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Abstract

In many situations, cooperating agents have different status with respect to an

activity. Often a coalition can undertake the activity only if sufficiently many

agents, or agents of sufficient seniority participate in it. The concept of a sim-

ple game, introduced by von Neumann & Morgenstern (1944), is flexible enough

to model a large class of such situations. In this dissertation, we consider two

important classes of simple games called the classes of weighted simple games,

and roughly weighted simple games, and apply the knowledge obtained from their

study to make progress towards solving an important open problem in a branch

of cryptography called secret sharing schemes. Secret sharing schemes were first

introduced by Shamir (1979) and now widely used in many cryptographic proto-

cols as a tool for securely storing information that is highly sensitive and highly

important. Such information includes encryption keys, missile launch codes, and

numbered bank accounts. A secret sharing scheme stipulates giving to each player

a piece of information called ‘share’ so that only authorised coalitions can calcu-

late the secret combining their shares together. The set of all authorised coali-

tions is called an access structure. Mathematically speaking, an access structure

is a simple game. Different types of secret sharing schemes exist, and some of

them are more efficient and secure than others. The most informationally effi-

cient and secure schemes are called ideal, and these are obviously very sought

after and therefore give rise to the question: Which access structures are ideal?

Using game-theoretic methods, we contribute to the problem of characterising all

ideal secret sharing schemes in the two aforementioned classes of weighted and

roughly weighted simple games. We start with a study of two important classes

of simple games in the ideal weighted setting, namely hierarchical and tripartite.

Then we study the operation of composing simple games. We then apply our

knowledge, and existing results by Beimel, Tassa, & Weinreb (2008) and Farràs

& Padró (2010), to providing an ‘if and only if’ characterisation theorem for all

ideal weighted simple games. Finally, we undertake a study of some ideal roughly

weighted simple games. Here, firstly we generalise our result regarding which
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hierarchical simple games are weighted to which hierarchical simple games are

roughly weighted. Secondly, we answer the question of whether a tripartite sim-

ple game can be roughly weighted and nonweighted. Thirdly, we show that there

exists an ideal roughly weighted simple game that is neither a hierarchical nor a

tripartite simple game, showing that the classification of ideal roughly weighted

simple games cannot be accomplished along the same lines as in (Beimel, Tassa,

& Weinreb, 2008).
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Simple games and secret sharing schemes

In many situations, cooperating agents have different status with respect to an

activity. Often a coalition can undertake the activity only if sufficiently many

agents, or agents of sufficient seniority participate in it. The classic example of

such situation is the United Nations Security Council voting on whether or not to

impose sanctions on a country developing nuclear weapons. Nine members of the

Security Council in total must vote in favour of the sanctions, including all five

permanent members. The concept of a simple game, introduced by von Neumann

& Morgenstern (1944), is flexible enough to model a large class of such situations.

In the theory of simple games seniority of players is usually modeled by assigning

to players different weights and setting a threshold so that a coalition is winning

(can undertake the activity) if and only if the combined weight of its players is at

least the threshold. Such a simple game is called weighted or weighted threshold.

This is perfectly natural, for example, in the context of corporate voting when

different shareholders may hold different number of shares. More generally, if

two players in a simple game are such that they are either equal to each other in
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seniority 1, or one is strictly more senior than the other, then they are comparable

to each other, and if any two players in the game are comparable, then the game

is called complete. The class of complete games includes the class of weighted

games and more.

Secret sharing schemes , first introduced by Shamir (1979) and also indepen-

dently by Blakley (1979), and now widely used in many cryptographic proto-

cols, is a tool designed for securely storing information that is highly sensitive

and highly important. Such information includes encryption keys, missile launch

codes, and numbered bank accounts. A secret sharing scheme stipulates giving to

players ‘shares’ of the secret so that only authorised coalitions can calculate the

secret combining their shares together. Different types of secret sharing schemes

exist, and some of them are more efficient and secure than others. The most infor-

mationally efficient and secure secret sharing schemes are called ideal. The set of

all authorised coalitions of a secret sharing scheme is known as the access struc-

ture (e.g., Simmons, 1990; Stinson, 1992). It can also be modeled by a simple

game, for, mathematically speaking, an access structure is a simple game, and for

simplicity, sometimes we will refer to them as ‘games’.

Our work in this thesis is game-theoretic in nature, however, it is ultimately

applied to the study of ideal secret sharing schemes, hence the title of the the-

sis. Our approach to games here will be based on a way of relating players to

each other that we will explain in Chapter 2, called Isbell’s desirability relation

(see Isbell (1958), Maschler & Peleg (1966) and Taylor & Zwicker (1999)). It is

a way of organising a simple game into different levels of seniority, where each

level contains players who all share the same seniority. This we found has simpli-

fied things, and has enabled us to re-write many of the existing results in a more

transparent way.

1The concept of seniority will be rigorously defined later.
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1.1.2 The project of characterising ideal secret sharing schemes

Since ideal secret sharing schemes are the most informationally efficient and

secure, and since not all secret sharing schemes are ideal (see Benaloh & Le-

ichter (1990)), the project of characterising all access structures that carry an ideal

secret sharing scheme, or in other words characterising ideal access structures,

has been pursued by numerous people (e.g., Brickell (1989); Brickell & Daven-

port (1991); Beimel & Chor (1994); Padró & Sáez (1998); Golić (1998); Collins

(2002); Ng (2006); Martı́-Farré et al. (2006); Farras et al. (2007); Beimel, Livne, &

Padró (2008); Beimel, Tassa, & Weinreb (2008); Herranz (2009); HSU ChingFang

(2010); Farràs et al. (2011); Farràs & Padró (2011); Farràs & Padró (2012); Farràs

et al. (2012)). It is now considered as one of the main open problems in the theory

of secret sharing schemes. Finding a description of all access structures that can

carry an ideal secret sharing scheme appeared to be quite difficult, and there has

been two approaches to it.

The first approach, which may be called the top-down approach, employs Ma-

troid Theory. A major milestone was achieved by Brickell & Davenport (1991)

who showed that all ideal secret sharing schemes have matroids corresponding to

them. Furthermore, matroids are either representable or not (see Oxley (1992) for

definitions), and it has been found, also by Brickell & Davenport (1991), that all

representable matroids realise ideal access structures. As for the nonrepresentable

matroids, it was shown that in at least one case, the Vamos matroid, does not

realise an ideal access structure (Seymour (1992)). So this approach is reduced

to classifying those matroids that do realise ideal access structures. The papers

by Beimel (2011) and Martı́-Farré & Padró (2007) give a nice overview and dis-

cussion of the problem, and the developments made therein.

The other approach, which is the bottom-up approach, aims at studying and

characterising ideal access structures in different known particular classes of se-

cret sharing schemes: ideal weighted access structures, ideal roughly weighted

access structures, ideal complete access structures etc. This approach is the fo-

cus of this thesis, and in this important direction, many successful attempts have
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been made, including the characterisations of graph based ideal access structures

(Brickell & Davenport, 1991), bipartite access structures (Padró & Sáez, 1998),

tripartite access structures (Collins, 2002), hierarchical access structures (Brickell

(1989); Tassa (2007)), multipartite access structures (Farras et al., 2007), weighted

access structures (Beimel, Tassa, & Weinreb, 2008), complete access structures

(Farràs & Padró, 2010). Of great relevance to the work presented in this disserta-

tion, is the study of ideal weighted access structures. The first significant advance

in the study of ideal weighted access structures was achieved by Beimel, Tassa,

& Weinreb (2008). They found that weighted ideal access structures are either

composed of two smaller weighted ideal access structures, or they are indecom-

posable. In the latter case, those access structures belong to either of the two

families of access structures called ‘hierarchical’ and ‘tripartite’. Hierarchical ac-

cess structures are of two types, disjunctive and conjunctive, both of which were

previously shown to be ideal by Brickell (1989) and Tassa (2007) respectively.

Tripartite access structures were also shown to be ideal in Beimel, Tassa, & Wein-

reb (2008). Moreover, Beimel, Tassa, & Weinreb (2008) classified those access

structures that are both disjunctive hierarchical and weighted, this result was fur-

ther improved upon by Gvozdeva, Hameed, & Slinko (2013). Farràs & Padró

(2010) refined the results obtained by Beimel, Tassa, & Weinreb (2008). They

gave a characterisation of ideal access structures in the class of complete access

structures (which includes weighted access structures), and then using this result,

Farràs & Padró (2010) gave a list of indecomposable ideal weighted access struc-

tures. In particular, they classified all indecomposable weighted hierarchical and

tripartite access structures.

To summarise, Beimel, Tassa, & Weinreb (2008) and Farràs & Padró (2010)

have shown that an ideal weighted access structure is either decomposable, or

a hierarchical access structure, or a tripartite access structure. For a complete

characterisation of all ideal weighted access structures, it remained to be seen

what the necessary and sufficient conditions are for the composition of two ideal

weighted access structures to be also ideal weighted access structure. One of

our main contributions in this thesis is giving an ‘if and only if’ characterisation
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theorem for all ideal weighted access structures (ideal weighted simple games). In

the next section, we take a closer look at the results of Beimel, Tassa, & Weinreb

(2008) and Farràs & Padró (2010), since that will enable us to explain our results

better.

1.1.3 Ideal weighted secret sharing schemes: outline of existing
results

The main results in this direction were obtained by Beimel, Tassa, & Weinreb

(2008) and Farràs & Padró (2010). Let us first start with the main achievements

in (Beimel, Tassa, & Weinreb, 2008), we shall state their theorem below, but it

can be summarised as follows: any ideal weighted simple game is a composition

of indecomposable ideal weighted simple games, such that an indecomposable

ideal weighted simple game is either a hierarchical simple game of at most two

nontrivial levels, or it is a tripartite simple game.

Their main theorem concerning the summary above is stated below, it may

contain some unfamiliar terminology to the reader at this stage, but will become

clearer in light of the work of the next few chapters. We have slightly modified the

statement of their theorem to the terminology of simple games (since our thesis is

game-theoretic), rather than secret sharing, in which it was originally stated.

Theorem 1.1.1. ((Beimel, Tassa, & Weinreb, 2008), Theorem 3.5) Let Γ be an

ideal weighted simple game without dummies defined on a set of players P . Then:

(i) it is a disjunctive hierarchical simple game of at most two nontrivial levels,

or

(ii) it is a tripartite simple game, or

(iii) it is a composition of Γ1 and Γ2, where Γ1 and Γ2 are ideal weighted simple

games defined on sets of players smaller than P .
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Another important achievement they made in the same paper, is the character-

isation of weighted simple games in the class of disjunctive hierarchical simple

games (see Claim 6.5 in Beimel, Tassa, & Weinreb (2008)).

Few years later, the paper by Farràs & Padró (2010) gave more refined infor-

mation about indecomposable ideal weighted simple games. They observed that

not all hierarchical and tripartite games are indecomposable, and listed only the

indecomposable ones. The main achievements of their paper can be summarised

as follows: any ideal weighted simple game is a composition of indecomposable

ideal weighted simple games, such that an indecomposable ideal weighted simple

game is either a hierarchical simple game of one of four types, or it is a tripartite

simple game of one of three types.

Here is their main theorem regarding this summary.

Theorem 1.1.2. ((Farràs & Padró, 2010), Theorem 10.1) Let Γ be an ideal weighted

simple game without dummies. Then one of the following four conditions holds:

(i) it is a simple majority game (a 1-level hierarchical simple game), or

(ii) it is a bipartite simple game in one of the types B1, B2 or B3 (2-level hier-

archical simple games), or

(iii) it is a tripartite simple game in one of the types T1, T2 and T3, or

(iv) it is a composition of two smaller ideal weighted simple games.

We have again slightly modified their statement to the terminology of simple

games, rather than secret sharing terminology.

Now we are ready to explain the work, and state the results of this thesis.

1.2 Our work in this thesis

Our results contribute to two closely related directions, both of which are ulti-

mately related to the characterisation of ideal simple games:
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(1) Complete characterisation of ideal weighted simple games;

(2) Classification of weighted and roughly weighted games within the classes

of disjunctive and conjunctive hierarchical games.

The link between the two directions is provided by the theorems of Brickell

(1989) and Tassa (2007) who respectively proved that disjunctive and conjunctive

hierarchical games are ideal.

As mentioned earlier, from existing results we know that ideal weighted sim-

ple games are either hierarchical or tripartite or composed of smaller ideal simple

games. Therefore we will dedicate a chapter for each one of those classes. We will

carry out a thorough study of each one, starting with hierarchical simple games

and ending with composed simple games. Then the information gathered will

culminate in our characterisation theorem in Chapter 6, which characterises ideal

weighted simple games.

Thereafter, we consider a bigger class of simple games beyond the class of

weighted games, which is called roughly weighted games (see Taylor & Zwicker

(1999), p.78 and Gvozdeva & Slinko (2011)). We made headway in the direction

of characterising ideal roughly weighted games. Indeed, characterising roughly

weighted hierarchical games is the first necessary step towards characterising ideal

roughly weighted simple games. Our main contributions in this thesis are as fol-

lows, we break them into two parts, the first is for ideal weighted simple games,

and the second is for ideal roughly weighted simple games.

1.2.1 Ideal weighted simple games

(a) As mentioned earlier, there are two types of hierarchical organisation, dis-

junctive and conjunctive, of which the latter received less attention in the

literature than the former. We give canonical representations for both of

them (Theorems 3.2.1 and 3.2.8). We then prove that the two types are

duals of each other (Theorem 3.3.1). Also, we study the intersection of
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hierarchical games of both types with weighted games. Although, for the

disjunctive case, this has been done by Beimel, Tassa, & Weinreb (2008),

we give an alternative proof which is slightly more general than the exist-

ing one. We derive an analogous result for the conjunctive type by duality

(Theorems 3.6.2 and 3.6.3).

(b) The class of tripartite simple games also has two types, and we give canon-

ical representations for both types (Propositions 4.2.1 and 4.2.3). Also, we

take a thorough look at the list of indecomposable weighted games in this

class, which was given in Farràs & Padró (2010), and thereby show that one

of the tripartite simple games in their list can in fact be decomposed.

(c) Although introduced in the foundational work by Shapley (1962) and rein-

vented by Martin (1993), the operation of composition of simple games has

received little attention in the game-theoretic literature so far, so we inves-

tigate properties of it.

We first provide some insights about compositions and decompositions of

simple games in general, such as the associativity of the operation of com-

position (Proposition 5.1.6), and that there is up to an isomorphism a unique

way to compose two complete games such that the composed game is also

complete (Lemma 5.2.1). We also demonstrate with an example that even

if the two weighted games are ideal, then their composition may still not be

weighted (Example 5.2.5), contrary to what has been implicitly assumed by

several authors. Finally, in Chapter 6 we apply our knowledge of composi-

tions to achieve our characterisation theorem stated below.

(d) The characterisation theorem shows that any ideal weighted simple game G

is a composition of the form

G = H1 ◦ . . . ◦Hs ◦ I ◦ An (s ≥ 0);

where Hi is of type H for each i = 1, . . . , s. Also, I , which is allowed

to be absent, is an indecomposable game of types B1, B2, B3, T1, T3a and

T3b, and An is the anti-unanimity game on n players. Moreover, An can be

22



present only if I is either absent or it is of type B2; in the latter case the

composition I ◦ An is over a player of the least desirable level of I . Also,

the above decomposition is unique 2.

1.2.2 Ideal roughly weighted simple games

In Chapter 7, we take on the task of extending our characterisation of ideal weighted

simple games to ideal roughly weighted simple games. The class of roughly

weighted simple games is larger than the class of weighted simple games, and yet

roughly weighted games retain many nice properties of weighted games (Gvozdeva

& Slinko, 2011). So it is a natural progression to move from the study of ideal

weighted games to the study of ideal roughly weighted games. This new prob-

lem is far from being solved in this thesis, however, we made good advances

in this direction as will be explained shortly. We start by making it clear that

roughly weighted games can be either complete or incomplete (Example 7.2.1),

unlike weighted games which are necessarily complete. We then take a further

step and show that even when the roughly weighted games are ideal, they may

still be complete and incomplete, we give an example of an ideal incomplete non-

weighted roughly weighted game, and we prove its ideality using Matroid Theory

(Example 7.2.7). But we only concern ourselves for the rest of the thesis with

studying ideal complete nonweighted roughly weighted games.

Let us now outline the general strategy that one might employ for classifying

ideal roughly weighted games. This is the same strategy as was used by Beimel,

Tassa, & Weinreb (2008).

(RW1) The first step is to try to answer the question: Is it true that any roughly

weighted simple game is a composition of indecomposable roughly weighted

games?

(RW2) Classify ideal indecomposable roughly weighted games in the classes of

hierarchical and tripartite games.
2The types of games H, B1, B2, B3, T1, T3a and T3b will be described in full in Chapter 6.
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(RW3) Which then leaves us with the question: Are there any ideal indecomposable

roughly weighted games which are neither hierarchical nor tripartite?

And our accomplishments in this direction are as follows.

(a) In addressing (RW1), we give a result, Lemma 7.1.2, showing that, with few

pathological exceptions, any roughly weighted game, regardless of whether

it is ideal or not, decomposes into a number of indecomposable roughly

weighted games. Hence, apart from a few pathological cases, an ideal

roughly weighted game is a composition of indecomposable ideal roughly

weighted games.

(b) The characterisation of roughly weighted hierarchical games. In addressing

(RW2), we give an ‘if and only if’ characterisation of nonweighted roughly

weighted hierarchical simple games, both disjunctive and conjunctive (The-

orem 7.3.1 and 7.3.2). We discover that hierarchical games in this class

can have up to three nontrivial levels, in contrast to weighted hierarchical

games which can have only up to two nontrivial levels. This already estab-

lishes that the class of roughly weighted ideal simple games is larger than

that of weighted ideal simple games. Also, we give an example of an in-

decomposable nonweighted roughly weighted tripartite simple game, thus

also establishing that the class of roughly weighted tripartite games is larger

than that of weighted tripartite simple games (Example 7.4.2).

(c) We then answer the question in (RW3) in the positive. We give an example

of a 4-partite (of four seniority levels) roughly weighted simple game which

is ideal but is neither hierarchical nor tripartite (Example 7.5.3). We prove

that it is ideal with the help of a result from (Farràs & Padró, 2010), which

characterises all complete ideal simple games (see page 164). We also prove

its indecomposability.

This leaves us with the open question: How many seniority levels can an

ideal roughly weighted game have?

Let us now briefly describe the techniques used in this thesis.
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1.2.3 Techniques used

Our study in this thesis is focused firstly on weighted games, and secondly on

complete roughly weighted games, therefore all games under consideration (with

a few exceptions) are complete. The main techniques used in the thesis are game-

theoretic. They can be summarised as follows.

(a) Since all games being studied are complete, then on a foundational level,

our approach to each game and all players of that game, is based on Isbell’s

desirability relation. This is because in a complete game, every two players

are comparable in terms of Isbell’s desirability relation, and hence the game

as a whole can be divided into a number of equivalence classes, or desirabil-

ity levels, each level containing players sharing the same Isbell desirability.

Using these desirability orderings then, we can define shift-minimal win-

ning coalitions and shift-maximal losing coalitions, and these play pivotal

roles in the steps to follow. Isbell’s desirability relation is also used in many

places to work out canonical representations for games.

(b) The technique of trading transforms (Taylor & Zwicker, 1999) is used to

work out which games are weighted and which ones are not. Employing

this technique requires a list of shift-minimal winning coalitions. In partic-

ular, all cases where the composition of two games is not weighted were

identified using trading transforms.

(c) Various combinatorial methods are used to establish canonical representa-

tions for games. For example, we identify the restrictions on the parameters

of hierarchical games, necessary and sufficient, for all desirability levels

to be nontrivial. The canonical representation then becomes one main tool.

For example, it is used to prove that disjunctive and conjunctive hierarchical

games are duals of each other.

(c) In Chapter 3, we prove structural characterisations of disjunctive and con-

junctive hierarchical games. This structural characterisation shows that
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Figure 1.1: The main kinds of simple games considered in this thesis

a disjunctive hierarchical game is a complete game with a unique shift-

maximal losing coalition, and a conjunctive hierarchical game is a com-

plete game with a unique shift-minimal winning coalition. This becomes

our main tool in Chapter 7, where we charactrise all nonweighted roughly

weighted hierarchical games.

(d) Finally, in Chapter 7 we use Matroid Theory to prove the existence of an

ideal incomplete nonweighted roughly weighted game.

Figure 1.1 gives an overview of the main simple games considered in this

thesis.
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The structure of the thesis is as follows:

Chapter 2 covers all the necessary basics for this thesis, both for simple games

and secret sharing schemes. It is far from being an exhaustive reference for those

two fields of study, but provides the reader with the necessary pre-requisites, and

gives a general introduction to those two topics. For a more detailed reference

on simple games, the reader is advised to look at (Taylor & Zwicker, 1999), and

for secret sharing schemes (Stinson, 1992) and (Beimel, 2011), and the literature

referenced there.

Chapter 3 discusses hierarchical simple games by firstly distinguishing its two

types, their completeness, then establishing their canonical representations, the

duality between the two types, structural characterisations and finally characteris-

ing their weightedness.

Chapter 4 is similar to Chapter 3 in its structure, but it is for tripartite simple

games.

Chapter 5 contains results regarding the operation of composition of simple

games, which are later used in characterising ideal weighted simple games.

In the first section of Chapter 6, we list the indecomposable ideal weighted

simple games in details. And the remaining part of Chapter 6 is dedicated to

proving one of the main results of this thesis: the characterisation theorem of

ideal weighted games.

Chapter 7 contains material that makes advances in the direction of character-

ising ideal roughly weighted games that are not weighted. In particular, we fully

characterise roughly weighted hierarchical games, both disjunctive and conjunc-

tive.

Chapter 8 suggests few open problems and possibilities for future research.
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Chapter 2

Preliminaries

2.1 Simple games in real life

A simple game is a mathematical object that is used in economics and political

science to describe the distribution of power among coalitions of players (von

Neumann & Morgenstern (1944), Shapley (1962)). Recently, simple games have

been studied as access structures of secret sharing schemes (e.g., Padró et al.

(2013); dela Cruz & Wang (2013); Farràs et al. (2012)), which will be discussed

in Section 2.3. Simple games have also appeared in a variety of mathematical and

computer science contexts under various names, e.g., monotone boolean func-

tions (Korshunov, 2003) or switching functions and threshold functions (Muroga,

1971). Simple games are closely related to hypergraphs, coherent structures,

Sperner systems, clutters, and abstract simplicial complexes. The term “simple”

was introduced by von Neumann & Morgenstern (1944), because in this type of

games players strive not for monetary rewards but for power, and each coalition is

either all-powerful or completely ineffectual. However, these games are far from

being simple.

A participant in a simple game is called player. An important class of simple

games, well studied in economics, and a major topic in this thesis, is the class of

weighted majority games which were briefly discussed in Chapter 1. However,
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it is well known that not every simple game has a representation as a weighted

majority game (von Neumann & Morgenstern (1944)).

Let us now give a formal definition of a simple game. Throughout the thesis,

we will denote the set {1, 2, . . . , n} as [n]. Also, for short, we may use the term

game rather then simple game, and weighted game rather then weighted majority

game.

Definition 2.1.1. Let P = [n] be a set of players and let ∅ 6= W ⊆ 2P be a

collection of subsets of P that satisfies the following property, which is called the

monotonicity property:

if X ∈ W and X ⊆ Y , then Y ∈ W . (2.1.1)

In such case the pair G = (P,W ) is called a simple game, and the set W is called

the set of winning coalitions of G. Coalitions that are not in W are called losing,

and their set will be denoted by L. Also, if the removal of any player from a

winning coalition makes the winning coalition losing, then it is called a minimal

winning coalition.

Due to the property (2.1.1) the subset W is completely determined by the set

Wmin of minimal winning coalitions of G. A player who does not belong to any

minimal winning coalition is called a dummy. Such player can be removed from

any winning coalition without making it losing. We say that player p in a game

is a blocker (also called a veto player, or a vetoer) if p belongs to every winning

coalition. If all coalitions containing player p are winning, this player is called a

passer. A blocker who is also a passer is called a dictator.

Let us look at few examples of simple games, in some of these examples we

may use the word authorised instead of winning due to the nature of the example,

but they mean the same thing.

Example 2.1.2. Let the set of players U consist of the various employees of a

bank, where CEO stands for chief executive officer, GM stands for a general man-

ager, and T stands for a teller. So that U = {CEO,GM1, .., GM3, T1, .., T5}.
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Suppose that a certain major transaction can only be authorised by either the CEO,

or any two general managers. Then the set of minimal authorised (winning) coali-

tions is Wmin = {{CEO}, {GM1, GM2}, {GM1, GM3}, {GM2, GM3}}. So we

can see that the CEO is a passer, and the tellers are dummies in this case.

What follows is another example of a simple game.

Example 2.1.3. The three top officials of some country, the president (P), the

vice president (VP) and the minister of defense (MD) have nuclear briefcases,

carried after them by security officers, so that any two of them can authorise

a launch of a nuclear strike, but no one alone can do that. The set of play-

ers here is U = {P, V P,MD}. The set of minimal authorised coalitions is

Wmin = {{P, V P}, {P,MD}, {V P,MD}}. We can see that here we have no

passers, and no dummies.

The simple game above is an example of a k-out-of-n game, meaning any k

players from the total of n players in the game are winning, so the example above

is a 2-out-of-3 one. This kind of a game is also called a simple majority game.

The next example is for the classic simple game of the United Nations Security

Council (see for example Taylor & Zwicker (1999), p.9).

Example 2.1.4. Consider the United Nations Security Council voting on a res-

olution. There are 15 members of the Security Council, among which are five

permanent members (PM), and 10 non-permanent members (NPM). A resolution

is passed if nine members in total vote in favour of the resolution, including all

five permanent members. So the set of players is U = {PM1, .., PM5, NPM1, ..,

NPM10}, and a typical minimal winning coalition will look like {PM1, .., PM5,

NPM1, .., NPM4}.

The next example is the European Economic Community (see for example Tay-

lor & Zwicker (1999), p.9).

Example 2.1.5. In 1958, the Treaty of Rome established the existence of a voting

system called the European Economic Community. The voters in this system were
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the following six countries: France, Germany, Italy, Belgium, the Netherlands

and Luxembourg. France, Germany and Italy were given four votes each, while

Belgium and the Netherlands were given two votes and Luxembourg one. Passage

required at least twelve of the seventeen votes. So in this case the minimal winning

coalitions were Wmin = {{France, Germany, Italy}, {France, Germany, Belgium,

Netherlands}, {France, Italy, Belgium, Netherlands}, {Germany, Italy, Belgium,

Netherlands}}. So we can see that Luxembourg was a dummy.

In Example 2.1.3, if we assign weight 1 to each of the P, VP and MD, and set

the threshold to be 2, then we can see that it is a weighted majority game, since

any two players have a combined weight of 2, which is equal to the threshold. But

every player alone cannot win, since its weight is strictly less than the value of the

threshold.

It is easy in Example 2.1.4 to see why this game is weighted: assign each

permanent member weight 7, each non-permanent member weight 1, and set the

threshold to be 39.

In Example 2.1.5, the game has been defined as a weighted game from the

outset.

Let us end this section with an example of a nonweighted simple game (see Tay-

lor & Zwicker (1999), p.10-11).

Example 2.1.6. (The System to Amend the Canadian Constitution). Since 1982,

an amendment to the Canadian Constitution can become law only if it is ap-

proved by at least seven of the ten Canadian provinces, subject to the proviso

that the approving provinces have, among them, at least half of Canada’s pop-

ulation. A census (in percentages) for the Canadian provinces was: Prince Ed-

ward Island (PEI) had 1%, Newfoundland (New) had 3%, New Brunswick (NB)

3%, Nova Scotia (NV) 4%, Manitoba (Man) 5%, Saskatchewan (Sas) 5%, Al-

berta (Alb) 7%, British Columbia (BC) 9%, Quebec (Que) 29% and Ontario (Ont)

had 34%. So the coalitions S1 = {PEI,New,Man, Sas,Alb, BC,Que}, and

S2 = {NB,NS,Man, Sas,Alb, BC,Ont} are minimal winning coalitions, be-

cause they both have exactly 7 provinces, and their populations surpass 50% of the
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total Canada’s population. On the other hand, coalitions T1 = {Man, Sas,Alb,

BC,Que,Ont} and T2 = {PEI,New,NB,NS,Man, Sas,Alb, BC} are both

losing, because T1 does not have 7 members and T2 does not reach the 50% of the

total Canada’s population.

So we can see that the game above has two thresholds and two sets of weights.

One threshold is 7 for the number of players in a coalition (provinces in this case),

and the weight of each player in this case is 1. The other threshold is 50% (half

of Canada’s population in this case), such that the weight of each player here is

the percentage of population of each province. This causes its nonweightedness

(see Taylor & Zwicker (1999), p.10-11 for the details).

Next we look at some definitions and facts regarding important classes of sim-

ple games.

2.2 Properties, important classes and some opera-

tions in the theory of simple games

A distinctive feature of many games is that the set of players is partitioned into

equivalence classes, and players in each of the equivalence classes have equal

status. Meaning, in any coalition X (winning or losing) containing player x from

some equivalence class E, x can be replaced with another player from E, without

altering the fact that X was winning or losing. We formalise this in the next

section.

2.2.1 Seniority of players and Multisets

Given a simple game G we define a relation ∼G on P by setting i ∼G j if for

every set X ⊆ P not containing i and j

X ∪ {i} ∈ W ⇐⇒ X ∪ {j} ∈ W.
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Lemma 2.2.1. ∼G is an equivalence relation.

Proof. This is Proposition 3.2.4 in (Taylor & Zwicker, 1999).

Given a game G on a set of players P , we may also define a relation �G on P

by setting i �G j if for every set X ⊆ P not containing i and j

X ∪ {j} ∈ W =⇒ X ∪ {i} ∈ W.

The above is saying that player i is at least as influential, or at least as senior, as

player j. In such a case, in every winning coalition X containing j but not i, we

can remove j and replace it with i, and still have a winning coalition.

This relation is known as Isbell’s desirability relation (see Isbell (1958),

Maschler & Peleg (1966) and Taylor & Zwicker (1999)). We also define the

relation i �G j as i �G j but not j �G i. If i �G j then we say that the

player i is strictly more desirable than player j. Coalitions prefer to have a player

with higher desirability in their ranks than a player with a lower desirability, since

having such a player will increase their chances of winning.

It is easy to see that Isbell’s desirability relation is reflexive, and it is not diffi-

cult to show that it is transitive (see Taylor & Zwicker (1999), p.89-90).

We suggest analysing games with large classes of equivalent players with the

help of multisets.

Definition 2.2.2. A multiset on the set [m] is a mapping µ : [m]→ Z+ of [m] into

the set of nonnegative integers. It is often written in the form

µ = {1k1 , 2k2 , . . . ,mkm} (2.2.1)

where ki = µ(i). This number is called the multiplicity of i in µ.

A multiset ν = {1j1 , . . . ,mjm} is a submultiset of a multiset µ given in (2.2.1),

iff ji ≤ ki for all i ∈ [m]. This is denoted as ν ⊆ µ.

The existence of large equivalence classes relative to ∼G allows us to com-

press the information about the game. This is done by the following construction.
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Let now G = (P,W ) be a game and ∼G be its corresponding equivalence re-

lation. Then P can be partitioned into a finite number of equivalence classes

P = P1 ∪ P2 ∪ . . . ∪ Pm relative to ∼G and suppose that |Pi| = ni. Then we put

in correspondence to the set of players P a multiset P̄ = {1n1 , 2n2 , . . . ,mnm}.
By doing so we identify those players in P that are equivalent and do not dis-

tinguish between them any further. We carry over the game structure to P̄ by

defining the set of submultisets W ⊆ 2P̄ as follows: we assume that a submultiset

Q = {1`1 , 2`2 , . . . ,m`m} belongs to W if a subset of P containing `i players from

Pi (i = 1, 2, . . . ,m), is winning in G. This definition is correct since the sets

Pi are defined in such a way that it does not matter which `i players from Pi are

involved. We will call Ḡ = (P̄ ,W ) the multiset representation of G.

As an illustration of the multiset representation and equivalence classes, recall

Example 2.1.4 of the United Nations Security Council. In this game, we can

see that in a winning coalition, a permanent member cannot be replaced by a

non-permanent member, meaning permanent members are more senior. So the

game of the United Nations Security Council could be written as Ḡ = (P̄ ,W ),

where P̄ = {15, 210}, where equivalence class 1 is for permanent members, and

equivalence class 2 is for non-permanent members. Also, Wmin = {{15, 24}}.
Note how the multiset representation allows us to describe the winning coalitions

in a compact form, for example 24 in {15, 24} refers to any four members from

equivalence class 2, which is more convenient than listing all combinations of four

members from equivalence class 2.

Definition 2.2.3. A pair Ḡ = (P̄ ,W ) where P̄ = {1n1 , 2n2 , . . . ,mnm} and W is

a system of submultisets of the multiset P̄ is said to be a simple game on P̄ if

for any X ∈ W and any X ⊆ Y it holds that Y ∈ W.

So the multiset representation of a simple game on a set of players P is a

simple game on the multiset P̄ .
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2.2.2 Complete simple games

A game G is called complete if �G is a total preorder, i.e., reflexive, transitive

relation for which every two players i and j are comparable with respect to �G,

meaning either i �G j or j �G i. But Isbell’s desirability relation is reflexive and

transitive, so in order to show that a game is complete, it is enough to show that

every two players are comparable. Since ∼G is an equivalence relation, then a

game is split into classes of equivalent players. For a complete game G we always

enumerate equivalence classes so that x �G y if and only if x ∈ Pi and y ∈ Pj
with i < j (Pi and Pj are the equivalence classes from the previous section). Then

in Ḡ we have 1 �Ḡ 2 �Ḡ . . . �Ḡ m, meaning players of equivalence class 1, or

level 1, are more desirable than players of level 2 and so on.

In Example 2.1.3 the simple game had only one desirability level, hence it is

complete. So the multiset of players can be written as U = {13}. Then the set

of minimal authorised coalitions is Wmin = {{12}}. As explained earlier, this is a

2-out-of-3 game.

Two simple games (P,W ) and (P ′,W ′) are said to be isomorphic if there

exists a bijection τ : P → P ′ such that X ∈ W if and only if τ(X) ∈ W ′.

Isomorphisms preserve Isbell’s desirability relation (Carreras & Freixas, 1996).

The following statement is immediate.

Proposition 2.2.4. Two complete games are isomorphic if and only if they have

the same multiset representation.

This will be very useful later on when we deal with the multiset representations

of hierarchical games, instead of the games themselves, so we can study them up

to an isomorphism.

Other important notions that relate to Isbell’s desirability relation, and that we

will use extensively in this thesis, are those of a shift, a shift-minimal winning

coalition and a shift-maximal losing coalition. Suppose a game G is complete.

By a shift we mean a replacement of a player of a coalition by a less influential

player which did not belong to it. Let us formalise it.
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Definition 2.2.5. Let G be a complete simple game on a multiset P = {1n1 , . . . ,

mnm}. Suppose a submultiset A = {. . . , i`i , . . . , j`j , . . .} has `i ≥ 1 and `j < nj

for some i < j. We say that the submultiset A′ = {. . . , i`i−1, . . . , j`j+1, . . .} is

obtained from A by a shift i 7→ j.

Also, a winning coalition X is shift-minimal if every coalition contained in

it and every coalition obtained from it by a shift is losing. A losing coalition Y

is said to be shift-maximal if every coalition that contains it is winning and there

does not exist another losing coalition from which Y can be obtained by a shift.

These concepts can be immediately reformulated for games on multisets.

Example 2.2.6. In the United Nations Security Council example, the winning

coalition {15, 24} is a shift-minimal winning coalition, since any proper set of

{15, 24} is losing, and a single shift will produce the coalition {14, 25} which is

also losing.

Observe that in a complete game, since every two players are comparable, then

any shift-minimal winning coalition can be obtained from some minimal winning

coalition by one or more shifts, hence in a complete game shift-minimal winning

coalitions fully determine the game.

A very important subclass of complete simple games is the class of weighted

simple games mentioned earlier, in the next section we state its formal definition

and notations.

2.2.3 Weighted simple games

Definition 2.2.7. A simple game G = (P,W ) is called a weighted majority game

if there exist nonnegative real numbers w1, ..., wn, called weights, and a nonnega-

tive real number q, called the threshold, such that

X ∈ W ⇐⇒
∑
i∈X

wi ≥ q.
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We use the notation [q;w1, . . . , wn] to describe the system of weights and

threshold for a given weighted simple game (WSG). The weighted game of the

United Nations Security Council can be represented as [39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1]. Also, the game of the European Economic Community is a weighted

simple game with the representation [12; 4, 4, 4, 2, 2, 1].

Observe that in a weighted game, if two players have the same weight, then

they have the same desirability, and if one has weight greater than the other, then

the former is at least as desirable as the latter. Hence every weighted game is

necessarily complete, since every two players are comparable with each other in

terms of weights, and so they are comparable in terms of desirabilities as well.

In secret sharing, weighted threshold access structures, introduced in (Shamir,

1979), are equivalent to weighted majority games.

Definition 2.2.8. We say that Ḡ = (P̄ ,W ) is a weighted majority game if there

exist non-negative weightsw1, ..., wm and q ≥ 0 such that a multisetQ = {1`1 , 2`2 ,
. . . ,m`m} is winning iff

∑m
i=1 `iwi ≥ q.

If G is weighted, then it is well-known (see, e.g., Taylor & Zwicker, 1999,

p.91) that we can find a weighted representation for which equivalent players have

equal weights. Hence we obtain

Proposition 2.2.9. A simple game G = (P,W ) is a weighted majority game if

and only if the corresponding simple game Ḡ = (P̄ ,W ) is.

Now we state some very useful facts about how to determine if a simple game

is weighted or not.

The sequence of an even number 2j of coalitions

T = (X1, . . . , Xj;Y1, . . . , Yj) (2.2.2)

is called a trading transform if the first set of j coalitions X1, . . . , Xj can be

converted into the second set of j coalitions Y1, . . . , Yj by rearranging players. In

other words, for any player p the cardinality of the set {i | p ∈ Xi} is the same as

the cardinality of the set {i | p ∈ Yi}.
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Theorem 2.2.10. (Taylor & Zwicker, 1999) A game G = (P,W ) is a weighted

majority game if for no j does there exist a trading transform (2.2.2) such that

X1, . . . , Xj are winning and Y1, . . . , Yj are losing.

Note that the converse of the statement above is also true, that is to say if

a game is weighted then there does not exist a trading transform. This theorem

allows to prove the existence of weights for a given game by means of a combi-

natorial argument. The following is an example of nonweightedness proved by

spotting a trading transform.

Example 2.2.11. In a banking situation, in order to authorise a money order, you

need the signatures of either two general managers, or four tellers, or one general

manager and three tellers. So here we have two levels of seniorities, or desirabili-

ties, the higher level of general managers L1, and the lower level of tellers L2. So

suppose the multiset of players is P = {13, 25}, then the set of minimal winning

coalitions is Wmin = {{12}, {24}, {1, 23}}. Now, since {12} and {24} are win-

ning, and {1, 22} is losing, then we have the following trading transform, which

shows that our game at hand is nonweighted.

({12}, {24}; {1, 22}, {1, 22}). (2.2.3)

Definition 2.2.12. (Gvozdeva & Slinko, 2011) Let G = (P,W ) be a simple

game. A trading transform (2.2.2) where all X1, . . . , Xj are winning in G and

all Y1, . . . , Yj are losing in G is called certificate of nonweightedness for G.

For complete games the criterion can be made easier to use, by the following

result.

Theorem 2.2.13. (Freixas & Molinero, 2009) A complete game is a weighted

majority game if and only if it does not have a certificate of nonweightedness

(2.2.2) such that X1, . . . , Xj are shift-minimal winning coalitions.

Completeness can also be characterized in terms of the following trading trans-

form.
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Theorem 2.2.14. (Taylor & Zwicker, 1999) A game G is complete if no certificate

of nonweightedness exists of the form

T = (X ∪ {x}, Y ∪ {y};X ∪ {y}, Y ∪ {x}).

This theorem says that completeness is equivalent to the impossibility for two

winning coalitions to swap two players and become both losing. This property

is also called swap robustness, and the above certificate is called a certificate of

incompleteness.

2.2.4 Roughly weighted simple games

The second most important class that we look at in this thesis, which is larger than

the class of weighted simple games, is that of roughly weighted simple games

(RWSG), its formal definition is the following.

Definition 2.2.15. A simple game G is called roughly weighted if there exist non-

negative real numbers w1, . . . , wn and a real number q, called the quota, not all

equal to zero, such that for X ∈ 2P the condition
∑

i∈X wi < q implies X is

losing, and
∑

i∈X wi > q implies X is winning. We say that [q;w1, . . . , wn] is a

rough voting representation for G.

So in a roughly weighted game nothing can be said about coalitions whose

weight is equal to the threshold. There can be both winning and losing ones. This

concept proved to be useful as demonstrated by Taylor & Zwicker (1999). This

concept realizes a very common idea in social choice that sometimes a decision

rule needs an additional ‘tie-breaking’ procedure that helps to decide the outcome

if the result falls on a certain ‘threshold’.

This definition is based on a fundamental idea, rediscovered by Taylor &

Zwicker (1999), but dating back to the unpublished Ph.D. thesis of Irving Gabel-

man (Gabelman, 1961). A magic square is a k × k matrix of integers for which
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there is a constant p, such that rows and columns sum up to p1. The idea is to

use a magic square to construct a nonweighted game. Let us illustrate with the

following example (see Taylor & Zwicker (1999), p.12).

Example 2.2.16. Consider the two following 3× 3 matrices. The one on the left,

that we call M , is for 9 players, and the one on the right is for their corresponding

weights, such that the weight of each player is the integer in the position corre-

sponding to the position of the player in the left matrix. The matrix on the right is

a magic square with a constant sum p = 15:
1 2 3

4 5 6

7 8 9




4 9 2

3 5 7

8 1 6


Using M , we construct a nine-player simple game GM as follows: It has 9 play-

ers in total, their weights as explained above, and the quota is 15. Every coali-

tion with total weight greater than 15 is defined to be winning, and every coali-

tion with total weight less than 15 is defined to be losing. A coalition with total

weight being exactly 15 is declared to be losing, unless it is a row, in which case

we declare it to be winning. This game, with its rough voting representation

[15; 4, 9, 2, 3, 5, 7, 8, 1, 6], fits the Definition 2.2.15 of rough weightedness. Also,

in the following certificate of nonweightedness, we transform the rows (winning

coalitions) into the columns (losing coalitions), and hence we verify the game’s

nonweightedness according to Theorem 2.2.10:

({4, 9, 2}, {3, 5, 7}, {8, 1, 6}; {4, 3, 8}, {9, 5, 1}, {2, 7, 6}).

Another simple example is the banking situation we encountered earlier in Ex-

ample 2.2.11, which was shown to be nonweighted by the certificate (2.2.3). Re-

call that the set of minimal winning coalitions was Wmin = {{12}, {24}, {1, 23}}.
We assign weights to players as follows: the general managers are assigned weight

1Usually it is also required that both diagonals sum up to p as well, but we do not require this

in our discussion here. Also, a magic square is rigid if each set S of entries that sums to p appears

as either a row or a column.
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of 1
2

each, and the tellers are assigned weight of 1
4

each, and the quota is set to be

1. It is easy to check that this game is roughly weighted with the rough voting

representation [1; 1
2
, 1

2
, 1

2
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
].

For deciding which games are roughly weighted and which ones are not, we

have a similar concept to that of a certificate of nonweightedness.

Definition 2.2.17. A certificate of nonweightedness

T = (X1, . . . , Xj, P ;Y1, . . . , Yj, ∅) (2.2.4)

which contains the set of players P among winning coalitions and ∅ among losing

ones is called a potent certificate of nonweightedness.

The following criterion of rough weightedness exists.

Theorem 2.2.18 (Gvozdeva & Slinko (2011)). The game G with n players is

roughly weighted iff for no positive integer j there exist a potent certificate of

nonweightedness of length j.

The paper by Gvozdeva & Slinko (2011) has discussions and many nice ex-

amples of games that are not roughly weighted. The following is one of them.

Example 2.2.19. We define the game G = (P,W ), where P = {1, 2, 3, 4, 5}
and the set of minimal winning coalitions Wmin = {{1, 2}, {3, 4, 5}}. Then the

trading transform

({1, 2}5, {3, 4, 5}7, P ; {2, 3, 5}4, {2, 3, 4}2, {1, 3, 4}2, {1, 4, 5}4, ∅)

is a potent certificate of nonweightedness. Indeed, all four coalitions {2, 3, 5},
{2, 3, 4}, {1, 3, 4}, {1, 4, 5} are losing since they do not contain {1, 2} or {3, 4, 5}.

Finally, we should mention briefly the observation that due to the fact that

coalitions whose total weight is equal to the threshold can be winning or losing

in a roughly weighted game, then it is not necessary that all roughly weighted

games are complete. We can have either complete or incomplete roughly weighted
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games, but our focus in this thesis is on simple games that are complete. We shall

return to and discuss this point in more details in Chapter 7.

Next, we describe the concept of duality in simple games, which will be very

important later in the thesis.

2.2.5 Duality

We have already encountered two kinds of coalitions, the winning ones and the

losing ones. But there is another kind that we can consider, which also plays a role

in the real world. If the set of players of a game is P , then a coalition X is said

to be blocking, if its complement Xc = P \ {X} is losing. The coalition X may

not be winning itself, but it can prevent its complement from winning. Thus, X is

a blocking coalition if it corresponds to a collection of players that can prevent an

issue from being passed.

Example 2.2.20. (Taylor & Zwicker (1999), p.14) Let G be the simple game

on the set P that is made up of two households, the first one we call H1 =

{Jane, John}, and the second one being H2 = {Marry,Mike}. In this game, a

coalition is winning if and only if its intersection with each household is nonempty.

Then {Jane,Marry} is winning, but it is not blocking because its complement

{John,Mike} is also winning. On the other hand, both {Jane, John} and

{Marry,Mike} are blocking coalitions that are not winning.

Using the notion of blocking we have the following.

Definition 2.2.21. Associated with each simple game G, there is a corresponding

simple game Gd, called the dual of G, such that the winning coalitions of Gd are

the blocking coalitions of G.

The definition above says that if we let L to be the set of losing coalitions

of G, then the dual game of a game G = (P ;W ) is defined as Gd = (P ;Lc),

and Lc = {Xc ∈ 2P |X ∈ L}. In other words, the winning coalitions of the

game Gd dual to G are exactly the complements of losing coalitions of G. Note
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that (Gd)d = G (see (Taylor & Zwicker, 1999, Proposition 1.3.7)). Moreover,

Isbell’s desirability relation is self-dual, that is x �G y if and only if x �Gd y (see

(Taylor & Zwicker, 1999, Proposition 3.2.8)). If we define the complement Xc

of a submultiset X = {1l1 , . . . ,mlm} in P = {1n1 , . . . ,mnm} as the submultiset

Xc = {1n1−l1 , . . . ,mnm−lm}, then all the duality concepts can be immediately

reformulated for the games on multisets. Also, the operation G 7→ Gd of taking

the dual is known to preserve weightedness and rough weightedness (Taylor &

Zwicker (1999), Proposition 4.10.1(i), p.166).

2.2.6 Subgames and Reduced Games

There are two natural substructures of simple games that game theorists have con-

sidered, that of a subgame, and that of a reduced game.

Definition 2.2.22. Let G = (P,W ) be a simple game and A ⊆ P . Let us define

subsets

Wsg = {X ⊆ Ac | X ∈ W}, Wrg = {X ⊆ Ac | X ∪ A ∈ W}.

Then the game GA = (Ac,Wsg) is called a subgame of G and GA = (Ac,Wrg)

is called a reduced game of G. We shall refer to subgames and reduced games as

minors.

A useful duality fact that we shall use in Chapter 7 is that if A ⊂ P , then

(GA)d = (Gd)A and (GA)d = (Gd)A (see (Taylor & Zwicker, 1999), Proposition

1.4.8).

Example 2.2.23. Consider the simple gameG = (P,W ), such that P = {15, 26},
W = {{14}, {25}}. If we let A = {13}, then the subgame GA will have the

multiset Ac = {12, 26}, and the set of minimal winning coalitions (Wsg)min =

{25}. Also, the reduced game GA = (Ac,Wsg) will have the multiset Ac =

{12, 26}, and the set of minimal winning coalitions (Wrg)min = {{1}, {25}}.
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2.3 Basics of Secret Sharing Schemes

The idea of a secret sharing scheme can be illustrated by the following example. In

a bank, there is a vault which must be opened every day. The bank employs three

senior tellers; but it is not desirable to entrust the secret combination for opening

the vault to any one person. Hence, we want to design a system whereby any two

of the three senior tellers can gain access to the vault, but no individual can do so.

This problem can be solved by means of a secret sharing scheme. Shamir (1979)

and Blakley (1979) have independently constructed the first secret sharing scheme

called a threshold scheme; the former used polynomial interpolation, and the latter

used projective geometries. Let t, n be positive integers, t ≤ n. Informally, a

(t, n)-threshold scheme is a method of sharing a secret s among a finite set U of

n participants that are called users, in such a way that any t users can compute

s, but no group of t − 1 or fewer users can do so. The value of s is chosen by

a special actor called the dealer, whose role may be performed by a computer.

The dealer is denoted by D and we assume D /∈ U . When D wants to share s

among the participants in U , he gives each user a piece of information called a

share. The shares should be distributed in private, so no participant knows the

share given to another user. At a later time, a subset B ⊆ U of users will pool

their shares in an attempt to compute the secret. If |B| ≥ t, then they should be

able to compute s as a function of the shares they collectively hold; if |B| < t,

then they should not be able to compute s. So in the bank vault example above,

we desire a (2, 3)-threshold scheme.

In practice, some other secret sharing schemes may be needed in which the

number of users is not the only factor determining if those users can work out the

secret or not, but it can be, for example, a combination of the number of users as

well as their seniority.

Let us first define formally what an access structure is.

Definition 2.3.1. Let U = {u1, . . . , un} be a set of users. An access structure is

a monotone collection ∅ 6= Γ ⊆ 2U of non-empty subsets of U , that is B ∈ Γ and
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B ⊆ C implies C ∈ Γ. Sets in Γ are called authorised, and sets not in Γ are called

unauthorised.

Associated with an access structure are the following terms. A set B is called

a minterm of Γ if B ∈ Γ, and for every C ( B, the set C is unauthorised. A

user u is called self-sufficient if {u} ∈ Γ. A user is called redundant if there is

no minterm that contains it. An access structure is called connected if it has no

redundant users.

To illustrate, consider Example 2.1.2 from page 30. The set of minterms,

denoted by Γmin = {{CEO}, {GM1, GM2}, {GM1, GM3}, {GM2, GM3}}. So

the CEO is self-sufficient, and the tellers are redundant.

Before we proceed with the formal definitions and technical results, we note

that the two theories of secret sharing schemes and simple games have intersec-

tions between them, and hence similar concepts, but they use different terminolo-

gies. It will be most helpful, therefore, to put the two terminologies into a one-

to-one correspondence, as shown in Table 2.3. Also, note that the secret sharing

schemes terminology used here, as well as the definitions, can be found in the

literature such as (Shamir, 1979), (Stinson, 1992) and (Beimel, Tassa, & Weinreb,

2008).

We will now give a formal definition of a secret sharing scheme.

Definition 2.3.2. (Secret Sharing Scheme) Let U = {1, 2, . . . , n} be the set of

users, and let S0, S1, . . . , Sn be finite sets where S0 is the set of all possible secrets.

Any subset

T ⊆ S0 × S1 × . . .× Sn

is called a distribution table. If a secret s0 ∈ S0 is to be distributed among agents,

then an n-tuple

(s0, s1, . . . , sn) ∈ T

is chosen by the dealer at random uniformly among those tuples whose first coor-

dinate is s0, and then agent i gets the share si ∈ Si. A secret sharing scheme is a
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Simple Games Secret Sharing Schemes

simple game access structure

simple majority game threshold access structure

weighted majority game weighted threshold access structure

player user

coalition group of users

winning authorised

losing unauthorised

minimal winning coalition minterm

passer self-sufficient

dummy redundant

Table : Terminology of the two theories compared

quadruple S = (U,W, T , (fX)X∈W ), where U is the set of users, W ⊆ 2U is an

access structure, T is a distribution table and for every X = {u1, . . . , uk} ∈ W

fX : Su1 × . . .× Suk → S0

is a function (algorithm) which satisfies fX(su1 , su2 , . . . , suk) = s0 for every

(s0, s1, . . . , sn) ∈ T . The family (fX)X∈W is said to be the family of secret recov-

ery functions. We note that, if X = {u1, . . . , uk} ∈ W , in the distribution table

there cannot be tuples (s, . . . , su1 , . . . , su2 , . . . , suk , . . .) with s 6= s0.

Note that the distribution table, and hence the access structure, are public

knowledge.

It follows from the definition above that if an authorised subsetX = {j1, . . . , jk}
of users pool their shares, then they can determine the secret applying the cor-

responding secret recovery function to their shares, i.e., fX(sj1 , . . . , sjk) = s0,

whereas an unauthorised subset cannot. Furthermore, in addition to the afore-

mentioned fact, if the secret sharing scheme is such that an unauthorised subset of

users can get no information about the secret, then the scheme is called perfect.

For a perfect scheme, the length of each share in bits cannot be shorter than the

length of the secret (Karnin et al., 1983).
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We now state a few more definitions, and also include few examples about

secret sharing schemes. What follows are two examples of secret sharing schemes,

the first example is for a perfect secret sharing scheme, and the second one is for an

imperfect one. Also, for more discussion of the basics of secret sharing schemes,

the reader is advised to look at (Stinson, 1992).

Example 2.3.3. Consider the secret sharing scheme with n users, such that the

only authorised coalition will be the full set of users U = {1, 2, . . . , n}. We take a

sufficiently large field F and set S0 = F, so that it is infeasible to try all secrets one

by one. We will also have Si = F for all i = 1, . . . , n. Given a secret s0 ∈ F to

share, the dealer generates n−1 random elements s1, . . . , sn−1 ∈ F, and calculates

sn = s0 − (s1 + . . . + sn−1). Then he gives share si to user i. For all possible n-

tuples (s0, s1, . . . , sn) we will have
∑n

i=1 si = s0, and the secret recovery function

(in this case the only one) will be fU(s1, . . . , sn) = s1 + . . .+ sn.

And for the imperfect one we have the following.

Example 2.3.4. Let xa and xb be two relatively prime integers known to the two

users a and b respectively, and let the domain of secrets be {0, . . . , xa · xb} ⊆ Z,

so the secret s is any integer between 0 and xa · xb. We give share sa = s mod xa
to user a, and we give share sb = s mod xb to user b. The only secret recovery

function here is the algorithm based on the Chinese Remainder Theorem and the

Euclidean algorithm. So a and b together can combine their shares and work out

the secret. Now, even though each player alone cannot work out the secret, each

of them has some partial information about it. It is easier for a or b to guess the

secret than it is for a person from the street.

It was mentioned earlier that in every perfect secret sharing scheme, the length

of each share in bits cannot be shorter then the length of the secret. This motivates

the next definition.

Definition 2.3.5. (Ideal Access Structure) A secret sharing scheme with domain

of secrets S is ideal, if it is perfect and the length of each share in bits is equal to
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Figure 2.1: Perfect and imperfect secret sharing schemes

the length of the secret. An access structure Γ is said to be ideal if for some finite

domain of secrets S, there exists an ideal secret sharing scheme realising it.

Example 2.3.6. Example 2.3.3 was of a perfect secret sharing scheme where the

domain of the secrets was the same as the domains of the shares, meaning the

lengths of the shares and the length of the secret are equal, so the scheme was

ideal.

The definition above is for ideal access structures, but recall from the introduc-

tion that an access structure is a simple game, and keeping this in mind will clarify

the concept of an ideal simple game. Since it is not possible to explain ideality

with a purely game-theoretic perspective, a basic appreciation of secret sharing is

required for understanding what an ideal simple game is. Also, in what follows

we state an important theorem, which will be used in this thesis, that characterises

ideal simple games in terms of their shift-minimal winning coalitions, it will help

prepare the reader for the work to follow on ideal simple games.
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Theorem 2.3.7 (Farràs & Padró (2010), Theorem 9.2). Let Γ be a complete simple

game on P = {1n1 , 2n2 , . . . ,mnm}. Also, let the set of shift-minimal winning

coalitions be {X1, . . . , Xr}. Consider mj = max(supp(Xj)), 1 ≤ j ≤ r, and

suppose that the shift-minimal winning coalitions are listed in such a way that

mj ≤ mj+1. Then Γ is ideal if and only if

(i) mj < mj+1 and |Xj| < |Xj+1| for all j = 1, . . . , r − 1, and

(ii) X i
j ≥ X i

j+1 if 1 ≤ j ≤ r − 1 and 1 ≤ i ≤ mj , and

(iii) if X i
j > X i

r for some 1 ≤ j < r and 1 ≤ i < mj , then nk = Xk
j for all

k = i+ 1, . . . ,mj .

Finally, we end this section with another example of a secret sharing scheme,

it is the famous Shamir scheme, which is known to be ideal. Shamir’s scheme,

realises, or implements, the kind of access structure known as threshold access

structure, or k-out-of-n threshold access structure mentioned earlier, where at

least k out of n users are needed to determine the secret.

Example 2.3.8 (Shamir, 1979). Suppose that we have n users and the access

structure is W = {X ⊆ A | |X| ≥ k}, i.e. a coalition is authorised if it contains

at least k users. Let F be a large finite field and we will have Si = F for i =

0, 1, 2, . . . , n. Let a1, . . . , an be distinct fixed nonzero elements of F, these are

publicly known.

Suppose s ∈ F is the secret to share. The dealer sets t0 = s0 and generates

randomly t1, . . . , tk−1 ∈ F. He forms the polynomial p(x) = t0 + t1x + . . . +

tk−1x
k−1. Then he gives share si = p(ai) to user i (note that a0 = 0 and p(0) =

s0 = s).

Suppose now X = {u1, . . . , uk} is a minimal authorised coalition. Then the

secret recovery function is

fX(su1 , . . . , suk) =
k∑
r=1

sur
(−au1) . . . (̂−aur) . . . (−auk)

(aur − au1) . . . ̂(aur − aur) . . . (aur − auk)
,
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where the hat over the term means its non-existence. This is the value at zero of

the Lagrange’s interpolation polynomial

k∑
r=1

p(aur)
(x− au1) . . . ̂(x− aur) . . . (x− auk)

(aur − au1) . . . ̂(aur − aur) . . . (aur − auk)
,

which is equal to p(x). We can write


1 a1 a2

1 . . . ak−1
1

1 a2 a2
2 . . . ak−1

2

. . . . . . . . . . . . . . .

1 an a2
n . . . ak−1

n




t0

t1
...

tk−1

 =


s1

s2

...

sn

 (2.3.1)

Since all a1, . . . , an are different, any k rows of the matrix in (2.3.1) are linearly

independent (and the corresponding determinant of the resulting k × k matrix is

the well-known Vandermonde determinant). This is why any k users can learn all

coefficients of p(x), including its constant term (which is the secret) by solving

the corresponding system of linear equations. We can write (2.3.1) as

1 0 0 . . . 0

1 a1 a2
1 . . . ak−1

1

1 a2 a2
2 . . . ak−1

2

. . . . . . . . . . . . . . .

1 an a2
n . . . ak−1

n




t0

t1
...

tk−1

 =


s0

s1

...

sn.

 (2.3.2)

adding a new row (the dealer’s row). Let us write it in matrix form as Ht =

s and denote the rows of H as h0,h1, . . . ,hn. Then the following is true: the

span of a group of rows {hj1 , . . . ,hjr} contains h0 if and only if r ≥ k. So

it follows that if the dealers row can be written as the linear combination h0 =

α1hj1 + . . .+ αrhjr , then the secret can also be written as the linear combination

s0 = α1sj1 + . . . + αrsjr . This concludes the example showing how Shamir’s

scheme is used to implement a k-out-of-n threshold access structure.

Shamir’s scheme is a prototype of what is called linear secret sharing schemes,

which are ideal schemes (see Brickell (1989)). The main method of proving that

51



an access structure is ideal is proving it to be linear. In particular, all indecompos-

able ideal weighted games that we shall look at in Chapter 6, were shown to be

ideal by proving their linearity in (Farràs & Padró (2010), Theorem 9.2).

Shamir’s scheme is also known to be related to Reed-Solomon codes (see McEliece

& Sarwate (1981)).
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Chapter 3

Hierarchical Simple Games

In this chapter and the next one, we will study two important classes of ideal

complete simple games, namely the classes of hierarchical and tripartite games.

This is because, as we mentioned earlier and stated in Theorems 1.1.1 and 1.1.2,

these are the two classes that indecomposable ideal weighted simple games belong

to according to (Beimel, Tassa, & Weinreb, 2008) and (Farràs & Padró, 2010).

We start with studying hierarchical simple games. There are two types of hier-

archical simple games (HSGs) as we shall see, conjunctive and disjunctive. Since

both types are ideal (Tassa, 2007; Brickell, 1989), they deserve to be studied in

their own right. In this chapter we characterise all weighted hierarchical simple

games. Later, in Chapter 7, we will also characterise all roughly weighted hierar-

chical simple games.

3.1 The two types of hierarchical simple games, def-

initions

In his pioneering paper Shamir (1979), suggested (independently from any lit-

erature on simple games) to model seniority of users by assigning nonnegative

weights to them. However, this approach was not actively pursued, maybe because
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there is no guarantee that weighted simple games are ideal (see Beimel, Tassa, &

Weinreb (2008) and references there). Instead, Simmons (1990) introduced the

concept of a hierarchical simple game. Such a simple game stipulates that agents

are partitioned into m levels, and a sequence of thresholds k1 < k2 < . . . < km

is set, so that a coalition is winning if it has either k1 agents of the first level, or

k2 agents of the first two levels, or k3 agents of the first three levels etc. Con-

sider, for example, the situation of a money transfer from one bank to another.

If the sum to be transferred is sufficiently large, this transaction must be autho-

rised by three senior tellers or two general managers. However, any two senior

tellers and a general manager can also authorise the transaction. These games are

called hierarchical disjunctive games, since only one of the m conditions must be

satisfied for a coalition to be authorised/winning. If all the conditions must be

satisfied, then the corresponding simple game is called hierarchical conjunctive

game (Tassa, 2007). A typical example of a conjunctive hierarchical game would

be the United Nations Security Council, where for the passage of a resolution all

five permanent members must vote for it, and also at least nine members in total.

This game has two levels.

Disjunctive and conjunctive hierarchical simple games have been proven to

be ideal by Brickell (1989) and Tassa (2007) respectively. With one exception

mentioned later, these two classes of hierarchical games have not been previously

considered in the simple games literature. In this chapter we show that methods

of the theory of simple games can make some proofs easier and more transparent.

More precisely, our direct combinatorial approach is based on the technique of

trading transforms discussed in Chapter 2. Using trading transforms we give a

complete description of all weighted majority games among hierarchical games

of both types.

So firstly, after the definition and examples and explaining why hierarchical

games are complete, we give the canonical representation for both types of hierar-

chical games. Secondly, we prove the duality between disjunctive and conjunctive

hierarchical games. Thirdly, we give a structural characterisation for disjunctive

hierarchical games, by showing they are complete games with a unique shift-
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maximal losing coalition, then obtain a structural characterisation for conjunctive

hierarchical games by duality, showing them to be complete games with a unique

shift-minimal winning coalition. Finally, we characterise all weighted disjunctive

hierarchical games, then characterize all weighted conjunctive hierarchical games

by duality. We note that the class of complete games with a unique shift-minimal

winning coalition was studied in its own right in (Freixas, 1997) and (Freixas &

Puente, 1998, 2008) without any reference to hierarchical games.

Let us now start with the formal definition.

Definition 3.1.1. Suppose the set of players P is partitioned into m disjoint sub-

sets P = ∪mi=1Pi, and let k1 < k2 < . . . < km be a sequence of positive integers,

and let k = (k1, . . . , km). Then we define the game H∃ = (P, k) by setting the set

of winning coalitions to be

W∃ = {X ∈ 2P | ∃i
(∣∣X ∩ (∪ij=1Pj

)∣∣ ≥ ki
)
}.

and call it a disjunctive hierarchical game. For a sequence of thresholds k1 <

. . . < km−1 ≤ km (note that the last inequality may be nonstrict) we define its set

of winning coalitions to be

W∀ = {X ∈ 2P | ∀i
(∣∣X ∩ (∪ij=1Pj

)∣∣ ≥ ki
)
}.

We call the resulting game a conjunctive hierarchical game H∀ = (P, k).

The sets in the partition P will be considered ordered, so that, say, P = Q∪R
and P = R∪Q will be two different partitions. Figure 3.1 illustrates the structure

of a typical hierarchical simple game.

3.1.1 Completeness and examples

From the definition it follows that any disjunctive hierarchical game H is com-

plete, let us explain. Recall that in order to prove the completeness of a game, it is

enough to show that every two players are comparable with respect to Isbell’s de-

sirability relation, since transitivity and antisymmetry are obvious in this relation
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Figure 3.1: An m-level hierarchical simple game

(see page 36). Now, consider Definition 3.1.1. If a winning coalition X meets the

ith-threshold requirement, then |X ∩ (∪ij=1Pj)| ≥ ki. It follows that a replace-

ment of a player from Pj with a player from Pj−1, will still result in a coalition

that meets the ith-threshold requirement, or may even meet a lower threshold re-

quirement. But in both cases, the resulting coalition is winning. This shows that

players from P1 are at least as desirable as players from P2, which in turn are

at least as desirable as players from P3, and so on. In other word, Pi �H Pj

for i < j, so any disjunctive HSG is complete. A similar argument shows that

conjunctive hierarchical games are also complete.

Moreover, for any i ∈ [m] and u, v ∈ Pi we have u ∼H v. So ∼H is the

corresponding equivalence relation. We also let |Pi| = ni, and denote the vector

of the sizes of each Pi by n = (n1, . . . , nm).

As an illustration of a disjunctive HSG, recall Example 2.2.11 where an elec-

tronic fund transfer of a large sum of money would be authorised by either two

general managers, or four senior tellers, or one general manager and three senior
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tellers. There are 3 general managers and 5 senior tellers in total. So this is a dis-

junctive HSG of two levels: The general managers level P1 with k1 = 2, and the

senior tellers level P2 with k2 = 4. In other words, we have n = (3, 5),k = (2, 4).

As for conjunctive HSGs, we saw in Example 2.1.4 of the United Nations Se-

curity Council that a passage of a resolution requires the vote of at least 9 members

in total, and all five permanent members. So here we have a conjunctive HSG of

two levels such that n = (5, 10),k = (5, 9), in other words, the permanent mem-

bers make level P1 with k1 = 5, and the non-permanent members make level P2

with k2 = 9.

However, we cannot guarantee for an arbitrary partition and for arbitrary val-

ues of parameters in k = (k1, . . . , km) that the equivalence classes will be P1, . . . ,

Pm and the multiset representation H̄ of H will be defined on the multiset P̄ =

{1n1 , 2n2 , . . . ,mnm}, since it is possible to have fewer thanm equivalence classes.

Here is an example of redundancy in the description.

Example 3.1.2. Let us consider P = ∪3
i=1Pi with |P1| = |P2| = |P3| = 3. Let us

also take k = (k1, k2, k3) = (4, 5, 6), and let H = H∃(P,k) be the corresponding

disjunctive hierarchical game. For this game the condition |X ∩P1| ≥ k1 is never

satisfied. As a result we will have x ∼H y for every x ∈ P1 and y ∈ P2 leading

to the multiset representation for this game on a multiset P̄ = {16, 23}. The same

game could be obtained by taking the partition P = P ′1 ∪ P ′2 with |P ′1| = 6,

|P ′2| = 3 and (k1, k2) = (5, 6).

When different players from different classes have the same desirability, the

corresponding classes get identified with each other, or collapse onto each other.

In the example above, one level of the game was redundant and can be collapsed,

so we need to impose certain conditions preventing redundancy and the collapse

of different levels. A representation of a HSG in which no two sets in the partition

of P are equivalent to each other, and no redundancy exists, will be referred to as

canonical representation. In the next section we establish canonical representa-

tions for the two types of HSGs for that purpose.
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3.2 Canonical Representations

Recall that in a complete simple game H on a multiset P = {1n1 , . . . ,mnm},
players of type 1 are more influential than players of type 2 that are in turn more

influential than players of type 3 and so on. In other words 1 �H 2 �H . . . �H m.

The concepts of a shift, a shift-minimal winning coalition and a shift-maximal

losing coalition that were explained on page 37 will be very important in this

section.

3.2.1 Disjunctive Hierarchical Games

Now we are ready for constructing a canonical representation for the disjunctive

hierarchical games (DHGs).

Theorem 3.2.1. Let H = H∃(P,k) be a disjunctive hierarchical game defined on

the set of players P partitioned into m disjoint subsets P = ∪mi=1Pi with ni = |Pi|
by a sequence of positive thresholds k1 < k2 < . . . < km. Then ∼H has exactly

m equivalence classes (which are then P1, ..., Pm) if and only if

(a) k1 ≤ n1, and

(b) ki < ki−1 + ni for every 1 < i < m.

Proof. As was discussed earlier, the players within each Pi are equivalent to each

other, and Pi �H Pj for i < j. Let us prove by induction that conditions (a) and

(b) imply that, for every i ∈ [m−1], there exists a shift-minimal winning coalition

Mi ⊆ ∪ij=1Pi of size ki that intersects with Pi nontrivially.

Consider the condition (a). If k1 ≤ n1, then any k1 players from P1 form a

winning coalition M1 of size k1 which ceases to be winning if we replace one of

them with a player of Pj for every j > 1. We now use an inductive argument.

Suppose i < m − 1 and suppose that there exists a shift-minimal winning

coalition Mi ⊆ ∪ij=1Pi, consisting of ki players, and such that Mi ∩ Pi 6= ∅.
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Let us now construct the shift-minimal winning coalition Mi+1 that satisfy the

required conditions. We start by selecting an element a ∈ Mi ∩ Pi from Mi. The

coalition M ′
i = Mi \ {a} is losing due to the minimality of Mi. By (b) we have

ki+1 − ki + 1 ≤ ni+1. This means that we can add to M ′
i exactly ki+1 − ki + 1

elements of Pi+1 so that the resulting set X will reach the (i+ 1)th threshold and

will therefore be winning. We now apply all possible shifts to X within the set

∪i+1
j=1Pj as long as it remains winning and take the resulting set as Mi+1. This will

secure that the coalition Mi+1 is a shift-minimal winning coalition. It is also clear

from its construction that Mi+1 ∩ Pi+1 6= ∅. It is now easy to show that Pi 6∼H Pj

for every i 6= j. Suppose i < j and x ∈Mi∩Pi and y ∈ Pj . Then (Mi\{x})∪{y}
is losing since it does not reach any threshold. Hence x �H y and Pi 6∼H Pj .

Let us now prove the converse, that is, if Pi 6∼H Pi+1, for all i ∈ [m − 1],

then conditions (a) and (b) are satisfied. It is easy to see that P1 6∼H P2 implies

(a). Suppose now that for i > 1 we have p ∈ Pi, q ∈ Pi+1 and p 6∼H q. Then

there exist X ⊆ P such that X ∪ {p} is winning and X ∪ {q} is losing. This

could only happen if the coalition X ∪ {p} reaches the ith threshold and does not

reach any other threshold, i.e., when |X ∩ ∪sj=1Pj| ≤ ks − 1 for s ∈ [i − 1] and

|X ∩ ∪ij=1Pj| = ki − 1. In particular, we have |X ∩ ∪i−1
j=1Pj| ≤ ki−1 − 1. Since

p ∈ Pi \X we have ni − 1 ≥ |X ∩ Pi| ≥ ki − ki−1 and (b) is proved.

Proposition 3.2.2. Let H = H∃(P,k) be a disjunctive hierarchical game as de-

fined in Theorem 3.2.1. Then the game H does not have dummies if and only if

km < km−1 + nm. If km ≥ km−1 + nm then Pm consists entirely of dummies.

Proof. Let km < km−1 + nm, arguing as in the proof of Theorem 3.2.1 we would

find a shift-minimal winning coalition Mm of cardinality km that would nontriv-

ially intersect Pm. In this case players of Pm are not dummies as none of them

can be removed from Mm. If km ≥ km−1 + nm, then the last threshold is never

achieved without already achieving some previous threshold, and in this case all

players of Pm are indeed dummies.

It is clear that whenever Pm consists of dummies we can always change the

mth threshold to km = km−1 + nm. We will now always do that.
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Definition 3.2.3. LetH = H∃(P,k) be a disjunctive hierarchical game defined on

the set of players P partitioned into m disjoint subsets P = ∪mi=1Pi with ni = |Pi|
by a sequence of positive thresholds k1 < k2 < . . . < km. We will say that H is

canonically represented by P and k if the conditions (a) and (b) of Theorem 3.2.1

are satisfied (i.e., ∼H has exactly m equivalence classes) and km = km−1 + nm in

case when Pm consists of dummies and km < km−1 + nm otherwise.

Corollary 3.2.4. Let G = H∃(P,k) be a canonically represented m-level dis-

junctive hierarchical game. Then we have ni > 1 for every 1 < i < m.

Proof. If ni = 1 for some 1 < i < m, then (b) in Theorem 3.2.1 cannot hold.

This is also a consequence of Theorem 4.1(4) of Carreras & Freixas (1996).

Collapsing any existing redundant levels, if they existed, we may always as-

sume that a disjunctive hierarchical game H = H∃(P,k) is canonically repre-

sented. It will be convenient to denote the multiset representation of the dis-

junctive hierarchical game in Definition 3.2.3 as H̄ = H∃(n,k), where n =

(n1, ..., nm) and k = (k1, ..., km). We stress that this notation assumes that the

representation of the game H was canonical.

Theorem 3.2.5. Let H = H∃(P,k) be a canonically represented disjunctive hi-

erarchical game. Then the numbers k1, . . . , km (the last one only when H has

no dummies), and only they, are the possible sizes of shift-minimal winning coali-

tions in H . In particular, the multiset representation of H is uniquely defined by

the game.

Proof. In the proofs of Theorem 3.2.1 and Proposition 3.2.2 we have shown the

existence of shift-minimal winning coalitions of sizes k1, ..., km (the last size was

shown to exist only in absence of dummies). Suppose M is a minimal winning

coalition. Let ki be the smallest such that the ith threshold is reached by M . Then

M contains at least ki players from
⋃i
i=1 Pi. If M contained any players from

levels Pj for j > i, they could be removed without rendering M losing. Due to

the minimality of M such elements do not exist. Similarly, if M contained more
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than ki players from
⋃i
i=1 Pi, some of them could be removed too. Due to the

minimality of M we conclude that |M | = ki.

We note that the first and the last (mth) levels are special. If k1 = 1, then

every user of the first level is self-sufficient (passer) and its presence makes any

coalition winning and if km ≥ km−1 + nm, then the mth level consists entirely of

dummies.

3.2.2 Conjunctive Hierarchical Games

Now we derive a canonical representation for the class of conjunctive hierarchical

games (CHGs). First recall the definition.

Definition 3.2.6 (Conjunctive Hierarchical Game). Suppose that the set of players

P is partitioned into m disjoint subsets P = ∪mi=1Pi, and let k1 < . . . < km−1 ≤
km be a sequence of positive integers. Then we define the game H∀(P,k) by

setting the set of its winning coalitions to be

W∀ = {X ∈ 2P | ∀i
(∣∣X ∩ (∪ij=1Pi

)∣∣ ≥ ki
)
}.

It is easy to come up with an example similar to Example 3.1.2, so we need to

look for conditions on n = (n1, ..., nm) and k = (k1, ..., km) which guarantee that

the game H∀(P,k) has indeed m levels.

Definition 3.2.7. Let H = H∀(P,k) be a conjunctive hierarchical game defined

on the set of players P partitioned into m disjoint subsets P = ∪mi=1Pi with ni =

|Pi| by a sequence of positive thresholds k1 < . . . < km−1 ≤ km. We will say that

H is canonically represented by n = (n1, ..., nm) and k = (k1, . . . , km) if Pi 6∼ Pj

for every distinct i, j ∈ [m] or equivalently∼H has exactlym equivalence classes.

We will denote the multiset representation of such a game H∀(n,k).

For conjunctive hierarchical games a theorem analogous to Theorem 3.2.1 can

be proved.
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Theorem 3.2.8. Let H = H∀(P,k) be a conjunctive hierarchical game defined

on the set of players P partitioned into m disjoint subsets P = ∪mi=1Pi, where

ni = |Pi|, by a sequence of positive thresholds k1 < . . . < km−1 ≤ km. Then

P1, . . . , Pm are exactly the equivalence classes for ∼H if and only if

(a) k1 ≤ n1, and

(b) ki < ki−1 + ni for every 1 < i ≤ m.

The last mth level consists entirely of dummies if and only if km−1 = km.

Proof. If (a) and (b) are satisfied, then the coalition M such that |M ∩ P1| = k1,

and |M ∩ Pi| = ki − ki−1 for i = 2, . . . ,m, exists in H . It is winning since all

m thresholds are met. It is obviously shift-minimal since any shift leads to the

violation of one of the thresholds. Moreover, due to (b) a shift replacing element

of M ∩ Pi with an element of Pi+1 is always possible. This immediately implies

that Pi 6∼ Pi+1.

Suppose now that either (a) or (b) is not satisfied. If (a) is not satisfied, then

the first threshold is never achieved and the game has no winning coalitions. This

contradicts to the definition of a simple game. Suppose (b) is not satisfied and

ki ≥ ki−1 + ni for some 1 < i ≤ m. We will prove that in such a case Pi ∼
Pi−1. Suppose not, then there exists a winning coalition X which becomes losing

coalition X ′ after a shift replacing element of Pi−1 by an element of Pi. It can

only become losing due to the fact that the (i− 1)th threshold is no longer met for

X ′. Note that all remaining thresholds i, . . . ,m are still achieved in the coalition

X ′. We can estimate the number of players in X ′ ∩
⋂i−1
j=1 Pi as

|X ′ ∩
i−1⋂
j=1

Pi| ≥ ki − ni ≥ ki−1,

which contradicts the fact that the (i− 1)th threshold is not achieved for X ′.

As in the disjunctive case, the canonical representation of a conjunctive hier-

archical game is unique. We observe a striking resemblance of the conditions in
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Theorem 3.2.1 and Theorem 3.2.8. To explain this resemblance, in Section 3.3

below, we prove a theorem that establishes the duality between disjunctive and

conjunctive hierarchical games.

3.3 Duality between disjunctive and conjunctive hi-

erarchical games

The following result was mentioned in (Tassa, 2007, Proposition 4.1) without a

proof. Since it is our main tool here we present it with a proof. In the proof it will

be convenient to use multiset representations of hierarchical games.

Recall that n = (n1, . . . , nm) and k = (k1, . . . , km) are fixed vectors of posi-

tive integers. So for any vector k = (k1, . . . , km), define the vector

k∗ = (n1 − k1 + 1, n1 + n2 − k2 + 1, . . . ,
∑
i∈[m]

ni − km + 1).

Note that k∗∗ = k.

Recall that a coalition is called blocking, if its complement with respect to the

full multiset of players is losing. Also, recall from Definition 2.2.21, that Gd is

the dual of G if the winning coalitions of Gd are the blocking coalitions of G.

Theorem 3.3.1. Let H = H∃(n,k) be an m-level hierarchical disjunctive game.

Then the game dual toH will be the conjunctive hierarchical gameH∗ = H∀(n,k
∗).

Similarly, if H = H∀(n,k) is an m-level hierarchical conjunctive game, then

H∗ = H∃(n,k
∗). In other words,

H∃(n,k)∗ = H∀(n,k
∗), H∀(n,k)∗ = H∃(n,k

∗).

Proof. We will prove only the first equality. As Isbell’s desirability relation is self-

dual, the gameH∃(n,k)∗ will involve the same equivalence classes as the original

game H∃(n,k) and hence it will be defined on the same multiset {1n1 , . . . ,mnm}.
Let k∗ = (k∗1, k

∗
2, . . . , k

∗
m). It is easy to see that k∗i < k∗i+1 is equivalent to ki+1 <
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ki + ni+1 so we have k∗1 < . . . < k∗m−1 ≤ k∗m and k∗m−1 = k∗m if and only if

km = km−1 + nm, that is the pair (n,k) satisfies the conditions of Theorem 3.2.1

if and only if the pair (n,k∗) satisfies the conditions of Theorem 3.2.8. Consider

a losing coalition X = {1`1 , 2`2 , . . . ,m`m} in H∃(n,k). It satisfies
∑

j∈[i] `j < ki

for all i ∈ [m]. Then ∑
j∈[i]

(nj − `j) >
∑
j∈[i]

nj − ki,

for all i ∈ [m], and the coalition Xc = {1n1−`1 , 2n2−`2 , . . . ,mnm−`m} satisfies the

condition
∑

j∈[i](nj − `j) ≥
∑

j∈[i] nj − ki + 1 = k∗i , for all i ∈ [m]. Therefore,

Xc is winning in H∀(n,k∗).

We also need to show that the complement of every coalition that is win-

ning in H∃(n,k) coalition is losing in H∀(n,k
∗). Consider a coalition X =

{1`1 , 2`2 , . . . ,m`m} that is winning in H∃(n,k). It means that there is an i ∈ [m]

such that
∑

j∈[i] `j ≥ ki. But then the condition∑
j∈[i]

(nj − `j) ≤
∑
j∈[i]

nj − ki <
∑
j∈[i]

nj − ki + 1 = k∗i

holds. Thus, the complement Xc = {1n1−`1 , 2n2−`2 , . . . ,mnm−`m} is losing in

H∀(n,k
∗).

3.4 Hierarchical Subgames and Reduced Games

The operation of subgames and reduced games as they apply to HSGs will be very

useful later on. Here we give the two basic propositions showing that subgames

and reduced games of hierarchical games of a certain type are still hierarchical of

the same type. We assume that all HSGs are canonically represented.

Proposition 3.4.1. Let n′ = (n1, . . . , nm−1), k′ = (k1, . . . , km−1). Then H ′ =

H∃(n
′,k′) is a subgame of G = H∃(n,k). This subgame never has dummies and

it does not have passers if G did not.
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Proof. Indeed, H∃(n′,k′) = GA forA = {mnm}. By Theorem 3.2.1 there always

exists a minimal winning coalition which is contained in H ′ and has a nonempty

intersection with the (m− 1)th level. Hence the players of (m− 1)th level are not

dummies.

Proposition 3.4.2. Let n = (n1, . . . , nm), k = (k1, . . . , km) be such that G =

H∀(n,k) is an m-level conjunctive hierarchical game. Suppose k1 = n1, n′ =

(n2, . . . , nm), and k′ = (k2 − k1, . . . , km − k1). Then H∀(n′,k′) is the reduced

game GA, where A = {1n1}.

3.5 Structural Characterisations

In this section we give structural characterisations for the two types of hierarchical

games in terms of their shift-minimal winning and shift-maximal losing coalitions.

First we start with DHGs.

3.5.1 A structural characterisation of Disjunctive Hierarchical
Games

Theorem 3.5.1. The class of disjunctive hierarchical simple games is exactly the

class of complete games with a unique shift-maximal losing coalition.

Proof. Without loss of generality we can consider only multiset representations of

games. Let G = H∃(n,k) be an m-level hierarchical game. If km < km−1 + nm,

then the following coalition is a shift-maximal losing one:

M = {1k1−1, 2k2−k1 , . . . ,mkm−km−1}.

Indeed, for every i = 1, 2, . . . ,m it has ki − 1 players from the first i levels, and

so any replacement of a player with more influential one makes it winning. If

km ≥ km−1 + nm, then it has to be modified as

M = {1k1−1, 2k2−k1 , . . . , (m− 1)km−1−km−2 ,mnm}.
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There cannot exist any other shift-maximal losing coalition. Indeed, the first level

has to lack exactly one player before reaching the first threshold, and the first

two levels together have to lack exactly one player before reaching the second

threshold and so on. Hence the uniqueness.

Suppose now that G is complete with the multiset representation on a multiset

P = {1n1 , 2n2 , . . . ,mnm}, where 1 �G · · · �G m, and has a unique shift-maximal

losing coalition M = {1`1 , 2`2 , . . . ,m`m}. We claim that `i < ni for all 1 ≤ i <

m. Suppose not, and `i = ni. We know that i �G i + 1. It means there exists a

multiset X such that X ∪{i} is winning but X ∪{i+1} is losing. We first take X

to be of maximum possible cardinality, and then do all possible replacements of a

players from X with more desirable ones as long as the property X ∪ {i} ∈ W
and X ∪ {i + 1} ∈ L holds. This will make X ∪ {i + 1} a shift-maximal losing

coalition. Indeed, we cannot add any more elements toX∪{i+1}without making

it winning, also replacing any element of X ∪ {i + 1} with a more desirable one

makes it winning as well. Since X ∪ {i + 1} is not equal to M (the multiplicity

of i is not at full capacity) we get a contradiction. Hence `i < ni. The coalition

Mj = {1`1 , . . . , (j − 1)`j−1 , j`j+1} must be winning for all j (including j = 1

when it is equal to {1`1+1}) because it can not be obtained from M by making

shifts or taking subset (remember M is a unique shift-maximal losing coalition).

Define ki to be equal to `1 + . . . + `i + 1 for every i = 1, 2, . . . ,m. Let us show

that every coalition with ki players from the first i levels is winning. If i = 1, then

k1 = `1 + 1. The coalition {1k1} cannot losing, otherwise it will be a subcoalition

of a shift-maximal losing coalition, different from M .

Suppose now the statement is true for i − 1. Let us consider a coalition X =

{1s1 , 2s2 , . . . , isi} with s1 + . . . + si = ki, and prove that it is winning. If not,

then by the induction hypothesis s1 + . . .+ si−1 < ki−1. Let us make all possible

replacements of players with more desirable ones that do not make X winning.

Then we will have a coalition Y = {1`1 , 2`2 , . . . , (i − 1)`i−1 , i`i+1}. Now, since

the multiplicity of i in Y is greater than `i and no replacements of players with

more desirable ones can be done any more, then Y is contained in a shift-maximal

losing coalition different from M . This contradiction proves the statement.
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Now if `m = nm we set km = km−1 + nm, otherwise we set km = `1 + . . . +

`m + 1. It is easy to see that G is in fact H∃(n,k).

3.5.2 A structural characterisation of Conjunctive Hierarchi-
cal Games

In this section, we give a characterisation concerning CHGs that is analogous

to the disjunctive hierarchical one of the previous section. First, we need the

following lemma.

Lemma 3.5.2. LetG be a complete simple game. Then S is a shift-maximal losing

coalition ofG if and only if its complement Sc is a shift-minimal winning coalition

of the dual game G∗.

Proof. Let S be a shift-maximal losing coalition in G. By the definition of the

dual game, Sc is winning in G∗. Let us prove that it is a shift-minimal winning

coalition there. Consider any other coalition X that can be obtained from Sc by

a shift i → j in G∗. It means that there are players i ∈ Sc and j /∈ Sc such that

j ≺G∗ i (which we know is the same as j ≺G i) and X = (Sc \ {i}) ∪ {j}. The

complement of X is the set Xc = (S \ {j}) ∪ {i}. Furthermore, j ≺G i. Now

S is obtained from Xc by the shift i → j, hence the coalition Xc is winning in

G, because there does not exist a losing coalition from which S can be obtained

by a shift. Therefore, X is losing in G∗. Consider now a subset Y of Sc. The

complement Y c of Y is a superset of S. Hence, Y c is winning in G and Y is

losing in G∗. Thus, Sc is the shift-minimal winning coalition in G∗. The converse

can be proved along the same lines and we leave this to the reader.

This will now lead us to the main characterization result.

Theorem 3.5.3. The class of conjunctive hierarchical simple games is exactly the

class of complete games with a unique shift-minimal winning coalition.
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Proof. Without loss of generality we can consider only multiset representations

of games. By Lemma 3.5.2 the class of complete games with a unique shift-

minimal winning coalition is dual to the class of complete games with a unique

shift-maximal losing coalition in the sense that the dual of every game from the

first class belongs to the second and the other way around. Theorem 3.5.1 claims

that the second class coincides with the class of all disjunctive hierarchical games.

By Theorem 3.3.1, the first class then is the class of all conjunctive hierarchical

games.

3.6 Weightedness

3.6.1 Characterising Weighted Disjunctive Hierarchical Games

Now we turn our attention to the characterisation of weighted games within the

class of DHGs. We mentioned in several places that the characterisation of weighted

DHGs was already achieved by Beimel, Tassa, & Weinreb (2008), however, The-

orem 3.6.2 below, is a slightly more refined version, we shall explain why so

shortly.

It turns out that only a small number of hierarchical games are weighted, and

the following is an example of a two-level hierarchical simple game that is not

weighted.

Example 3.6.1. Consider the two-level disjunctive hierarchical gameG = H∃(n,k)

with n = k = (2, 4). Then the following is a certificate of nonweightedness

({12}, {24}; {1, 22}, {1, 22})

as the first two coalitions are winning and the remaining two are losing. Therefore

the game is not weighted by Theorem 2.2.10.

A level of a disjunctive or conjunctive hierarchical game is said to be trivial,

if it consists entirely either of dummies, or it consists entirely of passers in the
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disjunctive case, and blockers in the conjunctive case. The following theorem

shows that every weighted disjunctive hierarchical game H∃(n,k) can have at

most four levels where at most two of them are nontrivial. Moreover, if a trivial

level of H∃(n,k) consists of passers or blockers, then it is the first level (most

desirable), and if it consists of dummies, then it is the last one (least desirable).

Below, we state and prove our version of the characterisation for two reasons.

Firstly, (Beimel, Tassa, & Weinreb, 2008) assumed the absence of dummies from

the outset, this is because in the context of secret sharing schemes, accounting

for dummies, who get meaningless shares, is of no practical importance. But in

our general study of HSGs here we allow them. Secondly, the proof we provide

is combinatorial that uses trading transforms (see Formula 2.2.2, the discussion

associated with it and Theorem 2.2.10) which is easier to follow then the existing

proof.

Theorem 3.6.2. Let G = H∃(n,k) be an m-level disjunctive hierarchical simple

game. Then G is a weighted majority game iff one of the following conditions is

satisfied:

(1) m = 1 (in which case G is a simple majority game);

(2) m = 2 and k2 = k1 + 1;

(3) m = 2 and n2 = k2 − k1 + 1;

(4) m ∈ {2, 3} and k1 = 1, that is, the game has two or three levels and

the first level consists entirely of passers. In case m = 3 the subgame

H∃((n2, n3), (k2, k3)) falls under (2) or (3);

(5) m ∈ {2, 3, 4}, km = km−1 + nm, that is, the game has up to four levels

but the last level consists of dummies. The subgame H∃(n′,k′), where n′ =

(n1, . . . , nm−1) and k′ = (k1, . . . , km−1) falls under one of the cases (1)–

(4).

Proof. We will prove this theorem using the combinatorial technique of trading

transforms. If km = km−1 + nm, then users of the last level are dummies and they
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never participate in any minimal winning coalition. As a result, if there exists a

certificate of nonweightedness

T = (X1, . . . , Xj;Y1, . . . , Yj) (3.6.1)

with minimal winning coalitionsX1, . . . , Xj , which exist by Theorem 2.2.13, then

no dummies may be found in any of theX1, . . . , Xj , hence they are not participat-

ing in this certificate. Hence G is weighted if and only if its subgame H∃(n′,k′),

where n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1) is weighted. So we reduce

our theorem to the case without dummies, and in this case we have to prove that

G falls under one of the cases (1)-(4). Let us assume that km < km−1 + nm.

If k1 = 1, then every user of the first level is a passer since any coalition with

participation of this player is winning. If a certificate of nonweightedness (3.6.1)

exists, then player 1 cannot be a member of any set X1, . . . , Xj , since then it

will have to be also in one of the Y1, . . . , Yj and at least one of them will not

be losing. Hence G is weighted if and only if its subgame H∃(n′,k′), where

n′ = (n2, . . . , nm) and k′ = (k2, . . . , km) is weighted.

This shows that a disjunctive hierarchical simple game is weighted if and only

if its subgame without passers and dummies is weighted. Hence without loss of

generality we can consider games without passers and dummies. This is equiva-

lent to assuming k1 > 1 and km < km−1 + nm.

The case m = 1 is trivial. Next we show that if at least one of the two condi-

tions (2) and (3) is met, thenG is weighted. So we assume thatm = 2 and k1 ≥ 2.

One can easily check that each game satisfying the second condition is weighted

with weights w1 = 1
k1
, w2 = 1

k2
, and the quota q = 1 (these weights work for both

cases n2 ≥ k2 and n2 < k2). In the case the third condition is met, a game is

weighted with weights w1 = 1
k1

and w2 = 1
k1n2

.

Conversely, we show that if all conditions (1)-(3) fail, then G is not weighted.

If m = 2, this means that k2 ≥ k1 + 2 and n2 ≥ k2− k1 + 2. In this case the game

possesses the following certificate of nonweightedness:

({1k1}, {1k1−2, 2k2−k1+2}; {1k1−1, 2b(k2−k1+2)/2c}, {1k1−1, 2d(k2−k1+2)/2e}).
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Since n2 ≥ k2 − k1 + 2, all the coalitions are well-defined. Also, the constraint

k2 ≥ k1 + 2 secures that dk2−k1+2
2
e ≤ k2 − k1 and makes both multisets in the

right-hand-side of the trading transform losing.

Now suppose m ≥ 3, k1 ≥ 2 and we have no dummies. By Theorem 3.2.1 we

have k1 ≤ n1, k2 < k1 + n2 and k3 < k2 + n3. Suppose first that k3 ≤ n3. Then,

since k3 ≥ k2 + 1 ≥ k1 + 2 ≥ 4, the following is a certificate of nonweightedness.

({1k1}, {3k3}; {1k1−1, 32}, {1, 3k3−2}).

Suppose k3 > n3. If at the same time k3 ≤ n2 + n3, then since k3 − n3 < k2 we

have a legitimate certificate of nonweightedness

({1k1}, {2k3−n3 , 3n3}; {1k1−1, 2, 3}, {1, 2k3−n3−1, 3n3−1}).

Finally, if k3 > n3 and k3 > n2 + n3, then the certificate of nonweightedness will

be

({1k1}, {1k3−n2−n3 , 2n2 , 3n3};

{1k1−1, 2, 3}, {1k3−n2−n3+1, 2n2−1, 3n3−1}).

All we have to check is that the second coalition of the losing part is indeed losing.

To show this we note that k3−n3 < k2 and k3−n2−n3 + 1 < k2−n2 + 1 ≤ k1.

This shows that the second coalition of the losing part is indeed losing and proves

the theorem.

3.6.2 Characterising Weighted Conjunctive Hierarchical Games

Now we can characterize weighted conjunctive hierarchical games. We will show

that every weighted conjunctive hierarchical gameH∀(n,k) can have at most four

levels, where at most two of them are nontrivial. Moreover, if a trivial level of

H∀(n,k) consists of blockers, then it is the first level, and if it consists of dum-

mies, then it is the last one.
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Theorem 3.6.3. Let G = H∀(n,k) be an m-level conjunctive hierarchical simple

game. Then G is a weighted majority game iff one of the following conditions is

satisfied:

(1) m = 1 (in which case G is a simple majority game);

(2) m = 2 and k2 = k1 + 1;

(3) m = 2 and n2 = k2 − k1 + 1;

(4) m ∈ {2, 3} and k1 = n1, that is, the game has two or three levels and

the first one consists entirely of blockers. In case m = 3, the reduced

game H∀(n,k){1
n1} = H∀(n

′,k′) of G, where n′ = (n2, n3) and k′ =

(k2 − k1, k3 − k1), falls under (2) or (3);

(5) m ∈ {2, 3, 4} with km = km−1, that is the game has up to four lev-

els but the last one consists entirely of dummies. Moreover, the reduced

game H{m
nm}

∀ (n,k) = H∀(n
′,k′), where n′ = (n1, . . . , nm−1) and k′ =

(k1, . . . , km−1), falls under one of the (1) – (4).

Proof. The theorem straightforwardly follows from Theorem 3.6.2, the duality

between conjunctive hierarchical games and disjunctive hierarchical games and

Propositions 3.4.1 and 3.4.2.
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Chapter 4

Tripartite Simple Games

Tripartite simple games were defined and shown to be ideal in the influential paper

by Beimel, Tassa, & Weinreb (2008). The importance of this class stems from the

fact that any indecomposable (we will explain in Chapter 5 what indecomposable

means) ideal weighted game is either hierarchical or tripartite. As in the case of

hierarchical games, this class deserves to be thoroughly studied, and this study

has not yet been done in the extant literature. So in this chapter, we undertake

a thorough study of this class, which is for the most part parallel in structure to

the study we did for hierarchical simple games. We say it is parallel for the most

part because one difference the reader will notice, is that we will not characterise

weighted tripartite games. Although we have an alternative proof for the char-

acterisation of weighted tripartite games to the existing one by Farràs & Padró

(2010), the fact that this characterisation already existed makes it unnecessary to

include our alternative proof here.

In passing something should be said regarding the characterisation of multi-

partite games in general. A multipartite game is a game with different seniority

levels where a coalition must satisfy one or more conditions at each seniority level

in order to be winning. So a hierarchical game is an example of a multipartite

game, and the tripartite games discussed in this chapter are another example, and

there are more. A bipartite game is a 2-level multipartite game. Now one may

wonder whether it is possible to characterise all multipartite games in general, this
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is an open problem, but we feel that with greater knowledge of the compositions

of simple games (more on Chapter 5) an answer to this problem can be achieved.

4.1 The two types of tripartite simple games, defini-

tions and examples

In this section we present tripartite simple games (TSGs), which are a generaliza-

tion of bipartite simple games that were presented in (Padró & Sáez, 1998). In a

bipartite game, the set of players is partitioned into two classes, and a coalition

is winning if the sizes of its intersection with each of these classes satisfy some

predefined conditions. In a tripartite game, the set of players is partitioned into

three classes, and, similarly to bipartite games, a given coalition is winning if the

sizes of its intersection with each of these classes satisfy some conditions. There

are two types of TSGs involved in the study of ideal WSGs, and we should men-

tion that the tripartite games treated here form a special class of tripartite games

as invented by Beimel, Tassa, & Weinreb (2008), where the authors state that they

are considering a ‘specific’ family of tripartite games.

The first type will be referred to as ∆1, and the second type will be referred to

as ∆2. We start with the formal definition.

Definition 4.1.1. Let P be a set of n players, such that P = A ∪ B ∪ C, where

A,B and C are disjoint and all nonempty 1. Let m, d, t be positive integers such

that m ≥ t. Then the following is a TSG on P : a coalition X is winning in

∆1(A,B,C,m, d, t) iff

|X ∩ A| ≥ t or (|X| ≥ m and |X ∩ (A ∪B)| ≥ m− d).

1In (Beimel, Tassa, & Weinreb (2008), Definition 3.3) it says A and C are nonempty, meaning

B is allowed to be empty. But if B is empty, then we get a decomposable bipartite game. So the

case for B being empty does not add anything new to the list of indecomposable ideal weighted

games, which are needed for characterising all ideal weighted games, as we show in Chapter 6.

Therefore we exclude the possibility of B being empty from the definition of tripartite games.

74



Namely, a coalition X is winning in ∆1 if either it has at least m players, m−d of

which are from A∪B, or it has at least t players from A. If |B| ≤ d+ t−m, then

the following is another TSG: a coalition X is winning in ∆2(A,B,C,m, d, t) iff

|X ∩ (A ∪B)| ≥ t or (|X| ≥ m and |X ∩ A| ≥ m− d).

That is, a coalition X is winning in ∆2 if either it has at least m players, m− d of

which are from A, or it has at least t players from A ∪B.

We will sometimes abbreviate the two TSGs with ∆1 and ∆2 when no con-

fusion may arise. We give two examples below, the first one is for ∆1, and the

second for ∆2.

Example 4.1.2. An electrical engineering company has three groups of employ-

ees: 5 technical experts, 8 senior engineers and 8 junior engineers. Fixing a major

power outage requires either four technical experts, or six employees, at least two

of which are either from the technical experts group, or senior engineers group, or

both. We let A = {technical experts}, |A| = 5, B = {senior engineers}, |B| = 8,

and C = {junior engineers}, |C| = 8, so that the full set is P = A ∪ B ∪ C, and

m = 6, d = 4, t = 4. Then a coalition X can fix the outage if either |X ∩ A| ≥ 4

or (|X| ≥ 6 and |X∩(A∪B)| ≥ m−d = 2), meaning this game can be modelled

by the TSG of type ∆1.

Example 4.1.3. Consider an alternative scenario to the one above, where A =

{technical experts}, |A| = 5, B = {senior engineers}, |B| = 2, and C =

{junior engineers}, |C| = 8, P = A ∪ B ∪ C, and m = 6, d = 4, t = 4, meaning

|B| = d + t −m = 2. Here the two options of fixing a major power outage are:

(1) Four employees, either from the technical experts group, or senior engineers

group, or both. (2) Six employees, at least two of which are from the technical

experts group. Then a coalition X can fix the outage if either |X ∩ (A ∪ B)| ≥ 4

or (|X| ≥ 6 and |X ∩ A| ≥ m− d = 2), meaning this game can be modelled by

the TSG of type ∆2.

Observe that all players within A are equally desirable to each other, and the

same is true for all players within B and all players within C. But let us now
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take a closer look at the winning conditions of ∆1 and ∆2, in order to understand

how the players from A,B and C relate to each other in terms of desirability, and

therefrom prove that tripartite simple games are complete.

4.1.1 Completeness

We will first show that, in ∆1, players of A are at least as desirable as players

of B, which are in turn at least as desirable as players of C. In other words

A �∆1 B �∆1 C.

A winning coalition of ∆1 satisfies either |X ∩A| ≥ t or (|X| ≥ m and |X ∩
(A ∪ B)| ≥ m − d). If there is no minimal winning coalition containing players

fromB, thenB consists of dummy players, and it follows thatA �∆1 B. Suppose

now there is a minimal winning coalition of ∆1 containing players from B, then

it must satisfy |X| ≥ m and |X ∩ (A ∪B)| ≥ m− d. Now if we replace a player

from B with a player from A, then the resulting coalition satisfies again the same

winning condition. Hence A �∆1 B.

Similarly, if there is no minimal winning coalition containing players from C,

then C consists of dummy players, since C cannot be empty by Definition 4.1.1.

It follows that B �∆1 C. Suppose now there is a minimal winning coalition

containing players from C, then it must satisfy |X| ≥ m and |X ∩ (A ∪ B)| ≥
m − d. Now replace a player from C with a player from B, then the resulting

coalition still satisfies the same winning condition, so B �∆1 C. But Isbell’s

desirability relation is transitive (see page 36), therefore A �∆1 B �∆1 C.

A similar argument shows that in ∆2 we also have A �∆2 B �∆2 C. So in

fact for i ∈ {1, 2}, we have

A �∆i
B �∆i

C. (4.1.1)

This fact will be useful later on. We have now actually shown that both ∆1 and

∆2 are complete games.

76



However, with only Definition 4.1.1 and (4.1.1) above, there is no guarantee

that desirability of players from different classes will be different. Let us illustrate

this possibility with the following example.

Example 4.1.4. Consider ∆1(A,B,C,m, d, t), whereA = {a1}, B = {b1, b2, b3},
C = {c1, c2, c3}, and m = 4, d = 2, t = 2. Now, since |A| < t, then a winning

coalition meeting the requirement |X ∩ A| ≥ t is never achieved, and therefore

the only winning coalitions are those meeting the requirement |X| ≥ m and |X ∩
(A ∪ B)| ≥ m − d. But the condition |X| ≥ m and |X ∩ (A ∪ B)| ≥ m − d is

symmetric with respect to A and B, thus implying that the two classes A and B

are equivalent.

We saw how in the above example that classes A and B became equivalent to

each other. Many cases like the one above can occur. But we would like to identify

conditions under which a tripartite game has three distinct classes, so no classes

collapsing. As we shall explain in the next proposition, collapsing classes in the

tripartite game results in fact in a 2-level hierarchical game, sometimes disjunc-

tive and sometimes conjunctive. Therefore we need a canonical representation

for each type, that allows us to identify the cases when A,B and C as the three

different equivalence classes.

4.2 Canonical Representations

In order to identify the cases when A,B and C are three different equivalence

classes, we will assume from now on that B is nonempty, for both types ∆1 and

∆2.

4.2.1 A Canonical Representation for games of type ∆1

Proposition 4.2.1. Given the tripartite simple game ∆1(A,B,C,m, d, t), the fol-

lowing conditions must be satisfied in order for the game to have A,B and C as

three distinct equivalence classes with respect to Isbell’s desirability relation:
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(C1) m > t;

(C2) m > d;

(C3) |A| ≥ t;

(C4) both |A|+ |B|+ |C| ≥ m, and |A|+ |B| ≥ m− d;

(C5) |C| > d;

(C6) m− d− |B| < t.

Proof. In all that follows, assume that X is a minimal winning coalition in ∆1,

and let us refer to |X ∩ A| ≥ t as the first winning condition. Similarly, we will

refer to |X| ≥ m and |X ∩ (A ∪B)| ≥ m− d as the second winning condition.

(C1) We know from the definition that m ≥ t, so suppose m = t. Consider

both the first and second winning conditions. Observe that the first winning

condition for t = m implies the second winning condition |X| ≥ m and

|X ∩ (A ∪ B)| ≥ m − d. This means that the first winning condition is

redundant in this case. Since the second winning condition is symmetric

with respect to A and B, then A ∼∆1 B.

The fact that A and B become equivalent to each other means that together

they form one class, call it AB. So the game at hand now has only two

classes, AB and C. A winning coalition in this resulting game has to have

at least m − d players from AB and at least m players in total. It follows

that the resulting game is a 2-level conjunctive HSG with m − d being the

first threshold, and m being the second threshold. The same applies to all

cases; when classes A and B become equivalent, we always get a 2-level

conjunctive HSG.

(C2) If m ≤ d, then m − d ≤ 0, and |X ∩ (A ∪ B)| ≥ m − d always holds. So

the two winning conditions now become |X ∩ A| ≥ t and |X| ≥ m. But

these are symmetric with respect to B and C. So it follows that B ∼∆1 C.
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The fact that B and C become equivalent to each other means that together

they form one class, call it BC. So the game at hand now has only two

classes, A and BC. A winning coalition in this resulting game has to have

either at least t players from A, or at least m players in total. It follows that

the resulting game is a 2-level disjunctive HSG with t being the first thresh-

old, and m being the second threshold. The same applies to all cases; when

classes B and C become equivalent, we always get a 2-level disjunctive

HSG.

(C3) |A| < t means the first condition is never satisfied, meaning only |X| ≥
m and |X ∩ (A ∪ B)| ≥ m − d can be met. Therefore A ∼∆1 B, since

|X ∩ (A ∪ B)| ≥ m− d is symmetric with respect to A and B, and we get

a 2-level conjunctive HSG.

(C4) If any of |A| + |B| + |C| ≥ m and |A| + |B| ≥ m − d fails, then the sec-

ond winning condition is never satisfied, so both classes B and C become

classes consisting entirely of dummies, meaning B ∼∆1 C, and we get a

2-level disjunctive HSG.

(C5) Suppose X contains players from C. Then it meets the second winning

condition, but not the first. Since X is minimal, then |X| = m. If |C| ≤ d,

then |X| ≥ m implies |X ∩ (A ∪ B)| ≥ m − d, so the winning conditions

are in fact |X ∩A| ≥ t or |X| ≥ m, which are both symmetric with respect

to B and C. Therefore B ∼∆1 C, and we get a 2-level disjunctive HSG.

(C6) Finally, if m − d − |B| ≥ t, then the second winning condition |X ∩ (A ∪
B)| ≥ m − d implies |X ∩ A| ≥ m − d − |B| ≥ t, meaning the first win-

ning condition is already met, so the second winning condition is redundant.

Therefore B ∼∆1 C, and we get a 2-level disjunctive HSG.

Note that under certain circumstances, redundancy in the equivalence classes

of TSGs may not only result in 2-level HSGs as shown above, but also in 1-level

HSGs (see the discussion on canonical representation of HSGs in Chapter 3).
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From now on, we assume that C1 - C6 from the above proposition hold, and

we say in this case that ∆1 is canonically represented. Next we show that in a

canonically represented ∆1, the three equivalence classes are indeed distinct, in

other words they have strict desirability orderings, meaning A �∆1 B �∆1 C.

4.2.2 Seniority of levels in a canonically represented ∆1

(1) Class A is more senior than class B.

Firstly, let us observe the following. We know from (C3) that |A| ≥ t and

the first winning condition is not redundant, so there exists a minimal win-

ning coalition with t players from A, call it X . If we replace a player from

X with a player from B, the resulting coalition will have t− 1 players from

A, so it will fail the first winning condition. Also, the resulting coalition

will have t players in total, but since m > t by (C1), then it also fails the

second winning condition, meaning players from B cannot be at least as

desirable as players from A. But we also know from (4.1.1) that A �∆1 B,

therefore we have shown that A �∆1 B.

(2) Class B is more senior than class C.

By (C4) there exists a winning coalition containing players from A or B

or both such that it meets the second winning condition. But if it does

not contain players from B, then a replacement of a player from A with

a player from B will still result in a coalition meeting the second winning

condition, such that it now contains a player from B. So we can assume

that a minimal winning coalition containing players from B exists, and it

satisfies the second winning condition |X| ≥ m and |X∩(A∪B)| ≥ m−d,

and does not satisfy |X ∩ A| ≥ t. Since X is minimal, then we can assume

that |X| = m (otherwise we can drop an element of C which is contained

in X and still have it winning). We know from (C5) that |C| > d. And if

|X ∩ (A ∪B)| > m− d, then we keep replacing players from B with ones

from C until |X ∩ (A ∪ B)| = m − d. So now we have |X ∩ C| = d. If

by now we don’t have players of B left in X , then we have m − d players
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from A, and we can replace a player from A with a player from B and still

have a winning coalition. And if we now replace a player from B with one

from C (possible since |C| > d) the resulting coalition is losing, showing

that players from C cannot be at least as desirable as players from B. But

since by (4.1.1) we have B �∆1 C, then it follows that B �∆1 C.

(3) Class C is the least senior.

By combining (1) and (2) above, and given that Isbell’s desirability relation

is transitive (see Taylor & Zwicker (1999), p.89-90), then we see that class

C is the least senior. Therefore, we have shown that

A �∆1 B �∆1 C.

4.2.3 Multiset representation of ∆1

It follows from the above analysis regarding completeness and seniority levels

that if the game is canonically represented, then it has three distinct levels of

seniority. Also, let us from now on consider the three classes A,B and C to be

the three levels of seniority 1, 2 and 3 respectively, such that 1 �∆1 2 �∆1 3. If

we also let n1, n2 and n3 to denote the total numbers of players of levels 1, 2 and

3 respectively, then using the multiset notation, we can re-write the definition of

∆1 as follows: Let P = {1n1 , 2n2 , 3n3}, and m, d, t be positive integers such that

m ≥ t. Then P ⊇ X = {1l1 , 2l2 , 3l3} is winning in ∆1 iff

l1 ≥ t or (l1 + l2 + l3 ≥ m and l1 + l2 ≥ m− d).

4.2.4 The shift-minimal winning coalitions of ∆1

Now, putting all the facts that we gathered about ∆1 so far together, we can list all

its shift-minimal winning coalitions. Recall that by a shift we mean a replacement

of a player of a coalition by a less desirable player which did not belong to it. Also,

a winning coalition X is said to be shift-minimal if every coalition contained in it

and every coalition obtained from it by a shift are losing.
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For a canonically represented ∆1, the first shift-minimal winning coalition is

{1t}, since we always have at least t players from level 1 by (C1). The second

shift-minimal winning coalition has two possibilities, depending on the number

of players in level 2. If m − d < n2, then it is {2m−d, 3d}. That is because

n3 > d by (C5), and there are at least m − d players from levels 1 and 2 by

(C4). But if m − d ≥ n2, then the second shift-minimal winning coalition is

{1m−d−n2 , 2n2 , 3d}, and it is a new minimal winning coalition due to (C6). So

these two possibilities for the second shift-minimal winning coalition give rise to

two kinds of simple games, these are the two variations of ∆1. An arbitrary game

of the first kind will be referred to as T1a, and an arbitrary game of the second

kind will be referred to as T1b, so that

T1a has {1t} and {2m−d, 3d} as shift-minimal winning coalitions; (4.2.1)

and

T1b has {1t} and {1m−d−n2 , 2n2 , 3d} as shift-minimal winning coalitions. (4.2.2)

4.2.5 Ideality of ∆1

The last property that we prove for ∆1, is that it is an ideal simple game. This was

already proved by Beimel, Tassa, & Weinreb (2008), but here we present a more

straightforward proof based on the result by Farràs & Padró (2010), which we state

below. Also, note that in (Farràs & Padró, 2010), it was shown that the tripartite

games T1, T2 and T3 of Theorem 1.1.2(iii) are ideal, whereas here we show that all

games in the class of tripartite games are ideal. The result from (Farràs & Padró,

2010) that we will use, characterises ideal complete simple games in terms of

properties of their shift-minimal winning coalitions. Before stating the result, we

need some new notations, which we have slightly modified, for simplicity, from

their original form. We will state the concepts and notations in general first, then

apply them to our game ∆1. Recall also the notation [n] = {1, 2, . . . , n}.

Suppose we have a complete simple game of n desirability levels. For a shift-

minimal winning coalition X = {1a1 , 2a2 , . . . , nan}, ai ≤ ni for all i ∈ [n], let
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supp(X) = {i ∈ [n] : ai 6= 0}. Suppose now that we have r shift-minimal

winning coalitions X1, . . . , Xr. Then let mj = max(supp(Xj)), j ∈ [r]. Finally,

let X i
j be the number of players of type i in the shift-minimal winning coalition

Xj .

To illustrate the above, suppose n = 4, andX1 = {12, 23, 34}. Then supp(X1) =

{1, 2, 3},mj = 3. Also X1
1 = 2, X2

1 = 3, X3
1 = 4 and X4

1 = 0.

We are now ready to work with the characterisation theorem which we stated

in Section 2.3. The statement of the theorem is also modified, we are re-writing it

in a way that is consistent with the game-theoretic language and notation presented

in this thesis.

Theorem 4.2.2 (Farràs & Padró (2010), Theorem 9.2). Let Γ be a complete simple

game on P = {1n1 , 2n2 , . . . ,mnm}. Also, let the set of shift-minimal winning

coalitions be {X1, . . . , Xr}. Consider mj = max(supp(Xj)), 1 ≤ j ≤ r, and

suppose that the shift-minimal winning coalitions are listed in such a way that

mj ≤ mj+1. Then Γ is ideal if and only if

(i) mj < mj+1 and |Xj| < |Xj+1| for all j = 1, . . . , r − 1, and

(ii) X i
j ≥ X i

j+1 if 1 ≤ j ≤ r − 1 and 1 ≤ i ≤ mj , and

(iii) if X i
j > X i

r for some 1 ≤ j < r and 1 ≤ i < mj , then nk = Xk
j for all

k = i+ 1, . . . ,mj .

And now we can apply the above theorem to show that T1a and T1b are both

ideal.

Proof of ideality of T1a and T1b. Let the shift-minimal winning coalitions be

X1 = {1t} and X2 depending on whether we are dealing with T1a or T1b is

{2m−d, 3d} or {1m−d−n2 , 2n2 , 3d} respectively. Then supp(X1) = {1}, meaning

m1 = 1. Also, supp(X2) = {2, 3} or {1, 2, 3}, but in both cases m2 = 3. It

follows that X1 and X2 are listed in such a way that mj ≤ mj+1. We now check

X1 and X2 against the three conditions of Theorem 4.2.2.

83



(i) This condition applies only to j = 1. But m1 < m2 and |X1| < |X2|, since

t < m by (C1). So this condition holds.

(ii) This condition applies only to j = 1 = i. Now, X1
1 = t, and X1

2 =

0 or m− d−n2. But m− d−n2 < t by Proposition 4.2.1(vi), so X1
1 > X1

2

and the second condition also holds.

(iii) Here the two conditions 1 ≤ j < r and 1 ≤ i < mj are never both met,

since if j = 1 then mj = 1, implying that i = 0, contradicting 1 ≤ i.

Therefore both variants of ∆1 are ideal.

4.2.6 A Canonical Representation for games of type ∆2

We need to carry out an analysis for games ∆2(A,B,C,m, d, t) similar to the

one we did for ∆1, since for ∆2 the winning requirements are different. Recall

that this is the case for |B| ≤ d + t − m, and the two winning conditions are

|X ∩ (A∪B)| ≥ t, which we’ll refer to as the first winning condition, and |X| ≥
m and |X ∩ A| ≥ m− d, which we’ll refer to as the second winning condition.

Proposition 4.2.3. Given a tripartite simple game ∆2(A,B,C,m, d, t), the fol-

lowing conditions must be satisfied in order for the game to have A,B and C as

three distinct equivalence classes with respect to Isbell’s desirability relation:

(C′1) m > d;

(C′2) |A|+ |B| ≥ t;

(C′3) both |A|+ |B|+ |C| > m, and |A| ≥ m− d;

(C′4) |B|+ |C| > d;

(C′5) m > t;

(C′6) m− d < t;
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(C′7) m− |C| < t;

(C′8) |C| ≥ 2.

Proof. Let X be a minimal winning coalition.

(C′1) If m ≤ d, |X ∩ A| ≥ m− d is trivially satisfied, so the winning conditions

become |X ∩ (A ∪ B)| ≥ t or |X| ≥ m, which are both symmetric with

respect to A and B, thus A ∼∆2 B.

The fact that A and B become equivalent to each other means that together

they form one class, call it AB. So the game at hand now has at most two

equivalence classes, AB and C. A winning coalition in this game has to

have at least t players from AB or at least m players in total. It follows that

the game is a 2-level disjunctive HSG with t being the first threshold, and

m being the second threshold. The same applies to all cases: when classes

A and B become equivalent, we always get a 2-level disjunctive HSG.

(C′2) This condition is needed for the first winning condition to be nontrivial. If it

fails, then only the second winning condition can be met. But in the second

winning condition |X ∩A| ≥ m− d is symmetric with respect to B and C,

so we get B ∼∆2 C.

The fact that B and C become equivalent to each other means that together

they form one class, call it BC. So the game at hand now has at most two

equivalence classes, A and BC. A winning coalition in this game has to

have at least m−d players from A and at least m players in total. It follows

that the resulting game is a 2-level conjunctive HSG with m − d being the

first threshold, and m being the second threshold. The same applies to all

cases: when classes B and C become equivalent, we always get a 2-level

conjunctive HSG.

(C′3) If this condition fails, then either |A| + |B| + |C| ≤ m, or |A| < m− d or

both. In the former, if |A|+ |B|+ |C| < m, then only |X∩(A∪B)| ≥ t can

be met, which is symmetric with respect to A and B, so we get A ∼∆2 B.
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And if |A|+ |B|+ |C| = m, then in any winning coalition X such as |X| =
m all classes must be used fully, hence then the condition is also symmetric

with respect toA andB, which again together with |X∩(A∪B)| ≥ t imply

A ∼∆2 B. If on the other hand |A| < m− d, then only |X ∩ (A ∪ B)| ≥ t

can be met, again implying A ∼∆2 B as explained above, and we get a

2-level disjunctive HSG.

(C′4) If |B| + |C| ≤ d, then |X| ≥ m implies |X ∩ A| ≥ m − d. So the two

winning conditions are now |X ∩ (A ∪ B)| ≥ t or |X| ≥ m, which are

both symmetric with respect to A and B, meaning A ∼∆2 B, and we get a

2-level disjunctive HSG.

(C′5) We know from Definition 4.1.1 that m ≥ t, so we need to show that m 6= t.

But if m = t, then since we are working from the definition of ∆2, meaning

|B| ≤ d + t − m, then |B| ≤ d. But here the first winning condition

|X ∩ (A ∪ B)| ≥ t = m would imply |X ∩ A| ≥ m − |B| ≥ m − d.

And since the latter condition is symmetric with respect to B and C, then

B ∼∆2 C, and we get a 2-level conjunctive HSG.

(C′6) Ifm−d ≥ t, then the second winning condition implies |X∩A| ≥ m−d ≥
t, and hence |X ∩ (A ∪ B)| ≥ t. Thus the second winning condition is

redundant. But the first winning condition is symmetric with respect to A

and B, so A ∼∆2 B, and we get a 2-level disjunctive HSG.

(C′7) We know that the first winning condition does not require class C players.

And if m − |C| ≥ t, then the second condition actually implies the first,

hence A ∼∆2 B as above, and we get a 2-level disjunctive HSG.

(C′8) Finally, if |C| = 1, then since from (C′7) above we know that we need

m− 1 < t, then it follows that m ≤ t, and we get B ∼∆2 C as shown in the

proof of (C′5) above, and we get a 2-level conjunctive HSG.

From now on, we assume that C′1 - C′8 from the above proposition hold, and

in such a case we say that ∆2 is canonically represented. Next we show that in a
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canonically represented ∆2, the three equivalence classes have strict desirability

orderings, meaning A �∆2 B �∆2 C.

4.2.7 Seniority of levels in a canonically represented ∆2

(1) Class A is more senior than class B.

We know from (C′3) that we have a minimal winning coalition X meeting

|X| ≥ m and |X ∩ A| ≥ m − d. We may assume that |X| = m and |X ∩
A| = m − d. Indeed, since X is minimal, then we can assume |X| = m,

since we can always discard some players from B and C as by (C′4) we

know that |B| + |C| > d. If X has |X ∩ A| > m − d, then we can

replace a player from A with one from B ∪ C, and keep doing this until

|X ∩A| = m−d. So let us assume now that our minimal winning coalition

X has |X| = m and |X ∩ A| = m − d, meaning |X ∩ (B ∪ C)| = d.

But since |B| + |C| > d, then either B is not used up fully in X , or C is

not used up fully, or both. Suppose B is used up fully but not C, the other

case is similar. If B is used up fully, then we can replace one player from B

with one from C, X will remain winning as the second winning condition

will still be satisfied. And now, a further replacement of a player from A

with a player from B will result in a losing coalition, meaning players from

B cannot be at least as desirable as players from A. But we also know

from (4.1.1) that A �∆2 B, therefore we have shown that A �∆2 B.

(2) Class B is more senior than class C.

By (C′2) there is a minimal winning coalition meeting the first winning

condition that contains players from A or B or both, and it does not contain

players from C. And if it contains only players from A, then replace a

player from A with one from B and it will still be winning, such that it now

contains a player fromB. So assume we haveX satisfying |X∩(A∪B)| ≥ t

such that it contains players fromB. If we now replace a player fromB with

one from C, the resulting coalition is losing, since it has size t and m > t

by (C′5). So players from C cannot be at least as desirable as players from
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B. But we also know from (4.1.1) that B �∆2 C, therefore we have shown

that B �∆2 C.

(3) Class C is the least senior.

By combining (1) and (2) above, and given that Isbell’s desirability relation

is transitive, then we see that class C is the least senior. Therefore, we have

shown that

A �∆2 B �∆2 C.

4.2.8 Multiset representation of ∆2

It follows from the above analysis regarding completeness and seniority levels that

if the game is canonically represented, then it has three distinct levels of seniority.

So assuming the game is canonically represented, let us from now on consider the

three classes A,B and C to be the three levels of seniority 1, 2 and 3 respectively,

such that 1 �∆2 2 �∆2 3. If we also let n1, n2, n3 to denote the total numbers

of players of levels 1, 2 and 3 respectively, then using the multiset notation, we

can re-write the definition of ∆2 as follows: Let P = {1n1 , 2n2 , 3n3}, and m, d, t

be positive integers such that m ≥ t and n2 ≤ d + t − m. Then a submultiset

X = {1l1 , 2l2 , 3l3} is winning in ∆2 iff

l1 + l2 ≥ t or (l1 + l2 + l3 ≥ m and l1 ≥ m− d).

4.2.9 The shift-minimal winning coalitions of ∆2

Now, putting all the facts that we gathered about ∆2 so far together, we can list all

its shift-minimal winning coalitions. For a canonically represented ∆2, the first

shift-minimal winning coalition is {1t−n2 , 2n2}, since we always have at least t

players from levels 1 and 2 by (C′2). The second shift-minimal winning coalition

has two possibilities, depending on the number of players in level 3. If n3 ≥ d,

then it is {1m−d, 3d}. This is because there are at leastm players from classesA,B

and C by (C′3), of which at least m − d players are from A. But if n3 < d, then
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the second shift-minimal winning coalition is {1m−d, 2d−n3 , 3n3}, which is a new

coalition by (C′5). So these two possibilities for the second shift-minimal winning

coalition give rise to two kinds of simple games, these are the two variations of

∆2. An arbitrary game of the first kind will be referred to as T2a, and an arbitrary

game of the second kind will be referred to as T2b, so that

T2a has {1t−n2 , 2n2} and {1m−d, 3d} as shift-minimal winning coalitions; (4.2.3)

and

T2b has {1t−n2 , 2n2} and {1m−d, 2d−n3 , 3n3} as shift-minimal winning coalitions.

(4.2.4)

It is now recognised that there are four variations, T1a, T1b, T2a and T2b of

TSGs.

Next we look at ideality of ∆2.

4.2.10 Ideality of ∆2

Proof of ideality of T2a and T2b. Let the shift-minimal winning coalitions be

X1 = {1t−n2 , 2n2} and X2 depending on whether we are dealing with T2a or

T2b is {1m−d, 3d} or {1m−d, 2d−n3 , 3n3} respectively. Then supp(X1) = {1, 2},
meaning m1 = 2. Also, supp(X2) = {1, 3} or {1, 2, 3}, but in both cases m2 = 3.

It follows that X1 and X2 are listed in such a way that mj ≤ mj+1. We now check

X1 and X2 against the three conditions of Theorem 4.2.2.

(i) This condition applies only to j = 1. But m1 < m2 and |X1| < |X2|, since

t < m by (C ′5). So this condition holds.

(ii) This condition applies only to j = 1 = i. Now, X1
1 = t − n2, and X1

2 =

m− d. But ∆2 is the case for n2 ≤ d+ t−m, so t− n2 ≥ m− d, meaning

X1
1 ≥ X1

2 . So the second condition also holds.
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(iii) Here the two conditions 1 ≤ j < r and 1 ≤ i < mj are both met when

j = 1 = i, and since, as shown in (ii) above, X1
1 ≥ X1

2 , then this condition

does not apply.

Therefore both variants of ∆2 are also ideal.
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Chapter 5

The Composition of Simple Games

The idea of composing simple games has a long history. Shapley (1962) intro-

duced the most general type of composition, Martin (1993) and Beimel, Tassa,

& Weinreb (2008) adapted a particular case of it to the needs of secret sharing

schemes (without knowing about Shapley’s construction). Their motivation was

that sometimes all players can be classified into ‘strong’ players and ‘weak’ play-

ers, so that the game can be decomposed into the main game that contains strong

players, and the auxiliary game which contains weak players.

It was shown by Beimel, Tassa, & Weinreb (2008) that if a weighted simple

game is ideal, then it is either a disjunctive 2-level hierarchical, tripartite or a

composition of two smaller ideal WSGs. This result was later refined by Farràs

& Padró (2010). In the latter, they observed that since one of the possibilities of

having an ideal WSG is that of a composition, then one should classify only inde-

composable ideal WSGs. So in the latter paper, they gave a list of indecomposable

ideal WSGs.

Thus the first stage of characterising ideal WSGs was the classification of

indecomposable ideal WSGs. The second stage, which we now have to address, is

to answer the question: When does the composition of two ideal weighted simple

games also result in an ideal weighted simple game? The answer to this question

is crucial for obtaining an ‘if and only if’ characterisation of ideal WSGs. The
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reason for this is the fact that the class of ideal weighted games is not closed

under compositions.

So in this chapter and the next, we will undertake a thorough study of com-

positions of games in general, and of compositions of ideal WSGs in particular.

Chapter 6 will be the culmination of this study, where we will give an ‘if and only

if’ characterisation theorem for all ideal weighted simple games.

5.1 Definition and examples

The composition of simple games is an operation by which a new game is gen-

erated from two or more given ones. Shapley (1962) was the first to introduce it,

under the name ‘compound simple games’. A special case of it was re-discovered

and investigated later in (Martin, 1993), and then used in (Beimel, Tassa, & Wein-

reb, 2008). Given two simple games G and H over the sets of players PG and PH
respectively, the composition is constructed over an arbitrary player g ∈ PG. The

winning coalitions in the composition are the winning coalitions from G that do

not contain player g, together with the winning coalitions ofG that contain g, with

g being replaced by a winning coalition of H . This operation is an important one,

it played a pivotal role in the characterisation of ideal WSGs given by Beimel,

Tassa, & Weinreb (2008) and Farràs & Padró (2010).

First we start with the formal definition of compositions.

Definition 5.1.1. Let G = (PG,WG) and H = (PH ,WH) be two simple games.

Let g ∈ PG, and PC = PG ∪ PH \ {g}. Then the composition C = (PC ,WC) of

G and H over g is given by

WC = {X ⊆ PC : XG ∈ WG or (XG ∪ {g} ∈ WG and XH ∈ WH)},

where XG = X ∩ PG and XH = X ∩ PH .

Namely, X ⊆ PC is winning in this simple game if either XG = X ∩ PG is

winning in WG, or XG ∪ {g} is winning in WG and XH = X ∩ PH is winning in

WH .
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We shall denote the composition over player g from G by G ◦g H . It is not

difficult to see that if |PG| = 1, then G◦gH = H and, if |PH | = 1, then G◦gH ∼=
G, so both compositions are trivial. Therefore, to separate trivial decompositions

from nontrivial ones, we need min(|PG|, |PH |) ≥ 2. To formalise the concept, we

give the following definition.

Definition 5.1.2. If C can be represented as a composition C = G ◦g H , where

g ∈ PG and min(|PG|, |PH |) ≥ 2, then C is decomposable, and if it cannot, then

it is indecomposable.

In G = (PG,WG), we let Wmin
G denote the set of minimal winning coalitions

of WG. Observe the following basic fact.

Proposition 5.1.3. Let G,H be two games defined on the disjoint set of players

and g ∈ PG. Then for C = G ◦g H , the set of minimal winning coalitions is

Wmin
C = {X | X ∈ Wmin

G and g /∈ X} ∪ {X ∪ Y | X ∪ {g} ∈ Wmin
G and

Y ∈ Wmin
H with g /∈ X}.

Proof. Follows directly from the definition.

Example 5.1.4. Let G = (PG,WG) be the first simple game such that PG =

{1, 2, 3},Wmin
G = {{1, 2}, {2, 3}}. And let H = (PH ,WH) be the second simple

game such that PH = {4, 5, 6},Wmin
H = {{4}, {5, 6}}. Then the compositionC =

G ◦3 H over player 3 from PG gives the game on the set PC = {1, 2, 4, 5, 6}, and

the following set of minimal winning coalitionsWmin
C = {{1, 2}, {2, 4}, {2, 5, 6}}.

Example 5.1.5. Let G = (P,W ) be a simple game and A ⊆ P be the set of all

vetoers in this game. Let |A| = m. Then G ∼= Um+1 ◦uGA, where u is any player

of Um+1. So any game with vetoers is decomposable.

Next we prove associativity.
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Proposition 5.1.6. (Associativity) Let G,H,K be three games defined on three

disjoint sets of players, and g ∈ PG, h ∈ PH . Then

(G ◦g H) ◦h K = G ◦g (H ◦h K),

that is the two compositions are the same.

Proof. Let us classify the minimal winning coalitions of the game (G◦gH)◦hK.

By Proposition 5.1.3 they can be of the following types:

• X ∈ Wmin
G with g /∈ X;

• X ∪ Y , where X ∪ {g} ∈ Wmin
G and Y ∈ Wmin

H with g /∈ X and h /∈ Y ;

• X ∪ Y ∪ Z, where X ∪ {g} ∈ Wmin
G , Y ∪ {h} ∈ Wmin

H and Z ∈ Wmin
K with

g /∈ X and h /∈ Y .

It can be seen that the game G ◦g (H ◦hK) has exactly the same minimal winning

coalitions.

We also note the following interesting fact about the presence of dummies in

the composition.

Proposition 5.1.7. Let G and H be two games defined on disjoint sets of players

PG and PH respectively, such that C = G ◦g H , where g ∈ PG. Then C has

dummies if and only if either

(i) g is a dummy in G, or

(ii) G has dummies different from g, or

(iii) H has dummies.

Proof. (i) If player g is dummy, then it does not participate in any minimal win-

ning coalition of G, and therefore, it will not be a part of any minimal winning

coalition of G, so by Proposition 5.1.3 the minimal winning coalitions of C are in
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this case just the minimal winning coalitions ofG. However, the full set of players

is PC = PG \ {g} ∪ PH , meaning all players in PH are now dummies in C.

(ii) If any player in G, other than g, is a dummy, then it will not participate in

minimal winning coalitions of G, nor will it in minimal winning coalitions of C

by Proposition 5.1.3.

(iii) If H has dummies, then they will not participate in minimal winning coali-

tions of H , nor will they in minimal winning coalitions of C, also by Proposi-

tion 5.1.3.

The converse is also clear.

It was mentioned in Chapter 3 that in the context of secret sharing schemes,

accounting for dummies is of no practical importance 1. Since our study of com-

positions here will be applied ultimately to ideal simple games, then we assume

from now on that our simple games have no dummies. Therefore, by Proposi-

tion 5.1.7 above, none of the compositions of games will have dummies in them

either.

We conclude this section by demonstrating the uniqueness of decomposition

of games in the situation that will be further important. Note that a game where

its only winning coalition is the full set of players is called a unanimity game.

Theorem 5.1.8. Let Hn1,k1 and Hn2,k2 be two k-out-of-n games which are not

unanimity games. Then, if G = Hn1,k1 ◦h1 G1 = Hn2,k2 ◦h2 G2, with G1 and G2

having no passers, then n1 = n2, k1 = k2 and G1 = G2. If G = Un1 ◦u1 G1 =

Un2 ◦u2 G2 and G1 and G2 does not have vetoers, then n1 = n2 and G1 = G2.

Proof. Suppose that we know that G = H ◦h1 G1, where H is a k-out-of-n game

but not a unanimity game. Then all winning coalitions inG of smallest cardinality

have k players, so k in this case can be recovered unambiguously. Then n can be

also recovered. Indeed, sinceG1 andG2 have no passers, the set of all players that

participate in winning coalitions of size k will have cardinality n − 1. So there

1It is easy to include dummies anyway: just assign meaningless shares to them.
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cannot exist two decompositions G = Hn1,k1 ◦h1 G1 and G = Hn2,k2 ◦h2 G2 of G,

where k1 6= k2 with k1 6= n1 and k2 6= n2.

Let us consider now the game G = U ◦u G1, where U is a unanimity game.

Due to Example 5.1.5 if G1 does not have vetoers, then U consists of all vetoers

of G and uniquely recoverable.

We leave the question of whether or not any decomposition is unique open.

5.2 Properties of complete games that are composed

of smaller games

In this section, first we give some important general results concerning complete

games that are composed of smaller games, then we give general results concern-

ing weighted games that are composed of smaller games.

The first two lemmas of this section give a necessary and sufficient condition

for a composition to be complete. These results will be very helpful when we

come to characterising all ideal weighted games.

A simple game with a unique minimal winning coalition is called an oligarchy.

Generally speaking, it is possible to have an oligarchy with players that do not

participate in its unique minimal winning coalition, meaning those players are

dummies. But we are excluding dummies in our study of ideal simple games,

therefore all oligarchies that we deal with are unanimity games. Also, if every

minimal winning coalition in a game is a singleton, then it is called anti-unanimity

game, such that if it has n players, then it is denoted An.

The first lemma below will show that, with a few exceptions, if the composi-

tion is not over a player from the least desirable level of the first game, then the

composition is not complete, and hence not weighted. Recall that we assume we

have no dummies in the games.
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Lemma 5.2.1. Let G,H be two games the disjoint sets of players PG and PH

respectively, and H is neither a unanimity nor an anti-unanimity game. If for two

elements g, g′ ∈ PG we have g � g′, then G ◦g H is not complete.

Proof. As g is more desirable than g′, there exists a coalition X ⊆ PG, containing

neither g nor g′ such that X ∪ g ∈ WG and X ∪ g′ /∈ WG. We may take X to

be minimal with this property, then X ∪ g is a minimal winning coalition of G.

Since g′ is not dummy, there exist a minimal winning coalition Y of G containing

g′. The coalition Y may contain g or may not. Firstly, assume that it does contain

g. Since H is not a unanimity game and has no dummies, there exist two distinct

minimal winning coalitions of H , say Z1 and Z2. Then we can find z ∈ Z1 \ Z2.

Then the coalitions U1 = X ∪Z1 and U2 = (Y \{g})∪Z2 are winning in G◦gH ,

and coalitions V1 = (X ∪ {g′}) ∪ (Z1 \ {z}) and V2 = Y \ {g, g′} ∪ Z2 ∪ {z}
are losing in this game, since Z1 \ {z} is losing in H and, Y \ {g′} is losing in G.

Since V1 and V2 are obtained when U1 and U2 swap players z and g′, the sequence

of sets (U1, U2;V1, V2) is a certificate of incompleteness for G ◦g H .

The second case, when Y does not contain g is similar. Let Z be any minimal

winning coalition of H that has more than one player, which we know must exist

since H is not an anti-unanimity. Let z ∈ Z. Then

(X ∪ Z, Y ;X ∪ {g′} ∪ (Z \ {z}), Y \ {g′} ∪ {z})

is a certificate of incompleteness for G ◦g H .

As for the converse of the above lemma, we don’t need the condition of H

being neither a unanimity nor an anti-unanimity game.

Lemma 5.2.2. Let G,H be two complete games on the disjoint sets of players PG
and PH respectively, g ∈ PG be a player of the least desirable level in G. Then

for the game C = G ◦g H

(i) for x, y ∈ PG \ {g} it holds that x �G y if and only if x �C y;

(ii) for x, y ∈ PH it holds that x �H y if and only if x �C y;
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(iii) for x ∈ PG \ {g} and y ∈ PH , we have x �C y. Moreover, if y is not a

passer or vetoer in H , then x �C y.

In particular, C is complete.

Proof. The first two cases are obvious. Let us prove (iii). We have x �G g since g

is from the least desirable class in G. Let us consider a coalition Z ⊂ C such that

Z ∩{x, y} = ∅, and suppose there exists Z ∪{y} ∈ WC but Z ∪{x} /∈ WC . Then

Z must be losing inC, and hence Z∩PG cannot be winning inG, but Z∩PG∪{g}
must be winning in G. However, since x �G g, the coalition Z ∩PG ∪{x} is also

winning in G. But then Z ∪ {x} is winning in C, a contradiction. This shows that

if Z ∪ {y} is winning in C, then Z ∪ {x} is also winning in C, meaning x �C y.

Thus C is a complete game.

Moreover, suppose that y is not a passer or a vetoer in H , we will show that

x �C y. Since g is not a dummy, then x is not a dummy either. Let X be a

minimal winning coalition of G containing x. If g /∈ X , then X is also winning

in C. However, X \ {x} ∪ {y} is losing in C, since y is not a passer in H . Thus

it is not true that y �C x in this case. If g ∈ X , then consider a winning coalition

Y in H not containing y (this is possible since y is not a vetoer in H). Then

X \ {g} ∪ Y ∈ WC but

X \ {x} ∪ {g} ∪ {y} ∪ Y /∈ WC ,

whence it is not true that y �C x in this case as well. Thus x �C y in case y is

neither a passer nor a vetoer in H .

Now, although Lemma 5.2.1 is very useful, it is only partial because it ex-

cludes the possibility of the second game H being either a unanimity or anti-

unanimity game. But we also have the following result for the case when H is an

anti-unanimity game.

Lemma 5.2.3. Let G = (P,W ) be a game where players g, g′ ∈ P is such that

g is more desirable than nondummy player g′. Suppose also that we can find a
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trading transform

(X1, X2; Y1, Y2)

such that

g′ /∈ X1, X1 ∪ {g} ∈ W, X1 ∪ {g′} ∈ L;

g′ ∈ X2, X2 ∪ {g} ∈ W, X2 \ {g′} ∪ {g} ∈ L.

Then the composition G ◦g An, n ≥ 2, is not complete.

Proof. Let a, b ∈ An. We have the following certificate of incompleteness:

(X1 ∪ {a}, X2 ∪ {b}; X1 ∪ {g′}, X2 \ {g′} ∪ {a, b}). (5.2.1)

This proves the lemma.

5.2.1 Properties of weighted games that are composed of smaller
games

It turns out that the necessary and sufficient condition of Lemmas 5.2.1 and 5.2.2

is necessary for a composition to be a weighted game, but it is not sufficient. This

is what we show in the next corollary and the example following it.

Corollary 5.2.4. Let G,H be two weighted games on disjoint sets of players PG
and PH respectively, such that H is neither a unanimity nor an anti-unanimity

game. If C = G ◦gH is weighted, then g belongs to the least desirable level of G.

Proof. If g does not belong to the least desirable level ofG, thenC is not complete

by Lemma 5.2.1. It follows that the composition is not weighted.

Example 5.2.5. Consider as the first weighted simple game the disjunctive hi-

erarchical game H∃(n, k) such that k = (2, 3),n = (2, 10). The set of shift-

minimal winning coalitions is {{12}, {23}}, and it is a weighted game by Theo-

rem 3.6.2(2). The second weighted simple game on {32, 43} is a conjunctive hier-

archical game H∀(n, k) such that k = (1, 2),n = (2, 3), so its only shift-minimal
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winning coalition is {3, 4}. It is also a weighted game by Theorem 3.6.3(2). We

are composing over a player g = 2 from the second level of the first game, so

the full multiset of the composition C = G ◦g H will be PC = PG ∪ PH \
{g} = {12, 29, 32, 43}, and the set of shift-minimal winning coalitions of C is

{{12}, {23}, {22, 3, 4}}. This composition is not weighted due to the following

certificate of nonweightedness:

({12}, {22, 3, 4}; {1, 2, 3}, {1, 2, 4}).

Since HSGs, disjunctive and conjunctive, are ideal (Tassa, 2007; Brickell,

1989), then the above example has in fact shown that even when the two games be-

ing composed are ideal and weighted, their composition may still not be weighted.

The following proposition is also very useful.

Proposition 5.2.6. If C = G ◦gH is a weighted simple game, then both G and H

are also weighted simple games.

Proof. Suppose first that we have a certificate of nonweightedness (U1, . . . , Uj;

V1, . . . , Vj) for the game H . Let also X be the minimal winning coalition of G

containing g. Let X ′ = X \ {g}. Then

(X ′ ∪ U1, . . . , X
′ ∪ Uj;X ′ ∪ V1, . . . , X

′ ∪ Vj)

is a certificate of nonweightedness forC. Suppose now that (X1, . . . , Xj;Y1, . . . , Yj)

is a certificate of nonweightedness for G and W is a fixed minimal winning coali-

tion W for H . Define

X ′i =

Xi \ {g} ∪W if g ∈ Xi

Xi if g /∈ Xi

and

Y ′i =

Yi \ {g} ∪W if g ∈ Yi

Yi if g /∈ Yi
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Then, since |{i | g ∈ Xi}| = |{i | g ∈ Yi}|, the following is a trading transform

(X ′1, . . . , X
′
j;Y

′
1 , . . . , Y

′
j ).

Moreover, it is a certificate of nonweightedness for C since all X ′1, . . . , X
′
j; are

winning in C and all Y ′1 , . . . , Y
′
j are losing in C. So both assumptions are impos-

sible.

Corollary 5.2.7. Every weighted game is a composition of indecomposable weighted

games.1

The following result will also be useful in proving that certain simple games

are indecomposable. Let us denote the k-out-of-n game by Hn,k from now on.

Proposition 5.2.8. A game Hn,k for n 6= k 6= 1 is indecomposable.

Proof. Suppose Hn,k is decomposable into Hn,k = K ◦g L,K = (PK ,WK), L =

(PL,WL), where n1 = |PK | ≥ 2 and n2 = |PL| ≥ 2. If g is a passer in K, then it

is the only passer, otherwise if there is another passer g′ inK, then {g′} is winning

in the composition, contradicting k 6= 1.

We will firstly show that n2 < k. Suppose that n2 ≥ k, and choose a player

x ∈ PK different from g. Consider a coalition X containing k players from PL,

then X is winning in the composition, and it is also a minimal winning coalition

in L. Now replace a player inX from PL with x. The resulting coalition, although

it has k players, is losing in the composition, because x is not a passer in K, and

k − 1 players from PL are losing in L. Therefore k > n2.

We also have |PK \ {g}| = n − n2 > k − n2. Let us choose any coalition Z

in PK \ {g} with k − n2 players. Note that it does not win with g as |Z ∪ {g}| =
k−n2 +1 < k players. This is why Z∪PL is also losing despite having k players

in total, contradiction.

1As usual in Mathematics, we assume that if G is indecomposable, then it has a trivial decom-

position into a composition of indecomposable games, i.e., G = G.
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5.3 The composition of ideal simple games

As far as ideal simple games are concerned, they are closed under the operation

of composition.

Lemma 5.3.1. If C = G ◦g H such that g is not dummy, then C is ideal if and

only if both G and H are ideal.

Proof. See Lemma 8.1 in Beimel, Tassa, & Weinreb (2008).

The following is immediate.

Corollary 5.3.2. Every ideal weighted game is a composition of indecomposable

ideal weighted games.

Proof. Follows from combining Corollary 5.2.7 and Lemma 5.3.1.

It was implicitly assumed in both (Beimel, Tassa, & Weinreb, 2008) and (Farràs

& Padró, 2010) that the composition of any two ideal weighted games is also ideal

weighted. We know from the above lemma that the composition will be ideal, but

it doesn’t have to be weighted, this was demonstrated in Example 5.2.5.

It turns out, as we shall prove, that G plays a pivotal role in determining when

the composition is weighted. In the next chapter we will consider all possibilities

for ideal weighted indecomposable G, and see which of those cases, when com-

posed with H , result in an ideal weighted game. A list of the indecomposable

ideal weighted games appeared in (Farràs & Padró, 2010). So our first task in the

next chapter will be to describe all the indecomposable ideal WSGs in details.
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Chapter 6

The Characterisation Theorem

Recall from Chapter 1 that the work carried out in this thesis is mainly motivated

by one of the central problems of secret sharing schemes, which is to characterise

all ideal access structures. But access structures are simple games, and one ap-

proach to this problem has been to characterise ideal simple games in particular

known classes, such as the class of weighted simple games. Characterising ideal

weighted simple games is the focus of this chapter.

Current results regarding the problem of characterising ideal weighted simple

games by Beimel, Tassa, & Weinreb (2008) and Farràs & Padró (2010) show that

if a game is ideal and weighted, then it is a composition of indecomposable ideal

weighted simple games (see Corollary 5.3.2), where the indecomposable ideal

weighted simple games have also been classified 1. However, for a complete char-

acterisation of ideal weighted simple games, we need an ‘if and only if’ theorem.

The work carried out in this chapter will culminate in giving an ‘if and only if’

characterisation of ideal weighted simple games, which is Theorem 6.1.4.

Before discussing the main obstacle to obtaining a characterisation of all ideal

weighted simple games, and before we describe our strategy for overcoming this

obstacle, let us list the seven types of games that are given in (Farràs & Padró

1This classification, however, needs some minor adjustments, which we will address in Sec-

tion 6.1.
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(2010), p.234), that will be of a major importance in this chapter. Recall that

T1a and T1b are tripartite games of type ∆1 defined on page 82, T2a and T2b are

tripartite games of type ∆2 defined on page 89. The list of seven types of games,

such that every ideal weighted and indecomposable game must belong to one of

those types, is as follows.

The LIST

(CL1) Simple majority games.

(CL2) B1: Games of this type are hierarchical games H∀(n, k),n = (n1, n2),k =

(k1, k2), where 0 < k1 < n1 and k2 − k1 = n2 − 1 > 1.

(CL3) B2: Games of this type are hierarchical games H∃(n, k),n = (n1, n2),k =

(k1, k1 + 1), such that 1 < k1 ≤ n1, k2 ≤ n2.

(CL4) B3: Games of this type are hierarchical games H∃(n, k),n = (n1, n2),k =

(k1, k1 + 1), such that k1 ≤ n1, k2 > n2 > 2.

(CL5) T1: A game of this type is a weighted indecomposable T1a. It satisfies the

conditions 0 < m− d < n2 and m− t = 1 and t > 1 and n3 − 1 = d > 1.

So it has shift-minimal winning coalitions of the two forms {1m−1} and

{2m−d, 3d}.

(CL6) T2: A game of this type is a weighted indecomposable T1b. It satisfies the

conditions n3 − 1 = d > 1 and m = t + 1 and n2 > 0. So it has shift-

minimal winning coalitions of the two forms {1t} and {1m−d−n2 , 2n2 , 3d}.

(CL7) T3: A game of this type, with shift-minimal winning coalitions of the two

forms {1t−n2 , 2n2} and {1m−d, 2d−n3 , 3n3} is written in a general form that

covers a weighted indecomposable T2a game, and a weighted indecompos-

able T2b game. It satisfies d − n3 + 1 = n2 > 0 and m − t = 1 and

t− n2 > m− d > 0, n3 > 1.

We shall refer to the list above simply as The LIST. The importance of The

LIST, stems from the following theorem.
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Theorem 6.0.3. ((Farràs & Padró, 2010), Theorem 21) If a weighted simple game

is ideal, then it is one of the following:

(i) a simple majority game (a k-out-of-n simple game), or

(ii) a bipartite simple game in one of the types B1, B2 or B3, or

(iii) a tripartite simple game in one of the types T1, T2 or T3, or

(iv) a composition of smaller ideal weighted simple games.

The above theorem heavily used the earlier results of (Beimel, Tassa, & Wein-

reb, 2008). Also, Theorem 6.0.3 shows that any indecomposable ideal weighted

game cannot belong to any type of games outside the seven types of games: sim-

ple majority games, B1,B2,B3,T1,T2 or T3, but it does not claim that games

belonging to those types are indecomposable. We will show, however, that games

belonging to those types, with few exceptions, are indecomposable. But the proof

of this will be deferred to Corollary 6.2.2.

Now, the main obstacle to obtaining a complete characterisation of all ideal

weighted simple games, is that not any two ideal weighted games, when composed

together, result in an ideal weighted game (see Example 5.2.5). Consider the

composition Γ = Γ1 ◦g Γ2, and recall from Lemma 5.3.1 that Γ is ideal if and only

if both Γ1 and Γ2 are ideal. Moreover, current results mentioned above, inform us

that both Γ1 and Γ2 have to be weighted in order for Γ to be weighted. In order

to have an ‘if and only if’ theorem, we need to answer the question: what are the

necessary and sufficient conditions for Γ1 ◦gΓ2 to be ideal weighted? Our strategy

for answering this question takes the following steps:

(1) We go through all seven types of ideal weighted simple games from The

LIST, while making minor but necessary modifications to it. This is done in

Section 6.1.

(2) Given that both Γ1 and Γ2 are ideal and weighted, we suppose that Γ1 is in-

decomposable, while Γ2 may be decomposable. And fixing Γ1, we analyse
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all possibilities of obtaining a weighted composition Γ = Γ1 ◦g Γ2. This

analysis reveals that there are only two cases that result in an ideal weighted

composition (Theorem 6.2.1).

We know from Corollary 5.2.4 that given that Γ2 is neither a unanimity nor

an anti-unanimity game, player g must be from the least desirable level of

Γ1, otherwise Γ will not be weighted. So we divide this analysis into three

parts:

(i) Assuming g is from the least desirable level of Γ1, in Section 6.2.1

we give the only two cases that result in an ideal weighted composition Γ.

(ii) In Section 6.2.2, we go through the rest of the cases where g is still

from the least desirable level of Γ1, and show that none of those result in an

ideal weighted composition Γ.

(iii) In Section 6.2.3, we consider the cases where g is not from the

least desirable level of Γ1, and Γ2 is either a unanimity or an anti-unanimity

game, and also show that none of these cases result in an ideal weighted

composition Γ.

(3) Finally, putting together all the pieces from (1) and (2) above, we prove the

main characterisation theorem.

First, we introduce some new notation for a type of games.

Recall that a simple majority game, or k-out-of-n game denoted Hn,k for 1 ≤
k ≤ n, is a game which has n players in total and it takes k or more to win. Also,

recall that an anti-unanimity game on n players denoted An is one where its every

player is a passer, so in fact An = Hn,1. Finally, the unanimity game on n players,

denoted hereinafter as Un, is a game where its only winning coalition is the full

set of players, so in fact Un = Hn,n. These three games are all 1-level hierarchical

games, or alternatively, they can be characterised as the class of complete 1-partite

games, i.e., the games with a single level of equivalent players.
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6.1 Indecomposable Ideal Weighted Simple Games

In this section we shall go through the types of games from The LIST on page 104,

and identify all indecomposable games in those types. For compactness we use

the multiset representation of the games.

Remark 6.1.1. A trivial game is a game with only one player who forms the only

winning coalition. And although a trivial game cannot be written as a composition

of two nontrivial games, it will not be considered indecomposable, this is in line

with similar mathematical conventions (e.g., not defining the number 1 as prime).

Theorem 6.1.2. A game is ideal weighted and indecomposable if and only if it

belongs to one of the following types:

(1) H: Games of this type are A2, U2 and Hn,k where 1 < k < n.

(2) B1: Games of this type are conjunctive hierarchical games H∀(n, k),n =

(n1, n2), k = (k1, k2), where n1 > k1 > 0 and k2 − k1 = n2 − 1 > 1.

(3) B2: Games of this type are disjunctive hierarchical games H∃(n, k),n =

(n1, n2), k = (k1, k1 + 1), such that 1 < k1 ≤ n1, k2 ≤ n2.

(4) B3: Games of this type are disjunctive hierarchical games H∃(n, k),n =

(n1, n2), k = (k1, k1 + 1), such that k1 ≤ n1, k2 > n2 > 2.

(5) T1: A game of this type is a weighted indecomposable T1a. So it satisfies

0 < m− d < n2 and m− t = 1 and t > 1 and 1 < d = n3 − 1.

(6) T3a: A game of this type is a weighted indecomposable T2a. So it satisfies

t− n2 > m− d and d = n3 and m = t+ 1 and n2 = 1.

(7) T3b: A game of this type is a weighted indecomposable T2b. So it satisfies

d− n3 = n2 − 1 and m− t = 1 and t− n2 > m− d.

The proof of the above theorem relies heavily on Theorem 6.0.3, and we will

be referring to the types of games CL1 - CL7 from The LIST on page 104.
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Remark 6.1.3. Note that T1 in Theorem 6.0.3(iii) is the same as T1 in Theo-

rem 6.1.2(5). And games of type T2 in Theorem 6.0.3(iii) are decomposable as

will be shown, so not included in Theorem 6.1.2. Also, T3 of Theorem 6.0.3(iii)

is written in a general form that covers two possibilities, one for the indecompos-

able and weighted T2a game, and one for the indecomposable and weighted T2b

game, the type of the former is called T3a, and the type of the latter is called T3b

in Theorem 6.1.2 items (6) and (7) respectively.

Proof. (1). A game Hn,k where 1 < k < n is indecomposable by Proposi-

tion 5.2.8, and a game An is decomposable if n > 2 by the following

An ◦h Am ∼= An+m−1

for any h ∈ An. So it follows that the only indecomposable anti-unanimity game

is A2. Also, Un is decomposable if n > 2 by the following

Un ◦h Um ∼= Un+m−1

for any h ∈ An. So it follows that the only indecomposable unanimity game is

U2. So A2, U2 and Hn,k where 1 < k < n are all indecomposable. Moreover, they

are ideal since they are 1-level hierarchical games, and they are weighted.

(2). Conjunctive HSGs of this type are weighted by Theorem 3.6.3(3). Also,

in order for an indecomposable game to be of this type, then by CL2, it must have

the conditions n1 > k1 > 0 and k2 − k1 = n2 − 1. The only form of a shift-

minimal winning coalition here is {1k1 , 2k2−k1}. However, note that in CL2, one

of the conditions also says n2 − 1 > 0, meaning n2 − 1 = 1 is possible. But we

will now show that n2 − 1 = 1 in fact leads to a decomposition, hence it should

be that n2 − 1 > 1.

The decomposition is as follows: Assume k2 − k1 = n2 − 1 = 1, so n2 =

2 and k2 = k1 + 1, then we have k = (k1, k1 + 1),n = (n1, 2), and the shift-

minimal winning coalition here is {1k1 , 2}. Let the first game be G = (PG,WG),

PG = {1n1+1},WG = {1k1+1}, n1 > k1, and let the second game be H =

(PH ,WH), PH = {22},WH = {2}. Then composing the two games over player
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g ∈ PG gives Wmin
G◦gH = {{1k1+1}, {1k1 , 2}}, of which only {1k1 , 2} is shift-

minimal. This proves that a game of type B1 is decomposable when n2 = 2.

(3). Disjunctive HSGs of this type must have the condition n2 > 2 for inde-

composability by CL3 (n2 ≥ k2 and k2 = k1 + 1 and k1 > 1). The shift-minimal

winning coalitions here have the forms {1k1} and {2k1+1}.

(4). Disjunctive HSGs of this type must have the condition n2 > 2 for inde-

composability by CL4. The shift-minimal winning coalitions here have the forms

{1k1} and {1k2−n2 , 2n2}.

(5). Weighted and indecomposable TSGs of this type must satisfy m− t = 1

and t > 1 and d > 1 and d = n3− 1 by CL5, and also m− d < n2 since games in

this type are weighted and indecomposable T1a. The two shift-minimal winning

coalitions here have the forms {1m−1} and {2m−d, 3d}. Note that the T1b game

is not included here. This is because the T1b game is decomposable as follows:

Recall that in T1b we have m − d ≥ n2. Also, d < n3 by Proposition 4.2.1(C5),

and the two shift-minimal winning coalitions for T1b are of the forms {1t} and

{1m−d−n2 , 2n2 , 3d}.

The decomposition is as follows: Let the first game be G = (PG,WG), PG =

{1n1 , 2n2+1} and the set of shift-minimal winning coalitions in WG is {{1t},
{1m−d−n2 , 2n2+1}}. And let the second game be H = (PH ,WH), PH = {3n3},
Wmin
H = {{3d}}. The composition is over a player g ∈ PG from level 2. Then we

can see that T1b = G ◦g H on PG \ {g} ∪ PH .

(6). Recall that in the game T2a we have n3 ≥ d, and by CL7, a weighted and

indecomposable tripartite game of type T3 must meet the conditions d−n3 + 1 =

n2 > 0, meaning d−n3 + 1 ≥ 1, or d ≥ n3, so it follows that d = n3 and n2 = 1.

We also need m− t = 1 and t− 1 > m− d > 0 by CL7. The two shift-minimal

winning coalitions here have the forms {1t−1, 2} and {1m−d, 3n3}.

(7). This is the case for the game T2b where n3 < d. A weighted and inde-

composable tripartite game of type T3 must meet the conditions d− n3 = n2 − 1

and m − t = 1 and t − n2 > m − d by CL7. Also n3 > 1 holds by Propo-

sition 4.2.3(C′8). The two shift-minimal winning coalitions here have the forms
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{1t−n2 , 2n2} and {1m−d, 2d−n3 , 3n3}.

The converse direction of the theorem will be proved in Corollary 6.2.2.

By comparing the list in Theorem 6.1.2 with the list in Theorem 6.0.3, we

see that there are only three differences: (1) The family of simple majority games

of Theorem 6.0.3(i) is now less general, since it excludes many unanimity and

anti-unanimity games. (2) In Theorem 6.1.2(2) we have n2 − 1 > 1 instead of

n2 − 1 > 0. (3) The game T1b, which is of type T2 in Theorem 6.0.3(iii), is

excluded, since it is decomposable.

This completes our study of the seven types of indecomposable ideal weighted

simple games, and using this list, we shall characterise all ideal weighted simple

games, as stated in the following main theorem of this chapter.

Theorem 6.1.4. G is an ideal weighted simple game if and only if it is a compo-

sition

G = H1 ◦ . . . ◦Hs ◦ I ◦ An (s ≥ 0); (6.1.1)

whereHi is of type H for each i = 1, . . . , s. Also, I , which is allowed to be absent,

is an indecomposable game of types B1, B2, B3, T1, T3a and T3b, and An is the

anti-unanimity game on n players. Moreover, An can be present only if I is either

absent or it is of type B2; in the latter case the composition I ◦An is over a player

of the least desirable level of I . Also, the above decomposition is unique.

Remark 6.1.5. Note that when studying the types B1, B2 and B3 mentioned above,

and also the types T1, T2 and T3, we will be referring to (Farràs & Padró, 2010),

rather then their newer version (Farràs & Padró, 2012), for two reasons: (i) Al-

though the theorem in (Farràs & Padró, 2012) speaks only of the types B1, B2,

T1 and T2, they are essentially the same as B1, B2, B3, T1, T2 and T3 but written

more compactly. Indeed, B1 in (Farràs & Padró, 2012) is the same as B1 in (Farràs

& Padró, 2010), and B2 in (Farràs & Padró, 2012) is written in a general form that

covers both B2 and B3 of (Farràs & Padró, 2010). Also, T1 in (Farràs & Padró,

2012) is written in a general form that covers both T1 and T2 in (Farràs & Padró,

2010), while T2 in (Farràs & Padró, 2012) is the same as T3 of (Farràs & Padró,
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2010). (ii) There are lots of parameters at hand as we saw, and so the more detailed

breakdown into B1, B2, B3, T1, T2 and T3 is better for our purposes.

In order to prove the above theorem, the next section will be dedicated to

proving a crucial result, which is Theorem 6.2.1.

6.2 Compositions of ideal weighted indecomposable

games

As was said in the beginning of this chapter, it was known that any ideal weighted

game is a composition of indecomposable ideal weighted games. Indecompos-

able ideal weighted games were also practically known, and their slightly refined

classification is given in Theorem 6.1.2. However, it was not known under what

conditions the composition of two indecomposable ideal weighted games is also

an ideal weighted game. This question will be answered in this section.

Suppose from now on that we have a composition Γ = Γ1 ◦Γ2, where both Γ1

and Γ2 are ideal and weighted, and Γ1 is indecomposable. The plan now is to fix

Γ1 and analyse what happens when we compose it with an arbitrary ideal weighted

game Γ2. Since Γ1 is ideal weighted and indecomposable, then it belongs to one

of the seven types of games listed in Theorem 6.1.2. So we carry out the analysis

case by case for all possibilities of Γ1.

The main result of this section is the following.

Theorem 6.2.1. Let Γ = Γ1 ◦ Γ2 be a nontrivial decomposition, such that Γ1

and Γ2 are both ideal and weighted, and Γ1 is indecomposable. Then Γ is ideal

weighted if and only if either

(i) Γ1 is of type H, or

(ii) Γ1 is of type B2 and Γ2 is An such that the composition is over a player of

level 2 of Γ1.
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And by using the above theorem, we can show that games of the six types in

Theorem 6.1.2 are indecomposable. Note that we say six instead of seven, this

is because games of type H were shown to be indecomposable in the proof of

Theorem 6.1.2.

Corollary 6.2.2. None of the games of types B1,B2,B3,T1,T3a or T3b are decom-

posable.

Proof. We know that games of type H are indecomposable. Suppose a game, call

it I , of one of the other six types is decomposable. Then by Theorem 6.2.1 we

have either (i) I = H ◦h G, where H is a game of type H, or (ii) I = B2 ◦b An,

where B2 is a game of type B2. Let us consider these two cases separately.

Case (i). Let H = Hn,k, 1 ≤ k ≤ n, where h is a player from H , and let

us compose it with an arbitrary ideal weighted game G = (PG,WG). Then the

minimal winning coalitions in H ◦h G will either have k players from the most

desirable level, or k − 1 players from the most desirable level together with a

winning coalition of G.

Let us compare the shift-minimal winning coalitions of games of types B1, B2

and B3 (see page 109) with the shift-minimal winning coalitions of the composi-

tionH ◦hG. Consider a gameB1 of type B1 first, where its shift-minimal winning

coalition has the only form {1k1 , 2k2−k1}, such that k1 < n1. If B1 = H ◦hG, then

either H = U2 or not. Suppose it is, then in the multiset notation U2 ◦h G has the

shift-minimal winning coalition of type {1, 2k2−k1}. But comparing {1, 2k2−k1}
with {1k1 , 2k2−k1} implies that k1 = n1 = 1, which contradicts the fact that

k1 < n1 in B1. Suppose now that H is not U2. Then some of the shift-minimal

winning coalitions in H ◦h G contain players from its level 1 solely, and since

B1 requires that there must be k2 − k1 players from its level 2 present in every

shift-minimal winning coalition, then the composition H ◦h G cannot be a game

of type B1.

Consider B2 with its two types of shift-minimal winning coalitions {1k1} and

{2k1+1}. Note that it does not have the requirement that a certain number of
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players from its level 1 must be present in a coalition in order to make it winning,

but H ◦h G does have that requirement, so it cannot be a game of type B2 either.

Also, recall that a game of type B3 has shift-minimal winning coalitions of

types {1k1} and {1k1−n2 , 2n2}. So in order for a game of type B3 to be equal to

H ◦h G, the latter requires k1 − 1 = k2 − n2, which contradicts the fact that

k1 − 1 > k2 − n2 in B3.

Now consider a game T1 of type T1. The shift-minimal winning coalitions of

T1 have the two forms {1t} and {2m−d, 3d} (page 109). It is easy to see that in

order to have T1 = H ◦g G, we need t = 1 and H = A2, but t = 1 contradicts the

fact that t > 1 in T1.

Finally, a game T3 of type T3a has the two forms of shift-minimal winning

coalitions {1t−1, 2} and {1m−d, 3d}. It follows that in order to have T3 = H ◦g G,

we needH = U2 and t−1 = m−d, which contradicts the fact that t−1 > m−d in

T3a. The case for T3b is exactly the same (see top of page 110 for its shift-minimal

winning coalitions).

Case (ii). Let B2 be a game of type B2, where b is a player from its level

2, and let us compose it with An. Then the three forms of the minimal winning

coalitions, in the multiset notation, in B2 ◦b An are

{1k}, {2k+1}, {2k, 3}. (6.2.1)

It is clear that the composition B2 ◦b An cannot be a game of any of the types B1,

B2 or B3, since these types have only two desirability levels, whereas B2 ◦b An
has three.

Also, the shift-minimal winning coalitions in (6.2.1), which are {1k} and

{2k, 3}, are not the same as those of games of types T3a or T3b either. And in order

for them to be the same as the ones of games of type T1 ({1m−1} and {2m−d, 3d}),
we need m− 1 = m− d, meaning d = 1. But this will give a contradiction since

T1 has the condition d > 1, so games of type T1 are also indecomposable.

Remark 6.2.3. Recall that if a game has a certificate of nonweightedness, then it is

nonweighted, and since weighted games are complete games, then the criterion of
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nonweightedness can be made easier by finding a certificate of nonweightedness

where the winning coalitions in the certificate are shift-minimal winning coali-

tions by Theorem 2.2.13. This important fact will be used in the proofs to follow.

Let us start with the two cases where the composition is always weighted.

6.2.1 Compositions that are ideal and weighted

The first proposition below is for Theorem 6.2.1(i), and the second proposition is

for Theorem 6.2.1(ii). Recall that an indecomposable game of type H is either

A2, U2 or Hn,k for 1 < k < n.

Proposition 6.2.4. Let Γ1 = (P1,W1), g ∈ P1,Γ2 = (P2,W2), and let Γ =

Γ1 ◦g Γ2. If Γ1 is of type H and Γ2 is weighted, then Γ is weighted.

Proof. Let X1, . . . , Xm be minimal winning coalitions and Y1, . . . , Ym be losing

coalitions of Γ such that

(X1, . . . , Xm;Y1, . . . , Ym)

is a certificate of nonweightedness of Γ. Let Ui = Xi ∩ P1, then either |Ui| = k

or |Ui| = k − 1. However, if for a single i we have |Ui| = k, then it cannot

be that all of the sets Y1, . . . , Ym are losing, as there will be at least one among

them of cardinality at least k. Thus |Ui| = k − 1 for all i. In this case we have

Xi = Ui ∪ Si, where Si is winning in Γ2. Let Yi = Vi ∪ Ti, where Vi ⊆ P1 and

Ti ⊆ P2. Since all coalitions Y1, . . . , Ym are losing in Γ, then |Vi| = k − 1 for all

i, implying all Ti are losing in Γ2. But now we have obtained a trading transform

(S1, . . . , Sm;T1, . . . , Tm) for Γ2, such that all Si are winning and all Ti are losing

in Γ2. This contradicts the fact that Γ2 is weighted.

Proposition 6.2.5. Let Γ1 = (P1,W1) be a weighted simple game of type B2, g is

a player from level 2 of P1, and Γ2 is An, then Γ = Γ1 ◦g Γ2 is a weighted simple

game.
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Proof. Since g is a player from level 2 of P1, then Γ is a complete game by

Lemma 5.2.2. Also, recall that shift-minimal winning coalitions of a game of

type B2 are {1k1} and {2k1+1}. We shall prove weightedness of Γ by showing that

it cannot have a certificate of nonweightedness. In the composition, in the multiset

notation, Γ has the following shift-minimal winning coalitions {1k1}, {2k1 , 3}. So

all shift-minimal winning coalitions have k1 players from P1 \ {g}. Also, since

Γ1 has two thresholds k1 and k2 such that k2 = k1 + 1, then any coalition con-

taining more than k1 players from P1 \ {g} is winning in Γ1, and hence winning

in Γ. Suppose now towards a contradiction that Γ has the following certificate of

nonweightedness

(X1, . . . , Xn;Y1, . . . , Yn), (6.2.2)

where X1, . . . , Xn are shift-minimal winning coalitions and Y1, . . . , Yn are losing

coalitions in Γ. Let the set of players of An be PAn . It is easy to see that at least

one of the coalitions X1, . . . , Xn in (6.2.2) is not of the type {1k1}, so at least one

of these winning coalitions has a player from the third level, i.e. from An. But

since each shift-minimal winning coalition in (6.2.2) has k1 players from P1\{g},
then each losing coalition Y1, . . . , Yn in (6.2.2) also has k1 players from P1 \ {g}
(if it has more than k1 then it is winning). Moreover, at least one coalition from

Y1, . . . , Yn, say Y1, has at least one player from PAn . It follows that (Y1 ∩ P1) ∪
{g} ∈ W1 and Y1∩PAn is winning inAn. Hence Y1 is winning in Γ, contradiction.

Therefore no such certificate can exist.

In the next section we analyse the rest of compositions Γ = Γ1 ◦ Γ2 in terms

of Γ1, where the composition is over a player from the least desirable level of Γ1.

We will show that none of them is weighted.

6.2.2 Compositions that are ideal and nonweighted: when com-
positions are over a player from the least desirable level
of Γ1

Here we will consider two cases:
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(1) Γ2 has at least one minimal winning coalition with cardinality at least 2.

(2) Γ2 = An, n ≥ 2.

We will start with the second case. Denote players of An by PAn .

Proposition 6.2.6. If Γ1 is an ideal weighted indecomposable simple game, such

that g is a player from the least desirable level of Γ1, then Γ1◦gAn is not weighted.

Proof. Let Γ1 be of type B1. The only shift-minimal winning coalition of Γ1 is of

the form {1k1 , 2k2−k1}, where n1 > k1 > 0, k2 − k1 = n2 − 1 > 1.

Composing over a player of level 2 of Γ1 gives, among other winning coali-

tions, in the multiset notation {1k1 , 2k2−k1} and {1k1 , 2k2−k1−1, 3}. Thus the game

is not weighted due to the following certificate of nonweightedness:

({1k1 , 2k2−k1}, {1k1 , 2k2−k1−1, 3}; {1k1−1, 2k2−k1+1, 3}, {1k1+1, 2k2−k1−2}).

Since k2 − k1 + 1 = n2 in B1 (see page 107), then the coalition

{1k1−1, 2k2−k1+1, 3} is allowed.

Now consider B3 (composing B2 type of game withAn gives a weighted game

by Proposition 6.2.5). Its shift-minimal winning coalition are {1k1}, {1k2−n2 , 2n2}.
Composing over a player of level 2 of Γ1 gives among other winning coalitions

{1k1}, {1k2−n2 , 2n2−1, 3}. Hence the game is not weighted due to the following

certificate of nonweightedness:

({1k2−n2 , 2n2−1, 3}, {1k2−n2 , 2n2−1, 3}; {1k2−n2+1, 2n2−2}, {1k2−n2−1, 2n2 , 32}).

Note that k2−n1 + 1 < k1 ≤ n1 and n2 > 2 in B3 (see page 107), so the coalition

{1k2−n2+1, 2n2−2} is allowed.

Now consider T1, where the shift-minimal winning coalitions are {1m−1},
{2m−d, 3d}. If we compose over a player of level 3 of Γ1, thenW smin

Γ , in the multi-

set notation, includes {2m−d, 3d−1, 4}, and Γ is not weighted due to the following

certificate of nonweightedness:

({2m−d, 3d−1, 4}, {2m−d, 3d−1, 4}; {2m−d+1, 3d−2}, {2m−d−1, 3d, 42}).
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The coalition {2m−d+1, 3d−2} is valid, since m − d + 1 ≤ n2 (see page 82), and

also d > 1 (see page 107).

Note that the certificate above uses only levels 2 and 3. So if we consider the

subgame Γ1A , A = {1n1}, in other words the subgame consisting of levels 2 and 3

of Γ1, then we see that the shift-minimal winning coalition in Γ1A is {2m−d, 3d}.
This shows that Γ1A is actually a game of type B1. Indeed, this is because in

Γ1A , a winning coalition needs to have at least m players (which corresponds to

meeting threshold k2 in B1), of which at leastm−d players are from level 2 (which

corresponds to meeting threshold k1 in B1). This observation will be useful later

on.

Now consider T3a, where the shift-minimal winning coalition are {1t−1, 2},
{1m−d, 3d}. If we compose over a player of level 3 of Γ1, then W smin

Γ includes, in

the multiset notation, {1m−d, 3d−1, 4}, and Γ is not weighted due to the following

certificate of nonweightedness:

({1m−d, 3d−1, 4}, {1m−d, 3d−1, 4}; {1m−d+1, 3d−2}, {1m−d−1, 3d, 42}).

Since m − d < t − 1 and d = n3 in T2 (see page 107), where n3 ≥ 2 by

Proposition 4.2.3 (C′8), then {1m−d+1, 3d−2} is a valid coalition.

Finally, consider T3b, where the shift-minimal winning coalition are

{1t−n2 , 2n2}, {1m−d, 2d−n3 , 3n3}. If we compose over a player of level 3 of Γ1,

then W smin
Γ includes {1m−d, 2d−n3 , 3n3−1, 4}. The composition is not weighted

due to the following certificate of nonweightedness:

({1m−d, 2d−n3 , 3n3−1, 4}, {1m−d, 2d−n3 , 3n3−1, 4};

{1m−d+1, 2d−n3 , 3n3−2}, {1m−d−1, 2d−n3 , 3n3 , 42}).

The coalition {1m−d+1, 2d−n3 , 3n3−2} is losing because in T3b we have d− n3 =

n2−1 and also t−n2 > m−d (see page 107), meaning (m−d+1)+(d−n3) =

m− d+ 1 + n2 − 1 ≤ t− n2 + n2 − 1 = t− 1.

The remaining cases for composing Γ1 with Γ2 over a player from the least

desirable level of Γ1, such that Γ2 has at least one minimal winning coalition
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X with |X| > 1 all have a common methodology, which is described by the

following definition and lemma.

Definition 6.2.7. Let Γ = (P,W ) be a simple game and g ∈ P . We say that a

losing coalition X is g-winning if g /∈ X and X ∪ {g} ∈ W .

Lemma 6.2.8. Let Γ1 be a game for which there exist coalitions X1, X2, Y1 and

Y2 such that

(X1, X2;Y1;Y2)

is a trading transform, X1 is winning, X2 is g-winning and Y1 and Y2 are losing.

Also, let Γ2 be a game that is not an anti-unanimity game, then Γ = Γ1 ◦g Γ2 is

not weighted.

Proof. Let Z be a minimal winning coalition of Γ2 which has at least two ele-

ments, and let Z = Z1 ∪ Z2, where Z1 and Z2 are losing in Γ2. Then it is easy to

check that

(X1, X2 ∪ Z;Y1 ∪ Z1;Y2 ∪ Z2)

is a certificate of nonweightedness for Γ. Indeed, X1 andX2∪Z are both winning

in Γ and Y1 ∪ Z1 and Y2 ∪ Z2 are both losing in Γ.

The above definition and lemma will be used for analysing the rest of the cases

in this section, showing that the composed games are never weighted.

Proposition 6.2.9. Let Γ = Γ1 ◦g Γ2. If Γ1 is of type B1, then Γ is not weighted.

Proof. Let Γ1 = (P,W ) be of type B1, so Γ1 = H∀(n,k). The shift-minimal

winning coalition of Γ1 has the only form {1k1 , 2k2−k1}, where n1 > k1, k2 −
k1 = n2 − 1 > 1 (these conditions must be met otherwise the game will be

decomposable). If g is any player from level 2 of Γ1, then Γ is not weighted by

Lemma 6.2.8 applied to the following trading transform

({1k1 , 2k2−k1}, {1k1 , 2k2−k1−1}; {1k1−1, 2k2−k1+1}, {1k1+1, 2k2−k1−2}).

This is because the second coalition is 2-winning, since {1k1 , 2k2−k1} meets the

two threshold requirements as stated on page 107. Also, since k2 − k1 + 1 = n2

(also on page 107), then the coalition {1k1−1, 2k2−k1+1} is legitimate.
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Proposition 6.2.10. Let Γ = Γ1 ◦g Γ2. If Γ1 is of type B2, then Γ is not weighted.

Proof. Let Γ1 = (P,W ) be of type B2, so Γ1 = H∃(n,k),k = (k1, k1 +1). So the

shift-minimal winning coalitions of Γ1 are {1k1}, {2k1+1}. If g is any player from

level 2 of Γ1, then Γ is not weighted by Lemma 6.2.8 applied to the following

trading transform

({1k1}, {2k1}; {1d
k1
2
e, 2b

k1
2
c}, {1b

k1
2
c, 2d

k1
2
e}).

This is because the second coalition is 2-winning.

Proposition 6.2.11. Let Γ = Γ1 ◦g Γ2. If Γ1 is of type B3, then Γ is not weighted.

Proof. Let Γ1 = (P,W ) be of type B3, so Γ1 = H∃(n,k),k = (k1, k1 + 1). Since

Γ1 is of type B3, then n2 < k2. Also, we have n2 > k2 − k1 + 1 (otherwise it

is decomposable). So let n2 = k2 − k1 + x, x ≥ 2. Then the two shift-minimal

winning coalitions are {1k1} and {1k1−x, 2k2−k1+x}, and if g is any player from

level 2 of Γ1, then Γ is not weighted by Lemma 6.2.8 applied to the following

trading transform

({1k1}, {1k1−x, 2k2−k1+x−1}; {1k1−1, 2}, {1k1−x+1, 2k2−k1−x−2}).

Since the second coalition is 2-winning, then the above trading transform is legit-

imate.

Now we look at the cases for Γ1 being a weighted TSG and also indecompos-

able.

Proposition 6.2.12. Let Γ = Γ1 ◦g Γ2. If Γ1 is of type T1, then Γ is not weighted.

Proof. A weighted indecomposable tripartite simple game of type T1 hasm−t =

1, t > 1, and d > 1. So the two shift-minimal winning coalitions of Γ1 are {1m−1}
and {2m−d, 3d}. If g is any player from level 3 of Γ1, then Γ is not weighted by

Lemma 6.2.8 applied to the following trading transform

({1m−1}, {2m−d, 3d−1}; {1m−2, 2}, {1, 2m−d−1, 3d−1}).
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This is because the second coalition is 3-winning, since {2m−d, 3d} is a shift-

minimal winning coalition as stated on page 107.

And finally we turn to the two types T3a and T3b.

Proposition 6.2.13. Let Γ = Γ1 ◦g Γ2. If Γ1 is of either type T3a or T3b, then Γ is

not weighted.

Proof. Firstly, recall that in T3a we have n3 = d, we also have m − t = 1 and

t − n2 > m − d and n2 = 1. So its two shift-minimal winning coalitions are

{1t−1, 2} and {1m−d, 3d}. Since we have t−1 > m−d, then t−1 = m−d+x, x ≥
1. If g is any player from level 3 of Γ1, then Γ is not weighted by Lemma 6.2.8

applied to the following trading transform

({1t−1, 2}, {1t−1−x, 3d−1}; {1t−1, 3}, {1t−1−x, 2, 3d−2}).

The second coalition is 3-winning. Also, we can derive from the winning coalition

{1m−d, 3d} and the fact t− 1 = m− d+ x that m− d+ d = m = t+ d− x− 1,

meaning the number of players in {1t−1−x, 2, 3d−2} is m− 1, so it is losing.

Secondly, in T3b we have n3 < d, and also m− t = 1 and t−n2 > m− d and

n2 = d−n3 + 1. So its two shift-minimal winning coalitions are {1t−n2 , 2n2} and

{1m−d, 2d−n3 , 3n3}. Since we have t−n2 > m−d, then t−n2 = m−d+x, x ≥ 1.

If g is any player from level 3 of Γ1, then Γ is not weighted by Lemma 6.2.8

applied to the following trading transform

({1t−n2 , 2n2}, {1t−n2−x, 2n2−1, 3n3−1}; {1t−n2 , 2n2−1, 3}, {1t−n2−x, 2n2 , 3n3−2}).

The second coalition is 3-winning. Also, we can derive from the winning coalition

{1m−d, 2d−n3 , 3n3} and the two facts t−n2 = m−d+x and n2 = d−n3 + 1 that

m− d+ d−n3 +n3 = t−n2−x+n2 +n3− 1 = t+n3−x− 1 = m, meaning

the number of players in {1t−n2−x, 2n2 , 3n3−2} is m− 1, so it is losing.

This concludes our analysis of all the cases where the compositions are over a

player of the least desirable level of Γ1.
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Now, recall that in order to achieve a weighted composed game Γ = Γ1 ◦ Γ2,

we need to assume that the composition is over a player from the least desirable

level of Γ1 by Corollary 5.2.4. However, Corollary 5.2.4 assumes that Γ2 is neither

a unanimity nor an anti-unanimity game. So it remains to investigate these two

possibilities, and it turns out that none of them produce a weighted Γ, which is

what we show in the next section.

6.2.3 The remaining cases of compositions that are ideal and
nonweighted

Let us firstly consider the case where Γ2 is An.

Theorem 6.2.14. Let Γ = (P,W ) be a simple game of one of the types B1, B2,

B3, T1, T3a, and T3b, and let g ∈ P be a player of Γ such that g is strictly more

desirable than some nondummy player g′ ∈ P . Then the composition Γ ◦g An is

not weighted.

Proof. Denote players of An by PAn , and let a1, a2 ∈ PAn . Let us first consider

the case where g is from the most desirable level of Γ. We will apply Lemma 5.2.3

to show that Γ ◦g An is not complete. So in what follows we show that for each

case there exists g, g′ ∈ P and coalitions X1 and X2 of Γ which satisfy (5.2.1).

In the following three cases, g is a player of level 1 and g′ is a player of level

2.

(i) B1: X1 is of type {1k1−1, 2k2−k1}, and X2 is of type {1k1−1, 2k2−k1};

(ii) B2: X1 is of type {1k1−1}, and X2 is of type {2k1};

(iii) B3: X1 is of type {1k1−1}, and X2 is of type {1k2−n2 , 2n2−1}.

And for the following three cases, g is a player of level 1 and g′ is a player of

level 3.

(iv) T1: X1 is of type {1m−2}, and X2 is of type {2m−d, 3d−1};
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(v) T3a: X1 is of type {1t−2, 2}, and X2 is of type {1m−d−1, 3d};

(vi) T3b: X1 is of type {1t−n2−1, 2n2}, and X2 is of type {1m−d−1, 3d}.

With regards to the T types, the result follows when the composition is over

the most desirable level of Γ1 by (i)-(vi). But let us now consider composing

games of the T types over a player of level 2. We start with T1. Recall from the

analysis regarding T1 on page 117, that a game of type B1 is a subgame of a game

of type T1, and since a game of type B1 when composed with An was shown to

be nonweighted by (i) above, then the same applies to a game of type T1.

Now we look at T3a. Recall that d = n3 in T3a (see page 107), where n3 ≥ 2

by Proposition 4.2.3 (C′8). So in this case X1 is of type {1t−n2 , 2n2−1}, X2 is of

type {1m−d, 3d−1}, where g is a player of level 2 and g′ is a player of level 3.

Finally we look at T3b. Here X1 is of type {1t−n2 , 2n2−1}, X2 is of type

{1m−d, 2d−n3 , 3n3−1}, where g is a player of level 2 and g′ is a player of level

3.

This completes the study of compositions where Γ2 is the anti-unanimity game

An, such that the compositions are not over the least desirable level of Γ1.

Finally, we consider compositions where Γ2 is the unanimity game Un. It turns

out that none of these compositions give a weighted composed game either, which

is what we show next.

Theorem 6.2.15. Let Γ1 = (P,W ) be a simple game of one of the types B1, B2,

B3, T1, T3a, and T3b and let g ∈ P be a player not from the least desirable level

of Γ1. Then the composition Γ = Γ1 ◦g Un is not weighted.

Proof. Let Un be defined on PUn , and let Z = PUn . We start with Γ1 being of

type B1. A shift-minimal winning coalition of Γ1 has the only form {1k1 , 2k2−k1},
where k1 < n1. We compose over level 1 of Γ1. Then Γ is nonweighted by

Lemma 6.2.8 applied to the following trading transform (where Z = PUn):

({1k1 , 2k2−k1}, {1k1−1, 2k2−k1}; {1k1 , 2k2−k1−1}, {1k1−1, 2k2−k1+1}).
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This is because the second coalition is 1-winning.

Note that k2 − k1 + 1 = n2 ≥ 2 in a game of type B1 (see page 107), so the

coalition {1k1−1, 2k2−k1+1} is allowed.

Now let Γ1 be of type B2. The shift-minimal winning coalitions of Γ1 here

are {1k1}, {2k1+1}, and if we compose with Un over level 1 of Γ1, then Γ is non-

weighted by Lemma 6.2.8 applied to the following trading transform:

({1k1−1}, {2k1+1}; {1k1−1, 2}, {2k1}).

This is because the first coalition is 1-winning.

Now let Γ1 be of type B3. Recall that in a game of type B3 we have k1 ≤ n1

(page 107), and also k2 − n2 < k1 (see page 58). So the shift-minimal winning

coalitions of Γ1 are {1k1}, {1k2−n2 , 2n2}. If we compose with Un over level 1

of Γ1, then Γ is nonweighted by Lemma 6.2.8 applied to the following trading

transform:

({1k2−n2 , 2n2}, {1k1−1}; {1k2−n2 , 2n2−1}, {1k1−1, 2}).

This is because the second coalition is 1-winning.

Next we look at the games T1, T3a, and T3b, also let Z = PUn . Since they

have three levels each, then we need to consider what happens when composing

over level 1 and when composing over level 2 separately. Let us start with T1.

The shift-minimal winning coalitions of Γ1 are {1m−1} and {2m−d, 3d}. Here

we need to consider two compositions, one over level 1, and one over level 2.

Case (i). If we compose with Un over level 1 of Γ1 then Γ is nonweighted by

Lemma 6.2.8 applied to the following trading transform:

({1m−2}, {2m−d, 3d}; {1m−2, 2}, {2m−d−1, 3d}).

This is because the first coalition is 1-winning.

Case (ii). If we compose with Un over level 2 of Γ1, then Γ is nonweighted by

Lemma 6.2.8 applied to the following trading transform:

({1m−1}, {2m−d−1, 3d}; {1m−2, 2}, {1, 2m−d−2, 3d}).
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This is because the second coalition is 2-winning.

Now let Γ1 be of type T3a. Recall from page 109 that a game of type T3a

has n2 = 1, so the shift-minimal winning coalitions of Γ1 here are {1t−1, 2} and

{1m−d, 3d}. Here we need to consider two compositions, one over level 1, one

over level 2.

Case (i). If we compose with Un over level 1 of Γ1, then since n1 ≥ t−1 > m−d
by Proposition 4.2.3 (C′2), then Γ is nonweighted by Lemma 6.2.8 applied to the

following trading transform:

({1t−2, 2}, {1m−d, 3d}; {1t−1}, {1m−d−1, 2, 3d}).

This is because the first coalition is 1-winning.

Case (ii). If we compose with Un over level 2 of Γ1, then Γ is nonweighted by

Lemma 6.2.8 applied to the following trading transform:

({1t−1}, {1m−d, 3d}; {1t−1, 3}, {1m−d, 3d−1}).

This is because the first coalition is 2-winning.

Finally, let Γ1 be of type T3b. The shift-minimal winning coalitions of Γ1 are

{1t−n2 , 2n2} and {1m−d, 2d−n3 , 3n3}. Here we need to consider two compositions,

one over level 1, one over level 2.

Case (i). If we compose Γ1 with Un over level 1 of Γ1, then since n1 ≥ t − 1 >

m − d, then Γ is nonweighted by Lemma 6.2.8 applied to the following trading

transform:

({1m−d, 2d−n3 , 3n3}, {1m−d−1, 2d−n3 , 3n3}; {1m−d, 2d−n3−1, 3n3},

{1m−d−1, 2d−n3+1, 3n3}).

This is because the second coalition is 1-winning.

Note that d−n3+1 = n2 in a game of type T3b (see page 107), so the coalition

{1m−d−1, 2d−n3+1, 3n3} is allowed.
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Case (ii). If we compose Γ1 with Un over level 2 of Γ1, then Γ is nonweighted

by Lemma 6.2.8 applied to the following trading transform:

({1m−d, 2d−n3 , 3n3}, {1m−d, 2d−n3−1, 3n3}; {1m−d+1, 2d−n3−2, 3n3},

{1m−d−1, 2d−n3+1, 3n3}).

This is because the second coalition is 2-winning.

In conclusion we see that none of the six games above produce a weighted

game when composed with Un over a player not from the least desirable level of

the first game.

Proof of Theorem 6.2.1. Follows from combining results in Sections 6.2.1-6.2.3.

Now the characterisation theorem of all ideal weighted simple games can be

derived easily.

6.3 The proof of the characterisation theorem

The following proposition will be useful to show the uniqueness of the decompo-

sition of an ideal weighted game.

Proposition 6.3.1. Let H ′ be a game of type H, G′ = (P ′,W ′) be an ideal

weighted simple game, B2 be a game of type B2 such that g is a player from

its level 2, and An is an anti-unanimity game. Then H ′ ◦G′ � B2 ◦g An.

Proof. Recall that isomorphisms preserve Isbell’s desirability relation (Carreras

& Freixas, 1996). Therefore, if we show that the two compositions have differ-

ent winning requirements, then it shows that Isbell’s desirability relation is used

differently in the two compositions, meaning they cannot be isomorphic to each

other. Consider first H ′ ◦ G′. Suppose the minimal winning coalition of H ′ is

of the form {1k}, then a minimal winning coalition in the composition will have

either k or k − 1 players from its most desirable level.
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Now consider B2 ◦g An. Let the two minimal winning coalitions of B2 be

of the forms {1l} and {2l+1}, then a minimal winning coalition in B2 ◦g An has

either l players from the most desirable level, or l players from the second most

desirable level (since the composition is over the least desirable level of B2). By

comparing the minimal winning coalitions in the two compositions, we see that

the game H ′ ◦G′ requires at least k− 1 players from its most desirable level to be

present in a coalition in order to make it winning. But since no such requirement

exists in B2 ◦g An, then the two games have different winning requirements, and

therefore cannot be isomorphic to each other.

Proof of Theorem 6.2.1. Either G is decomposable or not. If it is not, then it is

either A2, U2 or one of the indecomposable types B1, B2, B3, T1, T3a and T3b by

Theorem 6.1.2. Suppose now that G is decomposable, so G = G1 ◦G2. Then:

(i) IfG1 is not of type H, then by Theorem 6.2.1 it must be of type B2, and also

G2 = An such that the composition is over level 2 of G1.

(ii) If G1 is of type H, then since G2 is ideal weighted by Corollary 5.3.2, the

result follows by induction.

Moreover, Proposition 6.3.1 shows that G cannot have two equal decomposi-

tions where in one decomposition G1 is of type H, and in the other G1 is of type

B2. It is also not difficult to see that there cannot be two decompositions where in

both of them G1 is of type B2, and G2 is not the same game in the two decompo-

sitions. So if G has more than one decomposition, then G1 is of type H in each

decomposition, this has two possibilities.

Firstly, if in this case G2 has no passers or vetoers, then the decomposition is

unique by Lemma 5.1.8.

Secondly, suppose G2 has passers or vetoers, this also has two possibilities.

(i). Consider first the case where G has passers. The fact that G has passers

implies that G1 has passers. But G1 is indecomposable, so it must be A2. If there

is a second decomposition for G, then G1 in the second decomposition is also
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A2 (since An, n > 2 will produce more passers in G). It follows that G2 in the

two decompositions is also the same, therefore the decomposition of G is unique.

The case where G has vetoers is similar, it implies that G1 = U2, and a similar

argument to the above can be used.

(ii). Finally, if G has neither passer nor vetoers, then G1 = Hn,k. Suppose

G2 = G3 ◦ . . . ◦ Gm, where G3 . . . Gm are all indecomposable ideal weighted

games. If G2 has passers, then G3 has passers, but since G3 is indecomposable

ideal weighted, then it is A2. Since A2 has two passers, then G3 ◦ . . . ◦ Gm has

exactly one passer (the other passer in A2 was composed over). It follows that

if there is a second equal decomposition for G, then it must have G1 = Hn,k

and also G3 = A2, and it is easy now to see that the two decompositions are the

same. The case where G2 has vetoers is similar. Therefore we conclude that the

decomposition of G is unique.

This concludes the proof of the main result of this chapter and one of the

main results of this thesis, where a complete characterisation of all ideal weighted

simple games was given. In the next chapter, we consider the problem of charac-

terising ideal games in the larger class of roughly weighted simple games.
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Chapter 7

Ideal Roughly Weighted Simple
Games

All the chapters so far have focused on weightedness of simple games. We un-

dertook a thorough study of hierarchical simple games, tripartite simple games

and the games that are composed of smaller games. We then applied our under-

standing of them to achieve a complete characterisation of ideal weighted simple

games. Now, in this chapter, we extend our study of simple games to a bigger

class, namely the class of roughly weighted simple games. We first recap some

of the concepts related to roughly weighted simple games in general. We start by

re-visiting an example of a nonweighted roughly weighted game from Chapter 2.

Recall from Chapter 1 that our strategy of characterising ideal roughly weighted

games consisted of three steps (RW1 - RW3 on page 23), of which the first one

(RW1) poses the question: Is any roughly weighted game a composition of inde-

composable roughly weighted games? In the first section of this chapter we show

that any roughly weighted game, with few exceptions, is indeed a composition

of indecomposable roughly weighted games. Then the second section will look

at the two types of roughly weighted games, namely complete and incomplete,

and demonstrate with examples that we have ideal complete roughly weighted

games and ideal incomplete roughly weighted games. In the third section, regard-

ing (RW2), we characterise nonweighted roughly weighted hierarchical games,
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Figure 7.1: Rough weightedness includes weightedness and more.

which shows, among other things, that the class of ideal roughly weighted games

is larger than the class of ideal weighted games, since hierarchical games are ideal.

Section four then gives an example of a nonweighted roughly weighted tripartite

game (the class of tripartite games was also shown to be ideal in Chapter 4), this is

also related to (RW2). Finally in the last section, we answer the question posed in

(RW3) in the positive, where we illustrate with an example that the class of ideal

complete roughly weighted games which are neither hierarchical nor tripartite is

nonempty.

7.1 On the Decomposition of Roughly Weighted

Games

In this section we show that any roughly weighted game, with few exceptions, is

a composition of indecomposable roughly weighted games. Recall that subgames

and reduced games are called minors.

The operation of taking minors will be a very useful tool later on. Minors

preserve rough weightedness provided they meet one condition as shown in the

next lemma, whose proof is straightforward.

Lemma 7.1.1. Let G = (P,W ) be a roughly weighted game with rough voting

representation [q;w1, . . . , wn]. Suppose that A ⊆ P such that w(b) > 0 for some

b ∈ Ac. Then the subgame GA and the reduced game GA are roughly weighted.
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In rough voting representations of GA and GA the weights of players are the same

as in G and quotas are q and max(0, q − w(A)), respectively.

In the lemma above, the condition ‘w(b) > 0 for some b ∈ Ac’ is needed,

if this condition does not hold, then all players of the reduced game will have

weights equal to zero as well as the quota q′ being zero, and hence Definition 2.2.15

of rough weightedness will not apply. But we will restrict our attention to the class

of reduced games which have at least one player with nonzero weight.

Now suppose we are given a roughly weighted gameG such thatG = G1◦G2,

where both G1 and G2 are indecomposable. We want to investigate whether both

G1 and G2 are roughly weighted. Recall that if a game has a potent certificate of

nonweightedness, then it is not roughly weighted (see page 42). Then we have the

following.

Lemma 7.1.2. Suppose a composition G = G1 ◦g G2 is roughly weighted with

G1 = (P1,W1), G2 = (P2,W2) and g ∈ P1. Suppose there is a player b ∈ P2

such that w(b) > 0. Then both G1 and G2 are roughly weighted.

Proof. Let P = P1 \ {g} ∪ P2 be the set of players of G. The fact that G2 is

roughly weighted follows directly from Lemma 7.1.1. Indeed, G2 is a reduced

game of G, i.e., G2
∼= GA, where A = {P1} \ {g}, and there is a player b ∈ P2

such that w(b) > 0.

So it remains to show that G1 is roughly weighted. Suppose it is not. Then G1

has a potent certificate of nonweightedness

(X1, . . . , Xj, P1; Y1, . . . , Yj, ∅), (7.1.1)

where X1, . . . , Xj are winning in G1 and Y1, . . . , Yj are losing. Since (7.1.1) is a

trading transform, then, without loss of generality, for some k, player g belongs

to the first k winning coalitions X1, . . . , Xk and the first k + 1 losing coalitions

Y1, . . . , Yk+1 (we must have in mind that P1 also contains g which balances the

transform). Define

X ′i =

Xi \ {g} ∪ P2 i ∈ {1, . . . , k},

Xi i ∈ {k+1, . . . , j}
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Figure 7.2: Roughly weighted games can be complete or incomplete.

and

Y ′i =

Yi \ {g} ∪ P2 i ∈ {1, . . . , k + 1},

Yi i ∈ {k+2, . . . , j}.
Then

(X ′1, . . . , X
′
j, P ; Y ′1 , . . . , Y

′
j , ∅), (7.1.2)

is a potent certificate of nonweightedness for G since X ′1, . . . , X
′
j are winning in

G and Y ′1 , . . . , Y
′
j are losing in G.

7.2 Ideal Complete and Ideal Incomplete Roughly

Weighted Games

In the early chapters of this thesis, we have discussed the fact that all weighted

games are complete. As far as roughly weighted games are concerned, however,

due to the fact that coalitions whose total weight is equal to the threshold can be

winning or losing, it is not necessary that all roughly weighted games are com-

plete. We can have either complete or incomplete roughly weighted games. Ex-

ample 2.2.11 was a demonstration of an ideal complete roughly weighted game,

since it was a hierarchical game, which is known to be both complete and ideal.

The following is an example of an incomplete roughly weighted game.

Example 7.2.1. In the game G = (P,W ), let P = {a, b, c, d, e} be the set of

players. And let W consist of all coalitions with four or more players, together
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with {a, b, c} and {a, d, e}. This game is roughly weighted according to this sys-

tem of weights: w(a) = w(b) = w(c) = w(d) = w(e) = 1 and the threshold

being q = 3. Since all coalitions with total weight greater than 3 are winning,

and all those with total weight less than 3 are losing, whereas among those whose

total weight is 3, only two are winning. But since, for instance, the two coali-

tions {a, b, d} and {a, e, c} are losing, then this game is not complete, due to the

following trading transform

({a, b, c}, {a, d, e}; {a, b, d}{a, e, c}).

Since the above trading transform required the swap of only one player from the

first winning coalition with one from the second winning coalition, then it is a

certificate of incompleteness by Theorem 2.2.14.

We saw that roughly weighted simple games (RWSGs) can be either complete

or incomplete, and we already saw an example of an ideal complete RWSG. It

turns out, that there are also ideal incomplete RWSGs, as we shall demonstrate

shortly. So the task of characterising ideal RWSGs can be divided into two parts:

(i) The characterisation of ideal complete RWSGs, and (ii) the characterisation of

ideal incomplete RWSGs. The study of ideal incomplete roughly weighted games

is a separate question beyond the scope of this thesis, and can be considered as

an open problem (see Chapter 8). We will, therefore, for the remaining part of

this thesis consider only ideal complete roughly weighted games. However, just

to demonstrate that the class of ideal incomplete RWSGs is nonempty, we give an

example of such a game, and prove it to be ideal using Matroid Theory. First we

need to introduce some basics of Matroid Theory.

7.2.1 The connection between matroids and secret sharing
schemes

A connection between ideal secret sharing schemes and matroids has been estab-

lished in (Brickell & Davenport, 1991), and this connection was the main tool used
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in the two papers (Beimel, Tassa, & Weinreb, 2008) and (Farràs & Padró, 2010),

where a substantial progress towards characterising ideal WSGs was made. For

a more exhaustive and interesting study of matroids, the reader is encouraged to

look at (Oxley, 1992).

Definition 7.2.2. A matroid M is an ordered pair (E, I) consisting of a finite set

E, known as the ground set, and a collection I of subsets of E, known as the

independent sets of M , satisfying the following three conditions:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I , then I ′ ∈ I.

(I3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 \ I1

such that I1 ∪ e ∈ I.

Condition (I3) is called the independence augmentation axiom.

If a set is not independent, then it is called dependent. A circuit in a matroid

is a minimal dependent set. Meaning, removing any one element from a circuit

results in an independent set.

It has been shown in (Brickell & Davenport, 1991) that an ideal secret sharing

scheme has a corresponding matroid associated with it, denoted herein M, but

not necessarily the other way around. The relation between ideal secret sharing

schemes and matroids is as follows. Let Γ be an ideal access structure on a set of

users U = {u1, . . . , un}. The elements ofM are the users in U together with an

additional element, denoted u0, that could be thought of as representing the dealer.

We denote hereinafter by

C0(Γ) = {X ∪ {u0} : X is a minterm of Γ}

the set of all Γ-minterms, supplemented by u0.

Theorem 7.2.3. (Brickell & Davenport (1991), Theorem 1) Let Γ be a connected

ideal access structure on U . Then there exists a matroidM on U ∪ {u0}, such

that C0(Γ) is exactly its set of circuits that contain u0.
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The matroid whose existence is guaranteed by Theorem 7.2.3 is unique up to

an isomorphism, and it is referred to as the matroid corresponding to Γ. The next

definition will enable us to explicitly define the matroid corresponding to Γ using

the authorised sets in Γ.

Definition 7.2.4. (Critical User) LetM1 andM2 be distinct minterms of Γ. A user

x ∈M1 ∪M2 is critical for M1 ∪M2 if the set M1 ∪M2 \ {x} is unauthorised. In

addition we define

D(M1,M2) = (M1∪M2)\{x ∈M1∪M2 : x is critical forM1∪M2}.

The following result is very important.

Lemma 7.2.5. (Beimel, Tassa, & Weinreb (2008), Corollary 4.4) Let Γ be a con-

nected ideal access structure on U . Then there exists a unique connected matroid

M on U ∪ {u0}, such that C0(Γ) is exactly its set of circuits that contain u0. Fur-

thermore, the minimal sets in {D(M1,M2) : M1,M2 are distinct minterms of Γ}
are the circuits that do not contain u0.

We can also try to obtain an ideal access structure from a matroid, but this

will not work for every matroid. A representation of a matroidM is a matrix A

with entries from some field F, such that each element in the ground set of M
represents some column in A. Moreover, there is a one-to-one correspondence

between the columns of A and the ground set of M, meaning a set of columns

in A is linearly independent (as vectors) if and only if the corresponding set is

independent inM. In such a case the matroidM is called representable. With

this definition in mind, we have the following.

Theorem 7.2.6. (Brickell & Davenport (1991), Theorem 2) Let M be a repre-

sentable matroid over a field. Then there exists an ideal secret sharing scheme S

with access structure Γ, such that the set of circuits ofM containing u0 is C0(Γ).

Now we are ready for the example.
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Figure 7.3: The matroid Q6

7.2.2 An example of an ideal incomplete roughly weighted game

Example 7.2.7. Let G = (PG,WG) be a game such that PG = {a, b, c, d, e} is the

set of players. The set of minimal winning coalitions is Wmin
G = {{a, b}, {c, d},

{a, e, d}, {a, e, c}, {b, e, d}, {b, e, c}}. The rough weights are rw(a) = rw(b) =

rw(c) = rw(d) = rw(d) = 1
2

and the quota q = 1. We can see that the game is

roughly weighted, but it is not complete by the following trading transform (see

Theorem 2.2.14):

({a, b}, {c, d}; {d, b}, {c, a}).

Finally, let us think of Wmin
G as an access structure for some secret sharing

scheme realising it. We can form the following set C0 = {X ∪ {u0}}, where X

is a minterm from Wmin
G above, and u0 /∈ PG. The set C0 above happens to be the

set of all circuits containing the point u0 of a matroid known in matroid theory

as Q6 (see Oxley (1992), p.503). The geometric representation of Q6 is shown in

Figure 7.3. Now, Q6 is representable over a field F if and only if |F| ≥ 4 (also

in Oxley (1992), p.503). It follows from Theorem 7.2.6 that Wmin
G above carries

an ideal secret sharing scheme. This completes our example for the existence of a

roughly weighted game that is also ideal and incomplete.

In the remaining part of the thesis, building upon the characterisation of ideal
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WSGs of Chapter 6, we shall solve some problems regarding the characterisa-

tion of ideal complete roughly weighted games. So the rest of the thesis is as

follows. In the next Section 7.3, we consider the class of HSGs and identify six

categories of nonweighted roughly weighted disjunctive HSGs, and then obtain

the corresponding results for conjunctive HSGs by duality. In Section 7.4, as a

demonstration of the fact that the class of roughly weighted TSGs is larger than

the class of weighted TSGs, we give an example for such a nonweighted roughly

weighted TSG, which also happens to be an indecomposable game. Finally, in

Section 7.5, we discover an ideal complete roughly weighted game, which is nei-

ther hierarchical nor tripartite. We also prove its indecomposability and ideality.

7.3 Roughly Weighted Hierarchical Simple Games

Let us now generalise Theorem 3.6.2 and classify roughly weighted disjunctive

hierarchical games. As the classification of weighted hierarchical games is already

given in Theorem 3.6.2, we will characterize only nonweighted ones. Firstly, we

formulate the two main theorems. The first one is about disjunctive hierarchical

games.

Theorem 7.3.1. Let H = H∃(n, k) be an m-level nonweighted hierarchical game

without passers. Then it is roughly weighted if and only if one of the following is

true:

(i) k = (2, 4) with n1 ≥ 2 and n2 ≥ 4;

(ii) k = (k, k + 2), with n1 ≥ k > 2 and n2 = 4;

(iii) k = (2, 3, 4) and n = (n1, 2, n3) with n1 ≥ 2, n3 ≥ 3;

(iv) k = (k, k + 1, k + 2), and n = (n1, 2, 2), where 2 ≤ k ≤ n1 or n =

(n1, n2, 2) with 2 ≤ k ≤ n1 and n2 ≥ 3;

(v) k = (k, k+1, k3), n = (n1, n2, n3) such that 2 ≤ k ≤ n1, and n3 = k3 − k ≥ 3.
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(vi) km = km−1 + nm and the subgame H∃(n,k){mnm} = H∃(n
′,k′), where

n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1), falls under one of the types

(i)–(v).

This will imply the following classification of conjunctive hierarchical games.

Theorem 7.3.2. Let H = H∀(n, k) be an m-level nonweighted conjunctive hier-

archical game without vetoers. Then it is roughly weighted and nonweighted if

and only if one of the following is true:

(i) k = (n1 − 1, n1 + n2 − 3), where n1 ≥ 2, n2 ≥ 4;

(ii) k = (k, k + 2), with 1 ≤ k < n1 − 1, and n2 = 4;

(iii) k = (n1−1, n1, n1 +n3−1) and n = (n1, 2, n3) such that n1 ≥ 2, n3 ≥ 3;

(iva) k = (k, k + 1, k + 2), where 1 ≤ k ≤ n1 − 1 and n = (n1, 2, 2);

(ivb) k = (k1, k2, k2 +1) with n = (n1, n2, 2), where k2−k1 = n2−1, 1 ≤ k1 ≤
n1 − 1 and n3 ≥ 3;

(v) k = (k1, k2, k2 + 1), with 1 ≤ k ≤ n1 − 1 and n2 ≥ 3;

(vi) km−1 = km, and the reduced game H∀(n,k){m
nm} = H∀(n

′,k′), where

n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1), falls under one of the types

(i)–(v).

So let us outline the methodology of the proof of Theorem 7.3.1. In the next

section we prove that a disjunctive hierarchical game with no passers may not have

more than four levels (Lemma 7.3.12). This gives us the opportunity to consider

cases m = 2, 3, 4 levels separately. This is what we do in Section 7.3.3.

Section 7.3.3 will start with describing the strategy that we shall follow in

our proofs. Then we consider two-level roughly weighted disjunctive hierarchical

games and fully classify them in Lemma 7.3.13. What follows after that is our

investigation of the three-level games. This is the main part of the characterisation.
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Our first goal here will be a full classification of disjunctive hierarchical games

with k = (2, 3, 4) (Lemma 7.3.15). This is the most important type of disjunctive

hierarchical games. This is because they are either subgames or reduced games of

virtually any other disjunctive hierarchical game. The next goal after that will be

a classification of games with k = (2, 3, k) for k ≥ 5. This will be achieved in

Lemma 7.3.16.

We then briefly discuss how the weights of a roughly weighted disjunctive

hierarchical game G change if we pass on to a reduced game of G. With this tool

we consider disjunctive hierarchical games with arbitrary vector k = (k1, k2, k3).

The next milestone is Lemma 7.3.20 which states that rough weightedness implies

k2 − k1 = 1. The method that we intensively use is to find a reduced game to

which we know what the weights should be and then make conclusions about the

possible weights of the original game.

This leaves us with the two remaining cases to consider k = (k, k+ 1, k+ 2),

k ≥ 3 and k = (k, k + 1, k3), such that k3 − k ≥ 3. This cases are dealt with in

Lemmata 7.3.22 and 7.3.23.

Finally we prove the main theorem on roughly weighted disjunctive hierarchi-

cal games by proving that the fourth nontrivial level is not possible (the two-level

and three-level games by that time are already classified). Then by duality we

deduce the main result on roughly weighted conjunctive hierarchical games.

It was mentioned in the earlier chapters that it is a well-known fact that any

weighted game can be given a voting representation in which players of equal

Isbell’s desirability have equal weights. However, we need a similar statement

that would be also applicable to roughly weighted games. In other words, we

want to be able to say that a simple game G = (P,W ) is a roughly weighted

game if and only if the corresponding simple game Ḡ = (P̄ , W̄ ) is. It is easy

to check that if we take a class of equivalent players and assign them the average

weight of players in this class, then the resulting system of weights will again give

us a rough voting representation for the same game. If we do this with every class

of equivalent players we will achieve the result. We formalise it as follows.
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Lemma 7.3.3. A simple game G = (P,W ) is a roughly weighted majority game

if and only if the corresponding simple game Ḡ = (P̄ , W̄ ) is.

Proof. Suppose there are m equivalence classes P1, . . . , Pm of players and let us

denote [i] the equivalence class to which i belongs. The statement is nontrivial

only in one direction. The nontrivial part is to prove that if the game G on P is

roughly weighted, then the game Ḡ on P̄ is also roughly weighted. So suppose

that there exists a system of weights w1, . . . , wn and the quota q ≥ 0, not all equal

to zero, such that
∑

i∈X wi > q impliesX ∈ W and
∑

i∈X wi < q impliesX ∈ L.

Our statement will be proved if we can find another system of weights u1, . . . , un

for G which satisfy the conditions:

(i) ui = uj if [i] = [j],

(ii)
∑

i∈X ui > q implies X ∈ W .

(iii)
∑

i∈X ui < q implies X /∈ W .

We define this alternative system of weights by setting ui = 1
|[i]|
∑

j∈[i] wj,

i.e., we replace the weight of ith player with the average weight of players in the

equivalence class to which i belongs. It obviously satisfies (i). Let us prove that it

satisfies (ii).

Let X ⊆ P and
∑

i∈X ui > q. Let ki = |X ∩ Pi|. Let X+ be the subset of P

which results in replacing in X , for all i = 1, 2, . . . ,m, all ki players of Pi with

the “heaviest” players from the same class. Then the weight of X+ relative to the

old system of weights is greater or equal to
∑

i∈X ui and hence greater than q. So

X+ is winning in G, and so is X , because we replaced all weights of players with

equivalent weights (the average weight of players in each equivalence class). (iii)

is proved similarly.

7.3.1 Minors of Disjunctive Hierarchical Simple Games

In proving our classification of nonweighted roughly weighted HSGs, we will first

work with disjunctive hierarchical games, and then obtain the result for conjunc-
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tive hierarchical games by duality. Hence in this section we restrict ourselves with

the disjunctive case only. The following statements are easy to check.

Proposition 7.3.4. Let n′ = (n2+k1−1, n3, . . . , nm) and k′ = (k2, . . . , km). Then

H∃(n
′,k′) is a subgame of G = H∃(n,k). This subgame does not have passers

and it has dummies if and only if G had.

Proof. Indeed, H∃(n′,k′) = GA for A = {1n1−k1+1}. If we make n1 − k1 + 1

elements of level one unavailable the first constraint loses any bite and the first

level collapses.

Lemma 7.3.5. For any i = 1, 2, . . . ,m − 1 there exists n′i, such that for n′ =

(n′i, ni+1) and k′ = (ki, ki+1) the game G′ = H∃(n
′,k′) is a subgame of G =

H∃(n,k).

Proof. Follows directly from Propositions 3.4.1 and 7.3.4.

Proposition 7.3.6. LetG = H∃(n,k), where n = (n1, . . . , nm), k = (k1, . . . , km).

Suppose that ki > ki−1 + 1 for some i ∈ {1, . . . ,m}. Then for

n′ = (n1, . . . , ni−1, ni − 1, ni+1, . . . , nm),

k′ = (k1, . . . , ki−1, ki − 1, ki+1 − 1, . . . , km − 1)

G′ = H∃(n
′,k′) is a reduced game of G. Moreover, if G did not have dummies,

then G′ would not have them.

Proof. Since all representations are canonical, the condition ki > ki−1 +1 implies

that ni > ki − ki−1 ≥ 2, so ni ≥ 3. We note now that G′ = GA for A = {i}. It

is easy to check that all conditions (a) and (b) are satisfied for the new values of

parameters n′ and k′.

7.3.2 Roughly Weighted Disjunctive Hierarchical Simple Games
have at most four levels

We will consider a roughly weighted hierarchical m-level game, call it H . It will

be convenient to have the quota equal to 1. Also by Lemma 7.3.3 we may consider
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that all players of level i have weight wi, so that any rough voting representation

has the form [1;w1, . . . , wm]. If X is a coalition of H , by w(X) we will denote

the total weight of X .

Our approach will be based on Theorem 3.5.1, and need the following obser-

vation stated in Proposition 7.3.7 below. But first, we note the following which

will help us make sense of the next proposition.

We note that if [q;w1, . . . , wn] is a rough voting representation of a game G,

then wi > wj implies that player i is at least as desirable as player j. This,

in particular, implies that if player k is strictly less desirable than player `, then

wk ≤ w`. As we will see later it is possible that player k is strictly less desirable

than player ` but wk = w` and, in particular, a nondummy player can have zero

weight.

Proposition 7.3.7. Let H be a disjunctive hierarchical game, and let M be its

unique shift-maximal losing coalition. Suppose H is roughly weighted with rough

voting representation [1;w1, . . . , wm]. Then w(M) ≥ w(L) for any losing coali-

tion L.

Proof. Since any shift replaces a player with a less influential one, the weight of

the latter must be not greater than the weight of the former. This secures that if a

coalition S is obtained from a coalition T by a shift, then w(T ) ≥ w(S). If S is

a subset of T , then also w(T ) ≥ w(S). Since M is a unique shift-maximal losing

coalition we will have w(M) ≥ w(L) for any losing coalition L.

This simple proposition has a useful corollary.

Corollary 7.3.8. Let H be a disjunctive hierarchical game, and let M be its

unique shift-maximal losing coalition. Suppose H is roughly weighted with rough

voting representation [1;w1, . . . , wn] but not weighted. Then w(M) = 1.

Proof. If w(M) < 1, then by Proposition 7.3.7 there is no losing coalitions on the

threshold. In this case the game is weighted.
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The following will also be very useful.

Proposition 7.3.9. LetH∃(n,k) be them-level disjunctive hierarchical game with

no passers and no dummies. Suppose it is roughly weighted with rough voting

representation [1;w1, . . . , wn]. Then

(i) w1 ≥ w2 ≥ . . . ≥ wm.

(ii) wi > 0 for i = 1, 2, . . . ,m− 1.

Proof. As there are no dummies, km − km−1 < nm is satisfied. We also have

k1 > 1 as no passers are present. By Theorem 3.5.1 we know that H∃(n,k) has a

unique shift-maximal losing coalition. This coalition then would be

M = {1k1−1, 2k2−k1 , . . . ,mkm−km−1}. (7.3.1)

By Corollary 7.3.8 we have

w(M) = (k1 − 1)w1 + (k2 − k1)w2 + . . .+ (km − km−1)wm = 1.

If only wi+1 > wi, then

w(M) ≥(k1 − 1)w1 + . . .+ (ki − ki−1)wi + (ki+1 − ki)wi+1 >

(k1 − 1)w1 + . . .+ (ki−1 − ki−2)wi−1 + (ki+1 − ki−1)wi ≥ 1,

since the latter is the weight of a winning coalition {1k1−1, 2k2−k1 , . . . , iki+1−ki−1}
(indeed the cardinality of this multiset is ki+1−1 ≥ ki). This contradiction proves

(i).

To prove (ii) we note that by Theorem 3.2.1 we have ki−ki−1 < ni, and hence

every level in multiset M is not completely filled and has some capacity. Suppose

first that km − km−1 ≤ nm − 2. Then the multiset

M ′ = {1k1−2, 2k2−k1 , . . . ,mkm−km−1+2}

is winning from which we see that wm > 0. If ki−ki−1 = ni−1, then the multiset

M ′′ = {1k1−2, 2k2−k1 , . . . , (m− 1)km−1−km−2+1,mkm−km−1+1}

is winning whence wm−1 > 0. This proves (ii).
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The two following results will be very useful later on in characterising roughly

weighted hierarchical simple games with three levels and more.

Lemma 7.3.10. Suppose that an m-level disjunctive hierarchical game H =

H∃(n,k) without passers and without dummies is roughly weighted with rough

voting representation [1;w1, . . . , wm] but not weighted. If the subgame H ′ =

H∃(n
′,k′), where n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1), is also not

weighted, then wm = 0.

Proof. By Proposition 3.4.1 H ′ is a subgame of H , hence it is roughly weighted

with rough voting representation [1;w1, . . . , wm−1]. By Proposition 7.3.9 all the

weights are nonzero. The shift-maximal losing coalition M for H will be (7.3.1)

and for H ′ it will be

M ′ = {1k1−1, 2k2−k1 , . . . , (m− 1)km−1−km−2}.

If the game H ′ is not weighted, then by Corollary 7.3.8 we have w(M ′) = 1. As

1 = w(M) = w(M ′)+(km−km−1)wm and km > km−1, this implieswm = 0.

The reader might expect that wm = 0 implies that the mth level must consist

of dummies. In a roughly weighted game this may not be the case. Here is an

example illustrating this.

Example 7.3.11. Let us consider disjunctive hierarchical game H = H∃(n,k)

with n = (3, 3, 3) and k = (2, 3, 5). It is roughly weighted relative to the weights

[1; 1
2
, 1

2
, 0]. Indeed, the shift-minimal winning coalitions of H are {12}, {23},

{22, 33}. They all have weight at least 1. The unique shift-maximal losing coali-

tion {1, 2, 32} also has weight 1 but this is allowed. The players of the third

level are not dummies despite having weight 0. Moreover in any other system of

weights consistent with the game H , players of level three will have weight 0.

Proof. Let us prove the last statement about the game in this example. If [1;w1, w2, w3]

is any rough voting representation forH , then the following system of inequalities

must hold:

w1 ≥
1

2
(7.3.2)
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w2 ≥
1

3
(7.3.3)

2w2 + 3w3 ≥ 1 (7.3.4)

w1 + w2 + 2w3 = 1. (7.3.5)

However (7.3.2) and (7.3.5) imply w2 +2w3 ≤ 1
2
, which implies 2w2 +4w3 ≤

1, which together with (7.3.4) implies w3 = 0.

Now we can restrict the number of nontrivial levels to four.

Lemma 7.3.12. A roughly weighted m-level disjunctive hierarchical game H =

H∃(n,k) without passers and without dummies may have no more than four lev-

els, i.e., m ≤ 4.

Proof. Suppose m ≥ 5. Consider the game H ′ = H∃(n
′,k′), where n′ =

(n1, . . . , nm−1) and k′ = (k1, . . . , km−1). By Proposition 3.4.1H ′ is a subgame of

H and has no passers or dummies. By Lemma 7.1.1 it is roughly weighted. As it

has four or more levels, by Theorem 3.2.1 it is not weighted. By Proposition 7.3.9

we have wm−1 > 0, but we also have wm−1 = 0 by Lemma 7.3.10 applied to H ′.

This contradiction proves the lemma.

We will see in the following section that four nontrivial levels are also not

achievable.

7.3.3 The characterization of Roughly Weighted Disjunctive
Hierarchical Simple Games

Now we can start our full characterisation of all roughly weighted hierarchical

games. Due to the results of the previous section our main focus will be on 2-level

ones, then 3-level ones, and then showing that the fourth level may not be added

unless we allow dummies or passers.
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The strategy

Here is our general strategy to analyse if a particular disjunctive hierarchical game

G = H∃(n,k) without passers is roughly weighted or not. Firstly, if a system

of rough weights for G exists, then, due to the absence of passers the quota is

strictly positive so, by normalising, we may assume that in a voting representa-

tion we look for the quota equal to 1, i.e., our rough voting representation must

be [1;w1, . . . , wn], where w1 ≥ w2 ≥ . . . ≥ wn. We then list all shift-minimal

winning coalitions and write a system of inequalities S inw1, . . . , wn that is equiv-

alent to the fact that in the game with rough voting representation [1;w1, . . . , wn]

these coalitions are above or on the threshold. For example if {12, 3, 43} is a shift-

minimal winning coalition, we add the inequality 2w1 + w3 + 3w4 ≥ 1 to S. Re-

quiring that those shift-minimal winning coalitions are on or above the threshold

is sufficient for ensuring that all winning coalitions are on or above the threshold.

This is due to the fact that every shift reduces the weight or leaves it fixed and

adding players does not decrease the weight either. By Theorem 3.5.1 there is

a unique shift-maximal losing coalition M . So then (assuming no dummies) by

Corollary 7.3.8 we have the following equation

(k1 − 1)w1 + (k2 − k1)w2 + . . .+ (kn − kn−1)wn = 1, (7.3.6)

which expresses the fact that the weight of M is exactly on the threshold. We

add equation (7.3.6) to S. This system has a solution if and only if the game is

roughly weighted. However, the existence of a solution may lead occasionally to a

weighted game. We need to check these solutions against Theorem 3.6.2 to make

sure that the game is not weighted.

The possible shift-minimal winning coalitions in a two- or a three-level dis-

junctive hierarchical game G = H∃(n,k) and the inequalities corresponding to

them are as follows:

• When ki ≤ ni, we have shift-minimal winning coalition {iki} and the cor-

responding inequality

kiwi ≥ 1. (7.3.7)
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• In the case when k2 > n2 the coalition {1k2−n2 , 2n2} is a shift-minimal

winning coalition, so we have

(k2 − n2)w1 + n2w2 ≥ 1. (7.3.8)

• In the case when k3 > n3 there are two possibilities, either k2 ≤ n2, or

k2 > n2. Suppose k2 ≤ n2. Since {2k3−n3 , 3n3} is a shift-winning coalition,

then we have

(k3 − n3)w2 + n3w3 ≥ 1. (7.3.9)

(We note that k3 − n3 < k2 ≤ n2 in this case.) And if k2 > n2, then since

k3 − n3 < k2 < k1 + n2, and k1 ≤ n1, the coalition {1k3−n2−n3 , 2n2 , 3n3} is

a shift-minimal winning coalition, and we have

(k3 − n2 − n3)w1 + n2w2 + n3w3 ≥ 1. (7.3.10)

Two-level games

Lemma 7.3.13. Let H = H∃(n,k) be a two-level disjunctive hierarchical game

with no passers and no dummies. Then H is roughly weighted but not weighted if

and only if one of the following conditions is satisfied:

(i) k = (2, 4) with n1 ≥ 2 and n2 ≥ 4;

(ii) k = (k, k + 2), where k > 2, with n1 ≥ k and n2 = 4.

If [1;w1, w2] is a rough voting representation for H , then w2 = w1/2. Moreover,

in case (i) we have (w1, w2) = (1
2
, 1

4
).

Proof. Let [1;w1, w2] be a rough voting representation for H and M be its unique

shift-maximal losing coalition. As we do not have passers we have k1 > 1. We

need to consider two cases: (i) k2 ≤ n2 and (ii) k2 > n2. In the first case,

due to (7.3.7), we have k1w1 ≥ 1, k2w2 ≥ 1 and by Corollary 7.3.8 w(M) =

(k1 − 1)w1 + (k2 − k1)w2 = 1. If only we had k1w1 > 1 or k2w2 > 1 we
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could decrease w1 or w2 and make w(M) < 1 in which case the game would

be weighted. Hence k1w1 = k2w2 = (k1 − 1)w1 + (k2 − k1)w2 = 1. This

implies 1/k1 + k1/k2 = 1. Let k2 − k1 = d. Then 1
k1

+ k1
k1+d

= 1, which is

equivalent to k1 + d = k1d or d = k1
k1−1

. It implies 1 < d ≤ 2 whence d = 2

and k1 = 2. Thus we have only one solution: k1 = 2 and k2 = 4. This implies

w = (w1, w2) = (1
2
, 1

4
).

Let us consider the second case. Due to (7.3.6), (7.3.7) and (7.3.8) w satisfy

the inequalities k1w1 ≥ 1, (k2 − n2)w1 + n2w2 ≥ 1 and the equality (k1−1)w1 +

(k2 − k1)w2 = 1. The latter line must be a supporting line of the polyhedron area

given by

k1w1 ≥ 1, (k2 − n2)w1 + n2w2 ≥ 1, w2 ≥ 0.

Indeed, if it cuts across this area, then we will be able to find a point (w1, w2) in

this area with (k1 − 1)w1 + (k2 − k1)w2 < 1. The game then will be weighted

relative to [1;w1, w2]. This area has only two extreme points and the line must

pass through at least one of them. This is either when w2 = 0 or when k1w1 = 1

and (k2 − n2)w1 + n2w2 = 1. Firstly, let us consider the case when w2 = 0. In

such a case (k2 − n2)w1 ≥ 1 and (k1 − 1)w1 = 1. This can only happen when

k2 − n2 ≥ k1 − 1 or n2 ≤ k2 − k1 + 1, but by Theorem 3.2.1 we cannot have

n2 < k2 − k1 + 1, so it must be that n2 = k2 − k1 + 1. But in this case H is

weighted by Theorem 1.1.1.

Suppose now k1w1 = (k2−n2)w1 +n2w2 = 1 and (k1−1)w1 +(k2−k1)w2 =

1. Expressingw1 andw2 from the first two equations and substituting into the third

we obtain (k2 − k1)(n2 − (k2 − k1)) = n2. Denoting d = k2 − k1 we can rewrite

this as n2 = d+ 1 + 1
d−1

. As n2 must be an integer we get d = 2 and n2 = 4. Now

w2 = k1−k2+n2

n2k1
= 1

2k1
= w1

2
. It is easy to check that these weights indeed make H

roughly weighted and w(M) = (k − 1)w1 + 2 · w1

2
= kw1 = 1.

Three-level games

Following our strategy outlined earlier, we now focus our investigation on three-

level disjunctive HSGs.
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Lemma 7.3.14. Let H = H∃(n,k) with no passers and no dummies, where n =

(n1, n2, n3) and k = (k, k + 1, k + a), where a ≥ 2 is a positive integer, with

ki ≤ ni for i = 1, 2, 3. Then H is not roughly weighted.

Proof. The shift-minimal winning coalitions are {1k}, {2k+1} and {3k+a} and

the inequalities in this case will be kw1 ≥ 1, (k + 1)w2 ≥ 1 and (k + a)w3 ≥ 1,

respectively. The shift-maximal equation in this case will be (k − 1)w1 + w2 +

(a − 1)w3 = 1. As in the proof of Lemma 7.3.13, we may assume that all three

aforementioned inequalities are in fact equalities, that is w1 = 1
k
, w2 = 1

k+1
, and

that w3 = 1
k+a

. Substituting these weights in the shift-maximal equation we get a

contradiction as (k− 1) 1
k

+ 1
k+1

+ a−1
k+a

= 1 is equivalent to 1
k+1

+ a−1
k+a

= 1
k

which

never happens for k ≥ 2 and a ≥ 2 as this is equivalent to (a−1)k2+(a−2)k−a =

0 from which a = k2+2k
k2+k−1

< 2, a contradiction.

As mentioned at the start of this section, the most basic type of disjunctive

hierarchical games that we will be referring to constantly is the one with k =

(2, 3, 4). We will characterise these in Lemmata 7.3.15 and 7.3.16.

Lemma 7.3.15. Let k = (2, 3, 4). The 3-level game G = H∃(n,k) with no

dummies is roughly weighted if and only if n1 ≥ 2 and one of the following is

true:

(i) n = (n1, 2, n3), where n3 ≥ 3 and w = (1
2
, 1

4
, 1

4
);

(ii) n = (n1, n2, 2), where n2 ≥ 3 and w = (1
2
, 1

2
− α, α) with α ∈ [0, 1

6
];

(iii) n = (n1, 2, 2) and w = (1
2
, 1

2
− α, α) with α ∈ [0, 1

4
].

Proof. Firstly, we note that by Theorem 3.2.1 we have 2 = k1 ≤ n1. We also note

that the shift-maximal equation in this case by (7.3.6) is in this case

w1 + w2 + w3 = 1. (7.3.11)

Case (i). ki ≤ ni for i = 1, 2, 3 is considered in Lemma 7.3.14. There are no

solutions in this case.
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Case (ii). Suppose k2 > n2, k3 ≤ n3, then n3 ≥ 4. As k2 = 3, by Corollary 3.2.4

it follows that n2 must be 2. The shift-minimal winning coalitions are {12},
{1, 22}, {34}. So the corresponding inequalities are w1 ≥ 1

2
, w1 + 2w2 ≥ 1, and

w3 ≥ 1
4
. As in the proof of Lemma 7.3.14, we may assume w3 = 1

4
. From (7.3.11)

we get w1 +w2 = 3
4
. It follows that w1 + 2(3

4
−w1) ≥ 1, whence w1 ≤ 1

2
, forcing

w1 = 1
2
, w2 = 1

4
, w3 = 1

4
. So it is roughly weighted only when n = (n1, 2, n3),

and w = (1
2
, 1

4
, 1

4
), as required.

Case (iii). Suppose k2 ≤ n2, k3 > n3. Then n3 ≤ 3 and n2 ≥ 3. Then the

shift-minimal winning coalitions are {12}, {23}, {24−n3 , 3n3}. To justify this we

have to note that by Theorem 3.2.1 k3 − n3 < k2 ≤ n2 whence 4 − n3 ≤ n2 and

the last coalition is legitimate. The inequalities then will be w1 ≥ 1
2
, w2 ≥ 1

3
and

(4−n3)w2 +n3w3 ≥ 1. As above we may assume w1 = 1
2
. Substituting this value

ofw1 into (7.3.11) in this case we getw2+w3 = 1
2
. So (4−n3)w2+n3(1

2
−w2) ≥ 1.

Now by Corollary 3.2.4 n3 is either 2 or 3. If it is 3, then we getw2+3(1
2
−w2) ≥ 1

giving w2 ≤ 1
4
, but we know that w2 ≥ 1

3
, contradiction. If it is 2, then the

system has solutions for any w2 ≥ 1
3

and the game is roughly weighted with

w = (1
2
, 1

2
− α, α), where α ∈ [0, 1

6
]. In this case, n = (n1, n2, 2).

Case (iv). Suppose k2 > n2 and k3 > n3. Then n3 ≤ 3 and n2 = 2. Since by

Theorem 3.2.1 and Corollary 3.2.4 we have 4 = k3 < k2 +n3, then 4−n3 ≤ 2 =

n2 and the shift-minimal winning coalitions are {12}, {1, 22}, {24−n3 , 3n3}. Then

the inequalities will be: w1 ≥ 1
2
, w1 +2w2 ≥ 1, (4−n3)w2 +n3w3 ≥ 1. If n3 = 2,

then the latter becomes 2w2 +2w3 ≥ 1 or w2 +w3 ≥ 1
2

which, in particular, imply

w1 = 1−w2−w3 ≤ 1
2
, whencew1 = 1

2
andw2+w3 = 1

2
. Now fromw1+2w2 ≥ 1

we get w2 ≥ 1
4
. So this gives the solution n = (n1, 2, 2) with w = (1

2
, 1

2
− α, α),

where α ∈ [0, 1
4
], as required. Now if n3 = 3, then the inequalities will be w1 ≥ 1

2
,

w1 + 2w2 ≥ 1, w2 + 3w3 ≥ 1. Again substituting w3 = 1 − w1 − w2 into the

latter inequality gives 3w1 + 2w2 ≤ 2. As 2w2 ≥ 1−w1 we get 1 + 2w1 ≤ 2 and

w1 ≤ 1
2
. Hence w1 = 1

2
and w2 +w3 = 1

2
. This together with w2 + 3w3 ≥ 1 gives

w3 ≥ 1
4
. But since w1 = 1

2
, then w1 + 2w2 ≥ 1 gives w2 ≥ 1

4
, and so w3 ≤ 1

4
.

Thus we have the weights w = (1
2
, 1

4
, 1

4
), with n = (n1, 2, 3). This works.
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Now we turn our attention to the games with k = (2, 3, k) for k ≥ 5 and show

that they are seldom roughly weighted.

Lemma 7.3.16. Let H = H∃(n,k), where k = (2, 3, k) and k ≥ 5, be a 3-level

disjunctive hierarchical game with no dummies. Then n1 ≥ 2 and it is roughly

weighted if and only if n3 = k − 2, and w = (1
2
, 1

2
, 0).

Proof. We note that the absence of dummies means that k2 + n3 > k3 or n3 >

k − 3. The shift-maximal equation is now

w1 + w2 + (k − 3)w3 = 1. (7.3.12)

Case (i). The case when ki ≤ ni for all i is treated in Lemma 7.3.14. There are

no solutions in this case.

Case (ii). As k1 ≤ n1, suppose k2 > n2 and k3 ≤ n3. It follows that n2 must

be 2. The shift-minimal winning coalitions then are {12}, {1, 22}, {3k}. So the

corresponding inequalities are w1 ≥ 1
2
, w1 + 2w2 ≥ 1 and w3 ≥ 1

k
. By the usual

trick we may assume that w3 = 1
k
. Then from the shift-maximal equation (7.3.12)

we get w1 + w2 = 3
k
. It follows that w1 + 2( 3

k
− w1) ≥ 1, so w1 ≤ 6−k

k
≤ 1

k
, but

w1 ≥ 1
2
, contradiction.

Case (iii). Suppose k2 ≤ n2, and n3 < k3 = k. Then k3 − k2 + 1 = k − 2 ≤
n3 ≤ k−1 and, in particular, by Corollary 3.2.4 k−n3 ≤ 2 ≤ n2. Then the shift-

minimal winning coalitions are {12}, {23}, {2k−n3 , 3n3}, giving the inequalities

w1 ≥ 1
2
, w2 ≥ 1

3
and (k − n3)w2 + n3w3 ≥ 1. We may set w1 = 1

2
which implies

w2 +(k−3)w3 = 1
2
. Let us consider two cases: (a) n3 = k−1 and (b) n3 = k−2.

(a) In this case the two inequalities become w2 + (k − 3)w3 = 1
2

and w2 +

(k − 1)w3 ≥ 1. These imply w3 ≥ 1
4
. But then w2 + (k − 3)w3 ≥ 1

3
+ k−3

4
> 1

2
,

contradiction.

(b) In this case the two inequalities become w2 + (k − 3)w3 = 1
2

and 2w2 +

(k − 2)w3 ≥ 1. This implies that either w3 = 0 or 2(k − 3) ≤ k − 2. The latter

implies k ≤ 4, hence the only solution in this case is w = (1
2
, 1

2
, 0).
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Case (iv). Suppose k2 > n2, n3 < k3 = k, so n2 = 2 and, as in case (iii),

k− 2 ≤ n3 ≤ k− 1. Then the shift-minimal winning coalitions are {12}, {1, 22},
{2k−n3 , 3n3}, giving the inequalities w1 ≥ 1

2
, w1 + 2w2 ≥ 1 and (k − n3)w2 +

n3w3 ≥ 1. We have either (a) n3 = k − 2 or n3 = k − 1.

(a) Suppose n3 = k−2. Then the last inequality becomes 2w2+(k−2)w3 ≥ 1.

From the shift-maximal equation (7.3.12) we get w2 + (k − 3)w3 ≤ 1
2
, which

together with the previous inequality implies either w3 = 0 or 2(k − 3) ≤ k − 2.

As the latter implies k ≤ 4, we again have the solution w = (1
2
, 1

2
, 0).

(b) Suppose n3 = k−1. Then the last inequality becomes w2 +(k−1)w3 ≥ 1.

From the shift-maximal equation (7.3.12) we get w2 + (k− 3)w3 ≤ 1
2

from which

w3 ≥ 1
4
. But this contradicts to (7.3.12) sincew1+w2+(k−3)w3 ≥ 1

2
+w2+ k−3

4
>

1 for any k ≥ 5.

Let us now make some useful observations that we will use in the remaining

proofs.

Proposition 7.3.17. Let H = H∃(n,k) be a disjunctive hierarchical game on

P = {1n1 , 2n2 , 3n3} with no passers and dummies, and A = {1s1 , 2s2 , 3s3} is a

submultiset of P such that either s1 6= n1 or s2 6= n2. Suppose H is roughly

weighted with rough voting representation [1;w1, w2, w3]. Then the reduced game

HA is also roughly weighted with rough voting representation[
1;

w1

1− w(A)
,

w2

1− w(A)
,

w3

1− w(A)

]
. (7.3.13)

Proof. HA will be also roughly weighted by Lemmata 7.1.1 and 7.3.9. Since

A is a submultiset of P with the total weight w(A) = s1w1 + s2w2 + s3w3,

then by Lemma 7.1.1, the reduced game HA has rough voting representation [1−
w(A);w1, w2, w3] or (7.3.13) after normalisation.

Lemma 7.3.18. Suppose that a 3-level hierarchical game H = H∃(n,k), where

k = (2, k2, k3), has no dummies and is roughly weighted with rough voting repre-

sentation [1;w1, w2, w3]. Then either w3 = 0 or k = (2, 3, 4).
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Proof. Suppose w3 > 0. If k2 > 3, then n2 ≥ k2 − k1 + 1 = k2 − 1 so the

second level contains at least k2 − 1 elements and, in particular, A = {2k2−3} is

a submultiset of the multiset of players. Let us consider the reduced game HA.

Then by Proposition 7.3.6, HA = H(n′,k′) with n′ = (n1, n2 − k2 + 3, n3) and

k′ = (2, 3, k3 − k2 + 3). Since n2 − k2 + 3 ≥ 2 the reduced game still has three

levels. By Proposition 7.3.17 the game HA is also roughly weighted and, due to

(7.3.13) the last weight of it will still be nonzero. Having k3 − k2 + 3 > 4 would

imply by Lemma 7.3.16 that the last weight is zero. Since that is not the case, then

we have k3 − k2 + 3 = 4 so k′ = (2, 3, 4).

Let w = w(A) = (k2 − 3)w2. Then by Lemma 7.3.15 and (7.3.13) we have
w1

1−w = 1
2
. This means that 2w1 = 1− w < 1 which contradicts the fact that {12}

is a winning coalition in H . Hence k2 = 3 and k = (2, 3, 4).

Corollary 7.3.19. There does not exist a roughly weighted 3-level disjunctive hi-

erarchical game H = H∃(n,k) with k = (2, 4, k3) and no dummies.

Proof. Suppose on the contrary thatH is roughly weighted with rough voting rep-

resentation [1;w1, w2, w3]. Then by Lemma 7.3.18 we must have w3 = 0. Con-

sider H ′ = H∃(n
′,k′), where n′ = (n1, n2) and k′ = (k1, k2). If it is weighted,

then by Theorem 3.6.2 n2 = k2 − k1 + 1 = 3. And if it is not, then n2 ≥ 4 by

Lemma 7.3.13. In either case we have shift-minimal winning coalitions {12} and

{1, 23}, hence w1 ≥ 1
2

and w1 +3w2 ≥ 1. By Theorem 3.2.1 we have k3−n3 ≤ 3

so the third shift-minimal winning coalition is of the type {2k3−n3 , 3n3}. The

weight of such coalition is not greater than 3w2. So we must have w2 ≥ 1
3
. At the

same time from the shift-maximal equation w1 + 2w2 = 1 and w1 ≥ 1
2

we have

w2 ≤ 1
4
. This is a contradiction.

Lemma 7.3.20. Suppose that a 3-level disjunctive hierarchical gameH = H∃(n,k)

with no passers and no dummies is roughly weighted. Then k2 − k1 = 1.

Proof. Let [1;w1, w2, w3] be a rough voting representation of H . As there is no

passers, k1 ≥ 2. Suppose k2 − k1 ≥ 2. Observe that all 3-level games with

k2 − k1 ≥ 2 can be reduced to a 3-level game where k1 = 2, k2 = 4 as follows.
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First, take the reduced game H1 = HA with A = {1k1−2}, which will result

in a game H1 = H∃(n′,k′), with n′ = (n′1, n2, n3) and k′ = (2, k′2, k
′
3), where

k′2 = k2−k1+2, k′3 = k3−k1+2 and n′1 = n1−k1+2. By Proposition 7.3.17H1 is

roughly weighted. Hence by Corollary 7.3.19 we have k′2 ≥ 5. By Theorem 3.2.1

n2 ≥ k2 − k1 = k′2 − 2 and n2 − (k′2 − 4) ≥ 2. This shows that n2 has enough

players for a further reduction to HA′
1 , where A′ = {2k′2−4}, without collapsing

the second level. The resulting game with k′′ = (2, 4, k′3− (k′2−4)) is not roughly

weighted by Corollary 7.3.19 which contradicts Proposition 7.3.17 and proves the

lemma.

By combining Lemmata 7.3.16 and 7.3.20 we get the following

Corollary 7.3.21. If a 3-level disjunctive hierarchical game H = H∃(n,k) does

not have passers and dummies and is roughly weighted, then it belongs to one of

the following two categories:

(i) k = (k, k + 1, k + 2);

(ii) k = (k, k + 1, k3), such that n3 = k3 − k ≥ 3.

Proof. By Lemma 7.3.20 we have k2 = k1 + 1. To prove the other claims we

make a reduction of H and consider H ′ = GA with A = {1k1−2}. Then H ′ has

parameters n′ = (n1 − k1 + 2, n2, n3) and k′ = (2, k2 − k1 + 2, k3 − k1 + 2) =

(2, 3, k3 − k1 + 2). Now either k′3 = 4, and in this case k3 = k + 2, or by

Lemma 7.3.16 n3 = k′3 − 2 = k3 − k1. Since in the latter case we have k′3 ≥ 5,

then we get k3 − k ≥ 3.

So it is these two categories of games that we need to analyse. They will be

analysed in the following two lemmas. We refer in their study to Lemmas 7.3.15

and 7.3.16.

Lemma 7.3.22. A 3-level game H = H∃(n,k) with k = (k, k + 1, k + 2) and

k ≥ 3 is roughly weighted if and only if n1 ≥ k and one of the following conditions

is satisfied:
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(a) n = (n1, 2, 2), w =
(

1
k
, 1−2α

k
, 2α
k

)
, where α ∈

[
0, 1

4

]
;

(b) n = (n1, n2, 2), n2 ≥ 3, and w =
(

1
k
, 1
k
, 0
)
.

Proof. Firstly, it is easy to check that the games in (a) and (b) are indeed, roughly

weighted with the specified set of weights.

If H is roughly weighted, then upon reducing it to HA = H∃(n
′,k′), where

A = {1k−2}, we get k′ = (2, 3, 4). Also, n′ must fall into one of the three cases

given in Lemma 7.3.15. Let us analyze them one by one.

Case (i). n′ = (n′1, 2, n3), where n′1 ≥ 2, n3 ≥ 3, and w = (1
2
, 1

4
, 1

4
). By

Proposition 7.3.17 the rough voting representation of HA will then be[
1;

w1

1− w1(k − 2)
,

w2

1− w1(k − 2)
,

w3

1− w1(k − 2)

]
and it has to match the voting representation of the reduced game at hand, namely

[1; 1
2
, 1

4
, 1

4
]. It follows that w1

1−w1(k−2)
= 1

2
, so w1 = 1

k
. Also, w2

1−w1(k−2)
=

w3

1−w1(k−2)
= 1

4
, giving w2 = w3 = 1

2k
. Now we test to see if these weights indeed

define the original hierarchical game H . Now since (k + 2)w3 = k+2
2k

is never

greater than or equal to 1 for k ≥ 3 coalition {3k3} does not exist in H (otherwise

it would be winning), that is, n3 ≤ k+1. Alsow2+(k+1)w3 = 2w2+kw3 = k+2
2k

,

and a shift-minimal winning coalition {2i, 3k+2−i}, for i = 1, 2, also does not exist

in H for k ≥ 3.

So the coalition {1(k+2)−n2−n3 , 2n2 , 3n3}must be a shift-minimal winning coali-

tion inH . So its weight should be at least the threshold, which is 1, i.e., k+2−2−n3

k
+

2
2k

+ n3

2k
= 2k−n3+2

2k
≥ 1. But this is never true for n3 ≥ 3. Therefore H is not

roughly weighted in this case.

Case (ii). n′ = (n′1, n2, 2), where n′1 ≥ 2, n2 ≥ 3, and w = (1
2
, 1

2
− α, α)

for some α ∈ [0, 1
6
]. Here w1 is still 1

k
. But w2

1−w1(k−2)
= 1

2
− α. It follows that

kw2

2
= 1

2
− α, so that w2 = 1−2α

k
. Also, w3

1−w1(k−2)
= α, implying w3 = 2α

k
. As

we do not have dummies there must be a winning coalition consisting of k + 2

players. This would be either {2k, 32} or {1k−n2 , 2n2 , 32} depending on what is

greater n2 or k. But w({2k, 32}) = k 1−2α
k

+ 22α
k

= 1 − 2α + 4α
k

. For this to be
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winning we need 1− 2α + 4α
k
≥ 1, giving 4α

k
≥ 2α. So either we have 2

k
≥ 1 or

α = 0. As k > 2 we have the latter. Thus {2k, 32} can be winning only for α = 0

in which case w = ( 1
k
, 1
k
, 0).

Suppose now that the winning coalition consisting of k+2 players is {1k−n2 , 2n2 , 32}.
Its weight then is k−n2

k
+ n2(1−2α)

k
+ 4α

k
≥ 1. It follows that 2α ≥ αn2, whence

α = 0. In both cases we have (b).

Case (iii). n′ = (n′1, 2, 2), where w = (1
2
, 1

2
−α, α), and α ∈ [0, 1

4
]. This gives

us case (a).

Now to the remaining case.

Lemma 7.3.23. Any 3-level game G = H(n,k), where k = (k, k + 1, k3) such

that k3− (k+ 1) ≥ 2 and G has no passers and no dummies, is roughly weighted

if and only if the following is true.

(i) n = (n1, n2, n3), where n3 = k3 − k ≥ 3, and w = ( 1
k
, 1
k
, 0).

Proof. Upon reducing G to GA = H ′(n′,k′), where A = {1k−2}, we get k′ =

(2, 3, k′3), where k′3 ≥ 5. Since the game GA is roughly weighted by Proposi-

tion 7.3.17, then by Lemma 7.3.16 it has to have n = (n1, n2, k
′
3 − 2), where

n2 ≥ 2, and n1 ≥ 2, and the weights consistent with w = (1
2
, 1

2
, 0). So we get

w1

1−w1(k−2)
= 1

2
, so w1 = 1

k
. Also, w2

1−w1(k−2)
= 1

2
, meaning w2

1−w1k+2w1
= 1

2
, so

w2

1−1+2 1
k

= 1
2
. Therefore w2 = 1

k
, and w3 = 0. It can be easily checked that

these weights give a valid hierarchical game where n = (n1, n2, k3 − k), w =

( 1
k
, 1
k
, 0).

Proofs of Theorems 7.3.1 and 7.3.2

Finally we are ready to collect all facts together and prove the two theorems that

characterise roughly weighted disjunctive and conjunctive hierarchical games.

Proof of Theorem 7.3.1. Firstly, we note that k1 > 1 sinceH does not have passers.

Secondly, we note that if km ≥ km−1+nm, then themth level of players consists of
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dummies. This game will be roughly weighted if and only if the game H∃(n′,k′)

is. This situation is described in (vi). So we consider that km < km−1 + nm and

assume that H does not have passers and dummies. Lemma 7.3.12 now gives us

that m ≤ 4.

If m = 2 the result follows from Lemma 7.3.13. If m = 3 the result follows

from Lemmata of the previous section. We will now show that the fourth level

cannot be added without introducing dummies. Suppose that H has the fourth

level whose players are not dummies. The game H∃(n′,k′) is roughly weighted

and, since it has more than two levels, it is not weighted by Theorem 1.1.1.

By Lemma 7.3.10 we get then w4 = 0. By Lemma 7.3.9 each of the weights

w1, w2, w3 is nonzero.

By letting A = {1k1−2} and considering the reduced game H ′ = HA we

obtain a 4-level game H ′ = H∃(n
′,k′) which is roughly weighted by Proposi-

tion 7.3.17. We can now consider the subgame H ′′ = H∃(n
′′,k′′) of H ′, where

n′′ = (n′1, n
′
2, n

′
3) and k′′ = (k′1, k

′
2, k
′
3). It will be again roughly weighted

by Lemma 7.1.1 and we may apply Lemma 7.3.18 to this 3-level game. By

Lemma 7.1.1 all weights of this game will be nonzero. By Lemma 7.3.18 we

will then have k′′ = (2, 3, 4) and thus k′ = (2, 3, 4, k4), n′ = (n′1, n2, n3, n4),

where n′1 = n1 − k1 + 2. As there are no dummies in H , by Theorem 3.2.1 we

have n4 ≥ k4− 4 + 1 = k4− 3. Thus either {33, 4k4−3} or {2, 32, 4k4−3} is a win-

ning coalition as total number of players in each is k4. By Lemma 7.3.15, in all

cases when H ′ is roughly weighted we have w2 + w3 = 1
2

and w3 ≤ 1
4
. However,

the weight of the coalition {2, 32, 4k4−3} is w2 + 2w3 = 1
2

+w3 ≤ 3
4
. The same is

true for the coalition {33, 4k4−3}, giving a contradiction.

The characterisation of conjunctive hierarchical games will now be deduced

using duality between disjunctive and conjunctive games.

Proof of Theorem 7.3.2. The proof will consists of calculating the duals for the

games listed in Theorem 7.3.1.

Firstly, we note that we have k1 = 1 if and only if in the dual game we have
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n1− k1 + 1 = k∗1 , meaning k∗1 = n1. Hence no passers translates in the dual game

into no vetoers.

(i) Here we have k∗1 = n1 − k1 + 1 where k1 = 2, so k∗1 = n1 − 1. Also

k∗2 = n1 + n2 − k2 + 1 = n1 + n2 − 3.

(ii) In the dual game k∗1 = n1 − k + 1 and k∗2 = n1 + n2 − (k + 2) + 1 =

n1 − k + 3 = k∗1 + 2. As n1 ≥ k > 2, we have n1 − 1 > k∗1 ≥ 1.

(iii) Since k = (2, 3, 4) in the dual game, then this gives n1 − k1 + 1 = k∗1 , so

that k∗1 = n1 − 1. Also, n1 + n2 − k2 + 1 = k∗2 , giving k∗2 = n1 + n2 − 2 = n1

since n2 = 2. We also get k∗3 = n1 + n2 + n3 − k3 + 1 = n1 + n3 − 1.

(iv) We have two cases here so we treat them separately. Calculating the pa-

rameters of the dual game we get:

(a) k∗1 = n1 − k + 1, k∗2 = n1 + n2 − (k + 1) + 1 = n1 − k + 2 = k∗1 + 1, and

k∗3 = n1 + n2 + n3 − (k + 2) + 1 = n1 − k + 3 = k∗1 + 2.

(b) k∗1 = n1 − k + 1, k∗2 = n1 + n2 − (k + 1) + 1 = n1 + n2 − k, and

k∗3 = n1 + n2 + n3 − (k + 2) + 1 = n1 + n2 − k + 1 = k∗2 + 1.

(v) Calculating the parameters of the dual game we get k∗1 = n1 − k1 + 1,

k∗2 = n1+n2−(k1+1)+1 = n1+n2−k1 = k∗1+n2−1, k∗3 = n1+n2+n3−k3+1 =

n1 + n2 − k1 + 1 = k∗2 + 1.

(vi) Finally, in the last case we have nm − km = km−1 and this implies k∗m =

k∗m−1.

This brings us to the end of characterising the first class of ideal complete

roughly weighted games. Now we look at the second one, the class of tripartite

games.

158



7.4 Example of a Roughly Weighted Tripartite Sim-

ple Game

The second class of ideal complete roughly weighted games, is the class of tripar-

tite games discussed in Chapter 4. We don’t have a full characterisation of roughly

weighted tripartite games yet, but below is an example confirming that this class

is nonempty, in fact it is an example of an indecomposable game. First recall the

definition of ∆1.

Definition 7.4.1. Let P = {1n1 , 2n2 , 3n3} and m, d, t be positive integers such

that m ≥ t. If n2 > d + t−m, then we define the simple game ∆1 as follows: a

submultiset X = {1l1 , 2l2 , 3l3} is winning in ∆1 if and only if

l1 ≥ t or (l1 + l2 + l3 ≥ m and l1 + l2 ≥ m− d).

Example 7.4.2. Consider ∆1 = (PC ,WC), where PC = {12, 22, 34}, with m =

4, d = 3, t = 2. The set of shift-minimal winning coalitions is {{12}, {2, 33}}. We

assign the following rough weights to the players: rw(1) = 1
2
, rw(2) = rw(3) =

1
4
, and we let the quota to be 1. Then we see that ∆1 is roughly weighted since

all coalitions with total weight greater than 1 are winning, all coalitions with total

weight less than 1 are losing. Also, among the coalitions with total weight equal-

ing 1, {34} is the only losing one. This game, however, is not weighted since we

have the following certificate of nonweightedness:

({12}, {2, 33}; {1, 2, 3}, {1, 32}).

We also know from item (5) on page 107 that this is actually an example of an

indecomposable tripartite game of type T1
1.

In the next section, we introduce an ideal complete simple game that is neither

hierarchical nor tripartite. We then give an example for this game, and show that

it is indecomposable and ideal, thus discovering a new game in the class of ideal

complete roughly weighted games.
1The only condition from (5) on page 107 that is violated here is m− 1 = t, which is actually

needed for the weightedness of T1, and not for its indecomposability.
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7.5 Example of an Ideal Roughly Weighted Game,

which is neither Hierarchical nor Tripartite

The example we give in this section is of a 4-partite simple game, which is a

complete game of four desirability levels that we will define shortly. This type of

game will be referred to as NHNT. Let each of the four levels 1 . . . 4, be denoted

L1 . . . L4 respectively, where |Li| = ni for 1 ≤ i ≤ 4, so its multiset represen-

tation is on the multiset of players {1n1 , 2n2 , 3n3 , 4n4}. The construction of this

game is based on the idea that this game should be neither a hierarchical nor a

tripartite game, but if we were to change the size of its least desirable level L4

from n4 to n4 − 1, then the resulting subgame with multiset representation on

{1n1 , 2n2 , 3n3 , 4n4−1} is a hierarchical game. We start by giving a formal defini-

tion.

Definition 7.5.1. (NHNT) Let C = (PC ,WC) be a simple game on PC =

{1n1 , 2n2 , 3n3 , 4n4}. Also let k = (k1, k2, k3), such that k1 < k2 ≤ k3 be three

integers. Then C is a simple game of type NHNT if it satisfies the following: A

submultiset X = {1l1 , 2l2 , 3l3 , 4l4} ⊆ PC is winning in C if and only if

(l1 ≥ k1) or (l1 + l2 ≥ k2) or (l1 + l2 + l3 + l4 ≥ k3 and l1 + l2 + l3 ≥ k3−n4 +1).

In other words, a coalition X is a minimal winning coalition in the NHNT
game if it contains either k1 players from the first level L1, or it contains k2 players

from L1 and L2, or it contains k3 players from any of the levels L1, . . . , L4 of

which there are at least k3 − n4 + 1 players from L1, . . . , L3.

Remark 7.5.2. We will assume that a game of type NHNT is canonically repre-

sented, meaning it has four distinct nonequivalent desirability levels satisfying the

conditions: (i) n1 ≥ k1, (ii) n1 + n2 ≥ k2, (iii) n1 + n2 + n3 + n4 ≥ k3 such

that n1 + n2 + n3 ≥ k3 − n4 + 1, and (iv) in any shift-minimal winning coalition

{1l1 , 2l2 , 3l3 , 4l4}, we have l4 < n4. It is not difficult to show that if any of those

four conditions fails, then the resulting game will be either a hierarchical or a tri-

partite game. In fact, in Example 7.5.3, we will show that if in a shift-minimal

winning coalition we have l4 = n4, then the game is a hierarchical one.
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Next we show that a game of type NHNT is a complete game.

7.5.1 Completeness

Consider the game C which satisfies Definition 7.5.1. We shall refer to (l1 ≥ k1)

as the first winning requirement, (l1 + l2 ≥ k2) as the second winning require-

ment and (l1 + l2 + l3 + l4 ≥ k3 and l1 + l2 + l3 ≥ k3 − n4 + 1) as the third

winning requirement. Consider a winning coalition X meeting the third winning

requirement. Since X has at least k3 players from any of the levels L1, . . . , L4, of

which k3 − n4 + 1 players are from L1, . . . , L3, then replacing a player from Li

with a player from Li−1 will result in a coalition that still meets the third winning

requirement, hence winning. Similarly, a winning coalition X meeting the second

winning requirement has at least k2 players from any of the two levels L1 and L2,

meaning replacing a player from L2 with a player from L1 will also result in a

winning coalition. These facts, together with the transitivity of Isbell’s desirability

relation (see Taylor & Zwicker (1999), p.89-90), show that 1 �C 2 �C 3 �C 4,

hence C is a complete simple game.

We don’t need to discuss the methodology and proofs by which the NHNT
simple game was discovered. But we just like to mention that condition (iv) of

Remark 7.5.2 is a way of making sure that the NHNT game is not a hierarchical

game. And since we have four nontrivial levels in the NHNT game (assuming

the game is canonically represented as discussed earlier), then it is not a tripartite

game either. Now, in order to add the NHNT game to the list of indecomposable

ideal complete roughly weighted nonweighted simple games, we provide an ex-

ample for one of the smallest cases possible of this new type. This of course is not

enough to show that all games of this type are ideal and indecomposable, but it

shows that there is at least one ideal and indecomposable game of this new type.

161



7.5.2 Deriving The Example

The example is derived as follows. We aim for the NHNT game C to have the

property that its subgame on {1n1 , 2n2 , 3n3 , 4n4−1} is a 3-level hierarchical game

(not necessarily the smallest 3-level HSG). So the strategy is as follows. By The-

orem 7.3.1, we know that the smallest 3-level HSG is one with k = (2, 3, 4),n =

(2, 2, 2), so we try to build our NHNT game upon that. After a number of trials

and errors, we find that the next game, though is not the smallest nonweighted

roughly weighted and ideal NHNT game, is the smallest indecomposable non-

weighted and roughly weighted one. We will also show that it has H∃(n,k),

n = (2, 2, 4),k = (2, 3, 4) as its subgame.

Example 7.5.3. Consider the NHNT simple game C = (PC ,WC), PC = {12, 22,

3, 44} and k = (2, 3, 4). Also, assign the rough weights as follows: rw(1) =
1
2
, rw(2) = rw(3) = rw(4) = 1

4
, and the quota q = 1. The set of shift-minimal

winning coalitions is {{12}, {1, 22}, {3, 43}}. This game is roughly weighted but

not weighted due to the following certificate of nonweightedness:

({12}, {22, 3, 4}; {1, 2, 3}, {1, 2, 4}).

Now, let A = {4}, and consider the subgame CA on Ac = {12, 22, 3, 43}. The

shift-minimal winning coalitions ofCA are still {12}, {1, 22} and {3, 43}. Observe

now that {3, 43} uses all players from level 4 in Ac. So no replacement of a

player from level 3 with a player from level 4 is possible, meaning 3 �C 4. But

3 �C 4 by completeness of C, therefore levels 3 and 4 become equivalent to each

other. So the winning requirements of CA for X ⊆ Ac are now (|X ∩ L1| ≥
k1) or (|X ∩ (L1 ∪ L2)| ≥ k2) or (|X| ≥ k3), meaning it is in fact a disjunctive

hierarchical game H∃(n,k), n = (2, 2, 4),k = (2, 3, 4).

Now it remains to show that C is indecomposable and ideal.

7.5.3 The Indecomposability

Let us continue our discussion of the game C from Example 7.5.3, here we will

prove its indecomposability.
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Proof. To prove the indecomposability of C, suppose towards a contradiction that

we have G = (PG,WG) and H = (PH ,WH), such that C = G ◦g H on PC =

PG \ {g} ∪ PH . Consider the shift-minimal winning coalition from WC of type

{3, 43}. If {3, 43} ∈ WH , then it is clear that H is neither a unanimity nor an anti-

unanimity game, and it also follows that player g is a passer in G. But since C is

a complete game, then it follows from Lemma 5.2.1 that g is the least desirable

level of G, meaning all players of G are passers by Lemma 5.2.2, contradicting

the fact that C has no passers.

Then {3, 43} must contain a player from G, which must be 3, hence {43} ∈
WH . Again it is clear that H is neither a unanimity (since level 4 in PC has four

players) nor an anti-unanimity game, so it follows from Lemma 5.2.1 that g is the

least desirable level of G, and from Lemma 5.2.2 it follows that all levels 1, 2 and

3 are in PG \ {g}. But now the coalition {1, 2, 3, 4} cannot be a minimal winning

in the composition, since {43} is a minimal winning coalition in H , meaning {4}
is losing in H , contradiction. Therefore C is indecomposable.

7.5.4 The Ideality

The only property left to prove for the game in Example 7.5.3 is ideality. To this

end, we will use the result from (Farràs & Padró, 2010) that we have already pre-

sented and used in Chapter 4, which we restate below for the readers convenience.

Suppose we have a complete simple game of n desirability levels. For a shift-

minimal winning coalition Xj = {1a1 , 2a2 , . . . , nan}, ai ≤ ni for all i ∈ [n], let

supp(Xj) = {i ∈ [n] : ai 6= 0}. Also, let mj = max(supp(Xj)). Finally, let X i
j

be the number of players ai in the shift-minimal winning coalition Xj .

Theorem 7.5.4 (Farràs & Padró (2010), Theorem 16). Let Γ = (P,W ) be a

complete simple game, where P = {1n1 , 2n2 , . . . ,mnm}. Also, let the set of shift-

minimal winning coalitions be {X1, . . . , Xr}. Considermj = max(supp(Xj)), 1 ≤
j ≤ r, and suppose that the shift-minimal winning coalitions are listed in such a

way that mj ≤ mj+1. Then Γ is ideal if and only if
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(i) mj < mj+1 and |Xj| < |Xj+1| for all j = 1, . . . , r − 1, and

(ii) X i
j ≥ X i

j+1 if 1 ≤ j ≤ r − 1 and 1 ≤ i ≤ mj , and

(iii) if X i
j > X i

r for some 1 ≤ j < r and 1 ≤ i < mj , then nk = Xk
j for all

k = i+ 1, . . . ,mj .

Now we can apply the above theorem to show that our NHNT gameC is ideal.

Proof. Let the shift-minimal winning coalitions be X1 = {12}, X2 = {1, 22},
and X3 = {3, 43}. Then supp(X1) = {1}, meaning m1 = 1. Also, supp(X2) =

{1, 2},m2 = 2 and supp(X3) = {3, 4}, so m3 = 4. It follows that X1, . . . , X3

are ordered such that mj ≤ mj+1. We now check X1, X2 and X3 against the three

conditions of Theorem 4.2.2.

(i) This condition applies only to j = 1, 2. But m1 < m2 and |X1| < |X2|.
Also, m2 < m3 and |X2| < |X3|. So this condition holds.

(ii) This condition applies first to j = 1 = i, and then to j = 2 and i = 1, and

finally to j = 2 and i = 2. Now X1
1 = 2, and X1

2 = 1, so X1
1 > X1

2 . Also,

X1
2 = 1, and X1

3 = 0, so X1
2 > X1

3 . Finally, X2
2 = 2, and X2

3 = 0, so

X2
2 > X2

3 . So the second condition also holds.

(iii) Here the two conditions 1 ≤ j < r and 1 ≤ i < mj are both met only when

j = 2 and i = 1 (if j = 1 then mj = 1, implying that i = 0, contradicting

1 ≤ i). But for j = 2 and i = 1 we have X1
2 = 1, X1

3 = 0, meaning

X1
2 > X1

3 , and it is true that for k = 2 we have n2 = 2 = X2
2 as required.

Therefore C is ideal.

This concludes the thesis.
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Chapter 8

Conclusion and future research

The problem of characterising all access structures (simple games) that carry an

ideal secret sharing scheme is a difficult one, and in this thesis we have consid-

ered the approach of characterising all ideal simple games within particular known

classes. Moreover, our two main contributions in this direction were characteris-

ing all ideal games in the class of weighted simple games, and answering some

important questions regarding the characterisation of ideal games in the larger

class of roughly weighted simple games. And it is the latter class which requires

further study, and a number of open problems have been encountered and formu-

lated in the course of this thesis that can be used as catalysts for future research.

They are stated below in a chronological order, see Problems 8.1.1 - 8.1.7.

Also, with regards to future research beyond the characterisation of ideal

roughly weighted games, consider the following. We have seen in Chapters 3

and 7 that weighted hierarchical games can have only up to two nontrivial lev-

els, and roughly weighted hierarchical games only up to three nontrivial levels,

respectively. So, in general, hierarchical games are rather far from weighted ones.

Characterising weighted hierarchical games was the entry point to the problem

of characterising ideal weighted games in Beimel, Tassa, & Weinreb (2008), and

characterising roughly weighted hierarchical games was also our entry point when

considering the problem of characterising ideal roughly weighted games in Chap-

ter 7. Similarly, it can be a starting point for the study of ideal games in even larger
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classes. Gvozdeva, Hemaspaandra, & Slinko (2013) introduced three hierarchies

of simple games, each depends on a single parameter and for each hierarchy the

union of all classes is the whole class of simple games. One idea that was sug-

gested is to generalize roughly weighted games as follows. Rough weightedness

allows just one value of the threshold q = 1 (after normalization), where coali-

tions of weight 1 can be both losing and winning. Instead of just a single threshold

value, we may allow values of thresholds from a certain interval [1; a] to possess

this property, that is, coalitions whose weight is between 1 and a can be both win-

ning or losing. They denote this class of games Ca. The question which deserves

further study is how big should a be so that all hierarchical n-level games are in

Ca.

8.1 Open problems

In Chapter 6 we have answered the question: Under what conditions is the com-

position of two ideal WSGs also an ideal WSG? This can now be generalised to

RWSGs.

Problem 8.1.1. Under what conditions is the composition of two ideal RWSGs

also an ideal RWSG?

The problem of characterising ideal complete RWSGs introduced in Chapter 7

can be broken into few parts:

Problem 8.1.2. Characterise all ideal roughly weighted TSGs.

We believe the following is true.

Conjecture 8.1.3. All NHNT simple games are ideal.

Problem 8.1.4. Characterise the ideal roughly weighted NHNT simple games.

Problem 8.1.5. Are there more ideal complete RWSGs?
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Which then leaves us with the study of roughly weighted games that are in-

complete:

Problem 8.1.6. Characterise all ideal incomplete RWSGs.

And beyond all the problems posited above, we have the following.

Problem 8.1.7. Characterise ideal complete and incomplete nonroughly weighted

simple games.
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Martı́-Farré, J., Padró, C., & Vázquez, L. (2006). Matroid ports and access struc-

tures of ideal secret sharing schemes. In Fifth Conference on Discrete Math-

ematics and Computer Science (Spanish) (Vol. 23, pp. 343–350). Secr. Publ.

Intercamb. Ed., Valladolid: Univ. Valladolid.

Martin, K. (1993). New secret sharing schemes from old. Journal of Combinato-

rial Mathematics and Combinatorial Computing, 14, 65–77.

Maschler, M., & Peleg, B. (1966). A characterization, existence proof and dimen-

sion bounds for the kernel of a game. Pacific J. Math., 18, 289–328.

McEliece, R. J., & Sarwate, D. V. (1981). On sharing secrets and Reed-Solomon

codes. Comm. ACM, 24(9), 583–584.

Muroga, S. (1971). Threshold logic and its applications. New York: Wiley-

Interscience [John Wiley & Sons].

Ng, S.-L. (2006). Ideal secret sharing schemes with multipartite access structures.

IEE Proc. Commun., 153(2), 165–168.

Oxley, J. G. (1992). Matroid theory. New York: The Clarendon Press Oxford

University Press.
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