates $C = \{a, b, c, d\}$, and there are four voters, whose preference orders are:

$R_1 : a \succ c \succ b \succ d$

$R_2 : a \succ c \succ b \succ d$

$R_3 : a \succ c \succ b \succ d$

$R_4 : d \succ c \succ b \succ a$
Most voting rules are sensitive to cloning

In a Borda election with the set of candidates \(C = \{a, b, c, d\} \), and there are four voters, whose preference orders are:

\[
\begin{align*}
R_1 : & \ a \succ c \succ b \succ d & \quad & \text{Sc}_B(a) = 9 \\
R_2 : & \ a \succ c \succ b \succ d & \quad & \text{Sc}_B(b) = 4 \\
R_3 : & \ a \succ c \succ b \succ d & \quad & \text{Sc}_B(c) = 8 \\
R_4 : & \ d \succ c \succ b \succ a & \quad & \text{Sc}_B(d) = 3
\end{align*}
\]

The winner here is \(a \) with 9 points.
Most voting rules are sensitive to cloning

In a Borda election with the set of candidates $C = \{a, b, c, d\}$, and there are four voters, whose preference orders are:

\[
\begin{align*}
R_1 & : a \succ c \succ b \succ d & \text{Sc}_B(a) = 9 \\
R_2 & : a \succ c \succ b \succ d & \text{Sc}_B(b) = 4 \\
R_3 & : a \succ c \succ b \succ d & \text{Sc}_B(c) = 8 \\
R_4 & : d \succ c \succ b \succ a & \text{Sc}_B(d) = 3
\end{align*}
\]

The winner here is a with 9 points. However, replacing b with three clones b_1, b_2, b_3 is a successful manipulation in favor of c:

\[
\begin{align*}
R'_1 & : a \succ c \succ b_{i1} \succ b_{j1} \succ b_{k1} \succ d & \text{Sc}_B(a) = 15 \\
R'_2 & : a \succ c \succ b_{i2} \succ b_{j2} \succ b_{k2} \succ d & \text{Sc}_B(b_{is}) = 4 - 12 \\
R'_3 & : a \succ c \succ b_{i3} \succ b_{j3} \succ b_{k3} \succ d & \text{Sc}_B(c) = 16 \\
R'_4 & : d \succ c \succ b_{i4} \succ b_{j4} \succ b_{k4} \succ a & \text{Sc}_B(d) = 5
\end{align*}
\]
New York Times on September 6, 2010:

“Drifters and homeless people were recruited onto the Green Party ballot to run for a seat on the Arizona Corporation Commission, which oversees public utilities, railroad safety and securities regulation. They are financed by a Republican political operative.”
New York Times on September 6, 2010:

“Drifters and homeless people were recruited onto the Green Party ballot to run for a seat on the Arizona Corporation Commission, which oversees public utilities, railroad safety and securities regulation. They are financed by a Republican political operative.”

The Green party candidate was deliberately cloned.
Goal of the paper

Many voting rules can be fooled into believing that clones are independent alternatives.
Many voting rules can be fooled into believing that clones are independent alternatives.

We cannot rely on voting rules to fix this problem automatically.

Our goal is to learn what shape clone structures may take.
Many voting rules can be fooled into believing that clones are independent alternatives.

We cannot rely on voting rules to fix this problem automatically.

There cannot be a universal solution.
Goal of the paper

Many voting rules can be fooled into believing that clones are independent alternatives.

We cannot rely on voting rules to fix this problem automatically.

There cannot be a universal solution.

However, revealing the structure of clones existing in the profile may help clarifying:

- what the real alternatives are, and,
- what the real issues are.
Goal of the paper

Many voting rules can be fooled into believing that clones are independent alternatives.

We cannot rely on voting rules to fix this problem automatically.

There cannot be a universal solution.

However, revealing the structure of clones existing in the profile may help clarifying:
 • what the real alternatives are, and,
 • what the real issues are.

Our goal is to learn what shape clone structures may take.
Clone Sets and Clone Structures

Our set of alternatives is \([m] = \{1, 2, \ldots, m\}\).

Definition (Tideman, 1987)

Let \(R = (\succ_1, \ldots, \succ_n)\) be a profile on \([m]\). We say that a non-empty subset \(C \subseteq [m]\) is a **clone set** for \(R\) if every \(a \in [m] \setminus C\) and every \(c, c' \in C\)

\[
\begin{align*}
\text{if } c \succ_i a & \implies c' \succ_i a \quad \text{and} \quad a \succ_i c & \implies a \succ_i c' \\
\end{align*}
\]

for every \(i = 1, 2, \ldots, n\).
Clone Sets and Clone Structures

Our set of alternatives is \([m] = \{1, 2, \ldots, m\}\).

Definition (Tideman, 1987)

Let \(\mathcal{R} = (\succ_1, \ldots, \succ_n)\) be a profile on \([m]\). We say that a non-empty subset \(C \subseteq [m]\) is a **clone set** for \(\mathcal{R}\) if every \(a \in [m] \setminus C\) and every \(c, c' \in C\)

\[c \succ_i a \implies c' \succ_i a \quad \text{and} \quad a \succ_i c \implies a \succ_i c' \]

for every \(i = 1, 2, \ldots, n\).

Definition

Let \(\mathcal{R} = (\succ_1, \ldots, \succ_n)\) be as above and let \(\mathcal{C} (\mathcal{R}) \subseteq 2^{[m]}\) be a family of all clone sets for \(\mathcal{R}\). We call \(\mathcal{C} (\mathcal{R})\) the **clone structure** on \([m]\) associated with \(\mathcal{R}\).
Example
For $\mathcal{R} = (\succ_1, \succ_2)$ where

$\begin{align*}
1 &\succ_1 3 &\succ_1 2 \\
3 &\succ_2 2 &\succ_2 1
\end{align*}$

the clone structure will be

$\mathcal{C}(\mathcal{R}) = \{\{1\}, \{2\}, \{3\}, \{2,3\}, \{1,2,3\}\}$.
An Important Example

Example (String of sausages)
Let \mathcal{R} consist of a single linear order $R_1 : 1 \succ 2 \succ \cdots \succ m$. Then $\mathcal{C}(\mathcal{R}) = \{[i, j] \mid i \leq j\}$, where $[i, j] = \{i, i + 1, \ldots, j\}$.

The only nontrivial automorphism is a reflection.
Example (String of sausages)

Let \mathcal{R} consist of a single linear order $R_1 : 1 \succ 2 \succ \cdots \succ m$. Then $C(\mathcal{R}) = \{[i, j] \mid i \leq j\}$, where $[i, j] = \{i, i + 1, \ldots, j\}$.

The only nontrivial automorphism is a reflection.

Proposition

Any clone structure over $[m]$ consists of at most $\frac{m(m+1)}{2}$ sets.
Another Important Example

Example (Fat sausage)

Let \mathcal{R} be a cyclic profile on $[m]$, i.e., $\mathcal{R} = (R_1, \ldots, R_m)$, and i-th order is given by

$$R_i : i \succ i + 1 \succ \cdots \succ m \succ 1 \succ \cdots \succ i - 1.$$

Then $\mathcal{C}(\mathcal{R}) = \{[m]\} \cup \{\{i\} \mid i \in [m]\}$.

The group of automorphisms is the whole S_m.

\[
\begin{array}{cccc}
\bullet & \bullet & \bullet & \bullet \\
\end{array}
\]
Four Necessary Conditions

Given two sets $X, Y \subseteq [m]$ are said to intersect non-trivially and write $X \diamondsuit Y$ if $X \cap Y \neq \emptyset$, $X \setminus Y \neq \emptyset$ and $Y \setminus X \neq \emptyset$.

These are not sufficient since $2^{[m]} \{\emptyset\}$ satisfies these and it has more than $m \cdot (m+1)^2$ sets.
Four Necessary Conditions

Given two sets $X, Y \subseteq [m]$ are said to intersect non-trivially and write $X \boxtimes Y$ if $X \cap Y \neq \emptyset$, $X \setminus Y \neq \emptyset$ and $Y \setminus X \neq \emptyset$.

Proposition

Let \mathcal{R} be a profile on $[m]$. Then $C(\mathcal{R})$ satisfies:

1. $\{i\} \in C(\mathcal{R})$ for any $i \in [m]$;
2. $\emptyset \notin C$ and $[m] \in C(\mathcal{R})$;
3. if C_1 and C_2 are in $C(\mathcal{R})$ and $C_1 \cap C_2 \neq \emptyset$, then $C_1 \cap C_2$ and $C_1 \cup C_2$ are also in $C(\mathcal{R})$;
4. if C_1 and C_2 are in $C(\mathcal{R})$ and $C_1 \boxtimes C_2$, then $C_1 \setminus C_2$ and $C_2 \setminus C_1$ are also in $C(\mathcal{R})$.

These are not sufficient since $2^{[m]} \{\emptyset\}$ satisfies these and it has more than $m^{m+1/2}$ sets.
Four Necessary Conditions

Given two sets $X, Y \subseteq [m]$ are said to intersect non-trivially and write $X \bowtie Y$ if $X \cap Y \neq \emptyset$, $X \setminus Y \neq \emptyset$ and $Y \setminus X \neq \emptyset$.

Proposition

Let \mathcal{R} be a profile on $[m]$. Then $\mathcal{C}(\mathcal{R})$ satisfies:

1. $\{i\} \in \mathcal{C}(\mathcal{R})$ for any $i \in [m]$;
2. $\emptyset \notin \mathcal{C}$ and $[m] \in \mathcal{C}(\mathcal{R})$;
3. if C_1 and C_2 are in $\mathcal{C}(\mathcal{R})$ and $C_1 \cap C_2 \neq \emptyset$, then $C_1 \cap C_2$ and $C_1 \cup C_2$ are also in $\mathcal{C}(\mathcal{R})$;
4. if C_1 and C_2 are in $\mathcal{C}(\mathcal{R})$ and $C_1 \bowtie C_2$, then $C_1 \setminus C_2$ and $C_2 \setminus C_1$ are also in $\mathcal{C}(\mathcal{R})$.

These are not sufficient since $2^{[m]} \setminus \{\emptyset\}$ satisfies these and it has more than $\frac{m(m+1)}{2}$ sets.
One More Necessary Condition

Given a profile \mathcal{R} over $[m]$ and a set $X \in C(\mathcal{R})$, we say that a set $Z \in C(\mathcal{R})$ is a proper minimal clone superset of X if $X \subsetneq Z$, and there is no set $Y \in C(\mathcal{R})$ such that $X \subsetneq Y \subsetneq Z$.

Proposition

For any profile \mathcal{R} on $[m]$, each $X \in C(\mathcal{R})$ has at most two proper minimal clone supersets in $C(\mathcal{R})$.

Note, however, that for $m = 3$ the set family $\{\emptyset\} \cup 2^{[m]}$ satisfies the conclusion of this Proposition and also (1)–(4). Yet, it is obviously not a clone structure: its cardinality is still too large: $2^3 - 1 > 3 \cdot (3 + 1)^2$.
One More Necessary Condition

Given a profile \mathcal{R} over $[m]$ and a set $X \in C(\mathcal{R})$, we say that a set $Z \in C(\mathcal{R})$ is a proper minimal clone superset of X if $X \subsetneq Z$, and there is no set $Y \in C(\mathcal{R})$ such that $X \subsetneq Y \subsetneq Z$.

Proposition

For any profile \mathcal{R} on $[m]$, each $X \in C(\mathcal{R})$ has at most two proper minimal clone supersets in $C(\mathcal{R})$.
One More Necessary Condition

Given a profile \mathcal{R} over $[m]$ and a set $X \in \mathcal{C}(\mathcal{R})$, we say that a set $Z \in \mathcal{C}(\mathcal{R})$ is a proper minimal clone superset of X if $X \subsetneq Z$, and there is no set $Y \in \mathcal{C}(\mathcal{R})$ such that $X \subsetneq Y \subsetneq Z$.

Proposition

For any profile \mathcal{R} on $[m]$, each $X \in \mathcal{C}(\mathcal{R})$ has at most two proper minimal clone supersets in $\mathcal{C}(\mathcal{R})$.

Note, however, that for $m = 3$ the set family $2^{[m]} \setminus \{\emptyset\}$ satisfies the conclusion of this Proposition and also (1)–(4). Yet, it is obviously not a clone structure: its cardinality is still too large:

$$2^3 - 1 > \frac{3 \cdot (3 + 1)}{2}.$$
And One More

Definition

A set family \(\{A_0, \ldots, A_{k-1}\} \) is a bicycle chain if \(k \geq 3 \) and for all \(i = 0, \ldots, k - 1 \) it holds that (1) \(A_{i-1} \bowtie A_i \); (2) \(A_{i-1} \cap A_i \cap A_{i+1} = \emptyset \); (3) \(A_i \subseteq A_{i-1} \cup A_{i+1} \), where all indices are modulo \(k \).
And One More

Definition
A set family \(\{A_0, \ldots, A_{k-1}\} \) is a bicycle chain if \(k \geq 3 \) and for all \(i = 0, \ldots, k - 1 \) it holds that (1) \(A_{i-1} \vartriangleleft A_i \); (2) \(A_{i-1} \cap A_i \cap A_{i+1} = \emptyset \); (3) \(A_i \subseteq A_{i-1} \cup A_{i+1} \), where all indices are modulo \(k \).

Proposition
A clone structure over \([m]\) does not contain a bicycle chain.
Now we have enough axioms

Theorem

A family \mathcal{F} of subsets of $[m]$ is a clone structure if and only if it satisfies the following axioms:

A1. $\{i\} \in \mathcal{F}$ for any $i \in [m]$.
A2. $\emptyset \notin \mathcal{F}$ and $[m] \in \mathcal{F}$.
A3. if C_1 and C_2 are in \mathcal{F} and $C_1 \cap C_2 \neq \emptyset$, then $C_1 \cup C_2$ and $C_1 \cap C_2$ are also in \mathcal{F}.
A4. if C_1 and C_2 are in \mathcal{F} and $C_1 \Join C_2$, then $C_1 \setminus C_2$ and $C_2 \setminus C_1$ are also in \mathcal{F}.
A5. Each $C \in \mathcal{F}$ has at most two proper minimal supersets in \mathcal{F}.
A6. \mathcal{F} does not contain a bicycle chain.
Now we have enough axioms

Theorem
A family \mathcal{F} of subsets of $[m]$ is a clone structure if and only if it satisfies the following axioms:

A1. $\{i\} \in \mathcal{F}$ for any $i \in [m]$.
A2. $\emptyset \notin \mathcal{F}$ and $[m] \in \mathcal{F}$.
A3. If C_1 and C_2 are in \mathcal{F} and $C_1 \cap C_2 \neq \emptyset$, then $C_1 \cup C_2$ and $C_1 \cap C_2$ are also in \mathcal{F}.
A4. If C_1 and C_2 are in \mathcal{F} and $C_1 \bowtie C_2$, then $C_1 \setminus C_2$ and $C_2 \setminus C_1$ are also in \mathcal{F}.
A5. Each $C \in \mathcal{F}$ has at most two proper minimal supersets in \mathcal{F}.
A6. \mathcal{F} does not contain a bicycle chain.

In the proof the concept of a subfamily plays an essential role.
The idea of a subfamily

Example
Consider set families

\[\mathcal{D} = \{\{x\}, \{y\}, \{x, y\}\},\]

\[\mathcal{C} = \{\{a\}, \{x\}, \{y\}, \{x, y\}, \{c\}, \{a, x, y\}, \{x, y, c\}, \{a, x, y, c\}\}.\]

Then \(\mathcal{D}\) would be naturally called a subfamily of \(\mathcal{C}\).

Subfamily is something that can be collapsed and replaced with one element. In our case \(\mathcal{D}\) can be collapsed into \(b\):

\[\mathcal{C}(\mathcal{D} \rightarrow b) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}.\]
Subfamilies

Definition
Let \mathcal{F} be a family of subsets on a finite set F. A subset $\mathcal{E} \subseteq \mathcal{F}$ is a subfamily of \mathcal{F} if there is a set $E \in \mathcal{F}$ such that

1. $\mathcal{E} = \{ X \in \mathcal{F} \mid X \subseteq E \}$;

2. for any $Y \in \mathcal{F} \setminus \mathcal{E}$ we have either $E \subseteq Y$ or $Y \cap E = \emptyset$.

The set E is called the support of \mathcal{E}. \mathcal{E} is called a proper subfamily of \mathcal{F} if E is a proper subset of F.
Composition of Families

Composition of families does exactly the opposite to collapsing. E.g., we can undo collapsing \mathcal{D} in the previous example.

Example
Consider set families $\mathcal{D} = \{\{x\}, \{y\}, \{x, y\}\}$ and $\mathcal{C} = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$
Composition of families does exactly the opposite to collapsing. E.g., we can undo collapsing \mathcal{D} in the previous example.

Example
Consider set families $\mathcal{D} = \{\{x\}, \{y\}, \{x, y\}\}$ and $\mathcal{C} = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$

Then we can replace $\{b\}$ with \mathcal{D} and in other sets b with x, y. This results in a family of subsets $\mathcal{C}(b \rightarrow \mathcal{D})$ given by

\[
\{\{a\}, \{x\}, \{y\}, \{x, y\}, \{c\}, \{a, x, y\}, \{x, y, c\}, \{a, x, y, c\}\}.
\]
Composition of structures. Example

On the previous slide two families were composed over b:

(a) Before embedding.

(b) After embedding.
Towards the Main Theorem

A crucial step towards the main theorem:

Proposition

Let \mathcal{E} and \mathcal{F} be families of subsets on disjoint sets E and F, respectively, that are clone structures. Then for any $e \in E$ the composition $\mathcal{E}(\ e \rightarrow \mathcal{F})$ is also a clone structure.

We illustrate the proof on the following slide.
Idea of the proof

Consider two clone structures
\[C = \{\{1\}, \{2\}, \{3\}, \{2, 3\}, \{1, 2, 3\}\}, \quad D = \{\{4\}, \{5\}, \{4, 5\}\} \]
and show that \(C(3 \to D) \) is also a clone structure.

We know \(C = C(\mathcal{R}) \), where \(\mathcal{R} = (R_1, R_2) \) with
\[
R_1 : 1 \succ 3 \succ 2 \\
R_2 : 3 \succ 2 \succ 1
\]

We obtain \(C(3 \to D) \) by cloning 3:
\[
R'_1 : 1 \succ 4 \succ 5 \succ 2 \\
R'_2 : 5 \succ 4 \succ 2 \succ 1
\]

Indeed we obtain the clone structure
\[
C(\mathcal{R}') = \{\{1\}, \{2\}, \{4\}, \{5\}, \{4, 5\}, \{2, 4, 5\}, \{1, 2, 4, 5\}\}.
\]

which is exactly \(C(3 \to D) \).
Definition
A family of subsets is indecomposable if it does not have proper subfamilies.

The crucial steps towards the main theorem is the following proposition:

Proposition
Any indecomposable family of subsets satisfying A1–A6 is either a string of sausages or a fat sausage and hence is a clone structure.
Proof of the Main Theorem

Suppose family \mathcal{F} satisfies A1–A6. If it is indecomposable, then \mathcal{F} is a clone structure.

If not, it contains a proper subfamily \mathcal{E}. Let z be an element which is not in the base set of \mathcal{F}. Then $\mathcal{F}' = \mathcal{F}(\mathcal{E} \rightarrow z)$ satisfies A1–A6, hence a clone structure by the induction hypothesis. So is \mathcal{E}.

However, then by the previous proposition, $\mathcal{F} = \mathcal{F}'(z \rightarrow \mathcal{E})$ also a clone structure.
Proof of the Main Theorem

Suppose family \mathcal{F} satisfies A1–A6. If it is indecomposable, then \mathcal{F} is a clone structure.

If not, it contains a proper subfamily \mathcal{E}. Let z be an element which is not in the base set of \mathcal{F}. Then $\mathcal{F}' = \mathcal{F}(\mathcal{E} \rightarrow z)$ satisfies A1–A6, hence a clone structure by the induction hypothesis.
Proof of the Main Theorem

Suppose family \mathcal{F} satisfies A1–A6. If it is indecomposible, then \mathcal{F} is a clone structure.

If not, it contains a proper subfamily \mathcal{E}. Let z be an element which is not in the base set of \mathcal{F}. Then $\mathcal{F}' = \mathcal{F}(\mathcal{E} \rightarrow z)$ satisfies A1–A6, hence a clone structure by the induction hypothesis.

So is \mathcal{E}.
Proof of the Main Theorem

Suppose family \mathcal{F} satisfies A1–A6. If it is indecomposable, then \mathcal{F} is a clone structure.

If not, it contains a proper subfamily \mathcal{E}. Let z be an element which is not in the base set of \mathcal{F}. Then $\mathcal{F}' = \mathcal{F}(\mathcal{E} \rightarrow z)$ satisfies A1–A6, hence a clone structure by the induction hypothesis.

So is \mathcal{E}.

However, then by the previous proposition,

$$\mathcal{F} = \mathcal{F}'(z \rightarrow \mathcal{E})$$

also a clone structure.
PQ-trees

PQ-trees were introduced by Booth and Lueker (1976).

A PQ-tree T over a set $A = \{a_1, \ldots, a_n\}$ is a class of equivalent ordered trees over A such that:

- The leaves of the tree correspond to the elements of A.
- Each internal node is either of type P or of type Q.
- If a node is of type P, then its children can be permuted arbitrarily.
- If a node is of type Q, then the order of its children can only be reversed.
Clone Structures and PQ-trees

Theorem

Clone structures are in 1-1 correspondence with PQ-trees.

Proof:

Collapsing all maximal subfamilies C_1, \ldots, C_k we get either a fat sausage or a string of sausages which is either a P-vertex or a Q-vertex. This will be the root of the tree.
Clone Structure as a PQ-tree. Example

Any fat sausage gives us a P-vertex and string of sausages gives us a Q-vertex.
We say that a clone structure C is \textit{k-implementable} if there exist a profile R with k linear orders such that $C = C(R)$.

Proposition

For $m > 3$ a fat sausage is 2-implementable.

Proof: Suppose e.g., that $m = 2k$. For convenience, set $x_i = i$, $y_i = k + i$ for $i = 1, \ldots, k$. We define $R = (R_1, R_2)$ as follows.

R_1: $x_1 \succ \ldots \succ x_k \succ y_1 \succ \ldots \succ y_k$, R_2: $y_1 \succ x_1 \succ y_2 \succ x_2 \succ \ldots \succ y_k \succ x_k$.

Then no proper clone set D exists. Looking at R_1: three cases to consider:

- $D \subseteq \{x_1, \ldots, x_k\}$;
- $D \subseteq \{y_1, \ldots, y_k\}$;
- $D \supseteq \{x_k, y_1\}$.

All cases are impossible if we take R_2 into account.
Implementability of Clone Structures 1

We say that a clone structure \mathcal{C} is k-implementable if there exist a profile \mathcal{R} with k linear orders such that $\mathcal{C} = C(\mathcal{R})$.

Proposition

For $m > 3$ a fat sausage is 2-implementable.
Implementability of Clone Structures 1

We say that a clone structure C is k-implementable if there exist a profile R with k linear orders such that $C = C(R)$.

Proposition

For $m > 3$ a fat sausage is 2-implementable.

Proof: Suppose e.g., that $m = 2k$. For convenience, set $x_i = i$, $y_i = k + i$ for $i = 1, \ldots, k$. We define $R = (R_1, R_2)$ as follows.

\[R_1 : x_1 \succ \ldots \succ x_k \succ y_1 \succ \ldots \succ y_k, \]
\[R_2 : y_1 \succ x_1 \succ y_2 \succ x_2 \succ \ldots \succ y_k \succ x_k. \]

Then no proper clone set D exists. Looking at R_1: three cases to consider:

- $D \subseteq \{x_1, \ldots, x_k\}$;
- $D \subseteq \{y_1, \ldots, y_k\}$;
- $D \supseteq \{x_k, y_1\}$.

All cases are impossible if we take R_2 into account.
Proposition

Any indecomposable clone structure over $[m]$ is 3-implementable.

Proof

- A string of sausages is 1-implementable;
- For $m > 3$ a fat sausage is 2-implementable;
- For $m = 3$ a fat sausage is 3-implementable.
Proposition

Any indecomposable clone structure over \([m]\) is 3-implementable.

Proof

- A string of sausages is 1-implementable;
- For \(m > 3\) a fat sausage is 2-implementable;
- For \(m = 3\) a fat sausage is 3-implementable.

Proposition

Let \(\mathcal{E}\) and \(\mathcal{F}\) be two 3-implementable clone structures on disjoint sets \(E\) and \(F\), respectively. Then for any \(e \in E\) the composition \(\mathcal{E}(e \rightarrow \mathcal{F})\) is also 3-implementable.
Proposition

Any indecomposable clone structure over \([m]\) is 3-implementable.

Proof

- A string of sausages is 1-implementable;
- For \(m > 3\) a fat sausage is 2-implementable;
- For \(m = 3\) a fat sausage is 3-implementable.

Proposition

Let \(E\) and \(F\) be two 3-implementable clone structures on disjoint sets \(E\) and \(F\), respectively. Then for any \(e \in E\) the composition \(E(e \rightarrow F)\) is also 3-implementable.

Theorem

Any clone structure is 3-implementable.
One of the assumptions often made in Political Science is that the ideological spectrum is one-dimensional. This means that there exist a linear order \succ over C (the societal axis). We say that an order \succ over C is compatible with \succ if for all $c, d, e \in C$ such that either $c \succ d \succ e$ or $e \succ d \succ c$, it holds that $c \succ d \implies d \succ e$.
Two definitions

Definition
Let $\mathcal{R} = (\succ_1, \ldots, \succ_n)$ be a profile over C. It is called single-peaked if there is a societal axis such that \succ_i is compatible with it for every $i = 1, \ldots, n$.

Definition
A clone structure \mathcal{C} is single-peaked if it can be rimplemented by a single-peaked profile \mathcal{R}, that is $\mathcal{C} = \mathcal{C}(\mathcal{R})$.
Some observations and open question

Proposition

Any *fat sausage* and *string of sausages* are *single-peaked*.
Some observations and open question

Proposition

Any fat sausage and string of sausages are single-peaked.

For example, this profile, called a slide, is single-peaked and implements the fat sausage:

<table>
<thead>
<tr>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>
Proposition

Any fat sausage and string of sausages are single-peaked.

For example, this profile, called a slide, is single-peaked and implements the fat sausage:

\[
\begin{array}{cccccc}
V_1 & V_2 & V_3 & V_4 & V_5 \\
\hline
a & b & b & b & b \\
b & a & c & c & c \\
c & c & a & d & d \\
d & d & d & a & e \\
e & e & e & e & a \\
\end{array}
\]

However, if \(C \) is a string of sausages over \(\{a, b, c\} \) and \(D \) is a string of sausages over \(\{u, v, w\} \). Then \(C(b \rightarrow D) \) is not single-peaked.
Open Question: Characterise single-peaked clone structures in terms of their PQ-trees.
Let $\mathcal{R} = (\succeq_1, \ldots, \succeq_n)$ be a profile over C and let $\{a, b\} \subseteq C$. We say that \mathcal{R} is single-crossing with respect to $\{a, b\}$ if there exist $1 \leq k \leq n$ such that $a \succeq_i b$ for $i \in [1, \ldots, k]$ and $b \succeq_i a$ for $i \in [k + 1, \ldots, n]$ or $b \succeq_i a$ for $i \in [1, \ldots, k]$ and $a \succeq_i b$ for $i \in [k + 1, \ldots, n]$.

A profile is single-crossing if it is single-crossing with respect to any pair. For example, any slide is single-crossing:

<table>
<thead>
<tr>
<th></th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>a</td>
</tr>
</tbody>
</table>
Indecomposable structures are single-crossing

Any 1-implementable or 2-implementable clone structures are trivially single-crossing. The only indecomposable clone structure left is a fat sausage for \(m = 3 \).

We can use a slide to implement it:

\[
\begin{array}{ccc}
 a & b & b \\
 b & a & c \\
 c & c & a
\end{array}
\]

Proposition

Let \(\mathcal{E} \) and \(\mathcal{F} \) be two single-crossing clone structures on disjoint sets \(E \) and \(F \), respectively. Then for any \(e \in E \) the composition \(\mathcal{E}(e \to \mathcal{F}) \) is also single-crossing.

Theorem

Every clone structure is single crossing.
Shall we always declone?

Once you start decloning it is not clear where to stop.

However there is an exception: if you expected that the election will be single-peaked but it was not. You suspect that it was due to cloning.

We found a polynomial time algorithm that takes an election and outputs a single-peaked election collapsing as few clones as possible.

However decloning to a single-crossing election is NP-complete.
And may the force be with you all!