
Approximability and Computational
Feasibility of Dodgson’s Rule

Supervisors: Dr A. Slinko, Dr G. Pritchard

John C. McCabe-Dansted

June 7, 2006





Abstract

Condorcet1 proposed that a winner of an election is not legitimate unless a majority of the
population prefer that alternative to all other alternatives. However such a winner does
not always exist. A number of voting rules have been proposed which select the Con-
dorcet winner if it exists, and otherwise selects an alternative that is in some sense closest
to being a Condorcet Winner; a prime example is the rule proposed by Dodgson2(1876).

Unfortunately, Bartholdi et al. (1989) proved that finding the Dodgson winner is an
NP-hard problem. Hemaspaandra et al. (1997) refined this result by proving that it is Θp

2-
complete and hence is not NP-complete unless Θp

2=NP. For this reason, we investigate
the asymptotic behaviour of approximations to the Dodgson rule as the number of agents
gets large.

Under the assumption that all votes are independent and equiprobable, the probability
that the Tideman (1987) approximation picks the Dodgson winner does asymptotically
converge to 1, but not exponentially fast. We propose a new approximation that does ex-
hibit exponential convergence, and we can quickly verify that it has chosen the Dodgson
winner; this allows us to choose the true Dodgson winner with O(ln n) expected running
time for a fixed number of alternatives m and n agents.

McGarvey (1953) proved that all tournaments are the majority relations for some so-
ciety. We have proved a generalisation of this theorem for weighted tournaments. We
find that this generalisation is useful for simplifying proofs relating to rules which use
the weighted majority relation.

Bartholdi et al. (1989) found that we can calculate the Dodgson Score using an ILP
that requires no more than m!m variables, we present an improved ILP that requires less
than (m − 1)!e variables (e ≈ 2.71). We discover that we can solve this ILP in O(ln n)

arithmetic operations of O(ln n) bits in size. Relaxing the integer constraints results in
a new polynomial time rule. In 43 million simulations this new rule failed to pick the

1Marie-Jean-Antoine-Nicolas de Caritat, Marquis de Condorcet. (1743–1794)
2Charles Lutwidge Dodgson (1832–1898), better known as Lewis Carroll.
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Dodgson winner only once, and only given many (25) alternatives. Unlike the Dodgson
rule, this rule can break ties in favor of alternatives that are in some sense fractionally
better.

We show that Dodgson Score admits no constant error approximation unless P=NP,
and admits no Polynomial Time Approximation Scheme (PTAS) for Dodgson Score unless
W[2]=FPT.
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∏m

i=1 i.

• A ∧B: A and B, e.g. A and B will occur.

• A ∨B: A or B, e.g. A or B will occur.

• ¬A: The negation of A, i.e. the statement “A is false”.

• P (E): The probability of event E, a real number in [0, 1].

• P (A|B): The probability of event A will occur given B has occurred or will occur.

• var(X): variance of random variable X .

• E[X]: mean of random variable X .

• A→D B: A converges in distribution to B.
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+.
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• F (x) ∈ O(G(x)): Function F is of order G, i.e. there exists N ∈ N and c > 0 such
that for all n greater than N , F (x) ≤ cG(x).

• x ≤ y: vector x = (x1, x2, . . . , xn) is less than vector y = (y1, y2, . . . , yn). That is,
xi ≤ yi for all i in {1, 2, . . . , n}.

• x ≥ 0: vector x = (x1, x2, . . . , xn) is positive. That is, xi ≥ 0 for all i in {1, 2, . . . , n}.

• A ⊆ B: A is a subset/submultiset of B.

• xn: n instances of x, e.g. {a, b2, c} is a multi set with one instance of a and c and two
instances of b.

• ln x: The natural log of x, i.e. loge x.
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Chapter 1

Introduction

1.1 Introduction
Taking collective decisions is the mechanism that allows democracy to exist. Further-
more, voting is also useful in other fields such as computer engineering. An example is
the use of multiple independent subsystems to solve the same problem and vote on the
result, which ensures that the failure of a single subsystem cannot cause the system as a
whole to output an incorrect result. NASA is investigating voting in the development of
fault tolerant systems, which can reliably use fault prone consumer grade CPUs in high
radiation environments (Barry, 2005).

One of the major approaches to voting is to take pairwise elections between each pair of
candidates. If we want to know which of two candidates is better, we poll the electorate
as to which is better. In the 18th century, Marquis de Condorcet proposed that a winner of
an election is not legitimate unless that a majority of the population prefer that alternative
to any other alternative. However, Condorcet noted that it is not always possible to pick
such an alternative. An example of the Condorcet paradox is that we may have three
soldiers marching in a line, each wishing to be as close to the rear as possible. For each
possible marching order, two out of the three soldiers would prefer the soldier at the rear
to move to the front. Clearly there is no rule which will pick a Condorcet winner for all
possible elections.

Under the pairwise comparisons approach, we choose the Condorcet winner when it
exists, or seek an alternative which is close to being a Condorcet winner. In this thesis
we focus on a rule developed and favored by Dodgson (1876). The Dodgson rule picks
the Condorcet winner when it exists, and otherwise allows an administrator to alter the
votes, by swapping neighbouring alternatives (i.e. candidates) in agents’ rankings, in a
minimal way, to create a Condorcet winner. For a given vote, we consider two alternatives
to be neighbouring if one is ranked directly above the other in the voters ranking. For

1



INTRODUCTION

example, if the voters ranking was abc then a and b would be neighbouring alternatives
but a and c would not. The Dodgson rule scores each alternative according to the number
of neighbouring swaps that would be required to make it a Condorcet winner and picks
the alternative with the lowest score as the winner.

The Dodgson rule is one of the most attractive realizations of the Condorcet principle.
The Dodgson rule also has some other desirable properties such as monotonicity and
satisfying the Pareto criterion1.

The primary disadvantage of the Dodgson rule is that it can be computationally dif-
ficult to find the winner (Bartholdi et al., 1989). For this reason we study methods of
approximating the rule.

1.1.1 Borda’s Objection to the Condorcet proposal
Borda2 suggested a different approach to voting than that of Condorcet. Borda suggested
that simply choosing a candidate that defeats all others in pairwise elections can lead to
tyranny of the majority. There may be a case where a majority of the citizenry slightly
prefer a proposal a to proposal b, but a substantial minority strongly prefer proposal b to
proposal a. The pairwise approach would select proposal a as the winner.

Borda proposed a rule which assigned a score to each alternative, depending upon
the position of the alternative in a voter’s preference list. This rule was meant to avoid
tyranny of the majority by taking into account the degree by which each voter preferred
each alternative.

All non-dictatorial rules3 are subject to manipulation by voters (Gibbard 1973; Satterth-
waite 1974). Thus both Borda’s rule and any Condorcet based rule will be subject to
manipulation by voters. However, Borda’s rule is particularly vulnerable to manipula-
tion. As an example say that there are four alternatives a, b, c and d. It may be that c and
d are everybody’s least favored alternatives, and a is your most favored alternative. If b

looks to win the election by a single point, then ranking b last will cause a to win. Thus,
by exaggerating your dislike for alternative b, you may be able to cause a to win. Borda’s

1The monotonicity criterion means that if one or more voters change their vote to rank a specific alternative
higher, that this cannot cause this alternative to lose. Certain rules such as the Nanson, Hare, Coombs
and Plurality runoff rules do not satisfy this property. The Pareto criterion means that if all voters prefer
a to b the voting rule should rank a above b. In the case of rules which only select a winner rather than
selecting a complete ranking of the alternatives, the Pareto criterion means that the rule will not select
b as a winner. There has been considerable research to into what properties various rules satisfy. For
a quick summary of which rules satisfy various properties, see the table presented by Nurmi (1983, p.
206).

2Jean-Charles de Borda. (1733–1799)
3A dictatorial rule is a dictatorship, a rule that picks a candidate based on the preferences of one particular

voter, and ignores the other voters’ preferences. Borda considers the Condorcet proposal to be a tyranny
of the majority; dictatorship is instead a tyranny of an individual dictator.

2
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rule is also vulnerable to manipulation of the agenda. For example, if you propose an
alternative that is essentially the same as a but everyone agrees that the modification is
not quite as good as the original a, this is also likely to cause a to win. In Borda’s own
words, the rule he proposed was for “honest gentlemen”.

The debate with regard to the relative merits of the Condorcet and Borda approaches
still continues, with prominent voting theorists such as Donald Saari arguing against the
Condorcet approach. As we discussed previously we may not have a Condorcet winner.
Say voter v1 prefers a to b to c, voter v2 prefers c to a to b, and voter v3 prefers b to c to a.
Then we have a case where a majority (voters 1,2) prefers a to b, another majority (voters
1,3) prefers b to c and a final majority (voters 2,3) prefers c to a; we call this set of majority
preferences a majority relation (see Section 1.2.1 for a definition of a majority relation)
We may represent these preferences as graphs below, with arrow pointing from x to y

indicating that x is preferred to y.

a

majority relation

c

b

c

a

voter 2 voter 3voter 1

b

a

c

c

a

b

b

We see that a cycle appears in the majority relation — even though all individual voters
are rational in the sense that none of them have such cycles in their preferences4. Saari and
Merlin (2000) have noted that under the pairwise approach these cycles can also occur
when individual voters have “irrational” cyclic preferences. From the point of view of
pairwise elections the above society is equivalent to an irrational voter who preferred
a to b, preferred b to c but also preferred c to a. They consider the fact that, under the
pairwise approach, a society where all voters individually are rational can be equivalent
to a society with irrational voter(s) is a serious flaw in the pairwise approach. This paper
suggests that the pairwise approach is flawed because a single voter changing their mind
can cause a candidate to change from being ranked from best to being ranked the worst.
Of particular relevance is Saari’s 2003 paper where he argues against Risse’s (2001) claim
that both Condorcet and Borda’s approaches are reasonable. Saari (2003) expands on his
and Merlin’s (2000) previous argument, giving the example where we have 8501 voters

4Black (1969, pp. 232–234) argues against the use of the term rational to refer to preferences without such
cycles. If we define rational in such a way, we would have to state that it is rational to prefer bad to OK,
and prefer OK to good, so long as you do not prefer good to bad. For such reasons Black prefers the
mathematical term “intransitive” to “irrational”.

3
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who prefer a to c to b, and 8500 voters who prefer b to a to c. In pairwise elections, a

defeats c unanimously, and c defeats b by one vote, so under the pairwise approach a is
the best candidate and b is the worst. However if just one voter reverses their preference
from acb to bca then a majority of 8501 voters will prefer b to any other candidate, and so b

will be the new Condorcet winner. Thus, under the pairwise approach, changing a single
vote can cause b to go from being ranked worst to being ranked best.

However, as noted by Risse (2005), Saari’s arguments are not sufficient to sway the
defenders of the Condorcet position. For example, Borda’s rule does not allow voters
to submit irrational preferences (preferences with cycles as above) and so it also does not
distinguish between rational and irrational voters. In this thesis we also assume all voters
preferences are rational, as does the Borda rule. Also, the fact that even in a large election
it is possible for one voter to reverse the outcome of the election is well known by pro-
ponents of Condorcet’s approach. However, the supporters of the Condorcet approach
either do not consider this as a flaw, or believe that the other advantages of the pairwise
approach outweigh Saari’s objections.

Even if this debate were resolved, and the Condorcet approach to voting was judged
obsolete, this would not extinguish interest in the Dodgson rule. The Dodgson rule is an
interesting mathematical puzzle worthy of study in its own right, and discoveries which
make Dodgson’s rule less suitable for use as a voting rule can make it more interesting to
mathematicians; as we discuss later, it was discovered that it can be very hard to find the
Dodgson winner, but this only made the rule more interesting from the point of view of
computer scientists (Hemaspaandra et al., 1997).

Furthermore, the type of rule that is “best” can vary dramatically depending upon
to what purpose the rule will be put. The proponents of both Borda’s and Condorcet’s
approaches would consider a dictatorship to be an example of a particularly bad decision
procedure. Never-the-less, where decisiveness is the primary requirement, such as in a
software development team seeking to rapidly produce a solution to a well understood
problem, entrusting the lead programmer to make all design decisions can be the most
appropriate decision procedure. (see e.g. McConnell, 1996)

1.1.2 Impossibility Theorems
We have looked at both the Condorcet and Borda’s approach to voting theory. Another
approach is the axiomatic approach of Kenneth Arrow. A diagram of the relationship
between the concepts relevant to this thesis is provided on page 141.

The first important theorem in voting theory which used the axiomatic approach, was
Arrow’s Impossibility Theorem (1951,1963). Say we have a committee voting on the rank-
ing of the priority of a number of different projects. Arrow proposed a modest set of re-

4
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quirements, unrestricted domain, citizen sovereignty, monotonicity and independence of
irrelevant alternatives5. Arrow then proved that the only procedure which achieves these
requirements is a dictatorship. A similar important result (Gibbard 1973; Satterthwaite
1974) is that it is impossible to find a non-dictatorial rule that is not subject to manipula-
tion by the voters.

Faced with such an impossibility theorem, one may respond by denying that one or
more of the suggested criteria is important. From Arrow’s point of view, how voters
rank a third candidate C, is irrelevant to the question of whether is candidate A is better
than candidate B. Therefore one of the criteria that Arrow suggested as desirable was
independence of irrelevant alternatives, that the choice of winner should not be affected
by this irrelevant information. Dummett (1998) challenges this position.

In an election between only two candidates A and B it may happen that A beats B by
a small margin. Knowing only this, Borda’s rule selects the majority winner. When a
third “irrelevant” alternative C is added, Borda’s rule now has some information as to
how much the supporters of A dislike B and visa versa. If A is ranked last considerably
more often than the other alternatives, then Borda’s rule will no longer select the divisive
candidate A as winner. Each “irrelevant” alternative added gives a little more informa-
tion about the strength of the voters’ preferences. Dummett (1998) sees the sensitivity of
Borda’s rule to this information as a strength rather than a weakness.

Another response to an impossibility theorem such as that of Arrow is to find a practical
solution that mostly satisfies the criteria. Black (1969) showed that it is possible to find
a rule that satisfies all of Arrow’s criteria, except in very rare circumstances or for very
small committees.

1.1.3 Complexity Classes for Algorithms
Even if a rule exists it may be infeasible to solve it. We have run algorithms on computers,
and timed how long it took to compute a result. However these empirical tests have some
weaknesses. Firstly, the amount of time depends on factors such as speed of the computer
we use to run the algorithm6 — for this reason we run all such tests on an Intel Xeon

5Arrow’s criteria mean respectively: for every possible set of votes the rule must uniquely specify a single
ranking of the candidates; every ranking of the candidates must be achievable by some set of votes; A
citizen choosing to rank a candidate higher must never reduce the collective ranking of the candidate; if
we label some arbitrary subset of candidates “irrelevant”, then changes in the way the voters order the
“irrelevant” candidates in their rankings should not affect the collective ranking of the candidates that
are not labelled “irrelevant”. For example, if we consider a and b to be our relevant candidates, and the
ranking chosen by our rule prefers a to b, then any change to the votes which does not change whether
each voter prefers a to b, should not cause the rule to pick a ranking which prefers b to a.

6There are many other factors which affect the time it takes to run an algorithm on a particular com-
puter. For example, unlike the 486DX microprocessor, the 486SX microprocessor did not provide in-
structions for floating point arithmetic. Thus algorithms requiring floating point arithmetic would have

5
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2.8 GHz processor, so while our empirical performance results do not directly apply to
other processors they are at least consistent with each other. Secondly, just because an
algorithm runs quickly on the input we have tested may not mean that it runs quickly
given all possible inputs. In particular, just because the algorithm runs well given small
test inputs does not mean that it would scale gracefully as the size of the input grows. For
this reason we wish to study the algorithms from a theoretical perspective.

We say that a problem can be solved in polynomial time if the amount of time it takes
is a polynomial7 function of the input size, where the input size is the number of bits8

required to represent the input with respect to the size of the input. For example we can
answer the question “is x divisible by 3” in time that is linear9 with respect to the number
of bits n needed to represent x, so this problem can be solved in polynomial time. We
can also add two numbers in time linear with respect the number of digits, as it takes the
same amount of time to add each digit.

A decision problem is a problem with a yes-no answer. Some decision problems, of
particular relevance to this thesis, are those proposed by Bartholdi et al. (1989):

• Dodgson Score: Given a profile P , candidate c and integer k — is the Dodgson score
of c less than or equal to k?

• Dodgson Winner: Given a profile P and candidate c — is c the Dodgson winner?

• Dodgson Ranking: Given a profile P and candidates c and d — did c defeat d accord-
ing to the Dodgson rule, i.e. did c have a lower Dodgson score than d?

Bartholdi et al. (1989) defined the decision problems Kemeny Score, Kemeny Winner and Ke-
meny Ranking similarly. We use italics to indicate decision problems. For example Dodgson
Score indicates the decision problem “is the Dodgson score of c less than k in profile P”.

Finding the Dodgson score (and winner) is at least as hard as the Dodgson Score (and
Winner) decision problem. If we have found the Dodgson score we may answer whether
the score is less than or equal to k easily; the reverse may not be so easy. Likewise, if we
have found the Dodgson winner, we may easily determine whether c is that winner; but
if we know that c is not the winner we do not necessarily know who the winner is. Thus
in this thesis we focus on showing that it is easy to finding Dodgson scores and winners

to use multiple simpler instructions to perform such arithmetic, slowing down the algorithm. Thus a
486SX would usually need more time to complete an algorithm requiring floating point arithmetic than
a 486DX, even if the 486SX had a higher clock speed.

7A polynomial is a function f of the form f(x) = a0 + a1x + a2x
2 + · · · + anxn, where a0, a1, . . . , an are

real valued constants, and the integer n is called the order of the polynomial.
8A bit is a single “0” or “1”.
9A linear function is a function a function f of the form f(x) = a + bx. These functions are called linear as

their graphs are straight lines.
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when we fixed the number of alternatives, as in doing so we will also show that Dodgson
Winner and Dodgson Score are easy.

Computer scientists classify problems into classes which represent how difficult the
problems are to solve. For example, decision problems may belong to the following
classes:

P (Polynomial): The set of problems that can be computed in polynomial time.
Examples: Is x divisible by 3. Given a profile P and candidate c is c a Condorcet
winner?

NP (Nondeterministic-Polynomial10): The set of problems for which, if the answer is
“yes”, there exists a proof of this fact that can be verified in polynomial time.
Example: Dodgson Score, because if is the Dodgson score is less than k then there
exists some set of less than k neighbouring swaps that make c a Condorcet winner.
We may use this set of swaps as a proof that the Dodgson score is less than or equal
to k as we may verify that these swaps do indeed make c a Condorcet winner and
thus that the minimal set of swaps must contain less than k swaps, i.e. that the
Dodgson score is less than k. (Bartholdi et al., 1989)

Θp
2 (Parallel access to NP): The set of problems which could be solved in polynomial

time if we had an oracle that offered to answer any number of questions to prob-
lems in the class NP, but would only reveal the answers once we had asked the last
question. This is called parallel access to NP, because we have access to an oracle
that can answer questions, but we essentially have to ask them in parallel, we can-
not ask a question and then choose our next question based on the answer to the
last. (see e.g.Hemaspaandra et al. 1997)
Example: Dodgson Winner, because if we find the Dodgson score for each alterna-
tive, we will then know whether c is a Dodgson winner.

All problems in P are in NP and all problems in NP are in Θp
2. If a problem is in P we

can solve it in polynomial time without a proof, so if we are given a proof we can solve
it in polynomial time simply by ignoring the proof, and so the problem is also in NP. If a
problem is in NP, then we can solve it by asking a single question of the above oracle, so
it is also in Θp

2. It is commonly believed that there are problems that are in Θp
2 that are not

in NP, and problems in NP that are not in P, although this has never been proven.
10This is called Non-deterministic as the class of problems can be thought of in the following way. Assume

that whenever you flip coin, the universe splits into two, such that in one universe the coin lands on its
head and in the other the coin lands on its tail. We are allowed to flip coins as many times as we want,
each time forking the universe. If the correct answer is “no”, we must answer “no” in all the universes;
if the correct answer is yes we only need to answer yes in one of the universes and may answer no in
the rest.
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An NP-hard problem is a problem such that if we had an oracle that offered to give
one answer to such a problem, then we could use that oracle to answer any NP problem
in polynomial time. For this reason we consider the NP-hard problem to be at least as
hard as any NP problem. We call an NP-hard problem that is in NP, an NP-complete
problem. Hardness and completeness are defined similarly on the class of Θp

2 problems.
For example the class of NP problems is a subset of the class of Θp

2 problems, but NP
problems are not Θp

2-complete unless it turns our that NP is equivalent to Θp
2.

We represent the current understanding this as a Venn diagram as below. Problems fur-
ther out from the center are in some sense harder than those closer to the set of problems
in P.
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NP-complete problems can take a very long time to solve. There are no known algo-
rithms that can solve NP-complete problems in time that is polynomial with respect to the
size of the input, and it is commonly believed that no such algorithm exists. Interestingly,
if it is possible to solve a single NP-complete problem in polynomial time, it is possible to
solve all NP problems in polynomial time.

One of the reasons the Dodgson rule is so interesting to study is that it is one of the sim-
plest examples of a Θp

2-complete problem (Hemaspaandra et al., 1997). Any NP-complete
problem can be very hard to solve, and so NP-complete problems are often called infeasi-
ble. Problems in the Θp

2-complete class are commonly believed to even harder to solve. We
consider the Dodgson rule a particularly interesting problem because on the one hand, it
is a member of a class of problems usually considered very difficult to solve, on the other
hand, as we will discuss later, we prove that it is usually very easy to solve when the
number of candidates is fixed.

Just knowing that a problem is in P does not mean that it easy to solve. For example,
say that the time required to solve the problems is n1000. This is technically polynomial,
but is clearly infeasible even for n = 2. For this reason we often wish to classify problems
into complexity classes that give us more information about the rate at which the time

8



INTRODUCTION

required to solve the problem grows with the size of the input, than merely whether it is
polynomial or not.

To do this we will use the “big-O” notation. For positive valued functions f and g, the
function g is in the class O(f(n)) if there exists positive numbers N and k such that for
all n greater than N , the value of g(n) is less than the value of kf(n). If the function g

represents the amount of time required to run an algorithm, the function g will depend
on the computer that runs the algorithm; however g will belong to the same classO(f(n))

regardless of whether it is run on the very first computer produced by Apple, or the
Deep Blue supercomputer that beat the chess master Kasparov. Although one might run
the algorithm a million times faster that the other, the rate at which the time grows as n

approaches infinity is the same.

For example we can add (and subtract) numbers in linear time with respect to the num-
ber of digits d, so addition and subtraction are O(d) time problems. We can multiply
d digit numbers using d additions, each of which require O(d) time. Thus multiplica-
tion is an O(d2) time problem. However, just because multiplication is a O(d2) problem
does not mean that there does not exist a better algorithm. It is known that multipli-
cation cannot be done in time less than linear, but that does not mean that we may not
find an algorithm that requires less than O(d2) time, in-fact a number of such algorithms
have been found. The first such algorithm was found by Karatsuba and Ofman (1962).
The best currently known algorithm for multiplication is that of Schönhage and Strassen
(1971), which can multiply numbers inO(d log d log log d) time. Thus multiplication is also
a O(d log d log log d) time problem. Just as the class of NP problems includes all problems
in P, the class O(d2) contains O(f(d)) for all functions f that grow slower than d2.

The time required to solve a particular problem may depend upon multiple parameters.
For example, the time to find the winner to an election depends upon the number of
candidates m and number of voters n. An approach to infeasible problems, advocated for
example by Downey (2003), is to see if the problem becomes feasible if we limit one of
the parameters. For example, say it takes O(nm!) time to solve a problem. Then if we fix
m = 3, we may find the problem in O(n6) time which is polynomial. However the order
of this polynomial grows if we fix m at a higher value, e.g. if we fix m = 5 the problem
requires O(n120) time to solve.

Computer scientists (e.g. Downey and Fellows 1995) are interested in whether the order
of the polynomial depends upon the value at which we fix m; if not they call the problem
Fixed Parameter Tractable (FPT). For example if the problem requires O(m!n2) time, then
it requires O(n2) time for any fixed m; as n2 is a polynomial, this problem is called Fixed
Parameter Tractable. This class of problems is of interest to us as we will show that Dodg-
son’s rule is fixed parameter tractable as it is possible to determine the Dodgson score
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using O(log n) operations on O(log n) digit numbers, for any fixed number of agents m.
As log n grows very slowly, this means that for any fixed m finding the Dodgson score
belongs to a class of problems that is considered exceptionally easy to solve.

Another approach to infeasible problems is to attempt to find an approximate solution.
A polynomial time approximation scheme is an approximation where for any fixed per-
centage error, the solution can be found to within that percentage of error. A constant ap-
proximation scheme is an approximation which can find the solution in polynomial time
for some fixed error. Unfortunately we find that neither type of approximation scheme
exists for the Dodgson Quick score. The Dodgson Quick, Dodgson relaxed and R&R ap-
proximations, that we will propose later, are a different type of approximation. We prove
that our approximations will pick the Dodgson winner almost all of the time for a large
number of agents. However, in certain unlikely circumstances, their score from these
approximations could differ substantially from the true Dodgson score.

1.1.4 Impracticality Theorems

Finding the winner in an election can be difficult. Young and Levenglick (1978) proved the
only neutral, consistent and Condorcet11 rule was the rule proposed by Kemeny (1959).
Bartholdi et al. (1989) proved that Kemeny Winner and Kemeny Ranking are an NP-hard
problems. It can take a very long time to solve NP-hard problems and any voting rule
for which we may not discover the winner before their term of office is over is of little
use. For this reason, Bartholdi et al. commented that research into “impracticality” theo-
rems, which show that any rule which satisfies a particular set of criteria is impractical to
compute, is as important as research into the more traditional impossibility theorems.

Bartholdi et al. also showed that Dodgson Winner is an NP-hard problem. This result
was refined by Hemaspaandra et al. (1997), who showed that Dodgson Winner is complete
for parallel access to NP (i.e. Θp

2-complete), and hence is not NP-complete unless NP is
equivalent to Θp

2, which most computer scientists believe it is not. We investigate the
possibility of simplifying the problem.

In the same way that Black (1969) found a rule that satisfies Condorcet’s criteria except
for a very few possible inputs, we may find a procedure that can easily compute the
Dodgson winner except for unusual inputs. Indeed, as we discuss later, we find an easy
to compute approximation to the Dodgson rule.

11Neutral means that the voting rule does not favor any candidate. Consistent means that if the electorate
is divided into two parts and the rule picks the same winner for both parts, the rule will pick that same
winner for the electorate as a whole. Condorcet means that if a Condorcet winner exists then the rule
will select that winner.
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1.1.5 Simplifying Assumptions in Voting Theory

If we make assumptions about the voting society we may avoid the implications of some
impossibility theorems, such as that of Arrow. That is, if we reject the criteria of unre-
stricted domain, we may be able to satisfy the other criteria suggested by Arrow.

Black (1948) suggested that if voters’ preferences can be represented by a one-dimensional
scale, then we may select the position of the median voter. If the voters prefer political
positions close to their own (i.e. their preferences are “single-peaked”), then this position
will be the Condorcet winner, and thus also the Dodgson winner. Unfortunately, we fre-
quently cannot model voters’ preferences on a single dimension; for example parties on
either side of the left/right spectrum can be also be militaristic or isolationist and so two
or more dimensions may be required. If two or more dimensions are required, we cannot
always select the median voter (Black, 1948).

In a similar way, if we make certain assumptions we may avoid the implication the
impracticality theorem of Bartholdi et al., that finding the Dodgson winner may be infea-
sible.

As Dodgson Winner is a hard problem, in some sense harder even than the NP-complete
problems, we investigate the possibility of simplifying the problem. As discussed above,
if voters’ preferences can fall on a left/right spectrum we may easily find the Dodgson
winner merely by taking the median voter. As many elections cannot be represented in
this way, we choose a different assumption. We observe that in national elections there
are typically millions of voters, but only a handful of alternative parties. Indeed, if there
were millions of candidates it would be hard for the voters to rank them all. In this thesis
we first simplify the problem by assuming that there are only a few alternatives.

For a fixed number of alternatives (or voters), Bartholdi et al. (1989) showed that we
can find the Dodgson winner in polynomial time. Unfortunately the order of this polyno-
mial may be rather large, and become ever larger as we increase the number of allowed
alternatives. Even for mild polynomial complexity,12 polynomials of low order, it may
be infeasible to compute the winner in elections with millions of agents. For these elec-
tions we may wish to use a rule that approximates the Dodgson rule, and has very low
computational complexity.

1.1.6 Tideman’s Approximation to the Dodgson Rule

Tideman (1987, p. 194) suggested a rule which scores each alternative according to the
sum of the margins of defeat. For example say 40 voters preferred A to B versus 60 who
12That is, if the time required to find the winner is bounded by a polynomial with relatively low order, e.g.

n2.
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preferred B to A and 48 preferred C to A versus 52 who preferred A to C. Then the
margins of defeat would be 20 and 4 respectively; the Tideman score of A would be 24.
The alternative with the lowest Tideman score is the Tideman winner. This rule would
pick the same winner as Dodgson’s rule if

[T1] the number of voters was even13, and

[T2] “all contending candidates appeared in enough rankings just below the candidates
that beat them that they could be made dominant by being advanced above these
without having to be advanced above any others to reach these”. — (Tideman 1987;
p. 143)

Tideman did not present a proof that this is the case, and neither shall we (until later, as
Corollary 3.2.3). However we will present an example which satisfies [T1] and [T2] and
explain why this means that the Tideman winner is the Dodgson winner in this example.

For example say four voters chose the ranking abc, three chose cab, and three chose bca.
In the ranking abc we say that a is ranked above b, which is ranked above c because it is
common to represent abc vertically such as in the table below.

4 3 3
a c b

b a c

c b a

4

42

a b

c

The weight on each edge of the graph above represents the margin of defeat of each
pair of alternatives. We compute the margins of defeat from the table above as follows: 7
voters prefer a to b, 3 prefer b to a so the margin of defeat of a over b is 4; 7 voters prefer b

to c and 3 voters prefer c to b, so the margin of defeat of b over c is 4; 6 voters prefer c to a

and 4 voters prefer a to c so the margin of defeat of c over a is 2. Graphs such as these are
known as a weighted majority relations.

Each alternative loses to exactly one other alternative, so it is easy to “calculate” the
sums of the margins of defeat — we can just read them off the graph. It is clear that
alternative a has the lowest Tideman score (i.e. 2) and thus is the Tideman winner. Let us
13Tideman’s actual criteria was “if a tie could be beaten by an arbitrarily small fraction of a vote”. By tie

Tideman appears to refer to the case where we cannot pick a Condorcet winner. This amounts to saying
that Tideman’s rule would choose the Dodgson winner in elections that satisfy [T2], if Dodgson’s rule
allowed us to split votes into fractional votes and swap neighbouring alternatives in those fractional
votes — whereas Dodgson’s rule only allows us to swap neighbouring alternatives in whole votes.
In any case, we have found that our weaker [T1] condition is sufficient (with [T2]) to guaranty that
Tideman’s rule picks the same winner as Dodgson’s rule.
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see how conditions [T1] and [T2] guaranty that the Tideman winner is also the Dodgson
winner.

As the number of voters are even [T1], all of the margins of defeat are even (we prove
this in Lemma 2.0.12). Recall that a Condorcet winner is a candidate that a majority of the
population prefer to any other candidate. Thus, to make a a Condorcet winner we need to
reduce the margin of defeat of c over a to zero, so that c no longer defeats a, in a pairwise
election. By changing a single vote to rank a above c we both reduce the number of votes
where c is ranked above a and increase the number of votes were a is ranked above c,
hence decreasing the margin of defeat of c over a by two. Thus we can reduce the margin
of defeat of c over a to zero by altering a number of votes equal to half of this margin of
defeat 2, in this case 1 vote. Note that in 6 votes c is ranked directly above a. Hence we
can swap a above c in up to 6 votes using only one swap of neighbouring alternatives per
vote, and we only need to swap a above c in 1 vote to make a a Condorcet winner (i.e.
condition [T2] holds). Hence the Dodgson score of a, the minimum number of swaps to
make a a Condorcet winner, is 1. This is exactly half the Tideman score of 2. Since the
Dodgson scores are exactly half the Tideman scores, and both rules pick the alternative
with the lowest score, the Tideman rule will select the Dodgson winner.

Not only does Tideman’s rule have low computational complexity, but is simple enough
to be computed with pencil and paper. However, Tideman did not prove anything about
the effectiveness of this rule as an approximation to Dodgson’s rule, nor make any claim
about the probability that the Tideman approximation would select the Dodgson winner.

Under the assumption that all possible elections (ordered sets of votes) are equally
likely, we show that the Tideman rule converges to the Dodgson winner as we increase
the number of voters with a fixed number of alternatives. That is, as the number of voters
tends towards infinity, the probability that the Tideman winner is not the Dodgson winner
drops to zero.

We show that the probability that the [T2] condition holds converges to one exponen-
tially fast, hence if the number of voters is even the probability that the Tideman winner is
the Dodgson winner converges to 1 exponentially fast. However if the number of voters
is odd we show that the Tideman winner does not converge exponentially fast. Hence,
in the general case where the number of voters may be even or odd, the Tideman winner
does not converge to the Dodgson winner exponentially fast.

1.1.7 Our New Approximation, Dodgson Quick.
We propose a new rule which we call Dodgson Quick (DQ). Like the Tideman rule our
approximation generates scores based on the margins of defeat, and picks the alternative
with the lowest score as the winner. The DQ-score was originally intended as a lower
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bound14 for the Dodgson Score which can be calculated very quickly — and can thus im-
prove the performance of an optimized algorithm which calculates the Dodgson winner
by helping it to quickly eliminate candidates which cannot possibly be winners. How-
ever we noticed that it was a good approximation for the Dodgson rule, and had some
convenient theoretical properties, so we decided to study it further.

Note that in the example of the Tideman rule choosing the correct winner the Tideman
score was exactly half of the Dodgson scores. However, with an odd number of voters the
Tideman score can be odd, but we cannot have a fractional Dodgson score. Recall that the
Dodgson score is the minimum number of swaps of neighbouring alternatives needed to
make a candidate a Condorcet winner, and the Dodgson rule does not allow us to swap
a fractional number of alternatives. Even if the Tideman score of an alternative a is even
this may be because it loses to an even number of alternatives by an odd margin of defeat.
The Dodgson rule also does not allow us to swap a over some alternative b a fractional
number of times, and another alternative c a fractional number of times, even if the total
number of swaps is a whole number.

Thus we note that the Dodgson score must be at least the sum of the margins of defeat
divided by two, all rounded up. We call this lower bound the Dodgson Quick score, and
the candidate with the lowest Dodgson Quick score the Dodgson Quick winner. This
leads to a rule with substantially different properties to the Tideman rule.

Below is an example of a weighted majority relation where the Tideman winner is not
the Dodgson Quick winner. A weighted majority relation is a directed graph where an
arrow from an alternative a to b with a number (weight) w attached indicates that a beat
b in a pairwise election with a margin of w (see Section 1.2.1, for a definition of majority
relations).

1

1

1

1

5

1

19

9
9

x

y

b

a

c

As shown by the following table of scores, x is the Tideman winner, but y is the DQ-
winner. We calculate the Dodgson Quick and Tideman scores of x, y as follows. The
weights (margins of defeat) of the edges pointing at x are {1,1,1,1}. The sum of these
weights is 4, so the Tideman score is 4. For the DQ-score we divide these by 2, so we get
{1
2
,1
2
,1
2
,1
2
}, however we then round all of these back up to 1. Hence the DQ-score of x is also

14A lower bound x for a value y is a number less than or equal to y.
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4. The candidate y has only one edge coming in, but it has a weight of 5, so the Tideman
score of y is 5. For the DQ-score we divide the 5 by 2 giving 2.5, and then round this up to
3. Hence the DQ-score is 3. We calculate the scores of the candidates a, b and c likewise.

Scores a b c x y

Tideman 10 10 9 4 5
DQ 6 6 5 4 3

We initially expected the properties of the DQ-rule to be quite close to the properties
of the Tideman rule. Where the number of voters are even they pick the same winner.
Even for an odd number of voters, the DQ-winner differs from the Tideman winner only
due to rounding. For a large number of voters, the rounding only has a small effect on the
DQ-score relative to the magnitude of the score. Although we have presented an example
of where the Tideman winner differs from the DQ-winner, it would be intuitive to think
that this would happen so rarely as to have little effect.

However, some exploratory numerical results, which we published in our paper (McCabe-
Dansted and Slinko, 2006), demonstrated that the Dodgson Quick rule was an exception-
ally close approximation to the Dodgson rule indeed. For example, with 5 candidates
and 85 voters, and assuming that every possible election (ordered set of votes) is equally
likely, we found that the DQ-winner was the Dodgson winner in all of the 1,000,000 sim-
ulations. By comparison, the Tideman approximation failed to pick the Dodgson winner
in almost one percent of cases.

We investigate the behaviour of the Dodgson Quick approximation and find that as we
increase the number of voters not only does our approximation converge to the Dodg-
son rule, but it also converges exponentially fast. In this respect, our approximation
is superior to the one suggested by Tideman; we show that Tideman’s approximation
does not converge exponentially fast. We suspected that the rule proposed by Simpson
(1969) would converge asymptotically to Dodgson’s rule despite the fact that it was not
intended as an approximation of Dodgson’s rule. However we numerically investigate
the frequency that the Simpson rule does not pick the Dodgson winner as we increase the
number of voters, and find that the frequency does not converge to zero.

A similar result was obtained by Homan and Hemaspaandra (2005). They indepen-
dently developed an approximation which also exhibits exponential convergence as we
increase the number of voters.

Unlike this thesis, Homan and Hemaspaandra approached the problem by looking for
a “frequently self-knowingly correct15” greedy algorithm. As mentioned previously, we
15They define this as an algorithm that reports that it has found the correct answer with probability ap-

proaching 1 as the size of the input (in this case an ordered set of votes) to the algorithm increases, and
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originally used our approximation to provide lower bounds that we used to increase the
speed with which we could find the exact Dodgson scores.

Homan and Hemaspaandra’s greedy algorithm assigns a penalty to candidates for
which it Tideman’s criteria [T2] above does not holds. This means that the scores as-
signed by their algorithm are not lower bounds. For example consider an election with
a single voter whose ranking of three alternatives is abc. Our Dodgson Quick rule notes
that to make c a Condorcet winner we need to swap c over a once and over b once, and
hence assigns a score of 2 to candidate c. Their greedy algorithm notes that Tideman’s
criteria [T2] does not hold, i.e. since a and c are not neighbouring preferences, to swap
a over c we have to first swap a over b. For this reason their greedy algorithm adds a
penalty of one to it’s score of c, giving a total score of 3 for candidate c. However in this
case, to make c a Condorcet winner, we had to swap a over b anyway. Hence the Dodg-
son score of c, the minimum number of swaps required to make c a Condorcet winner,
is only 2. Hence, unlike our Dodgson Quick scores, the score assigned by Homan and
Hemaspaandra (2005)’s greedy algorithm is not always less than or equal to the Dodgson
score.

Also our approximation’s scores can be calculated from the margin of defeat of each
candidate16, while Homan and Hemaspaandra’s penalty cannot.

The simplicity and convenient theoretical properties of our approximation may make
our approximation useful in proofs. We found it much easier to prove that our voting rule
converged to the Dodgson rule at an exponential rate than to prove that Tideman’s voting
rule converged at all. When we did prove that Tideman’s approximation converged to the
Dodgson rule, we found it easier to first prove the Tideman approximation converged to
our approximation.

1.1.8 Linear Programs and Integer Linear Programs

A Linear Program (LP) is a set of linear constraints and a linear function we wish to
maximise or minimise. Simple two dimensional linear programs are often given as math
problems at school. For example, given that 2y ≥ x, x ≤ 6 and 3y > 6 − x, minimise
f(x, y) = y. This simple problem can be solved by drawing the graph (shown below),
finding the intercepts, finding the value of f for each intercept and finding the minimum

its answer is always correct when it reports that its answer is correct. A greedy algorithm is an algorithm
which makes decisions that bring the algorithm closer to its goal in the short term without considering
the longer term consequences. Such an algorithm may be chosen because a correct algorithm takes too
much time to run or because one proven that the greedy approach will always pick the correct answer
anyway.

16For those familiar with the classification system proposed by Fishburn (1977), our rule is a C2 rule, the
greedy rule is a C3 rule.
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value of f .

3

2

1

0 2 3 4 51

x=6
y

x6

3y=6−x 2y=x Intercepts
x y f(x, y)

6 3 3
2.4 1.2 1.2

In the example above we find two intercepts, the one with the lowest value of f at
(2.4, 1.2). If the variables must be integers we call the problem an Integer Linear Program
(ILP). In this trivial case it is easier to solve the ILP than the LP, if the variables must be
integer is easy to see from the graph above that f(x, y) must be at least 2. However for
real world problems, LPs are usually much easier to solve than ILPs.

With respect to LPs and ILPs, the “feasibility problem” refers to the case where we are
not interested in the best solution to the problem, and are only interested in whether there
exists a solution which satisfies all the constraints.

In the simple example above we only have two variables x and y. However LPs can
have thousands of variables, and these problems can be quite difficult to solve.

Dantzig (1963) found an algorithm, usually called the simplex method, that can be
used to solve complex LPs. This algorithm usually finds the solution to and LPs quite
quickly. However, it can take an exponential amount of time to find the solution. The
first algorithm that could solve an LP in polynomial time was found by Khachian (1979),
unfortunately this algorithm performed poorly in practice. The Khachian algorithm re-
quired O(n6L) operations O(L) bit numbers where n is the number of variables and L

is the number of bits required to encode the LP. A better algorithm was found by Kar-
markar (1984), that required onlyO(n3.5L) operations. The result we will use in this thesis
is the discovery by Gonzaga (1989) of an algorithm that can find the solution of an LP us-
ing only O(n3L) operations. The algorithm independently discovered by Vaidya (1990) is
also of interest as it can find the solution of an LP in time better than O(n3L) if we limit
the number of constraints, although this result is not of use in this thesis.

There is no known algorithm that can solve ILPs (as opposed to LPs) in polynomial
time. Indeed, we can transform the problem of finding the Dodgson score into an Integer
Linear Problem with O(mn) variables where m is the number of candidates and n is the
number of alternatives (see Chapter 4). If we could solve ILPs in polynomial time we
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could find the Dodgson score in polynomial time, which Bartholdi et al. (1989) showed
was not possible unless P=NP.

Never-the-less Lenstra, Jr. (1983) found that the amount of time required to solve the
integer programming feasibility problem was polynomial if we fix the number of vari-
ables in the ILP. Being able to solve the feasibility problem in polynomial time, we may
then solve the ILP in polynomial time (for a fixed number of variables) using the binary
search algorithm17. This result was refined by Eisenbrand (2003), who showed that for a
fixed number of variables, the ILP can be solved in O(L) basic arithmetic operations.

1.1.9 Our New Approximation, Dodgson Relaxed & Rounded.

Under the Dodgson rule, we may only switch neighbouring alternatives in whole votes.
The Dodgson relaxed rule allows us to split votes into rational18 fractions of a vote and
swap neighbouring alternatives in these fractions of a vote. This provides us with two
advantages over the Dodgson rule, first we will show that we may compute the Dodgson
relaxed rule in polynomial time, and in logarithmic time if we fix the number of alter-
natives. Secondly, we will show numerically that when the set of tied winners chosen
by this rule differs from the set of tied winners selected by Dodgson’s rule, it is usually
because the relaxed rule has chosen a subset of the Dodgson winners. We may break ties
according to the preferences of the first agent, however it is in some sense more demo-
cratic to select an alternative that is fractionally better than the others than to privilege
the first agent over the other agents.

By rounding the Dodgson relaxed score up we get a new score which we call the Dodg-
son relaxed and rounded (R&R) score. The R&R rule is exceptionally close to the Dodg-
son rule. Out of 43 million random simulations under various assumptions we only
found a single simulation where the R&R winner was not the Dodgson winner. This
simulation had 25 candidates but only 5 agents, a somewhat implausible size for a real
world election. The example of a real world election with a huge number of candidates
given by Bartholdi et al. (1989), was the election for mayor of Tulsa. Even this election had
only 20 candidates, and there were presumably more than 5 residents of Tulsa voting.

17The binary search algorithm is an algorithm that can be used to find a number k where k falls with in
some known range and we can ask whether “k is greater than x” for any x we choose. Say we know
that k falls between 0 and 64. The algorithm involves choosing the midpoint of l and u. An example of
the binary search algorithm in practice is if we are asked to guess a number between 0 and 8. We ask if
k is greater than 4, if so we ask if k is greater than 6, if not we ask if k is greater than 5; we now know the
answer. Note that this algorithm is quite efficient as each time we ask a question we halve the number
of possible values of k.

18A rational number is a number that can be represented as n/m where n and m are integers. In fact the
Dodgson relaxed rule could be equivalently defined as allowing splits into any real fraction of a vote,
the Dodgson relaxed score would be the same either way.
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The Dodgson Quick score is always less than or equal to the Dodgson relaxed score,
which is always less than or equal to the R&R score, which in turn is always less than or
equal to the Dodgson score.

1.1.10 A Generalisation of the McGarvey Theorem

Recall that in the weighted majority relation we presented on page 14, we did not give the
set of voters that generated that relation. Can we be sure that such a set of voters really
exists? You may like to attempt to find such a set. However finding such a set by trial and
error can be time consuming. Even verifying that such a set does actually generate that
weighted majority relation can take a while.

McGarvey (1953) proved that we can find such a set for any ordinary majority rela-
tion. However recall that the graphs of ordinary majority relations do not have weights
attached to their edges. In this case we also needed the weights to be correct. Thus we
cannot use the McGarvey theorem here.

Fortunately for any weighted tournament, we can find a society with that weighted
tournament as its weighted majority relation, if and only if all the weights are even or all
the weights are odd. Thus we can check at a glance that all the weights on the weighted
tournament are odd. We also check that there are no missing edges, because this is equiv-
alent to an edge with weight of zero, which is even. This can be done easily without even
needing to reach for a pencil.

The first paper that mentions this result was probably Debord’s PhD thesis (1987) as
quoted by Vidu (1999). However this source is inaccessible to the author, and we will
give an independent proof in this thesis.

1.2 Social Choice Functions.
In the introduction we described voting procedures which took rankings from each voter
and output either a ranking of the candidates or a single winner. Procedures which only
output a winner are called social choice functions. These are the procedures we will study
in this thesis. Historically SCFs were often called rules. Below we will formally define
SCFs and, discuss classifications for such rules and give definitions for the SCFs we will
study in this thesis.

As voting has a wide variety of uses, we will henceforth avoid the terms voter and
candidate. These terms carry the implication that we are only taking about people. In
their place we will use the more general terms agent and alternative.

We assume that agents’ preferences are transitive, i.e. if they prefer a to b and prefer b
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to c they also prefer a to c. We also assume that agents preferences’ are strict, if a and b are
distinct they either prefer a to b or b to a. Thus we may consider each agent’s preferences
to be a ranking of each alternative from best to worst.

Let A and N be two finite sets of cardinality19 m and n respectively. The elements of
A will be called alternatives, the elements of N agents. We assume that the agents have
preferences over the set of alternatives. By L(A) we denote the set of all linear orders20

on A; they represent the preferences of agents over A. For example if A is {a, b, c}, then
L(A) is the set of all permutations of abc, i.e. {abc, acb, bac, bca, cab, cba}. The elements of
the Cartesian product21

L(A)n = L(A)× · · · × L(A) (n times)

are called profiles, for example, where A = {a, b, c} the ordered set (abc, bca) is a possible
profile for a society with two voters. The profiles represent the collection of preferences
of an n-element society of agents N . Let P = (P1, P2, . . . , Pn) be our profile. If a linear
order Pi ∈ L(A) represents the preferences of the ith agent, then by aPib, where a, b ∈ A,
we denote that this agent prefers a to b.

A family of mappings F = {Fn}, n ∈ N,

Fn : L(A)n → A,

is called a social choice function (SCF).
For a profile P , we define the corresponding voting situation P̃ to be a multiset of

linear orders such that for any linear order v and integer i, if there are i occurrences of v

in P there are i occurrences of v in P̃ . A voting situation is similar to a profile, except that
voters are anonymous. Most rules only require the information contained in P̃ to pick
their winner.

1.2.1 Fishburn’s Classification System for Voting Rules

In 1977, Fishburn proposed a system for classifying rules according to the amount of
information they require.

In a tournament, for each pair of alternatives a, b, either a defeats b or b defeats a. Laslier
(1997) notes that there are many ways to formally define a tournament, and gives four

19The cardinality of a set is the number of elements in that set.
20A linear order should not be confused with a function of linear order. A linear order is essentially a

ranking, e.g. abcde. A function of linear order is a linear function, e.g. 3x + 8.
21The cartesian product of two sets A and B is the set of pairs (a, b) where a is a member of A and b is a

member of B.
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examples. We may define a tournament as a complete and asymmetric directed relation.
Any such relation may be represented as a complete and asymmetric directed graph, i.e.
a graph where the is an arc (directed edge) between every pair of distinct vertices, and
for each pair of vertices, if there is an edge from a to b there is no edge from b to a. For
example the directed graph below represents the intransitive case where a defeats b, who
in turn defeats c who in turn defeats a.

1 1 1
a c b

b a c

c b a c

ba

The majority relation is the tournament where a defeats b if and only if a is preferred
to b by a majority of the agents in our profile P . For example, the tournament above is a
majority relation for the profile above (abc, cab, bca). Fishburn labels all rules which can
pick their winner knowing only the majority relation as C1 rules.

A weighted tournament is much like an ordinary tournament, but allows weights to
be attached to the edges. We typically use W to denote the weight function. A positive
weight W (a, b) is the weight of the edge from a to b, and W (a, b) ≡ −W (b, a). For example,
below is the graph of the weighted tournament where W (a, b) = 3, W (b, c) = 1, W (c, a) =

1; this could be written equivalently as W (b, a) = −3, W (c, b) = −1, W (c, a) = −1:

2 2 1
a c b

b a c

c b a

3

11

c

ba

The weighted majority relation is the weighted tournament where the weight W (a, b)

is equal to the margin by which a would defeat b in a pairwise election22, according to our
profile P . For example, the above weighted tournament is the weighted majority relation
for the profile above (abc, abc, cab, cab, bca). We calculate the weight of the edge from a to
b as follows: 4 agents prefer a to b and one agent prefers b to a, hence the weight is 3. We
calculate the other weights likewise. If we remove the weights from the edges we get an
ordinary tournament (see e.g. Laslier 1997). Rules which require more information than
the majority relation, but can determine their winner from the weighted majority relation
are called C2 rules.
22A pairwise election is a sub-election where we exclude all but 2 of the m alternatives.
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Examples of C2 rules include Simpson’s rule, Tideman’s rule and the Dodgson quick
rule.

Rules which require yet more information are called C3 rules. Examples of C3 rules
include Dodgson’s rule, Kemeny’s rule and our approximations: Dodgson relaxed and
Dodgson R&R.

With C1 rules, it is useful to know whether a tournament is the majority relation for
some society. The McGarvey Theorem (1953) states that this is true for all tournaments.
However the McGarvey Theorem does not apply to weighted tournaments, and hence
is not useful for C2 rules. For this reason we prove a generalization of the McGarvey
Theorem to weighted tournaments.

1.2.2 Advantages
Let P = (P1, P2, . . . , Pn) be our profile. We define nxy to be the number of linear orders in
P that rank x above y, i.e. nxy ≡ #{i | xPiy}. The approximations we consider depend
upon the information contained in the matrix NP , where (NP)ab = nab. Many of them use
the numbers

adv(a, b) = max(0, nab − nba) = (nab − nba)
+,

which will be called advantages. Note that adv(a, b) = max(0, W (a, b)) = W (a, b)+ where
W is the weighted majority relation on P .

1.2.3 Condorcet Winner
A Condorcet winner is an alternative a for which adv(b, a) = 0 for all other alternatives b.
A Condorcet winner does not always exist. The rules we consider below attempt to pick
an alternative that is in some sense closest to being a Condorcet winner, and will always
pick the Condorcet winner when it exists.

1.2.4 Scores
The social choice rules we consider are based on calculating the vector of scores. In the
rules we describe below, the alternative with the lowest score wins. Let the lowest score
be s. It is possible that more than one alternative has a score of s. In this case we may
have a set of winners with cardinality greater than one. Strictly speaking, to be a social
choice function, a rule has to output a single winner. Rules are commonly modified to
achieve this by splitting ties according to the preference of the first voter. However we
will usually study the set of tied winners rather than the single winner output from a
tie-breaking procedure, as this will give us more information about the rules.
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The Dodgson score (Dodgson 1876, see e.g. Black 1958; Tideman 1987), which we de-
note as ScD(a), of an alternative a is the minimum number of neighbouring alternatives
that must be swapped to make a a Condorcet winner. For example, say our profile is the
single vote cba. Then we swapping a and c would make a a Condorcet winner, however c

and a are not neighbouring, so we would have to first swap ba and then swap ca. Hence
the Dodgson score of a is 2. We call the alternative(s) with the lowest Dodgson score(s)
the Dodgson winner(s).

The Simpson score (Simpson 1969, see e.g. Laslier 1997) ScS(a) of an alternative a is
the maximum advantage of any other alternative b over a:

ScS(a) = max
b6=a

adv(b, a).

Although the Simpson rule was not designed to approximate the Dodgson rule, it is
slightly simpler than the other approximations we study and so we are interested in
whether it approximates the Dodgson rule well for a large number of voters. We call
the alternative(s) with the lowest Simpson score(s) the Simpson winner(s). That is, the
alternative with the smallest maximum defeat is the Simpson winner. This is why the
rule is often known as the Maximin or Minimax rule.

The Tideman score (Tideman, 1987) ScT(a) of an alternative a is the sum of the advan-
tages of each other alternative b over a:

ScT(a) =
∑

b6=a

adv(b, a).

We call the alternative(s) with the lowest Tideman score(s) the Tideman winner(s).
Tideman suggested this approximation as it can be quite hard to compute the Dodgson
winner.

The Dodgson Quick (DQ) score ScQ(a), which is introduced in this thesis for the first
time, of an alternative a is

ScQ(a) =
∑

b6=a

F (b, a),

where F (b, a) =

⌈

adv(b, a)

2

⌉

.

That is, the Dodgson Quick score of an alternative a is the sum of the advantage of
each other alternative b over a divided by two and rounded up. See Section 1.1.7 for an
informal discussion of why this leads to a better approximation than Tideman’s rule, and
see Chapter 3 for formal proofs. We call the alternative(s) with the lowest Dodgson Quick
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score(s) the Dodgson Quick winner(s) or DQ-winner.
The Dodgson relaxed (DR) score ScR(a), which is introduced in this thesis for the first

time, is defined similarly to the Dodgson score. Under the Dodgson rule, we may only
switch neighbouring alternatives in whole votes. The Dodgson relaxed rule allows us
to split votes into rational23 fractions of a vote and swap neighbouring alternatives in
these fractions of a vote. However we must swap each other alternative d over a at least
dadv(a, d)/2e times, even though adv(a, d)/2 times would be enough to made d a Con-
dorcet winner. (Under the Dodgson rule, we must also swap each alternated d over a at
least dadv(a, d)/2e times, as the Dodgson rule does not allow us to swap alternative in
fractional votes). For a more complete definition of the DR score, and discussion of this
rule, see Chapter 5.

The Dodgson Relaxed and Rounded (R&R) score Sc&(a), which is introduced in this
thesis for the first time, of an alternative a, is the ceiling24 dScR(a)e of the Dodgson relaxed
score.

We will not define the Kemeny and Borda rule. Although we mentioned these rules in
the introduction, we do not study these rules, and so we do not need a formal definitions
of these rules.

1.2.5 Impartial Culture Assumption
The impartial culture assumption is that all possible profiles P are equally likely25. This
assumption is of course unrealistic. Worse, we have found that the choice of probability
model can affect the similarities between approximations to the Dodgson rule (McCabe-
Dansted and Slinko, 2006). However it is impossible to select an assumption that accu-
rately reflects the voting behaviour of all voting societies. Berg (1985) suggests studying
voting properties under a variety of voting assumptions. We have conducted a broader
survey of relationships between voting rules McCabe-Dansted and Slinko (2006), in this
thesis we instead seek to gain an in depth understanding of the Approximability of Dodg-
son’s rule. This requires us to focus on a single assumption of voting behaviour. The im-
partial culture is the simplest assumption available. As noted by Berg (1985), many voting
23A rational number is a number that can be represented as n/m where n and m are integers. In fact the

Dodgson relaxed rule could be equivalently defined as allowing splits into any real fraction of a vote,
the Dodgson relaxed score would be the same either way.

24The ceiling of a number x is the smallest integer that is greater than or equal to x, i.e. x rounded up to the
nearest integer.

25This is not to be confused with the impartial anonymous assumption that all possible voting situations,
are equally likely. With a two alternative, two agent election there are four possible profiles (ab, ab),
(ab, ba), (ba, ab) and (ba, ba). However there are only three possible voting situations because {ab, ba} =
{ba, ab}. With a large number of agents the amount of support for each alternative will be roughly the
same. For example, if we have a million agents we would expect to see half a million, give or take a
thousand, supporters of each alternative.
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theorists have chosen to focus their research upon the impartial culture assumption. Thus
an in depth study of the Approximability of Dodgson’s rule under the impartial culture
is a natural first step.

We may derive a multinomial distribution from the impartial culture assumption as
follows. Let P be a random profile defined on a set of m alternatives A and n agents.
Let then X be a vector where each Xi represents the number of occurrences of a distinct
linear order in the profile P . Then, under the impartial culture assumption, the vector X

is (n, k,p)-multinomially distributed with k = m! and p = 1k/k = ( 1
k
, 1

k
, . . . , 1

k
).

An (n, k,p)-multinomial distribution is similar to a binomial distribution with n trials.
However such a multinomial distribution has k elementary outcomes instead of just “suc-
cess” and “failure”. See Appendix A for a formal definition of an (n, k,p)-multinomial
distribution, as well as our definition of an (n, p)-binomial distribution and a multivariate
(n,b, Ω)-normal distribution.

1.2.6 Pólya-Eggenberger Urn Model

Although our theoretical results deal only with the impartial culture assumption, we in-
clude some numerical results using the Pólya-Eggenberger urn model, to illustrate how
differences in the assumption on the voting behaviour of the agents can lead to different
results.

Under this model we start with a big urn containing balls, each of a different colour
and a non-negative integer a. To generate each random sample, we pull a ball out of the
Urn at random and note its colour. After removing each ball, we return the ball that was
taken to the urn together with a additional balls of the same colour to the urn.

For generation of random profiles, we replace colours with linear orders. The param-
eter a characterises homogeneity; for a = 0 we obtain the well known Impartial Culture
conjecture and for a = 1 the so-called Impartial Anonymous Culture conjecture (Berg and
Lepelly, 1994). In this thesis we wish the value of the parameter of homogeneity to have
the same meaning for different numbers of alternatives. Therefore we use a normalized
parameter b = a

m!
as our main parameter of homogeneity. For example, if b = 1 the sec-

ond agent copies the first agent approximately half of the time regardless of the number
of alternatives.

1.3 Summary
We have introduced a number of major approaches to choosing a winning candidate. One
of the major approaches to voting is to consider the result of pairwise elections. Under
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this approach we attempt to chose a Condorcet winner. However pairwise elections can
have cycles, preventing the occurrence of a Condorcet winner. A number of rules have
been suggested that pick the Condorcet winner when it exists, and otherwise picks a
candidate that is in some sense the closest to being a Condorcet winner. A particularly
interesting example of such a rule is the Dodgson rule.

As it can be computationally hard to find the Dodgson winner, we seek approximations
that can be easily computed, yet will frequently pick the Dodgson winner. We propose
a new approximation that we call the Dodgson Quick rule. Under the impartial culture
assumption, we will prove that the probability that this rule picks the Dodgson winner
converges to 1 exponentially fast as we increase the number of voters. We will use this
result to prove that the approximation suggested by Tideman also converges to the Dodg-
son rule. However we prove that this approximation does not converge exponentially
fast, in this sense our new approximation is superior.

We also propose the new approximations Dodgson Relaxed and Dodgson Relaxed and
Rounded (R&R). The Dodgson Relaxed approximation is defined very similarly to the
Dodgson rule, but allows votes to be split into rational fractions of a vote, and neighbour-
ing alternatives to be swapped in these fractional votes. The R&R scores are the Dodgson
Relaxed score rounded up. We will show that the scores and winners of these rules can
be computed in polynomial time.

We find that the approximations to the Dodgson rule (Tideman, DQ, DR, and R&R)
provide increasingly accurate lower bounds to the true Dodgson score. That is, given any
profile P and alternative a

1/2ScT(a) ≤ ScQ(a) ≤ ScR(a) ≤ Sc&(a) ≤ ScD(a).

The final approximation R&R is so close that we doubt that we would ever come across a
real world example of the R&R rule picking a different winner to the Dodgson rule. Out of
43 million simulations, using different profile sizes and assumptions on voter behaviour,
we only found one case were the R&R winner differed from the Dodgson winner. This
case was with 25 alternatives and 5 agents, but real world examples usually have many
more agents than alternatives. We suggest the R&R rule is in some sense better than
the Dodgson rule, because the R&R rule sometimes allows us to break ties in favor of
alternatives that are fractionally better according to the relaxed rule26.

Since real world elections typically only have a limited number of alternatives, we will
study how long it takes to compute the Dodgson winner for a fixed number of alterna-
tives. We find that we can find the Dodgson score and Dodgson winner with O(log n) ex-
26The R&R score is the Dodgson relaxed score rounded up. This when faced with tied R&R winners, one

can choose break ties based upon which candidate had a fractionally lower Dodgson relaxed score.
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pected time; in, the worst-case we requireO(log n) basic arithmetic operations ofO(log n)

digit numbers27. This result means that finding the Dodgson score and finding the Dodg-
son winner are Fixed Parameter Tractable (FPT) problems with respect to the parameter
m, the number of alternatives. We find it interesting that in the general case Dodgson Win-
ner is harder even than NP-complete problems (Hemaspaandra et al., 1997), yet when we
make the reasonable assumption that the number of alternatives is fixed, the finding the
Dodgson winner is such an easy problem.

An approximation similar to our Dodgson Quick approximation was independently
suggested by Homan and Hemaspaandra (2005). However we approached the prob-
lem from a different angle. Unlike the algorithm proposed by Homan and Hemaspaan-
dra, our scores provide lower bounds for the Dodgson scores. Also unlike Homan and
Hemaspaandra’s C3 rule, our approximation is a C2 rule, meaning that it only requires
knowledge of the weighted majority relation to find its winner, which can make our ap-
proximation easier to study mathematically.

A diagram of the relationship between the concepts relevant to this thesis is provided
on page 141. This figure is included solely to assist those who find visual summaries
easier to understand. It does not introduce any new material, nor is it otherwise required
to understand this thesis.

In our proofs we find it useful to know whether there is a profile for which a particular
weighted tournament is a weighted majority relation. McGarvey’s Theorem states that for
any tournament there exists a profile for which that tournament is the majority relation.
However this result does not extend to weighted tournaments, and so is of no use in our
proofs. Fortunately, we know that for any weighted tournament, it is possible to find
a profile for which that weighted tournament is the weighted majority relation for that
profile. This result was probably first proven by Debord (1987). As we do not have access
to this paper, we will present an independent proof.

27Note that each basic arithmetic operation (addition, subtraction and multiplication) on d digit numbers
requires O(d log d log log d) time (Schönhage and Strassen, 1971).
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Chapter 2

A McGarvey Theorem for Weighted Tournaments

The McGarvey Theorem (1953) is a famous theorem that states that every tournament can
be represented as a majority relation for a certain society of voters. We will prove a gen-
eralization of the McGarvey Theorem to weighted tournaments and weighted majority
relations.

Laslier (1997), calls weighted tournaments “generalized tournaments”. However the
term “generalized tournament” seems to be less popular with other authors and the term
“weighted tournament” gives an indication of how the tournament has been generalized.

Like most other authors, Laslier defines weighted tournaments as matrices and tourna-
ments as (complete and asymmetric) binary relations. However Laslier notes that there
are many different equivalent definitions of tournaments, of which Laslier gives four ex-
amples. In this Chapter we define both tournaments and weighted tournaments as func-
tions, for consistency. In Chapter 1 we gave a definition of tournaments as complete and
asymmetric graphs. This definition is useful for presenting tournaments. However, in
proofs, we find it more convenient to define tournaments as functions.

Definition 2.0.1 Let a weighted tournament on A be a function W : A × A → Z, such that
W (a, b) = −W (b, a) for all a, b. We call W (a, b) a weight if a 6= b.

We may equivalently draw a weighted tournament as a weighted graph, i.e. a directed graph
with integers (weights) attached to edges. An edge is drawn from a to b, with an arrow pointing
to b, if and only if W (a, b) > 0.

Note 2.0.2 Tournaments are not indifferent between any pair of distinct alternatives. For this
reason we cannot convert a weighted tournament which contains a 0 weight to an ordinary tour-
nament simply by removing the weights form the edges of the directed graph.

Definition 2.0.3 We define the sum W1+W2 of two weighted tournaments as a function f , where
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for all alternatives a and b we have:

f(a, b) = W1(a, b) + W2(a, b).

Similarly, we define the difference between two weighted tournaments W1 −W2 as a function f

where for all alternatives a and b we have:

f(a, b) = W1(a, b)−W2(a, b).

Definition 2.0.4 We define the weighted majority relation W P on a profile P as the weighted
tournament where each weight W P(a, b) of a pair of alternatives (a, b) equals nab − nba

1. We say
that a profile P generates a weighted tournament W P if WP is the weighted majority relation on
P .

For example, we say that the profile (abc, abc, cab, cab, bca) generates the weighted tourna-
ment above.

Note 2.0.5 adv(a, b) = W P(a, b)+, where x+ = max(0, x). Similarly W P(a, b) = adv(a, b) −
adv(b, a).

Below we define the tournament and majority relation as function. The definition of tour-
nament below is equivalent to the more traditional definition as a complete and asym-
metric binary relation, used by Laslier (1997); we simply write W (a, b) = 1 where Laslier
would write aWb.

Our definition of majority relation is also equivalent to Laslier’s (1997, p. 34, definition
2.1.2). Some other authors include a λ parameter or tie-breaking in their definition of a
majority relation. We do not include λ or tie-breaking in our definition; these concepts
are not needed to express the McGarvey theorem.

Definition 2.0.6 A tournament W on A is a weighted tournament where all weights are 1 or
-1.

Definition 2.0.7 We define the majority relation W P on a profile P as the tournament where
each weight WP(a, b) of a pair of alternatives (a, b) equals 1 if and only if nab−nba is greater than
zero. We say that a profile P generates a tournament W P if WP is the majority relation on P .

Definition 2.0.8 For a weighted tournament W , for which all weights are non-zero, we define
the reduction of W to be the tournament WS where:

WS(a, b) = 1 ⇐⇒ W (a, b) > 0.

1Recall that on page xii we define ndc, for any pair of alternatives d and c, as the number of agents in our
profile P who rank c above d, i.e. #{dPic}.
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Thus, from the definition of a weighted tournament:

WS(a, b) =











1 if W (a, b) > 0

−1 if W (a, b) < 0

0 if a = b

.

Note 2.0.9 If WP is the weighted majority relation on the profile P , then the reduction W P
S is the

majority relation on the profile P .

Definition 2.0.10 The majority relation on a profile P is the reduction W P
S of WP , where WP

is the weighted majority relation on P .

We will now state the McGarvey Theorem in terms of tournaments and majority relations:

Theorem 2.0.11 (McGarvey 1953) For every tournament W there exists a profile P such that
W is the majority relation generated by P .

Lemma 2.0.12 Let W P be a weighted majority relation on a profile P with n agents, then all
weights in WP have the same parity as n. That is, for each pair of distinct alternatives a and b, the
weight WP(a, b) is even if and only if n is even.

Proof. We know that for all alternatives a and b we have W P(a, b) = nab − nba and
n = nba +nab. Hence WP(a, b)+n = 2nab and so WP(a, b) and n have the same parity.

Lemma 2.0.13 For a weighted tournament W with all weights being even, we may construct a
profile P for which W is a weighted majority relation. This profile has exactly

∑

W (a, b)+ agents.

Proof. We may construct such a profile as follows:
We start with an empty profile P . For each pair of alternatives (a, b), for which the

weight W (a, b) is positive, we let k = W (a, b)/2. We take a linear order v, on the set of
alternatives A, such that avb and bvx for all x 6= a, b. For example, v = abcde. We then
reverse the linear order, keeping a ranked above b, in this case producing w = edcab. We
add k instances of v and k instances of w to the profile P . This ensures that the weight
of (a, b) generated by profile P is equal to W (a, b) without affecting the weight of (x, y)

where (b, a) 6= (x, y) 6= (a, b).
For each positive weight W (a, b) we used exactly W (a, b) agents. Thus there are exactly

∑

W (a, b)+ agents in the constructed profile.
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Note 2.0.14 In the lemma above we have found an upper bound
∑

W (a, b)+ on the number of
agents required. Where we have m alternatives and all positive weights are 2 (the smallest positive
even number), we require 2

(

m
2

)

agents. This is the same upper bound that McGarvey found for
ordinary tournaments. As McGarvey suspected, there was a tighter upper bound. Erdös and
Moser (1964) has shown that for ordinary tournaments we will require no more than c1m/ ln m

agents, where c1 is some fixed positive constant. From the previous work by Stearns (1959) we
know that it is not possible to find tighter bound than this for ordinary tournaments, as there exists
a positive constant c2 such that for all m there exists a tournament, with only m alternatives, for
which more than c2m/ ln m agents are required.

For a weighted tournament with a weight W (a, b) = w, we know that the profile will need to
contain at least w agents that prefer a to b. Thus maxa,b(W (a, b)) provides a lower bound on the
number of agents required for weighted tournaments, and so the number of required agents n is
unbounded for a fixed number of alternatives m. It follows that Erdös and Moser’s bound does
not apply to weighted tournaments. Never-the-less, it may be possible to find an equivalent of
this bound for weighted tournaments. We have not attempted to do so, as the number of agents
required is irrelevant to our proofs in Chapter 3.

Lemma 2.0.15 For a weighted tournament W with all weights being odd, we may construct a
profile which generates this weighted tournament. We will need no more than

m(m− 1)

2
+
∑

(a,b)

W (a, b)+

agents to construct this profile.

Proof. Let W1 be the weighted majority relation of a profile consisting of a single
arbitrarily chosen linear order v. Let W2 = W −W1.

Note that as W1 is generated from a profile with an odd number (i.e. one) of linear
orders, all the weights in W1 must be odd. Thus all weights in W2 are the difference
between two odd numbers. Hence all weights in W2 are even and we can construct a
profile for which W2 is the majority relation, as shown by Lemma 2.0.13. Since W =

W1 + W2, joining the profiles that generate W1 and W2 constructs a profile that generates
W .

Now we shall determine an upper bound on how many agents we will need. Say that
P1, P2 and P are the profiles we constructed that generate W1, W2, and W respectively.
From the construction in Lemma 2.0.13, there will be exactly

∑

(a,b) W2(a, b)+ agents in P2,
and thus exactly 1+

∑

(a,b) W2(a, b)+ agents in P . We may pick v such that cvd, where c, d

are alternatives such that W (c, d) ≥ 1. As W2 = W−W1, we have W2(c, d)+ = W (c, d)+−1.
In a complete graph with m vertices, there are m(m− 1)/2 edges. Thus, for m(m− 1)/2

pairs of alternatives W1(a, b) = −1, and hence W2(a, b) = W (a, b) + 1. Thus for no more
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than m(m− 1)/2 pairs (a, b) of alternatives W2(a, b) = W (a, b) + 1. Thus,

∑

(a,b)

W2(a, b)+ ≤ (−1) +
m(m− 1)

2
+
∑

(a,b)

W (a, b)+.

Now we have an upper bound for the number of agents we will need to construct P2. As
there is one more agent in P that is not in P2, we know that we need at most

m(m− 1)

2
+
∑

(a,b)

W (a, b)+

agents to construct P .

We may now prove our generalisation to the McGarvey theorem.

Theorem 2.0.16 There exists a profile that generates a weighted tournament W if and only if all
weights in W have the same parity.

Proof. (⇐=) From the last two lemmas, we know that if all weights are even or if all
weights are odd, we can construct a profile that generates W .

( =⇒ ) We know that if n is odd our profile will generate a weighted tournament with
all weights odd, if n is even our profile will generate a weighted tournament with all
weights even. Thus every profile generates a weighted tournament for which either all
weights are even or all weights are odd.

Note 2.0.17 All weights in a tournament WS are odd (1 or -1). Thus from Theorem 2.0.16, we
may find a profileP such that the weighted majority relation W P is equal to WS . As WP is already
an ordinary tournament, its reduction W P

S is equal to WP , and hence also equal to WS.
Hence the McGarvey theorem, that for all tournaments WS there exists a profile P such that the

majority relation W P
S is equal to WS , is a special case of Theorem 2.0.16.
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Chapter 3

Simple Rules that Approximate the Dodgson
Rule

3.1 Dodgson Quick, A New Approximation
Definition 3.1.1 We say that b is ranked directly above a in a linear order v if and only if avb

and there does not exist c different from a, b such that avc ∧ cvb.

Definition 3.1.2 Recall that given a profile P , we define D(b, a) as the number of agents who
rank b directly above a in their preference list, and we define F (b, a) and the Dodgson Quick (DQ)
score ScQ(a) of an alternative a as follows1

F (b, a) =

⌈

adv(b, a)

2

⌉

,

ScQ(a) = Σb6=aF (b, a).

The Dodgson Quick score and the rule Dodgson Quick (DQ) based on that score is intro-
duced in this thesis. Recall also that we define the Dodgson score ScD(a) of an alternative
a as the minimum number of neighbouring preferences that must be swapped to make a

a Condorcet winner.

Lemma 3.1.3 For distinct alternatives a, b ∈ A, under the impartial culture assumption nba and
D(b, a) are binomial random variables with means of n/2 and n/m respectively.

Proof. For each linear order v, we may reverse the order v to produce its opposite v̄,
i.e. cvd ⇔ dv̄c for all c, d ∈ A. This operation v 7→ v̄ provides a bijection between linear

1Recall that dxe is defined on page xi as the ceiling of x, the smallest integer that is greater than or equal to
x. Also recall that nba was defined as the number of agents who ranked alternative b above alternative
a in their preference list.
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SIMPLE RULES THAT APPROXIMATE THE DODGSON RULE

orders where b is ranked above a and those where b is ranked below a. Hence these two
sets of linear orders have the same cardinality. Under the impartial culture assumption,
this implies that the probability that any agent ranks b above a is 1/2.

The number of ways that b can be ranked directly above a is easily calculated if we
consider the pair ba to be one object. Then we see that this number is equal to the number
of permutations of (m − 1) objects, i.e. (m − 1)!. The probability that b is ranked directly
above a is (m− 1)!/m!, which is equal to 1/m.

Since votes are independent under the impartial culture assumption, nba and D(b, a) are
binomially distributed random variables. The mean of a binomially distributed random
variable is np, so the means of nba and D(b, a) are n/2 and n/m, respectively.

Lemma 3.1.4 Under the impartial culture assumption, the probability that D(x, a) >F (x, a) for
all x converges exponentially fast to 1 as the number of agents n tends to infinity.

Proof. Under the impartial culture assumption, nba and D(b, a) are binomially dis-
tributed with means of n/2 and n/m respectively. From Chomsky’s (Dembo and Zeitouni,
1993) large deviation theorem, we know that for a fixed number of alternatives m there
exist β1 > 0 and β2 > 0 such that

P

(

D(b, a)

n
<

1

2m

)

≤ e−β1n,

P

(

nba

n
− 1

2
>

1

4m

)

≤ e−β2n.

We can rearrange the second equation to involve F (b, a),

P

(

nba

n
− 1

2
>

1

4m

)

= P

(

2nba

n
− 1 >

1

2m

)

= P

(

2nba − n

n
>

1

2m

)

= P

(

nba − (n− nba)

n
>

1

2m

)

= P

(

nba − nab

n
>

1

2m

)

= P

(

adv(b, a)

n
>

1

2m

)

.

Since adv(b, a) ≥ F (b, a),

P

(

nba

n
− 1

2
>

1

4m

)

≥ P

(

F (b, a)

n
>

1

2m

)

.
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From this and the law of probability P (A ∨ B) ≤ P (A) + P (B) it follows that

P

(

F (b, a)

n
>

1

2m

)

≤ e−β2n,

P

(

D(b, a)

n
<

1

2m

)

≤ e−β1n,

and so, where β = min(β1, β2),

P

(

F (b, a)

n
>

1

2m
∨ D(b, a)

n
<

1

2m

)

≤ e−β1n + e−β2n

≤ 2e−βn.

Hence

P

(

∃x
F (x, a)

n
>

1

2m
∨ D(x, a)

n
<

1

2m

)

≤ 2me−βn.

Using P (Ē) = 1− P (E), we find that

P

(

∀x
F (x, a)

n
<

1

2m
<

D(x, a)

n

)

≥ 1− 2me−βn.

Lemma 3.1.5 The DQ-score ScQ(a) is a lower bound for the Dodgson Score ScD(a) of a.

Proof. Let P be a profile and a ∈ A. Suppose we are allowed to change linear orders in
P , by repeated swapping neighbouring alternatives. Then to make a a Condorcet winner
we must reduce adv(x, a) to 0 for all x and we know that adv(x, a) = 0 if and only if
F (x, a) = 0. Swapping a over neighbouring alternative b will reduce (nba − nab) by two,
but this will not affect (nca − nac) where a 6= c. Thus swapping a over neighbouring b

will reduce F (b, a) by one, but will not affect F (c, a) where b 6= c. Therefore, making a a
Condorcet winner will require at least ΣbF (b, a) swaps. This is the DQ-Score ScQ(a) of a.

Lemma 3.1.6 If D(x, a) ≥ F (x, a) for every alternative x, then the DQ-Score ScQ(a) of a is
equal to the Dodgson Score ScD(a).

Proof. If F (b, a) ≤ D(b, a), we can find at least F (b, a) linear orders in the profile where
b is ranked directly above a. Thus we can swap a directly over b, F (b, a) times, reducing
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F (b, a) to 0. Hence we can reduce F (x, a) to 0 for all x, making a a Condorcet winner,
using ΣxF (x, a) swaps of neighbouring preferences. In this case, ScQ(a) = ΣbF (b, a) is an
upper bound for the Dodgson Score ScD(a) of a. From Lemma 3.1.5 above, ScQ(a) is also
a lower bound for ScD(a). Hence ScQ(a) = ScD(a).

Corollary 3.1.7 If D(x, a) ≥ F (x, a) for every pair of distinct alternatives (x, a), then the DQ-
Winner is equal to the Dodgson winner.

Theorem 3.1.8 Under the impartial culture assumption, the probability that the DQ-Score ScQ(a)

of an arbitrary alternative a is equal to the Dodgson Score ScD(a), converges to 1 exponentially
fast.

Proof. From Lemma 3.1.6, if D(x, a) ≥ F (x, a) for all alternatives x then ScQ(a)=
ScD(a) however from Lemma 3.1.4, P (∀x D(x, a) ≥ F (x, a)) converges exponentially fast
to 1 as n→∞.

Corollary 3.1.9 There exists an algorithm that computes the Dodgson score of an alternative a

given the frequency of each linear order in the profile P as input, with expected running time that
is logarithmic with respect the number of agents (i.e. is O(ln n) for a fixed number of alternatives
m).

Proof. The are at most m! distinct linear orders in the profile. Hence for a fixed number
of alternatives the number of distinct linear orders is bounded. Hence we may find the
DQ-score and check whether D(x, a) ≥ F (x, a) for all alternatives x using a fixed number
of additions. The largest number that needs to be added is proportional to the number of
agents n. Additions can be performed in time linear with respect to the number of bits -
logarithmic with respect to the size of the number. So we have only used an amount of
time that is logarithmic with respect to the number of agents.

If D(x, a) ≥ F (x, a) for all alternatives x, we know that the DQ-score is the Dodgson
score and we do not need to go further. From Lemma 3.1.4 we know that the probability
that we need go further declines exponentially fast, and we can still find the Dodgson
score in time that is polynomial with respect to the number of agents (Bartholdi et al.,
1989).

Corollary 3.1.10 There exists an algorithm that computes the Dodgson winner given the fre-
quency of each linear order in the profile P , and has expected running time that is logarithmic
with respect the number of agents.
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Corollary 3.1.11 Under the impartial culture assumption, the probability that the DQ-Winner
is the Dodgson winner converges to 1 exponentially fast as we increase the number of agents.

Obvious from Theorem 3.1.8 above.

We know that the probability that the DQ-Score equals the Dodgson Score converges
to 1 at an exponential rate from Theorem 3.1.8 above. Theorem 3.1.13 below does not
imply exponential convergence, however this theorem does give a lower bound for this
probability given a profile of a particular size. To give an idea as to when the DQ-Score
will begin to converge to the Dodgson Score, we will start working towards Theorem
3.1.13.

Lemma 3.1.12 Let X be a random variable with variance σ2 and mean of µ > 0, then the proba-
bility P (X ≤ 0), that X is non-positive, is no greater than σ2

µ2 .

Proof. Chebyshev’s theorem as states (see e.g. Walpole and Myers, 1993, p108) that

P (µ− kσ < X < µ + kσ) ≥ 1− 1

k2
.

Thus

P (X > µ− kσ) ≥ 1− 1

k2
.

As P (E) = 1− P (Ē),

P (X ≤ µ− kσ) ≤ 1

k2
.

Setting k = µ/σ,

P (X ≤ µ− µ

σ
σ) ≤ 1

(

µ
σ

)2 ,

from which, by simplifying both sides, we obtain

P (X ≤ 0) ≤ σ2

µ2
.

Theorem 3.1.13 Under the impartial culture assumption, the probability that the DQ-Score
ΣbF (b, a) is not equal to the Dodgson Score of a is less than m3

n
.
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Proof. Let p = (p1, p2, p3) be a vector. Consider the (n, 3,p)-multinomial distribution
where outcome 1 is “a is ranked over b”, outcome 2 is “b is ranked directly over a”, and
outcome 3 is “b is ranked over a, but not directly”. Let X be our random vector. From
Lemma 3.1.3 the outcomes’ probabilities are p1 = 1/2, p2 + p3 = 1/2, p2 = 1/m. We may
deduce that E[X1 −X3] = n/m, and var(X1 −X3) ≤ n as follows,

p3 =
1

2
− 1

m
,

thus,

E[X1 −X3] =
n

2
−
(n

2
− n

m

)

=
n

m
.

As X is multinomially distributed, cov(Xi, Xj) = −npipj, so

cov(X1,−X3) = n

(

1

2

)(

1

2
− 1

m

)

,

var(Xi + Xj) = var(Xi) + var(Xj) + 2cov(Xi, Xj),

var(Xi) = npiqi,

and thus

var(X1 −X3) = n

(

1

2

)(

1

2

)

+ n

(

1

2
− 1

m

)(

1

m
− 1

2

)

+ 2

(

1

2

)(

1

2
− 1

m

)

≤ n

(

1

2

)(

1

2

)

+ n

(

1

2

)(

1

2

)

+ 2n

(

1

2

)(

1

2

)

= n.

We may now formulate the upper bound for the probability that the DQ-Score ScQ(a)

is not equal to the Dodgson Score ScD(a) in terms of this multinomial distribution, using
Lemma 3.1.6.

P (ScQ(a) 6= ScD(a)) ≤ P (∃b : D(b, a) < F (b, a)),

as P (A ∨ B) ≤ P (A) + P (B)

P (ScQ(a) 6= ScD(a)) ≤ mP (D(b, a) < F (b, a)).

Because nba − nab ≥ adv(b, a) ≥ F (b, a),

P (ScQ(a) 6= ScD(a)) ≤ mP (D(b, a) < nba − nab)

= mP (D(b, a)− nba + nab < 0),
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and D(b, a) = X2, nba = (X2 + X3), nab = X1, so

P (ScQ(a) 6= ScD(a)) ≤ mP (X2 − (X2 + X3) + X1 < 0)

= mP (X1 −X3 < 0).

We now find an upper bound for P (X1 −X3 < 0) using Lemma 3.1.12.

P (X1 −X3 < 0) ≤ var(X1 −X3)

E[X1 −X3]2

≤ n
(

n
m

)2 =
m2

n
.

Thus the probability that the DQ-score is not the Dodgson Score is less than m3

n
.

Corollary 3.1.14 Under the impartial culture hypothesis, the probability that the that the Dodg-
son winner is not the DQ-winner is less than m4

n
.

3.2 Tideman’s Rule
Recall that in Section 1.2.4 we defined the Tideman score ScT(a) of an alternative a as

ScT(a) =
∑

b6=a

adv(b, a),

and that the Tideman winner is the candidate with the lowest score.

Lemma 3.2.1 Given an even number of agents, the Tideman winner and the DQ-winner will be
the same.

Proof. Since the n is even, we know from Lemma 2.0.12 that all weights in the majority
relation W are even. Since the adv(a, b) ≡ W (a, b)+ it is clear that all advantages will also
be even. Since adv(a, b) will always be even, dadv(a, b)/2e will be exactly half adv(a, b)

and so the DQ-score will be exactly half the Tideman score. Hence the DQ-winner and
the Tideman winner will be the same.

Corollary 3.2.2 Under the impartial culture assumption, for 2n agents and a fixed number of
alternatives m, the probability that the Tideman winner is the Dodgson winner converges to 1
exponentially fast as n approaches infinity.
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Proof. Obvious, as if there are an even number of agents the Tideman winner equals
the DQ-winner (Lemma 3.2.1) and the probability that the DQ-winner is the Dodgson
winner converges exponentially fast as napproaches infinity (Corollary 3.1.11).

Corollary 3.2.3 If the number of agents is even and D(x, a) ≥ F (x, a) for every pair of distinct
alternatives (x, a), then the Tideman winner is equal to the Dodgson winner.

Obvious from Lemma 3.2.1 above and Corollary 3.1.7.

Corollary 3.2.4 If the Tideman winner is not the DQ-winner, all non-zero advantages are odd.

Proof. As we must have an odd number of agents, from Lemma 2.0.12 all weights
in the majority relation W must be odd. Since the adv(a, b) ≡ W (a, b)+ the advantage
adv(a, b) must be zero or equal to the weight W (a, b).

Lemma 3.2.5 There is no profile with three alternatives such that the Tideman winner is not the
DQ-winner.

Proof. The Tideman and Dodgson Quick rules both pick the Condorcet winner when
it exists, so if a Condorcet winner exists the Tideman winner and DQ-winner will be the
same. It is well known that the absence of a Condorcet winner on three alternatives means
that we can rename these alternatives a, b and c so that adv(a, b) > 0, adv(b, c) > 0, and
adv(c, a) > 0. These advantages must be odd from the previous corollary. Hence for some
i, j, k ∈ Z such that adv(a, b) = 2i − 1, adv(b, c) = 2j − 1, and adv(c, a) = 2k − 1. The
DQ-Scores and Tideman scores of a, b, c are i, j, k and 2i − 1, 2j − 1, 2k − 1 respectively.
From here the result is clear, since if i > j > k then 2i− 1 > 2j − 1 > 2k − 1.

Lemma 3.2.6 For a profile with four alternatives there does not exist a pair of alternatives such
that a is a DQ-winner but not a Tideman winner, and b is a Tideman winner but not a DQ-winner.

Proof. By way of contradiction assume that there exist such a, b. Thus there is no
Condorcet winner, and so for each alternative c there are one to three alternatives d such
that adv(c, d) > 0. Also, since the set of Tideman winners and DQ-winners differ, n must
be odd and hence all non-zero advantages must be odd. The relationship between the
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Tideman score ScT(c) and the DQ-score ScQ(c) is as follows:

ScT(c) =
∑

d∈A
adv(c, d)

=
∑

d∈A

⌈

adv(c, d)

2

⌉

−#{c : adv(c, d) /∈ 2Z}

= ScQ(c)− (1 or 2 or 3).

Thus

2ScQ(c)− 3 ≤ ScT(c) ≤ 2ScQ(c)− 1,

and so

ScT(a) ≤ 2ScQ(a)− 1.

Given that a is DQ-winner and b is not, we know

ScQ(a) ≤ ScQ(b)− 1.

Thus by substitution,

ScT(a) ≤ 2(ScQ(b)− 1)− 1

= 2ScQ(b)− 3

≤ ScT(b).

This shows that if b is a Tideman winner, so is a. By contradiction the result must be
correct.

Example 3.2.7 There do exist profiles with four alternatives where the set of tied Tideman winners
differs from the set of tied DQ-winners. By Theorem 2.0.16, we know we may construct a profile
with the following advantages.

a

1

1

13

5
5

c

b
x

Scores a b c x

Tideman 5 3 5 3
DQ 3 2 3 3
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Here x, b are tied Tideman winners, but b is the sole DQ-winner.

Theorem 3.2.8 For any m ≥ 5 there exists a profile with m alternatives and an odd number of
agents, where the Tideman winner is not the DQ-winner.

On page 14 we presented an example of a weighted majority relation where the Tideman
winner is not the Dodgson Quick winner. For your convenience, we duplicate it below:

1

1

1

1

5

1

19

9
9

x

y

b

a

c

Scores a b c x y

Tideman 10 10 9 4 5
DQ 6 6 5 4 3

To extend this example for larger numbers of alternatives, we may add additional alter-
natives who lose to all of a, b, c, x, y. From Theorem 2.0.16 and Lemma 2.0.12, there exists
a profile with an odd number of agents that generates that weighted majority relation.

Theorem 3.2.9 Under the impartial culture assumption, if we have an even number of agents,
the probability that all of the advantages are 0 does not converge to 0 faster than O(n−m!

4 ).

Proof. Let P be a random profile, V = {v1,v2, . . . ,vm!} be an ordered set containing
all m! possible linear orders on m alternatives, and X be a random vector, with elements
Xi representing the number of occurrences of vi in P . Under the impartial culture as-
sumption, X is distributed according to a multinomial distribution with n trials and m!

possible outcomes. Let us group the m! outcomes into m!/2 pairs Si = {vi, v̄i}. Denote
the number of occurrences of v as n(v). Let the random variable Y 1

i be n(vi) and Y 2
i be

n(v̄i). Let Yi = Y 1
i + Y 2

i .
From Corollary A.3.7, given Yi = yi for all i, each Y 1

i is independently binomially dis-
tributed with p = 1/2 and yi trials. From Corollary A.2.3, if yi is even then the probability
that Y 1

i = Y 2
i is at least 1

2
√

yi
. Combining these results we get

P (∀iY
1
i = Y 2

i |∀iYi = yi ∈ 2Z) ≥
∏

i

1

2
√

yi

≥
∏

i

1

2
√

n
= 2−

m!
2 n−m!

4 .

From Lemma A.3.8, the probability that all Xi are even is at least 2−k+1 where k = m!/2.
Hence

P (∀iXi,1 = Xi,2) ≥
(

2−
m!
2

+1
)(

2−
m!
2 n−m!

4

)

= 21−m!n−m!
4 .
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If for all i, Xi,1 = Xi,2 then for all i, n(vi) = n(v̄i), i.e. the number of each type of vote is
the same as its complement. Thus

nba =
∑

v∈{v:bva}
n(v) =

∑

v̄∈{v̄:av̄b}
n(v̄) =

∑

v∈{v:avb}
n(v) = nab,

so adv(b, a) = 0 for all alternatives b and a.

Corollary 3.2.10 Under the impartial culture assumption, if we have an even number of agents,
the probability that all of the advantages are 0, does not converge to 0 at an exponentially fast rate.

Lemma 3.2.11 Under the impartial culture assumption, the probability that the Tideman winner
is not the DQ-winner does not converge to 0 faster than O(n−m!

4 ) as the number of agents n tends
to infinity.

Let P be our random profile with n agents, for some odd number n. Let |C| be the size
of the profile from Theorem 3.2.8. Let us place the first |C| agents from profile P into
sub-profile C and the remainder of the agents into sub-profile D. There is a small but
constant probability that C forms the example from Theorem 3.2.8, resulting in the Tide-
man winner of C differing from its DQ-winner. As n, |C| are odd, |D| is even. Thus from
Theorem 3.2.9 the probability that the advantages in D are zero does not converge to 0
faster than O(n−m!

4 ). If all the advantages in D are zero then adding D to C will not affect
the Tideman or DQ-winners. Hence the probability that the Tideman winner is not the
DQ-winner does not converge to 0 faster than O(n−m!

4 ).

Corollary 3.2.12 Under the impartial culture assumption, the probability that the Tideman win-
ner is not the DQ-winner does not converge to 0 exponentially fast as the number of agents n

tends to infinity.

Theorem 3.2.13 Under the impartial culture assumption, the probability that the Tideman win-
ner is not the Dodgson winner does not converge to 0 faster thanO(n−m!

4 ) as the number of agents
n tends to infinity.

Proof. From Corollary 3.1.11 the DQ-winner converges to the Dodgson winner ex-
ponentially fast. However, the Tideman winner does not converge faster than O(n−m!

4 )

to the DQ-winner, and hence also does not converge faster than O(n−m!
4 ) to the Dodgson

winner.
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Lemma 3.2.14 Let S be a subset of A. Let a1a2 . . . a|S| and b1b2 . . . b|S| be two linear orderings of
S. Then the number of linear orders v in L(A) where a1va2, a2va3, . . . , a|S|−1va|S| is equal to the
number of linear orders v where b1vb2, b2vb3, . . . , b|S|−1vb|S|, i.e.

#{v : ∀i∈[2,|S|]ai−1vai} = #{v : ∀i∈[2,|S|]bi−1vbi}.

Proof. Let the function f be defined with domain and range L(A) as follows. If ai is
ranked in position j in v then bi is ranked in position j in f(v). If x /∈ S is ranked in some
position j in v then x is still ranked in position j in f(v).

Clearly, if bi is ranked in position j in v then ai is ranked in position j in all members of
f−1(v). If x /∈ S is ranked in some position j in v then x is still ranked in position j in all
members of f−1(v). Hence f−1(v) is a function.

The function f provides a bijection between the sets {v : ∀i∈[2,|S|]ai−1vai}, {v : ∀i∈[2,|S|]bi−1vbi}.
Hence the result.

Corollary 3.2.15 Let S be a subset of A. The number of linear orders v where ai−1vai for all
i = 2, 3, . . . , |S| is equal to n!/|S|!.

Definition 3.2.16 We define the adjacency matrix M , of a linear order v, as follows:

Mij =











1 if ivj

−1 if jvi

0 if i = j

.

Lemma 3.2.17 Suppose that each linear order is equally likely, then M is an m2-dimensional
random variable satisfying the following equations for all i, j, r, s ∈ A.

E[M ] = 0

= cov(Mij, Mrs) = E[MijMrs]

=































1 if i = r 6= j = s

1/3 if i = r, but i, j, s distinct ∨ j = s, others distinct
−1/3 if i = s, others distinct ∨ j = r, others distinct
0 if i, j, r, s distinct ∨ i = j = r = s

−1 if i = s 6= j = r

.

Proof. From Lemma 3.2.14,

E[Mij] =
(1) + (−1)

2
= 0.

46



TIDEMAN’S RULE

It is well known that cov(X, Y ) = E[XY ]− E[X]E[Y ] (see e.g. Walpole and Myers 1993;
p97). Thus cov(Mij, Mrs) = E[MijMrs] − (0)(0) = E[MijMrs]. Note that for all i 6= j we
know that MiiMii = 0, MijMij = 1, and MijMji = −1. If i = r and i, j, s are all distinct
then the sign of MijMis for each permutation of i, j and s is as shown below.

i i j j s s

j s i s i j

s j s i j i

Mij + + − − + −
Mis + + + − − −

MijMis + + − + − +

Thus from Lemma 3.2.14,

E[MijMrs] =
+1 + 1− 1 + 1− 1 + 1

6
=

1

3
.

If i, j, r, s are all distinct then there are six linear orders v where ivj∧rvs, six linear orders
v where ivj ∧ svr, six linear orders v where jvi ∧ rvs, and six linear orders v where
jvi ∧ svr. Hence from Lemma 3.2.14,

E[MijMrs] = 6(1)(1)+6(1)(−1)+6(−1)(1)+6(−1)(−1)
24

= 0 .

We may prove the other cases for cov(Mij, Mrs) in much the same way.

Corollary 3.2.18 As var(X) = cov(X, X) we also have,

var(Mij) =

{

1 if i 6= j

0 if i = j
.

Example 1 For example, for m = 4 the covariances with M12 are shown in the matrix

L =













0 1 1/3 1/3

−1 0 −1/3 −1/3

−1/3 1/3 0 0

−1/3 1/3 0 0













,

where Lij = cov(Mij, M12).

Definition 3.2.19 Define Y to be a collection of random normal variables indexed by i, j for
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1 ≤ i < j ≤ m each with mean of 0, and covariance matrix Ω, where

Ωij,rs = cov(Yij, Yrs) = cov(Mij, Mrs),

We may use the fact that i < j, r < s implies i 6= j, r 6= s, (s = i⇒ r 6= j) and (r = j ⇒ s 6=
i) to simplify the definition of Ω as shown below:

Ωij,rs =























1 if (r, s) = (i, j)

1/3 if r = i, s 6= j or s = j, r 6= i

−1/3 if s = i or r = j

0 if i, j, r, s are all distinct

,

i.e. if i, j, r, s are all distinct then

Ωij,ij = 1,

Ωij,rj = Ωij,is = 1/3,

Ωij,ri = Ωij,js = −1/3,

Ωij,rs = 0.

Theorem 3.2.20 (Multivariate Central Limit Theorem) Let the k-dimensional vectors X 1, X2, . . .

be independently and identically distributed; each with mean of b, and covariance matrix of Ω.
Then

1√
n

n
∑

i=1

X i − b →D N(0, Ω),

as n→∞. (See e.g. Anderson 1984, p. 81)

Lemma 3.2.21 As n approaches infinity,
∑n

i=1 Mi/
√

n converges in distribution to


















0 Y12 Y13 · · · Y1m

−Y12 0 Y23 · · · Y2m

−Y13 −Y23 0 · · · Y3m

... ... ... . . . ...
−Y1m −Y2m −Y3m · · · 0



















,

where Mi is the adjacency matrix for the ith linear order in a profile P , and recall that Y is be a
collection of random normal variables indexed by i, j for 1 ≤ i < j ≤ m each with mean of 0, and
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covariance matrix Ω, where

Ωij,rs = cov(Yij, Yrs) = cov(Mij, Mrs).

Proof. As M1, M2, . . . , Mn are independent identically-distributed (i.i.d.) random vari-
ables, we know from the multivariate central limit theorem (see e.g. Anderson, 1984; p81)
that

∑n
i=1 Mi/

√
n converges in distribution to the multivariate normal distribution with

the same mean and covariance as M1. As MT = −M and Mii = 0, we have the result.

Lemma 3.2.22 Ω is non-singular.

Proof. Consider Ω2:

(Ω2)ij,kl =
∑

1≤r<s≤m

Γij,kl(r, s),

where Γij,kl(r, s) = Ωij,rsΩrs,kl.
For i, j, r, s distinct then

Γij,ij(i, j) = Ωij,ijΩij,ij = (1)(1) = 1,

Γij,ij(r, j) = Ωij,rjΩrj,ij = (1/3)(1/3) = 1/9,

Γij,ij(i, s) = Ωij,isΩis,ij = (1/3)(1/3) = 1/9,

Γij,ij(r, i) = Ωij,riΩri,ij = (−1/3)(−1/3) = 1/9,

Γij,ij(j, s) = Ωij,jsΩjs,ij = (−1/3)(−1/3) = 1/9,

Γij,ij(r, s) = Ωij,rsΩij,rs = 0.

Case (i, j) = (k, l):
If (i, j) = (k, l) then

Γij,ij(r, s) = Ωij,rsΩrs,ij

=























(1)2 if (r, s) = (i, j)

(1/3)2 if r = i, s 6= j or s = j, r 6= i

(−1/3)2 if s = i, (r 6= j) or r = j, (s 6= i)

0 if i, j, r, s are all distinct

,

Recall that r < s, i < j and r, s ∈ [1, m]. Let us consider for how many values of (r, s)

each of the above cases occur:
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• (r, s) = (i, j): This occurs for exactly one value of (r, s).

• r = i, s 6= j: Combining the fact that r < s and r = i we get i < s. Thus s ∈
(i, j) ∪ (j, m], and there are (j − i − 1) + (m − j) = (m − i − 1) possible values of
s. As there is only one possible value of r this means that there are also (m − i − 1)

possible values of (r, s).

• s = j, r 6= i: Combining the fact that r < s and s = j we get r < j. Thus r ∈
[1, i) ∪ (i, j), and there are (i− 1) + (j − i− 1) = (j − 2) possible values of (r, s).

• s = i: Here we want r 6= j, however r < s = i < j, so explicitly stating r 6= j is
redundant. Combining the fact that r < s and s = i we get r < i. Hence r ∈ [1, i]

and there are i− 1 possible values for (r, s).

• r = j: Here we want s 6= i, however i < j = r < s, so explicitly stating that r 6= j is
redundant. From here on we will not state redundant inequalities. Combining the
fact that r < s and r = j we get j < s. Hence s ∈ (j, m] and there are m− j possible
values for (r, s).

hence,

∑

1≤r<s≤m

Γij,ij(r, s) = (1)(1) + ((m− i− 1) + (j − 2))

(

1

3

)2

+ ((i− 1) + (m− j))

(−1

3

)2

= 1 + (m + j − i− 3)

(

1

9

)

+ (m + i− j − 1)

(

1

9

)

= (9 + (m + j − i− 3) + (m + i− j − 1)) /9

=
2m + 5

9
.

Case i = k, j 6= l: then,

Γij,il(r, s) = Ωij,rsΩrs,il =

=























1Ωrs,il if (r, s) = (i, j)

1/3Ωrs,il if r = i, s 6= j or s = j, r 6= i

−1/3Ωrs,il if s = i or r = j

0 if i, j, r, s are all distinct

,
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more precisely,

Γij,il(r, s) =































































(1)(1/3) = 1/3 if (i, j) = (r, s)

(1/3)(1) = 1/3 if r = i, s = l 6= j

(1/3)(1/3) = 1/9 if r = i, s 6= j, s =6= l

(1/3)(0) = 0 if s = j 6= l, r 6= i

(−1/3)(−1/3) = 1/9 if s = i

(−1/3)(1/3) = −1/9 if r = j, s = l

(−1/3)(0) = 0 if r = j, s 6= l

0 = 0 if i, j, r, s are all distinct

,

hence,
∑

1≤r<s≤m

Γ(r, s) =
1

3
+

1

3
+

∑

1≤r<s≤m,r=i,s6=j,s=6=l

1

9
+

∑

1≤r<s≤m,s=i

1

9
− 1

9

=
1

3
+

1

3
+
∑

i<s≤m

1

9
− 2

9
+
∑

1≤r<i

1

9
− 1

9

=
1

3
+ (m− i)

1

9
+ (i− 1)

1

9

=
m + 2

9
.

Similarly for i 6= k, j = l, we may show (Ω2)ij,kj = m+2
9

. If j = k then

(Ω2)ij,kl = −1

3
− 1

3
+

1

9
−

∑

1≤r<i,r 6=i

1

9
−

∑

j<s≤m,s6=l

1

9
,

= −m + 2

9
,

similarly for l = i. If i, j, k, l are all distinct, (Ω2)ij,kl equals 0. Consequently

Ω2 =

(

m + 2

3

)

Ω−
(

m + 1

9

)

I

Now, when a matrix Ω satisfies Ω2 = αΩ+βI with β 6= 0 it has an inverse as shown below,

Ω

(

Ω− α

β

)

= I,

and hence Ω is not singular.
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Theorem 3.2.23 If f(x) ≤ g(x) ≤ h(x) for all x, and limx→x0 f(x) = limx→x0 h(x) then
limx→x0 f(x) = limx→x0 g(x).

This famous theorem is often called the sandwich theorem. It is also known as the
squeeze theorem or pinch theorem.

Theorem 3.2.24 The probability that the Tideman winner and Dodgson Quick winner coincide
converges asymptotically to 1 as n→∞.

Proof. The Tideman winner is the alternative a ∈ A with the minimal value of

G(a) =
∑

b∈A

adv(b, a),

while the DQ-winner has minimal value of

F (a) =
∑

b∈A

⌈

adv(b, a)

2

⌉

.

Let aT be the Tideman winner and aQ be the DQ-winner. Note that G −m ≤ 2F ≤ G. If
for some b we have G(b)−m > G(aT ), then 2F (b) ≥ G(b)−m > G(aT ) ≥ 2F (aT ) and so b

is not a DQ-winner. Hence, if G(b)−m > G(aT ) for all alternatives b distinct from a, then
aT is also the DQ-winner aQ. Thus,

P (aT 6= aQ) ≤ P (∃a,b|G(a)−G(b)| ≤ 2m ∧ a 6= b)

= P

(

∃a,b

∣

∣

∣

∣

G(a)−G(b)√
n

∣

∣

∣

∣

≤ 2m√
n
∧ a 6= b

)

,

thus for any ε > 0 and sufficiently large n, we have

P (aT 6= aQ) ≤ P

(

∃a,b

∣

∣

∣

∣

G(a)−G(b)√
n

∣

∣

∣

∣

≤ ε ∧ a 6= b

)

We will show that the right-hand side of the inequality above converges to 0 as n tends
to ∞. All probabilities are non-negative so 0 ≤ P (aT 6= aQ). From these facts and the
sandwich theorem it follows that limn→∞ P (aT 6= aQ) = 0. We let,

Gj =
∑

i<j

(Yij)
+ +

∑

k>j

(−Yjk)
+ ,

and so,

lim
n→∞

P

(

∃a,b

∣

∣

∣

∣

G(a)−G(b)√
n

∣

∣

∣

∣

≤ ε ∧ a 6= b

)

= P (∃i,j |Gi −Gj| ≤ ε ∧ i 6= j)
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Since ε > 0 is arbitrary, the infimum is ε = 0. Thus,

lim
n→∞

P (aT 6= aQ) ≤ P (∃i,jGi = Gj ∧ i 6= j).

For fixed i < j we have

Gi −Gj = −Yij +
∑

k<i

(−Yki)
+ +

∑

k>i,k 6=i

(Yik)
+ −

∑

k<j,k 6=i

(Ykj)
+ −

∑

k>j

(−Yjk)
+

Define v so that Gi − Gj = −Yij + v. Then P (Gi = Gj) = P (Yij = v) = E[P (Yij = v|v)].
Since Y has a multivariate normal distribution with a non-singular covariance matrix Ω,
we know from Lemma A.4.1 that P (Yij = v|v) = 0. That is, P (Gi = Gj) = 0 for any i, j

where i 6= j. Hence P (∃i,jGi = Gj ∧ i 6= j) = 0. As discussed previously in this proof, we
may now use the sandwich theorem to prove that limn→∞ P (aT 6= aQ) = 0.

3.3 Numerical Results
Although we have proven theorems on the rate of convergence, tables of figures can help
illustrate the nature of the convergence. In this section we present tables demonstrat-
ing the rate fast convergence of our Dodgson Quick rule in comparison to the Tideman
rule. We also study the asymptotic limit of the probability that the Simpson winner is the
Dodgson winner as we increase the number of agents.

As shown below the convergence of the Tideman winner to the Dodgson Winner occurs
much slower than the exponential convergence of the DQ-Winner.

Table 3.1: Number of Occurrences per 1000 Elections with 5 Alternatives that the Dodgson
Winner was Not Chosen

Voters 3 5 7 9 15 17 25 85 257 1025
DQ 1.5 1.9 1.35 0.55 0.05 0.1 0 0 0 0

Tideman 1.5 2.3 2.7 3.95 6.05 6.85 7.95 8.2 5.9 2.95
Simpson 57.6 65.7 62.2 57.8 48.3 46.6 41.9 30.2 23.4 21.6

Table 3.1 reports the probability that these rules pick the same winner after we break
ties according to the preferences of the first agent. It was generated by averaging 10,000
simulations, so the figures are only approximate, however the trends are clearly signifi-
cant.
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Since the DQ-Winner and Tideman Winner seem to closely approximate Dodgson’s
Rule we may wish to also look at the probability that these rules pick the same set of tied
winners, presented in Table 3.2.

Table 3.2: Number of Occurrences per 1000 Elections with 5 Alternatives that the Set of
Tied Dodgson Winners was Not Chosen

Voters 3 5 7 9 15 17 25 33 85 257 1025
DQ-Winners 4.31 4.41 3.21 1.94 0.27 0.08 0.04 0 0 0 0

Tideman 4.31 5.57 7.31 8.43 12.73 13.15 15.46 16.35 15.18 10.2 5.4

From Theorem 3.1.8 we know that the Dodgson Quick winner converges to the Dodg-
son winner at an exponentially fast rate. These figures confirm that for a large number of
agents the simple Dodgson Quick rule provides a very good approximation to the Dodg-
son rule.

Given that the Dodgson Quick rule is such a good approximation for the Dodgson rule,
we may want to compare the other rules to Dodgson Quick in place of the Dodgson rule.
This allows us to easily examine the behaviour of the Tideman rule and the Simpson rule
with over 100,000 agents. Furthermore, we may use the test developed in Lemma 3.1.6
(i.e. that criteria [T2] from 12 holds) to check that all the Dodgson Quick scores match the
Dodgson scores and so Dodgson Quick is picking the correct winner. We have done this
and included the output in Appendix B.2.3. We found that as we increased the number
of alternatives, the frequency that the quick test was able to verify that the DQ-winner
was the Dodgson winner declined. However, even with 8 alternatives, the test was able
to demonstrate that the DQ-winner was the Dodgson winner in all 100,000 simulations.

Another question is how well does Dodgson Quick approximate the Dodgson rule with
other numbers of alternatives, or if the number of agents is not large in comparison to the
number of agents. From 3.3, it appears that our approximation is still reasonably accurate
under these conditions. This table was generated by averaging 10,000 simulations, and
splitting ties according to the preferences of the first agent.

To give meaning to these figures, let us compare them with the figures in Tables 3.4 and 3.5.
We see that even where the number of agents is not very large, the Dodgson Quick rule
seems to do a slightly better job of approximating the Dodgson rule than Tideman’s ap-
proximation. We also see that Simpson’s rule does a particularly poor job of approxi-
mating frequency of the Tideman approximation picking the Dodgson winner when the
number of candidates is large.

As an aside, it would appear that Simpson’s rule is not a very accurate approximation
of Dodgson’s Rule. The probability that the Simpson winner does not equal the Dodgson
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Table 3.3: Frequency that the DQ-Winner is the Dodgson Winner

# Agents
#

A
lte

rn
at

iv
es

x 3 5 7 9 15 25 85
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9984 0.9976 0.9980 0.9992 0.9999 1.0000 1.0000
7 0.9902 0.9875 0.9879 0.9933 0.9980 0.9995 1.0000
9 0.9792 0.9742 0.9778 0.9837 0.9924 0.9978 0.9999

15 0.9468 0.9327 0.9338 0.9412 0.9571 0.9743 0.9988
25 0.8997 0.8718 0.8661 0.8731 0.8971 0.9265 0.9840

Table 3.4: Frequency that the Tideman Winner is the Dodgson winner

# Agents

#
A

lte
rn

at
iv

es
x 3 5 7 9 15 25 85

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9984 0.9974 0.9961 0.9972 0.9936 0.9917 0.9930
7 0.9902 0.9864 0.9852 0.9868 0.9845 0.9805 0.9847
9 0.9792 0.9730 0.9724 0.9731 0.9718 0.9760 0.9815

15 0.9468 0.9292 0.9263 0.9273 0.9379 0.9485 0.9649
25 0.8997 0.8691 0.8620 0.8625 0.8833 0.9113 0.9534

Table 3.5: Frequency that the Simpson Winner is the Dodgson Winner

# Agents

#
A

lte
rn

at
iv

es
x 3 5 7 9 15 25 85

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9433 0.9307 0.9339 0.9398 0.9493 0.9575 0.9714
7 0.8734 0.8627 0.8689 0.8786 0.9018 0.9153 0.9404
9 0.8256 0.8153 0.8167 0.8251 0.8562 0.8808 0.9124

25 0.5895 0.5772 0.6147 0.6322 0.7114 0.7529 0.7957
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winner is much greater than for Tideman or DQ. We may ask, does the Simpson rule
eventually converge to the Dodgson rule as we increase the number of voters, and if not,
how close does it get?

3.3.1 Asymptotic Behaviour of Simpson’s Rule
From Lemma 3.1.4 and Theorem 3.2.24 we know that the Dodgson winner, Dodgson
Quick winner, and Tideman winner all asymptotically converge as we increase the num-
ber of agents. Hence we may compute the asymptotic probability that the Simpson win-
ner is equal to the Dodgson winner, by computing the asymptotic probability that the
Simpson winner equals the Tideman winner.

From Lemma 3.2.21 we know that the matrix of advantages converges to a multivariate
normal distribution as we increase the number of agents. If we had a multivariate normal
random vector generator, we could use this model to perform simulations and count in
how many simulations the Simpson winner is equal to the Tideman winner. We decided
to use a slightly different model so that we could use a univariate normal random number
generator.

Table 3.6: The Limit of the Number of Occurrences per 1000 Elections that the Simpson
Winner is Not the Dodgson Winner, as n→∞

#Alternatives 3 4 5 6 7 8
#(DO 6= SI) per 1000 0 6.81 17.18 27 39.33 50.18

Let P be our profile with m alternatives A and n agents. Say a and b are two distinct
alternatives in the set A. Say V = (v1, v2, . . . , vm!/2) is an ordered set of possible linear
orders where a is ranked above b. Note that {v1, v̄1, v2, v̄2, . . . , vm!/2, v̄m!/2} is the set L(A)

of all possible linear orders of A. We define a random vector X on a randomly selected
random linear order v such that

Xi =











1 if v = vi

−1 if v = v̄i

0 otherwise

We likewise define an ordered set X = {X1, X2, . . . , Xn}, where X i is the random vec-
tor defined on the ith linear order in P . The random vectors are independently identically
distributed (i.i.d.) with means of 0, and covariance matrix Ω = rI where r is some real
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number greater than 0 and I is the identity matrix. By the multivariate central limit theo-
rem (3.2.20), we know that Y =

∑n
i=1 X i/

√
n converges to an N(0, rI) multivariate normal

distribution. Hence we may easily model Y1, Y2, . . . , Yn as i.i.d. univariate normally dis-
tributed variables.

Using this model we performed 100,000 simulations and generate Table 3.6.
Note that as the number of agents approaches infinity, the probability of a tie ap-

proaches 0, and so tie breaking is irrelevant in this table. In Table 3.6, we see that even
with an infinite number of voters, the Simpson rule is not especially close to the Dodgson
rule.
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Chapter 4

Formulation of Dodgson’s Rule as an Integer
Linear Program

Bartholdi et al. (1989) showed that it is possible to find the Dodgson score of an alternative
by using an Integer Linear Program (ILP). In this section we will define term ILP, and
show how we may find the Dodgson score with an ILP that has less variables than the
ILP suggested by Bartholdi et al. The number of variables is important, as the number of
variables is the primary factor in the amount of time required to solve the ILP problem
(see e.g. Lenstra, Jr. 1983).

Note 4.0.1 Recall that, on Page xii, we defined vector inequalities so that for any pair of vectors,
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the statement x ≤ y means that xi ≤ yi for all i in
{1, 2, . . . , n}, and x ≥ 0 means that xi ≥ 0 for all i in {1, 2, . . . , n}.

Definition 4.0.2 A Linear Program (LP) is an ordered set (M, N, A,b, c) where M and N are
positive integers; A is an M ×N matrix; b and c are M -dimensional vectors. The optimal value
of a linear program is the maximum possible value of cTx where x is an arbitrary M -dimensional
non-negative vector (i.e. x ≥ 0) and Ax ≤ b.

Note 4.0.3 A Linear Program (LP) may also be defined as an ordered set (V, C, f), where V is a
finite set of real valued variables, C is a finite set of linear constraints on those variables, and f is
a linear function on those variables. The optimal value of a linear program is then the maximum
possible value of f subject to the constraints in C.

Definition 4.0.4 An Integer Linear Program (ILP) is the same as an LP, but with an additional
constraint that all variables must be integers.

Lemma 4.0.5 Let P be a profile. Suppose that S is a set of swaps that makes an alternative d a
Condorcet winner. Then there exists a set of swaps T such that T also makes d a Condorcet winner,
T contains only swaps of d over other alternatives and |T| = |S|.
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Proof. In every linear order v in the profile P , element d has a deficit function hd(a)

the number of swaps required to move d above a (i.e. one greater than the number of al-
ternatives ranked between a and d if a is ranked above d, and 0 otherwise). Now suppose
that k swaps in S reduce to zero the deficits hd(b) for b ∈ B ⊆ A, where B is the set of
alternatives whose deficits are reduced to zero by S. Then any other set of swaps that
reduce to zero the same set of deficits will also make d a Condorcet winner.

Now a swap of d upwards reduces all deficits by 1. Any other swap cannot reduce
a deficit by more than one. Hence swapping d upwards k times will reduce to zero all
deficits hd(b) for b ∈ B (and maybe some additional deficits, but this will only further
benefit d, and thus will not prevent d being a Condorcet winner).

From Lemma 4.0.5 above, we may assume without loss of generality, that to make some
fixed alternative d a Condorcet winner using a minimal number of swaps, we may only
use swaps of d over other alternatives. Thus, given some fixed profile P , we may describe
our set of swaps by the number of times that d is swapped above other alternatives in
each linear order in P . That is, we may uniquely determine our set of swaps based upon
a vector S = (s1, s2, . . . , sn) where si is the number of times that d is swapped over some
other alternative in the ith linear order in P .

4.1 Discussion of Variables
Bartholdi et al. (1989) developed an Integer Linear Program (ILP) problem with no more
than m!m variables. In this section we will informally discuss how this was achieved. We
will then informally discuss how we will form an ILP with less than (m − 1)!e variables,
where e = 2.71 · · · is the exponential constant.

Say that P is a fixed profile, d is one of the alternatives in P , and we are interested in
the Dodgson score of d.

As discussed in the previous section, when attempting to make d a Condorcet winner
with a minimal number of swaps, we need only consider the vector S = (s1, s2, . . . , sn),
where for each i in {1, 2, . . . , n} the value si is the number of times d is swapped up the
preference list of the ith agent. It would be tempting to use s1, s2, . . . , sn as the variables of
the Integer Linear Programming (ILP) problem. These variables are integer, unfortunately
their effect is not linear. Recall that si is the number of times that d is swapped up the
preference list of the ith agent. The second time that d is swapped up this preference list d

will be swapped over a different agent, and so the effect of increasing si is not linear.
Let us consider the 0–1 (binary) m × n matrix AP where AP

ij is 0 if and only if d is one
of the top i preferences of the j th agent. We have mn variables in this ILP. Below is an
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example of a profile P and the corresponding matrix AP .

Profile P Matrix AP

a a b b d

c c d a a

d d a c b

b b c d c

→

1 1 1 1 0
1 1 0 1 0
0 0 0 1 0
0 0 0 0 0

Let Q be the profile P after our swaps S are applied. We will define the matrix AQ

similarly to AP . Then the matrix AQ will be an m × n matrix of binary variables. We
may use these mn variables in the matrix AQ as the variables in our ILP. Clearly we
cannot choose AQ to be any m × n binary matrix; the matrix AQ is subject to two further
constraints for each i, j. Firstly, AQ

i(j−1) ≥ AQ
ij , because if d is ranked is one the top j − 1

preferences of the ith agent then it is clearly also one of the top j preferences of that agent.
Secondly, AQ

ij ≤ AP
ij because we only swap d up preference lists, not down. We note that

each time S swaps d over a neighbouring alternative in a linear order of Q, this changes
single element of AQ from one to zero. Thus

∑

ij AP
ij − AQ

ij is the number of swaps used.
Thus, if we add constraints to ensure that d is a Condorcet winner inQ, then the minimum
value of

∑

ij AP
ij − AQ

ij will be the Dodgson score of d.
We may reduce the number of variables by throwing away some information from

the profile P . The Dodgson rule only requires the information contained in the voting
situation P̃ . Let ñ be the number of unique linear orders in P̃ . We may represent a voting
situation using an ordered set S = {v1,v2, . . . ,vñ} of unique linear orders, and an ordered
set F = {f1, f2, . . . , fñ}where fi is the number of agents who chose the linear order vi. Let
us consider the integer m× ñ matrix AP̃ where AP̃

ij is 0 if d is one of the top i preferences
in vj , and is fj otherwise.

Voting Situation P̃ Matrix AP̃

2 1 1 1
a b b d

c d a a

d a c b

b c d c

→

2 1 1 0
2 0 1 0
0 0 1 0
0 0 0 0

We now define AQ̃ so that AQ̃
ij is the number of agents who chose the linear order vj as

their preference list in P and also do not rank d in their top ith preferences after the swaps
in swaps in S are applied. Thus AP̃ = AQ̃ if no swaps are applied, i.e. if S = 0n. Say that
P̃ is as shown in the above table, and S describes a single swap; and say also that this
swap changes one of the two acdb linear orders in P to adcb. Then the resulting matrix AQ̃

is as shown below.
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2 1 1 0
1 0 1 0
0 0 1 0
0 0 0 0

We may use the mñ elements of the matrix AQ̃ as the variables of our ILP. We note that
the number of unique linear orders ñ is less than or equal to m!. Thus this representation
of the Dodgson score problem as an ILP has no more than m!m variables. Bartholdi et al.
(1989) used the principle that ñ is no more than m! to define an ILP that also had m!m

variables. We will show how we can reduce the number of variables further, and present
an ILP that has only O[(m− 1)!] variables, reducing the number of variables by m2. So far
we have reduced the number of variables by joining together agents who chose the same
linear order, converting our profile to a voting situation. We will show how we may join
together more variables.

First we note that if an agent ranks two (or more) alternatives below d, the order of
those alternatives do not matter when finding the Dodgson score of d, as S never swaps
d down the preference list. For example, for the purposes of calculating the Dodgson score
of d, the orders adbc and adcb are equivalent. We may discard the alternatives following
d, so instead of having {adbc, adcb} we have {ad2} (the 2 means that the multiplicity of ad

is 2). For example,

1 1 1
a a a

d d b

b c c

c b d

becomes

2 1
a a

d b

c

d

.

We now have only O[(m − 1)!] unique sequences, and thus only O(m!) variables, al-
though we will not prove this as we will find yet better formulation.

Say we have two sequences abd and acd, and that we have already applied one swap to
each sequence. Then the sequences both become ad, and it makes no difference whether
we apply and additional swap to the first sequence or the second. Thus we may join the
a in abd and acd. Similarly if we have abcd and abd, we may join the ab in each sequence.
Doing so results in a tree as shown below.

2 1 1 1 3
a a a a c

d b b c a

c d d d

d

becomes
a5

b2

c1

c1

c3

a3

62



PRELIMINARY DEFINITIONS

We will show later that there are less than (m−1)!e nodes in this tree and thus there are
less than (m − 1)!e variables in the corresponding ILP. However, we will first formally
define the ILP.

4.2 Preliminary Definitions
Note 4.2.1 We have defined a voting situation P̃ as a multiset, much like a profile but with anony-
mous agents, on page 20. We have defined multisets and submultisets in Appendix A.5.

Definition 4.2.2 For any linear order v in our profile P and alternative d, we define Av (d) to
be the number of alternatives ranked above d in v, and Bv (d) to be the number of alternatives
ranked below d in v. Let be P̃ = (A, f) be our voting situation. Recall that A is the set of unique
alternatives in the multiset P̃ and f : A → N is the frequency function which determines the
frequency of each member of A. We define AP̃ (d), to be

∑

v∈A Av (d) f(v). For example if our
voting situation is {abcd2, adcb} then AP̃ (d) is 7, and the score of d according to the famous Borda
rule would be BP̃ (d) using this notation.

We have developed a formulation of the Dodgson score as an ILP which requires less
variables than the formulation by Bartholdi et al. (1989). We now define some concepts
required to describe this ILP.

Let P be a profile. Let d be the alternative for which we wish to find the Dodgson
Score. Let A be the set of all alternatives. Let C be the set of all alternatives except d, i.e.
C = A− {d}.

Definition 4.2.3 For any set X , we define Z(X) to be the set of all ordered subsets of X , and
M(X) to be the set of all possible multisets whose unique elements are a subset of X . Thus a
voting situation is an element of M(L(A)).

Definition 4.2.4 We define a sequence of alternatives to be a (possibly empty) ordered set of
alternatives. We write the sequence (a, b, c) as abc. A sequence of alternatives is a member of the
set Z(A).

Definition 4.2.5 For any sequence c = c1 · · · c|c| and alternative a we define ca to be a appended
to c, i.e. c1 · · · c|c|a.

Definition 4.2.6 We define the function SP : Z(A)→M(L(A)), such that for all c = c1 · · · c|c|
in Z(A) the multiset SP(c) is a submultiset of P̃ , containing only those linear orders whose |c|
highest ranked preferences are c1 · · · c|c| in that order.
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4.3 Definition of Integer Linear Program

Given that we have fixed P = (v1,v2, . . . ,vn), we know that SP is likewise fixed. Let
Q be the profile P after the swaps in S have been applied. Let us consider the possible
functions SQ, given that P is fixed but we may choose S = (s1, s2, . . . , sn) to be any n-
dimensional vector of non-negative integers such that si ≤ Ad (vi) for all integers i in
{1, 2, . . . , n}.

Given a, b ∈ c with b 6= a we know that if the (|c|+ 1)th alternative in a linear order is a

it cannot also be b hence we have:

SP(ca) ∩ SP(cb) = ∅.

As we have assumed (without loss of generality) that we only swap d above other candi-
dates, SQ(c) is always a subset of SP(c), and so we also have,

SQ(ca) ∩ SQ(cb) = ∅.

Consider some linear order v in P . Let Cv(SP) be the set of sequences c such that v

is a member of SP(c), and similarly let Cv(SQ) be the set of sequences c such that v is a
member of SQ(c).

Say, for example, that the linear order v is abcd. We see that in this case Cv(SP) is
{abc, ab, a}. We may swap d over 0,1,2 or 3 alternatives in v, giving us 4 choices for Cv(SQ):
∅, {a}, {a, ab}, {a, ab, abc}. We see that, in general, we may choose Cv(SQ) to be any subset
of Cv(SP) such that, if for any sequence c and alternative a we have v ∈ SQ(ca), then we
also have v ∈ SQ(c). Equivalently, since S is arbitrary, SQ can be any function of the form
Z(A)→M(L(A)) which satisfies the following criteria for all c ∈ ZC and a /∈ c:

SQ(c) ⊆ SP(c),

SQ(c) ⊇ SQ(ca),

Recall that we define ca as a appended to c, i.e. ca represents c1 · · · c|c|a. The first statement
is the parallel of the requirement that C(SQ) be a subset of C(SP), i.e. that because we only
swap d over other alternatives, if a sequence c ∈ Z(C) represents the top |c| alternatives in
an agent’s preference list after applying the swaps, then the top |c| alternatives will also be
c before the swaps were applied. The second requirement SQ(c) ⊇ SQ(ca) is the parallel
of the requirement that if the top |c| + 1 alternatives are ca then the top |c| alternatives
must be c.

When trying to find the Dodgson score we are only interested in the number of swaps

64



DEFINITION OF INTEGER LINEAR PROGRAM

required to make d a Condorcet winner, not which swaps are required. When we only
consider the cardinality the two requirements above become, c ∈ Z(C) and a /∈ c:

0 ≤ |SQ(c)| ≤ |SP(c)| ,
|SQ(c)| ≥

∑

a6=c

|SQ(ca)| ,

The first requirement is easy to understand. Given the requirement that SQ(c) must be
a subset of SP(c), we see that the requirement allows the cardinality of SQ(c) to be any
value between 0 and the cardinality of SP(c). The second requirement follows from the
fact that SQ(ca) ∩ SQ(cb) = ∅ and SQ(c) ⊇ SQ(ca). Let UQ(c) be the cardinality of the set
SQ(c), and UP(c) be the cardinality of the set SP(c). We may now express these constraints
in terms of U :

0 ≤ UQ(c) ≤ UP(c),

UQ(c) ≥∑a6=c UQ(ca),

Now wish to require that S makes d a Condorcet winner, i.e. d is a Condorcet winner in
Q. We know d will be a Condorcet winner in Q if and only if d is ranked below a in at
most half of the linear orders in P for all a in C. The corresponding constraints on U are,
for all a in C:

∑

c⊆Z(C−{a})
UQ(ca) ≤ n

2
.

To provide tighter constraints, we make use of the fact that d must be ranked below a in
an integer number of linear orders, and modify the above constraints to be:

∑

c⊆Z(C−{a})
UQ(ca) ≤

⌊n

2

⌋

.

We assert that AP̃ (d) =
∑

c∈ZC ,c6=∅ UP(c). This is clearly true if our profile P has no agents,
as there are no agents to rank alternatives above d and also UP(c) = 0. Assume that our
assertion is true for all voting situations with n agents. Say that we add a linear order
v to our voting situation P̃ . We choose a ∈ Z(C) so that v’s top |a| + 1 preferences are
a1 · · ·a|a|d in that order. Then Av (d) = |a|. Adding v to P̃ will add an additional member
to S(a1), S(a1a2), . . ., S(a1 · · ·a|a|−1) and S(a1 · · ·a|a|). Thus adding v to P will increase
UP(a1), UP(a1a2), . . ., UP(a1 · · ·a|a|−1) and UP(a1 · · ·a|a|) by one. It follows that adding v to
P̃ will increase both AP̃ (d) and

∑

c∈ZC ,c6=∅ UP(c) by |a|.
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We know that

AP̃ (d) =
∑

c∈ZC ,c6=∅
UP(c),

similarly,

AQ̃ (d) =
∑

c∈ZC ,c6=∅
UQ(c).

The total number of swaps ΣS is equal to the total number of times d has been swapped
up linear orders in P , hence

ΣS = AP̃ (d)− AQ̃ (d)

=
∑

c∈ZC ,c6=∅
UP(c)−

∑

c∈ZC ,c6=∅
UQ(c)

=
∑

c∈ZC

UP(c)− UQ(c)

The Dodgson score of d is the minimum number of swaps required to make d a Condorcet
winner, i.e. the minimum value of ΣS given the constraints discussed above. Thus to find
the Dodgson Score we wish to maximise

∑

c∈ZC ,c6=∅ UQ(c) subject to the conditions above,
and take

∑

c∈ZC ,c6=∅ UP(c)− UQ(c) as the Dodgson Score. We will do this by representing
this as an ILP, and solving this ILP.

Note that we are no longer interested in S, since the Dodgson score can be calculated
directly from UQ. Note that 0 ≤ UQ(c) ≤ UP(c) and so UQ(c) is constant (i.e. zero) if
UP(c) = 0. Also we are not interested in UQ(∅) as it is a trivial case and UQ(∅) ≡ UP(∅) so
UQ(∅) is thus not a variable.

Let V = (c1, c2, . . . , c|V |) be an ordered set such that V contains a sequence c if and only
if c 6= ∅, and UP(c) > 0, and c is a sequence of alternatives that does not contain d (i.e.
c ∈ Z(C)).

Let us consider the ILP (M, N, A,b, c). Let the variable vector of the ILP x represent
(UQ(c1), UQ(c2), . . . , UQ(c|V |))

T .

For each constraint of the form UQ(ci) ≤ UP(ci), we add a row to the matrix A. Say that
this row is the jth row. Then Aj,i = 1 and Aj,k = 0 for each k 6= i. We then set bj = UP(ci).

For each constraint of the form UQ(ci) ≥
∑

a/∈ci
UQ(cia). Say that this row is the j th row.
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Then,

Aj,k =











−1 if k = i

1 if ∃a/∈ci
cia = ck

0 otherwise
,

and bj = 0.
For each constraint of the form

∑

c⊆Z(C−{a}) UQ(ca) ≤
⌊

n
2

⌋

, we add a row to the matrix
A. Say this row is the j th row. Then,

Aj,k =

{

1 if ∃c⊆Z(C−{a})cia = ck

0 otherwise
,

and bj =
⌊

n
2

⌋

.
We let M be |V |, and let N be the number of rows we have added to the matrix. We let

c = 1M .

Note 4.3.1 We do not need to include constraints of the form UQ(ci), as in our definition of an
LP, the variables are all non-negative.

4.4 Number of Variables
The primary factor in the complexity of solving LPs and ILPs is the number of variables.
We investigate the number of variables used in the ILP developed in Section 4.

Lemma 4.4.1 There are no more than (m − 1)n non-empty sequences c for which SP(c) is non-
empty.

Proof. We see that for each agent v there are at most m− 1 alternatives ranked above
d. Thus v is a member of SP(c) for at most m− 1 non-empty sequences c. Thus given the
n agents in profile P , there are at most (m − 1)n non-empty sequences c for which SP(c)

is non-empty.

Recall that on the facing page we defined V = (c1, c2, . . . , c|V |) as some ordered set such
that V contains a sequence c if and only if c 6= ∅, and UP(c) > 0, and c is a sequence of
alternatives that does not contain d (i.e. c ∈ Z(C)). Recall also that UP(c) > 0 is the car-
dinality of the set SP(c) of linear orders in P such that the |c| highest ranked alternatives
are c = c1 · · · c|c| in that order. Recall that Q is our profile after the swaps S are applied.

Corollary 4.4.2 We need no more than (m− 1)n variables in our ILP.
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Proof. Where SP(c) = ∅ we have UP(c) = 0. As discussed on page 65 we know
0 ≤ UQ(c) ≤ UP(c) and c is not a member of V . Also recall that ∅ was not a member of V .
Hence, from the previous lemma, M = |V | ≤ (m− 1)n.

We now have a reasonable upper bound on the number of variables in our ILP. However
in this thesis we are primarily interested in the case where n � m. Thus we will show
that the number of variables is O(1) if the number of alternatives m is fixed.

Lemma 4.4.3 There are less than (m − 1)!e ordered sets of unique alternatives in Z(C), i.e.
|Z(C)| < (m− 1)!e, where e = 2.71 · · · is the exponential constant.

Proof. We have m alternatives, so we have m − 1 alternatives in C. Hence we have
(m− 1) orders sets of length one, (m− 1)(m− 2) orders sets of length 2, and (m− 1)(m−
2) . . . (m− k) orders sets of length k where k ≤ |C| = m− 1. Thus we know,

# sequences = 1 + (m− 1) + (m− 1)(m− 2) + · · ·

=
(m− 1)!

(m− 1)!
+

(m− 1)!

(m− 2)!
+

(m− 1)!

(m− 3)!
+ · · ·+ (m− 1)!

1!
+

(m− 1)!

0!

= (m− 1)!

(

1

(m− 1)!
+

1

(m− 2)!
+ · · ·+ 1

0!

)

< (m− 1)!

(

1

0!
+

1

1!
+

1

2!
+ . . .

)

= (m− 1)!e, where e = 2.718282 . . .

Hence we have less than (m− 1)!e ordered sets c in Z(C)

Corollary 4.4.4 This formulation of the Dodgson Score as an ILP has less than (m − 1)!e vari-
ables.

Proof. For each ordered set of unique alternatives c that does not include d, i.e member
of Z(C), there exists no more than a single variable UQ(c). From the previous lemma we
know that the number of ordered sets of unique alternatives is less than (m− 1)!e.

4.5 Size of the Linear Program
A second factor in the complexity of solving LPs and ILPs is the number of bits re-
quired to encode the ILP. We investigate the number of bits required to encode the ILP
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(M, N, A,b, c), that we developed to find the Dodgson score in Section 4, in terms of the
number of variables M in the ILP.

Corollary 4.5.1 There are no more than 3M non-zero entries in the matrix A.

Proof. We have a constraint of the form UQ(ci) ≤ UP(ci), for each c in |V |. Recall that
for each such constraint we added a single non-zero entry (Aj,i) to A.

We also add constraints of the form UQ(ci) ≥
∑

a/∈ci
UQ(cia) for each a in C = A− {d}.

For each of these entries we added a non-zero entry to A for each sequence cia ∈ V that
ended in a for cia. Since we have such a constraint for each a in C, in total we added a
single non-zero entry to A for each element cia of V , i.e. exactly M = |V | non-zero entries.

Similarly, for the constraints of the form
∑

c⊆Z(C−{a}) UQ(ca) ≤
⌊

n
2

⌋

we also added a
single non-zero entry to A for each element of |V |.

Hence in total there are 3M non-zero entries in A.

Corollary 4.5.2 It is possible to encode A using O(M ln M) bits.

Proof. In LP problems A is typically a sparse matrix, and is encoded in a way that
makes use of this. For each row we may identify which columns are non-zero. Identifying
a column (i.e. variable) requiresO(ln M) bits. Since the non-zero entries are -1 or 1 we may
encode which type of non-zero entry they are using a single bit. Thus encoding the 3M

non-zero entries requires O(M ln M) bits.
Since no rows are empty we do not need to worry about using bits to encode empty

columns. Thus it is possible to encode A in O(M ln M) bits.

Lemma 4.5.3 It is possible to encode b using O(M ln n) bits.

Proof. Each non-zero entry in b represents the cardinality of a submultiset of our
voting situation P̃ . Thus each entry of b is at most n, and hence can be encoded inO(ln n)

bits. b has O(M) entries, and so can be encoded O(M ln n) bits.

Lemma 4.5.4 It is possible to encode c using O(M) bits.

Proof. We have set c = 1M . Since 1 is a constant, it is possible to encode c using O(1)

bits. Since c’s M entries are all 1, it can be encoded using O(ln M) bits.
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Theorem 4.5.5 It is possible to encode our LP (M, N, A,b, c), for finding Dodgson’s score of d,
using O(M ln M + M ln n) bits.

Proof. As N is O(M), we may encode M and N in O(ln M) bits. Thus from the last
three results, encoding (M, N, A,b, c) requires O(ln M + M + M ln M + M lnn) bits. This
simplifies to O(M ln M + M ln n).

Corollary 4.5.6 It is possible to encode our LP with O [((m− 1)!) ln ((m− 1)!n)] bits.

Proof. From Theorem 4.5.5, we may encode our LP in L ∈ O(M ln M + M ln n) bits.
Thus, L ∈ O[M(ln M + ln n)], and thus O[M ln(Mn)] bits. Thus,

L ∈ O [((m− 1)!e) ln ((m− 1)!en)] ,

which we may simplify by removing the constants to be:

L ∈ O [(m− 1)! ln ((m− 1)!n)] .
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Chapter 5

Dodgson Relaxed & Rounded

In Chapter 3 we studied the asymptotic properties of very simple approximations to the
Dodgson rule, including a new rule we proposed called the Dodgson Quick rule. In this
chapter we propose another approximation to the Dodgson rule. Although this approx-
imation is not as simple as the approximations in Chapter 3, we will show that it can
be computed in polynomial time. Not only is this approximation even closer than the
Dodgson Quick rule, which exhibited exponential convergence, but this rule is defined in
a similar way.

In the previous chapter we showed that it is possible to find the Dodgson score of an
alternative using an ILP. Unfortunately it can be difficult to find the optimal value of
an ILP quickly. We define the Dodgson relaxed score in terms of the optimal value of
a relaxation of the Integer Linear Program (ILP) to a Linear Problem (LP). A number of
algorithms have been found which can find the optimal value of an LP in polynomial, the
first was found by Khachian (1979).

Under the Dodgson rule, we may only switch neighbouring alternatives in whole votes.
By relaxing the requirement that variables in the LP be integer, the Dodgson relaxed rule
allows us to split votes into rational1 fractions of a vote and swap neighbouring alterna-
tives in these fractions of a vote. This provides us with two advantages over the Dodgson
rule, first we will show that we may compute the Dodgson relaxed rule in polynomial
time, and in logarithmic time if we fix the number of alternatives. Secondly, we will show
numerically that when the set of tied winners chosen by this rule differs from the set of
tied winners selected by Dodgson’s rule, it is usually because the relaxed rule has chosen
a subset of the Dodgson winners. We may break ties according to the preferences of the
first agent, however it is in some sense more democratic to select an alternative that is
fractionally better than the others than to privilege the first agent over the other agents.

1We could equivalently say that the Dodgson rule allows us to split votes into portions of any real size;
due to the nature of LPs,these portions will always have a rational size.
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By rounding the Dodgson relaxed score up we get a new score which we call the Dodg-
son relaxed and rounded (R&R) score. The R&R rule is exceptionally close to the Dodg-
son rule. Out of 43 million random simulations under various assumptions we only
found a single simulation where the R&R winner was not the Dodgson winner. This
simulation had 25 candidates but only 5 agents, a somewhat implausible size for an elec-
tion. The example of a real world election with a huge number of candidates given by
Bartholdi et al. (1989), was an election for mayor of Tulsa. Even this election had only 20
candidates, and there were presumably more than 5 residents of Tulsa voting.

5.1 Definition of Dodgson Relaxed Score
Definition 5.1.1 Take the ILP defined in Chapter 4, that is used find the Dodgson score of some ar-
bitrary alternative d. Recall that the Dodgson Score of d is the minimum value of

∑

c∈ZC ,c6=∅ UP(c)−
UQ(c) subject to the constraints of this ILP. If we relax the integer constraints we get an LP, and
we call the minimum value of

∑

c∈ZC ,c6=∅ UP(c) − UQ(c) subject to these new constraints the
Dodgson relaxed score of the alternative d. We may also equivalently define the Dodgson re-
laxed score as a modification of the Dodgson score where we are allowed to split votes and swap
alternatives in those fractions of a vote. However note that the ILP requires that we swap each
other alternative d over a at least dadv(a, d)/2e times, even though adv(a, d)/2 times would be
enough to made d a Condorcet winner. The alternative with the lowest Dodgson relaxed score is
called the Dodgson relaxed winner.

Example 5.1.2 Say we have a profile with a single agent and two alternatives {a, b}, say that an
agent votes ab. The Dodgson rule does not allow us to split fractional numbers of votes and so we
have to switch b over a once, so the Dodgson score of b is 1. We might think that the Dodgson
relaxed score of b would be 0.5 as the Dodgson relaxed rule does allow us to switch a fractional
number of votes. However note that the Dodgson relaxed rule requires that not only we make b a
Condorcet winner, but also that we swap b above a at least F (a, b) = dadv(a, b)/2e times. Thus
the Dodgson relaxed score is also 1.

Note 5.1.3 The requirement that we swap b above a at least F (a, b) = dadv(a, b)/2e times makes
the Dodgson relaxed rule a more accurate approximation to the Dodgson rule than if we had to
swap b above a only adv(a, b)/2 times. Also, as we discuss below, this means that the Dodgson
relaxed score of an alternative is always between the DQ-score and the Dodgson score.

Example 5.1.4 We present a voting situation in Table 5.1L. This voting situation has 6 alterna-
tives and 5 agents, the Dodgson relaxed score of alternative d differs from the Dodgson score of d.
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The voting situation on the left is an ordinary voting situation where all frequencies are integers.
Table 5.1R has split three votes into halves, as allowed by the Dodgson relaxed rule. Note that,

F (a, d) = F (b, d) = F (c, d) = F (g, d) = 1,

F (f, d) = 0.

Thus under both the Dodgson and Dodgson relaxed rules we will have to swap d above a, b, c,
and g at least once each. The minimal set of swaps is shown on each subtable. On the left subtable
we see that we need 5 swaps to make d a Condorcet winner, and so the Dodgson score of d is 5.
On Table 5.1R we see that we need 9 half-swaps to swap d above a, b, c, g at least once. Thus the
Dodgson relaxed score of d is 4.5.

Table 5.1: Example of Dodgson Score of d Differing from the Relaxed Score

Table 5.1L: No Splits Table 5.1R: Splits Allowed
(Dodgson Score =5) (Dodgson Relaxed Score=9/2)

1 1 1 1 1
b a a d a

c b c g b

g g g f c

d d d a f
a c b b d
f f f c g

1/2 1/2 1/2 1/2 1/2 1/2 1 1
b b a a a a d a

c c b b c c g b

g g g g g g f c

d d d d d d a f
a a c c b b b d
f f f f f f c g

Note 5.1.5 Although the Dodgson relaxed score differs from the Dodgson score, the R&R score
is d4.5e = 5 which equals the Dodgson score. We will show later that the Dodgson relaxed score
is always less than or equal to the Dodgson score. As the R&R score is the relaxed score rounded
up, it is clear that the R&R score will differ from the Dodgson score if and only if the relaxed
score differs from the Dodgson score by at least one. With millions of random simulations, with
3 or 5 alternatives, various numbers n of agents and various assumptions of voter behaviour, we
found no cases where the Dodgson relaxed score differed from the Dodgson score for any pair of
alternatives; with 7, 9 or 15 alternatives the Dodgson score differed from the relaxed score by no
more than 0.5; with 25 alternatives the relaxed score differed from the Dodgson score by as much as
2. Thus we only found cases where the R&R score differed from the Dodgson score in the random
simulations with 25 alternatives.

Conjecture 5.1.6 For profile with less than 6 alternatives or less than 5 agents, the Dodgson score
of any of the alternatives equals the Dodgson relaxed score for that alternative.
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Note 5.1.7 It appears that the Dodgson relaxed winner differs from the Dodgson winner only for
large and complicated profiles. The smallest profile we found where the Dodgson relaxed winner
(after tie breaking) differed from the Dodgson winner had 15 alternatives, although we expect that
there are profiles with substantially less alternatives where the Dodgson relaxed winner differs
from the Dodgson winner.

Lemma 5.1.8 For any profile P and alternative a, The Dodgson relaxed score of a is equal to or
greater than the Dodgson Quick score of a.

Proof. The Dodgson relaxed rule requires us to swap alternative a over each alter-
native b distinct from a at least F (b, a) times. Hence the Dodgson relaxed score of a is at
least

∑

b6=a

F (b, a),

which is the Dodgson quick score.

Lemma 5.1.9 For any profile P and alternative a, the Dodgson relaxed score of a is less than or
equal to the Dodgson score of a.

Proof. As with the Dodgson rule, for each alternative b we must raise a above b at least
F (b, a) times. The minimum number of swaps is the Dodgson score. Any set of swaps
that is valid under the Dodgson rule is also valid under the Dodgson relaxed rule, so the
Dodgson relaxed score can be no greater than the Dodgson score.

Corollary 5.1.10 The Dodgson relaxed score is as close or closer to the Dodgson score than the
DQ-score.

Obvious from the previous two lemmas.

Corollary 5.1.11 Under the impartial culture assumption, the probability that the Dodgson re-
laxed score of a is the Dodgson score converges to 1 as we increase the number of agents.

Obvious from the previous corollary, and Theorem 3.1.8 which states that under the im-
partial culture assumption the probability that the DQ-score equals the Dodgson score
converges to 1 as we increase the number of agents.

Corollary 5.1.12 Under the impartial culture assumption, the probability that the Dodgson re-
laxed winner is the Dodgson winner converges to 1 as we increase the number of agents.
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We have compared the Dodgson rule and the Dodgson relaxed rule numerically. As the
impartial culture assumption may not be realistic, we have aggregated the results using
8 values of the parameter of homogeneity b (i.e. b ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2}) under
the Pólya-Eggenberger urn model. Recall that with b = 0, this urn model is equivalent to
the impartial culture assumption. For each value of b we did 10,000 simulations, thus the
results in Tables 5.2, 5.3 and 5.4 are aggregated from a total of 80,000 simulations for each
profile size.

Table 5.2: Occurrences out of 80,000 that the Dodgson Relaxed Winner Differed from the
Dodgson Winner after Tie-Breaking.

# agents

#
al

te
rn

at
iv

es
x 3 5 7 9 15 25 85

7 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0

15 0 0 0 1 0 0 0
25 0 3 5 0 3 5 1

From Table 5.2 we see that the Dodgson relaxed rule is such a close approximation to
the Dodgson rule that we may want to pick a more demanding definition of equality.
Dodgson’s rule may pick a set of tied winners. In Table 5.2, this tie is broken by the
preferences of the first agent. Instead of considering just the cases where Dodgson’s rule
picks a different winner, we also consider cases where the approximation did not pick the
same set of tied winners, in Table 5.3.

Table 5.3: Occurrences out of 80,000 that the Set of Tied Dodgson Relaxed Winners Dif-
fered from the Set of Tied Dodgson Winners.

# agents

#
al

te
rn

at
iv

es
x 3 5 7 9 15 25 85

7 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0

15 0 0 0 1 2 0 0
25 0 3 9 0 4 5 1

Another interesting question is whether the winner chosen by the Dodgson relaxed
rule is a Dodgson winner. If the set of tied winners selected by the Dodgson relaxed
rule is a subset of the set of tied Dodgson winners then clearly the winner chosen by the
Dodgson relaxed rule, after tie-breaking, will be a Dodgson winner. The Dodgson relaxed
scores can be fractional scores, and the difference between the true Dodgson score and
the Dodgson relaxed score is usually less than one. Thus we expected that the set of tied
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Dodgson relaxed winners would be a subset of the Dodgson winners. We see in Table 5.4
that this is almost always the case.

Table 5.4: Occurrences out of 80,000 that the Set of Tied Dodgson Relaxed Winners were
not a Subset of the Set of Tied Dodgson Winners.

# agents
#

al
te

rn
at

iv
es

x 3 5 7 9 15 25 85
7 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0
25 0 0 2 0 0 0 0

From the discussed tables, we see that the main difference between the Dodgson re-
laxed rule and the Dodgson rule is that the relaxed rule usually picks a subset of the
Dodgson winners. This behaviour may actually be superior to the behaviour of the Dodg-
son rule. Selecting a set of tied winners means that the rule is unable to distinguish be-
tween the different alternatives. It is common to break ties according to the preferences of
the first agent, however if the rule picks a large set of tied winners this tie breaking pro-
cedure makes the rule close to a dictatorship of the first agent (see e.g. McCabe-Dansted
and Slinko 2006). Though Dodgson died in 1898, it seems likely that, if he were alive, he
would agree that it is better to choose a winner that is in some sense fractionally closer
to being a Condorcet winner than the other alternatives, than to privilege the first agent
over the other agents.

If we do not want to break ties by fractional amounts, then we may create a closer
approximation to the Dodgson scores. The normal Dodgson scores are integers, and
from Lemma 5.1.9 the Dodgson relaxed scores are lower bounds for the normal Dodg-
son scores. Thus for a Dodgson relaxed score r and an exact score e, not only is e ≥ r

but also e ≥ dre. This dre is the R&R score. The R&R winner was the Dodgson winner
in all 43 million simulations except one. That exception was with a population with 25
alternatives and 5 agents, generated according to the impartial culture assumption. There
were 10,000 such simulations performed so we are confident (to a 99.9% degree of confi-
dence) that even given this unusual profile size the probability that the R&R and Dodgson
winners differ is less than 0.001.

As proven by Lemma 5.2.3 the Dodgson relaxed approximation resulting by relaxing
the integer constraints can be computed with O (m4n4 ln(mn)) arithmetic operations on
O (mn ln(mn)) bit numbers. Thus the time required to solve the LP is polynomial with re-
spect to the number of alternatives m and number of agents n. Together with the fact that
the Dodgson relaxed winner is in some sense more legitimate than the Dodgson winner
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chosen after tie-breaking, this may make the Dodgson relaxed rule a good replacement
for the Dodgson rule.

5.2 Complexity
Theorem 5.2.1 Given a pair of numbers both of which can be encoded in n bits, we may perform
the basic arithmetic operations, add, subtract and multiply on these numbers in O(n lnn ln ln n)

time.

Proof. We may perform additions and subtractions in O(n) time the obvious way,
adding (or subtracting) each digit and carrying the overflow. As shown by Schönhage
and Strassen (1971), we may perform multiplications in O(n ln n ln ln n) time.

Theorem 5.2.2 It is possible to solve LPs in O(M 3L) operations with O(L) bits of precision,
where M is the number of variables and L is the number of bits required to encode the LP.

The Gonzaga (1989) algorithm can solve an LP in O(M 3L) time.

Lemma 5.2.3 We may find the Dodgson relaxed score in O (m4n4 ln(mn)) arithmetic operations
with O(mn ln(mn)) bits of precision, where m is the number of alternatives and n is the number
of agents.

Proof. From Corollary 4.4.2, our LP has M = (m − 1)n variables, which is in O(mn).
From Theorem 4.5.5, we may encode our LP in L ∈ O(M ln M + M ln n) bits. Thus
L is in O(mn ln(mn)). We may use Gonzaga’s algorithm to solve the LP in O(M 3L)

time. Thus we may solve this LP using O(m4n4 ln(mn)) arithmetic operations requiring
O(mn ln(mn)) bits of precision.

Note 5.2.4 Although we have shown that the time required to calculate the Dodgson relaxed score
is polynomial, we are particularly interested in the case where n � m. Thus we will study the
case where the number of alternatives m is fixed and the number of agents n tends to infinity.

Lemma 5.2.5 We may solve our LP with O
[

((m− 1)!)4 ln ((m− 1)!n)
]

operations of

O [(m− 1)! ln ((m− 1)!n)]

bits of precision.
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Proof. From Lemma 4.4.3 we know that the number M of variables is less than (m −
1)!e, where e = 2.71 . . . is the exponential constant. From Corollary 4.5.6, the number of
bits L needed to encode our LP is in O [(m− 1)! ln ((m− 1)!n)].

Using Gonzaga’s algorithm we may solve LPs inO(M 3L) arithmetic operations ofO(L)

bits of precision. Thus we may solve this ILP with O
[

((m− 1)!)4 ln ((m− 1)!n)
]

such
operations.

Corollary 5.2.6 We may find the Dodgson relaxed score usingO(ln n) operations ofO(ln n) bits,
if the number of alternatives m is fixed.
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Chapter 6

Feasibility of Dodgson’s Rule

One may find the Dodgson winner by simply computing the Dodgson score for each
alternative, and finding which alternative has the lowest score. This method is ineffi-
cient; computing the Dodgson score requires an integer linear programming problem to
be solved as discussed in Chapter 4.

Instead we start with the quick polynomial lower bounds discussed in Lemma 3.1.5.
We replace the lowest lower bound with the exact score until the lowest exact score is
lower than the lowest lower bound. We then know that the alternative with the lowest
exact score is the Dodgson winner.

Algorithm 1 FindDodgsonWinner(Profile P)
1: Calculate the Dodgson Quick scores, and use these as lower bounds on the Dodgson

scores. (See Lemma 3.1.5)
2: Replace lowest lower bound with the exact Dodgson score.
3: Repeat step 2 until the lowest exact Dodgson score is lower than the lowest lower

bound.
4: The winner is (are) the alternatives(s) with the lowest Dodgson scores.

In practice as well as in theory, the lower bound usually is the same as the Dodgson
score, and this improved algorithm will rarely have to solve more than one or two inte-
ger linear programs. As we can see from Table 6.1, the Dodgson winner is quite easy to
calculate for the moderate sizes. The Dodgson winner can also be computed quite easily
for a large number of agents if we limit the number of alternatives. Calculating the Dodg-
son winner with 1025 agents and 5 alternatives takes about 10 milliseconds, on a 2.8GHz
Xeon. A homogeneous population1 reduces the time required to find the Dodgson win-
ner, with increasing b to one almost halving the time required to calculate the Dodgson
winners for a population with 85 agents and 25 alternatives.

1Homogeneity was modeled using the Pólya-Eggenberger Urn Model (see e.g. Norman and Samuel, 1969)
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6.1 Theoretical Worst-Case Results
Theorem 6.1.1 (Eisenbrand 2003) An ILP with a fixed number of variables and constraints
can be solved with O(L) basic arithmetic operations of O(L) bits, where L is the number of bits
required to encode the LP .

Theorem 6.1.2 For a fixed number of alternatives m, our ILP for the Dodgson Score can be
computed in O(lnn) basic arithmetic operations on O(lnn) bits.

Proof. From Corollary 4.4.4, we have less than (m− 1)!e variables. Likewise we have
O[(m−1)!] constraints. Thus for a fixed number of alternatives m, we have a fixed number
of variables and constraints. From Corollary 4.5.6 we may encode the ILP using O(ln n)

bits for fixed m. Thus from Eisenbrand’s result, we may solve this ILP using O(ln n) basic
arithmetic operations in of O(ln n) bits.

We have shown that for fixed m we require onlyO(ln n) operations to solve the ILP. Thus
for some positive real valued function f , we require O(f(m) ln n) operations to solve this
ILP, and so this problem is Fixed Parameter Tractable (FPT) with respect to the parameter
m. In practice, knowing that a problem is FPT may be of little practical use if f grows
exceedingly quickly, e.g. if f is impossibly large even for m ≥ 2. For this reason we prove
some results to give an idea as to what f is. We will show that solving the ILP is FPT for
a function f that is reasonable for m ≤ 3, although it does grow very rapidly.

Corollary 6.1.3 For a fixed number of alternatives m, our ILP for the Dodgson Score can be
computed in O(ln2 n ln n ln ln n) time.

Theorem 6.1.4 (Lenstra, Jr. 1983) The integer programming feasibility problem can be solved
with O(p

9p

2 L) arithmetic operations of O(p2pL) bits in size, where p is the number of variables,
and L the number of bits of input.

Theorem 6.1.5 The Dodgson score can be computed in time of order

O
[

f(m) ln3 n ln lnn ln ln ln n
]

where f(m) = ((m− 1)!)7(m−1)!.

Proof. From Corollary 4.4.4, we have less than (m − 1)!e variables. Likewise we
have O[(m − 1)!] constraints. Thus for a fixed number of alternatives m, we have a fixed
number of variables and constraints. From Corollary 4.5.6 we may encode the ILP using
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O [(m− 1)! ln ((m− 1)!n)] bits. Thus from Lenstra’s result, we may solve the ILP feasibil-
ity problem using

O
[

((m− 1)!e)
9(m−1)!e

2 (m− 1)! ln ((m− 1)!n)
]

operations with

b = O
[

((m− 1)!e)2(m−1)!e (m− 1)! ln ((m− 1)!n)
]

bits of precision. This only solves the ILP feasibility problem, i.e. it only answers the
question “Is the Dodgson Score of d less than k”, for any arbitrary integer k. As the
Dodgson Score is never greater than mn we can find the Dodgson score using a binary
search of O(ln(mn)) steps. Thus we may find the Dodgson score in

O
[

((m− 1)!e)
9(m−1)!e

2 (m− 1)! ln ((m− 1)!n) lnn ln m
]

arithmetic operations.
From Schönhage and Strassen (1971), we know that it is possible to perform the basic

arithmetic operations {+,−,×} inO(b ln b ln ln b) time where b is the number of bits. Using
these results we find that we may solve the ILP problem in

O
[

((m− 1)!e)
13(m−1)!e

2 ((m− 1)!)3 ln4 ((m− 1)!) ln2 n ln m× ln ln ((m− 1)!n)× ln ln(b)
]

time. Rather than expand this further, let us just note that this grows slower than,

O
[

((m− 1)!)7(m−1)! ln3 n ln lnn ln ln ln n
]

,

and hence the result.

Note 6.1.6 This function f(m) grows quickly with the number of alternatives; f(3) ≈ 104 is
moderate but f(4) ≈ 1032 is huge. A modern PC can perform roughly one billion operations per
second; performing 1032 operations would take roughly a million billion years, which is vastly
greater than the age of the universe.

6.2 Approximability Classes
Definition 6.2.1 Let g be any function. If f is a function that can be computed in polynomial
time, and g(X)−ε ≤ f(X) ≤ g(X)+ε for all inputs X and some constant ε, we call f a constant
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approximation scheme for g.

Theorem 6.2.2 There is no constant approximation scheme for the Dodgson Score unless P=NP.

Proof. Assume that there exists a constant approximation scheme for the Dodgson
score. Let us call this scheme “ApproxDodgsonScore”. Then it is possible to find the
exact Dodgson score using the following algorithm:

Algorithm 2 DodgsonScore(Profile P , alternative d)
1: for each alternative c 6= d in P do
2: Replace c with 5ε clones of c
3: end for
4: return Round(ApproxDodgsonScore(P, d)/(5ε))

As each alternative other than d has been replaced with 5ε clones, where before we
would have to swap d over s other alternatives, in the modified profile we have to swap
d over 5εs alternatives. Hence in the modified profile, d has exactly 5ε times the original
Dodgson score. Finding the approximate Dodgson score of this modified profile and
dividing by 5ε gives the original Dodgson score of d to within ±0.2. As we know the
Dodgson score is an integer, we can find the exact Dodgson score simply by rounding
this value.

Since Bartholdi et al. (1989) has shown that there is no polynomial algorithm to find
the Dodgson Score unless P=NP, we can say by contradiction that there is no constant
approximation scheme for Dodgson Score.

Lemma 6.2.3 For any graph G = (V, E) with k vertices, there is a profile P with a special
alternative q such that the size of the Minimum Dominating Set of G is bk−2sc, where s is the
Dodgson score ScD(q) of q. This profile contains n agents and m alternatives with n ∈ Θ(k) and
m ∈ Θ(k4), and can be constructed in time that is polynomial with respect to k.

.

Proof. For each i ∈ 1, 2, . . . , k, let Vi be the set of vertices adjacent to vi and V̄i be the set
of vertices not adjacent to vi. Thus Vi ∪ V̄i = V .

To construct the profile P , we will first construct the set of alternatives A.

• For each i ∈ 1, 2, . . . , k

– Define a set of alternatives Di={Di1, Di2, . . . , Di(k2−1)}.
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– Define a set of alternatives Ri={Ri1, Ri2, . . . , Ri(2k3)}

• Let R as the union of all Ri and D be the union of all Di.

• DefineA, the set of all alternatives, as V ∪R∪D. Note that V is the set of all vertices
in G, and so all vertices in G are included as alternatives in A.

Consider the following profile on n = 2k + 1 agents.

V1 V2 . . . Vk V̄1 V̄2 . . . V̄k V

D1 D2 . . . Dk R1 R2 . . . Rk R

q q . . . q q q . . . q q

For conciseness we have not listed the alternatives ranked below q; all alternatives not
ranked explicitly above q are ranked below q. Also, when we were not interested in the
order that an agent ranked members of some set of alternatives, we represented that set
of alternatives as a single cell on the table. For example, in the first column of the table
below, the set V1 is in the top cell. This means that the top |V1| preferences of the first agent
are from V1, ranked in some arbitrary order. Note that in the last column the top cell is V ,
the next cell down is R and the third cell down is q. This means that the last agent ranks
all members of V over all alternatives that are not members of V ; ranks all members of
V ∪ R over all alternatives that are not members of V ∪ R, and finally ranks all members
of V ∪R ∪ {q} over all alternatives that are not members of V ∪ R ∪ {q}.

Let S = {s1, s2, . . . , sn} be a vector representing a minimal set of swaps that make q a
Condorcet winner. That is, si is the number of swaps applied to the ith agent’s preference
list, and we minimise the total number ΣS of swaps used. From Lemma 4.0.5, we can as-
sume without loss of generality that all si swaps will be used to swap q up the preference
list.

Let DS be the set of Di which S has swapped q over all elements of. For example. from
the profile above, we see that if s1 ≥ |D1|, then D1 will be a member of DS. Thus |DS|
is the number of values of i for which S has swapped q over all elements of Di. We will
show later, in (4) below, that if S swaps q over part an element of Di it will swap q over
all elements of Di.

Note that to make q a Condorcet Winner in the smallest number of swaps:

1. S will swap q over each element of V at least once. Each element a of V is either in Vi or
V̄i, so we see from the profile above that adv(a, q) = 1. Thus we need to swap q over
each alternative of V at least once to make q a Condorcet winner.
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2. S will not swap q over any Di or Ri, except as needed to swap over elements of V . All the
elements of R and all Di are ranked above q at most twice, so q already wins over
these alternatives.

3. S will not swap over Ri for any i ∈ {1, 2, . . . , n}. One way to make q a Condorcet
winner is to swap q to the top of the first n agents preferences. We see from the
profile above that the set of agents ranked above q in the ith agent’s preference list
is Di ∪ Vi. Thus swapping q to the top ith agent’s preference requires S to swap q

over |Di ∪ Vi| other alternatives. We have defined Di, Vi such that |Di| = (k2 − 1)

and |Vi| ≤ |V | = k, so |Di ∪ Vi| < 2k2. Thus swapping q over the first k agents will
take less than 2k3 swaps. Thus S will never include the 2k3 swaps required to swap
over some whole Ri.

4. S will not swap q over only part of a Di or Ri. We have to swap q over all of a Di or Ri

to be able to swap over elements of V , and from (2) we only swap of elements of D

and R as required to swap over elements of V .

5. If S swaps q over a Di, then S will swap q over at least one of, and no more than n of, the
elements of Vi. From (2), if S does not swap over at least one element of Vi then the
swaps over Di were wasted. Also, |Vi| ≤ k, so there are no more than k elements of
Vi to swap over.

6. |DS| = bk−2ΣSc, as S does not swap q over any elements of R, it will only swap q

over alternatives in the first k agents. From (3) and (4), if S swaps over an element
of Di it must also swap over the complete Di and 1 to k members of Vi. For each
i, the cardinality of |Di| is k2 − 1. Thus if the number of swaps si applied to the ith

agents preference list is non-zero, we know

k2 ≤ si ≤ k2 − 1 + k.

For each i ∈ {1, 2, . . . , k} we have si > 0 if and only if Di ∈ DS. From (3) we know
S does not swap q over any elements of R, so for each i ∈ {k + 1, k + 2, . . . , n} we
have si = 0. Thus,

|DS|k2 ≤ ΣS ≤ |DS|(k2 − 1 + k),

which simplifies to,

|DS|k2 ≤ ΣS ≤ |DS|k2 + |DS|(k − 1),
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and as |DS| ≤ k,

|DS|k2 ≤ ΣS < |DS|k2 + k2,

thus,

|DS| ≤ k−2ΣS < |DS|+ 1,

and so,

|DS| =
⌊

k−2ΣS
⌋

7. The vertices corresponding to the members DS form a minimum dominating set, where we
say that a vertex vi corresponds to Dj if and only if i = j. To make q a Condorcet winner
we must swap q over every element in V at least once. Each element in V is a vertex.
If DS is fixed, we can only swap over a vertex vj ∈ V if and only if there is a Di ∈ DS

such that vj is in Vi, i.e. vj is adjacent to vi. Thus the vertices corresponding to the
elements of DS form a dominating set. As |DS| = bk−2ΣSc minimising ΣS will
minimise |DS| and so DS is minimal.

8. Thus ScD(q), the minimal value of ΣS, satisfies |DS| = bk−2ScD(q)c.

As the size of the profile we have generated is only Θ(k5), this profile can be constructed in
time which is polynomial with respect to k, and as shown above, the size of the minimum
dominating set is bsk−2c, where s is the Dodgson score.

Note 6.2.4 We have given a reduction of a W[2]-hard problem (Dominating set) to Dodgson score.
It would be intuitive to believe that this means that Dodgson score is W[2]-hard. However this
reduction transforms the parameter m(G) into the rather uninteresting parameter bn−2ScD(q)c.
The Dodgson score is Fixed Parameter Tractable (FPT) with respect to the more interesting param-
eter m, and so is not W[2]-hard with respect to this parameter. It is unknown whether Dodgson
score is W[2]-hard with respect to the parameters n and ScD(q).

Definition 6.2.5 Let f be a function f : X → R
+, and g be a function f : X × R

+ → R
+. We

say g is a Polynomial Time Approximation Scheme (PTAS) for f if for all x ∈ X and ε ∈ R
+

the equality f(x)(1−ε) ≤ f(x) ≤ g(x)(1+ε) holds and there is an algorithm that can find g(x, ε)

in polynomial time for fixed ε.
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Algorithm 3 k-Dominating Set(V ,E)
1: s← k + 1
2: for all |V |k choices for a sequence of vertices v1, v2, . . . , vk do
3: if v1, v2, . . . , vk form a dominating set then
4: s← min(s, number of unique vertices in v1, v2, . . . , vk)
5: end if
6: end for

Lemma 6.2.6 There is no PTAS for Dominating Set unless W[2]=FPT.

Proof. As shown by Downey and Fellows (1995), Dominating Set is W[2]-complete.
As shown by Bazgan (1995) PTAS is in FPT. Hence there is no PTAS for Dominating Set
unless W [2] = FPT .

Theorem 6.2.7 Dodgson Score does not admit a Polynomial Time Approximation Scheme (PTAS).

Proof. Assume there is a PTAS for Dodgson Score. Now we will show there must also
be a PTAS for Dominating Set.

For any real number ε greater than zero we may choose an integer k such that k > dε−1e.
Let us define m(G) as the size of the minimum dominating set in a graph G.

Case 1: m(G) ≤ k. We may first use Algorithm 3, to determine whether m(G) ≤ k and
if so the exact value for m(G), in polynomial time for fixed k. If we have not yet found
m(G) then m(G) > k.

Case 2: From Lemma 6.2.3 We may construct a profile P with an alternative q such that
m(G) =

⌊

ScD(q)
|V |2

⌋

. We have assumed that there is a PTAS for Dodgson Score. Thus we may
find in polynomial time, for any fixed ε > 0, a number D such that D(1 − ε) < Scd(q) <

D(1 + ε). Since, in Case 2, we have m(G) > k,
⌊

ScD(q)

|V |2
⌋

> k.

Thus, Scd(q) > |V |2k. We let D̄ = max(D, |V |2k). Thus D̄ > |V |2k, and so,

D̄

|V |2 > k =

⌈

1

ε

⌉

.

It follows that D̄/|V |2 > 1/ε, and by taking the reciprocal of each side we get |V |2/D̄ < ε.
As

m(G) =

⌊

ScD(q)

|V |2
⌋

,
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we have the inequality

ScD(q)

|V |2 − 1 ≤ m(G) ≤ ScD(q)

|V |2 .

Using D(1− ε) < Scd(q) < D(1 + ε), the inequalities above become

D(1− ε)

|V |2 − 1 ≤ m(G) ≤ D(1 + ε)

|V |2 .

We now wish to show that a similar inequality holds for D̄:

D̄(1− ε)

|V |2 − 1 ≤ m(G).

As D̄ = max(D, |V |2k), either D̄ = D or D̄ = |V |2k. If D̄ = D the above inequality clearly
follows from the previous inequalities. Suppose D̄ = |V |2k. We know m(G) > k. Thus

D̄

|V |2 = k < m(G).

It follows that

D̄(1− ε)

|V |2 − 1 < m(G).

Thus we have shown that the following inequality holds whether D̄ = D or D̄ = |V |2k:

D̄(1− ε)

|V |2 − 1 ≤ m(G) ≤ D(1 + ε)

|V |2 ,

rearranging the left side,

D̄(1− ε)− |V |2
|V |2 ≤ m(G) ≤ D(1 + ε)

|V |2 ,

and again,

D̄
(

1− ε− |V |2
D̄

)

|V |2 ≤ m(G) ≤ D(1 + ε)

|V |2 ,

recall that |V |2/D̄ < ε, and so

D̄(1− 2ε)

|V |2 < m(G) ≤ D(1 + ε)

|V |2 ,
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Table 6.1: Time in Milliseconds to Compute the Dodgson Winner (#Alter/#Voter,b=0)

al
te

rn
at

iv
es a\v 3 5 7 9 15 25 85

3 1.270 1.400 1.310 1.460 1.465 1.805 1.483
5 1.479 1.579 1.675 1.747 2.196 2.137 2.795
7 1.743 1.901 1.987 2.030 2.206 2.799 6.607
9 1.816 2.006 2.171 2.555 2.717 3.952 11.631

15 2.528 2.897 3.666 4.087 5.920 8.468 33.316
25 3.668 5.346 8.097 8.804 13.978 22.431 102.189

Agents

Table 6.2: Time in Milliseconds to Compute the Dodgson Winner (5 alternatives,b=0)
a\v 3 5 9 17 33 65 129 257 513 1025

5 2.223 2.314 2.921 2.769 3.184 4.450 5.787 8.185 12.592 20.564

finally, D ≤ D̄, so

D̄(1− 2ε)

|V |2 < m(G) <
D̄(1 + 2ε)

|V |2 ,

Thus we can find m(G) to within our desired error of 2ε in polynomial time, and so we
have a PTAS for Dominating Set. But from Lemma 6.2.6 Dominating Set does not admit a
PTAS unless FPT=W[2]. Hence, by contradiction, Dodgson score does not admit a PTAS,
unless FPT=W[2].

6.3 Empirical Performance of Dodgson’s Rule.

Let t be CPU time and s be size. We use time = easb as the formula for best fit. The best
fit line for Figure 6.1 has a = −15.177, b = 4.275. These values are calculated using the
gnuplot fit function. For other populations other than impartial culture, the graph looks
much the same, but the best fit parameters a and b change a little.

Table 6.3: CPU Time in Seconds to Calculate the Dodgson Winner in Impartial Culture for
Square Profile (n = m = s).

Size s 5 15 25 35 45 55 65 85 111 195 255
CPU Time 0.001 0.007 0.024 0.076 0.3 0.613 0.923 446 12.9 185.5 853
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Figure 6.1: CPU Time Required to Calculate the Dodgson Winner for 10 Profiles
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In the final row of the table we consider even sizes, all other rows consider only odd
sizes. For most of the rows of the table, the number of agents and number of alternatives
are both equal to the “size” s of the profile. In one case row we have used three times more
agents than alternatives; in the row underneath we have set the number of agents to be
the number of alternatives squared. The Homogeneity is the parameter of Homogeneity
b defined in Section 1.2.6

Homogeneity sizes: s #Voters #alternatives a b
0 odd s s -15.18 4.275

0.1 odd s s -13.36 3.717
0.5 odd s s -14.11 3.822
2 odd s s -14.3 3.877
0 odd 3s s -13.90 4.36
0 odd s2 s -16.89 6.592
0 even s s -15.08 4.262

From this table it would appear that the expected running time of the Dodgson winner
is roughly O (max(m, n)4). However it is likely that rare occurrences of infeasible prob-
lems would affect the overall running time of the algorithm.
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Chapter 7

Conclusion

In Chapter 1 we discussed the history of voting theory and various important theorems.
One of these theorems, the McGarvey theorem is very useful in the study of C1 voting
rules. Unfortunately this theorem was of no use to us since we consider only C2 and C3
rules.

In Chapter 2 we presented a proof of a McGarvey theorem for weighted tournaments;
we proved that a weighted tournament is the weighted majority relation of some society
if and only if all the weights have the same parity. Although this result was probably
originally proven by Debord (1987), we presented an independent proof as we did not
have access to Debord’s thesis. This generalisation was very useful in simplifying the
proofs in the next chapter. It appears that this generalisation is as useful in the study of
C2 voting rules as the original McGarvey theorem is in studying C1 voting rules.

In Chapter 3 we presented our new approximation, Dodgson Quick, and proved vari-
ous results regarding rules which approximate the Dodgson rule, particularly when the
number of voters become large. Under the assumption that all elections are equally likely,
we proved that for both our Dodgson Quick approximation and Tideman’s approxima-
tion, the probability that the approximation chooses the Dodgson winner approaches one
as the number of voters tends to infinity. In practice this algorithm is very effective for
moderately large numbers of agents n under the impartial culture assumption, picking
the correct winner in all 1,000,000 random simulations with 5 alternates, 85 agents.

However, out of these two approximations, only our approximation converges expo-
nentially fast. As this approximation can be computed in a fixed number of additions for
fixed m, it can be computed in O(lnn) time for fixed m. We used this to show that we
may find the Dodgson winner in O(ln n) time for a fixed number of alternatives.

We also studied the asymptotic behaviour of Simpson’s rule1 as we increase the number
of voters. Although Simpson’s rule does not converge to the Dodgson rule as the number

1Simpson’s rule is also known as the Minimax/Maximin rule.
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of voters increases, it does come quite close for a small number of candidates.
In Chapter 4 we presented an ILP that had no more than (m − 1)!e variables, and can

be used to find the Dodgson score. This is an improvement of order m2 over the ILP
suggested by Bartholdi et al. (1989), for which the upper bound was m!m. The number of
variables is the primary factor in the theoretical worst case performance of algorithms for
solving ILPs.

In Chapter 5 we proposed another new rule, the Dodgson Relaxed and Rounded (R&R)
rule. Unlike the previously considered approximations, this rule is similar not only in out-
comes but also in definition. We suggest that this rule could be considered superior to the
original, since in practice the primary difference between the original Dodgson rule and
the Dodgson relaxed rule is that relaxed rule allows us to break ties in favor of candidates
that are in some sense fractionally better than the other candidates that would have be
tied under the original rule. If we do not favor candidates that are fractionally better, i.e.
if we round up the Dodgson Relaxed scores, then the Dodgson Relaxed winner would be
the Dodgson winner in all 43 million simulations except one. This simulation had 25 can-
didates and 5 agents, an unrealistic size for real world election. Also this approximation is
far closer than the other approximations studied under this assumption. By comparison,
the Dodgson Quick and Tideman approximations only picked the correct winner in 87%
of random simulations with 25 candidates and 5 agents generated under the impartial
culture assumption.

Unlike the Dodgson winner, the R&R winner can be computed in polynomial time,
using at most O (m4n4 ln(mn)) arithmetic operations on O (mn ln(mn)) bit numbers.

It is interesting to note that each of the rules we studied provided a successively tighter
lower bound to the Dodgson rule, i.e. given any profile P and alternative a,

1/2ScS(a) ≤ 1/2ScT(a) ≤ ScQ(a) ≤ ScR(a) ≤ Sc&(a) ≤ ScD(a).

The approximation independently discovered by Homan and Hemaspaandra (2005) does
not fit on this hierarchy, as its score is not a lower bound (or upper bound) for the Dodg-
son score.

In Chapter 6 we discuss the parametrized complexity of Dodgson’s rule. For a fixed
number of alternatives, we may compute the Dodgson winner in O(ln n) operations of
O(ln n) bits in size. That is, there is some real valued function f such that the number
of operations required is of order O(f(m) ln(n)). Unfortunately, the theoretical bound on
the complexity may grow very quickly with the number of alternatives; it may become
infeasible with only 4 alternatives. Furthermore we show that there exists no constant
approximation scheme for the Dodgson score unless P=NP, and no Polynomial Time Ap-
proximation Scheme (PTAS) unless W[2]=FPT.
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In practice the Dodgson winner turns out to be easy to compute for the small numbers
of candidates and alternatives that are studied by voting theorists. When studying voting
rules numerically, voting theorists typically limit themselves to 25 candidates and 100
agents (see e.g. McCabe-Dansted and Slinko 2006; Shah 2003; Nurmi 1983).

It appears that except for a very few tricky cases the Dodgson winner is easy to com-
pute. In most elections, we may verify that our Dodgson Quick scores match the scores
of the original Dodgson rule; this is how we proved that the expected time required to
find the Dodgson winner is O(ln n) for fixed m. As we discussed in Chapter 4 we may
formulate the Dodgson rule as an Integer Linear Problem (ILP). As discussed by Chap-
ter 5, the optimum value of the ILP is almost always the same as the optimal value of
the LP. If we know that all variables in the optimum solution of the LP are integers we
can clearly find an optimum solution to the ILP using an LP algorithm, such algorithms
can run in polynomial time. Our numerical results seemed to suggest that the expected
running time of the Dodgson rule was polynomial, and of a similar order of that required
to solve an LP.

7.1 Methodological Issues
To get the numerical results in Section 3.3 and Appendix B.2.3, we had to simulate over
one million elections: each simulation requiring up to a million arithmetic operations.
Most of these operations were simple integer additions and subtractions. The time taken
by our original 100% pure MATLAB code was too slow to achieve our aims. We found
that C code was more effective for these types of calculations, running roughly a thousand
times faster. An additional problem we found with MATLAB is that even if MATLAB is
installed on a target machine, it may not have the power-boxes required for what we
want to do. Where statistical functions are required, we are usually able to use open
source and free software C libraries such as GLPK linear problem solver, or the open
source statistical language R2. This allows us to run computationally expensive code on
any machine, without worrying which MATLAB modules, if any, were licensed for use
on that machine.

In our areas of interest, we found that R was more powerful than MATLAB, even if
all relevant MATLAB power-boxes were installed. The downside of this approach is that
R and C are less user-friendly than MATLAB. Also when writing our paper (McCabe-
Dansted and Slinko, 2006) which surveyed many different voting rules in addition to the
ones we study in this thesis, we had access to preexisting MATLAB scripts implement-
ing most of these voting rules. Rather than reimplement all these rules we used a hybrid

2Interestingly, R was initially written by Ross Ihaka and Robert Gentleman at Auckland University.
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MATLAB and C approach. We added a MATLAB interface to the C code we use to com-
pute the Dodgson and Kemeny winners, so that this code can be called from MATLAB.

Another difficulty we discovered is that when writing a document of this size it can be
common to make the same grammatical and stylistic mistakes again and again. Although
it is unlikely that this problem is limited to the field of voting theory, some of the partic-
ular mistakes are. The tool chosen to write this thesis was LYX, a front end to the LATEX
typesetting system. LYX, did not have support for any kind of grammar checker let alone
one able to detect mistakes specific to the field of voting theory. For this reason we con-
sidered it worthwhile to investigate whether it would be possible to develop a grammar
checker for LYX that was able to detect errors specific to voting theory as well as more
general errors. It turns out that it is in fact possible to develop and add such functionality
(McCabe-Dansted, 2005). This grammar checker found a number of mistakes that were
not detected through proofreading.

7.2 Further Work
The McGarvey Theorem (1953) states that every tournament can be represented as a ma-
jority relation for a certain society of voters. We have proved a generalization of the
McGarvey Theorem (1953) to weighted tournaments. McGarvey’s work was refined by
Stearns (1959) and Erdös and Moser (1964), who managed to find a tight bound on the
number of voters required. It would be interesting to refine our theorem in a similar way.

We used the Chernoff theorem (1952) to prove that our approximation converged at an
exponential rate to the to the Dodgson rule. Homan and Hemaspaandra (2005) instead
used a variant of the Chernoff theorem (Alon and Spencer, 2000) which allowed them
to also produce a specific upper bound on the frequency that their approximation differs
from the Dodgson rule. It would be possible to give a similar result for our approximation
using this variant of the Chernoff theorem.

The algorithm we use to compute the exact Dodgson score does not make use of the fact
that we know that the Dodgson score is exactly equal to the Dodgson Quick score if the
profile satisfies Tideman’s criteria [T2] (page 12). Although we found that our existing
algorithm typically provided good performance for reasonable profile sizes, we could
make the expected running time of our algorithm O(ln n) for n voters and a fixed number
of alternatives (see Corollary 3.1.10). This would make the time required to compute the
Dodgson winner grow very slowly as we increase the number of voters towards infinity.

We mentioned that Berg (1985) suggested that the statistical behaviour of voting rules
should be studied under different assumptions on voting behaviour. Although we have
done some exploratory studies of the approximability of Dodgson’s rule under the Pòlya-
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Eggenberger urn model in our paper (McCabe-Dansted and Slinko, 2006), we have only
done an in depth theoretical study into the approximability of Dodgson’s rule under the
impartial culture assumption. It would be interesting to discover whether our approxi-
mation still asymptotically converges to the Dodgson rule exponentially fast, or at all, as
we increase the number of voters for other assumptions of voter behaviour, such as the
Pòlya-Eggenberger urn model.

We suspect the Dodgson relaxed and rounded (R&R) winner will never differ from the
Dodgson winner if the number of alternatives is small. It would be interesting to discover
the smallest number of alternatives for which it is possible for the R&R winner to differ
from the Dodgson winner, and to prove that for any profile with less alternatives the R&R
winner will always be the Dodgson winner.

We have found that the Dodgson winner is FPT with respect to the number of alter-
natives m (i.e. there exists a function f and polynomial P such that finding the Dodgson
winner is aO(f(m)P (n)) time problem). It would be interesting to know whether finding
the Dodgson winner is FPT with respect to the number agents n, or the Dodgson score of
the winner.

The Kemeny rule can be defined in a similar way to the Dodgson rule, except that it
chooses a ranking of all the candidates instead of just selecting a winner. Many papers
that study the Dodgson rule also study the Kemeny, e.g. the paper by Bartholdi et al.
(1989) that we cite so frequently inthis thesis. We have3 some preliminary results, e.g. that
we can compute the Kemeny ranking (if only strict preferences are allowed) from a profile
inO(m!n) time from a profile andO[(m!)2 ln n] time from a voting situation. This is better
than the similar bounds we found for the Dodgson rule. However, unlike the Dodgson
rule, were unable to find an algorithm that could find the Kemeny ranking for a dozen
candidates in a reasonable amount of time. This is not so surprising from a theoretical
point of view, as Bartholdi et al. showed that we can compute the Dodgson winner in
polynomial time for any fixed number of agents, where as Dwork et al. (2001) showed
that finding the Kemeny ranking is NP-hard even if we fix the number of agents to be only
4. Also, although Dwork et al. discussed various heuristics for finding the Kemeny rule,
it does not appear that these are as effective as our approximations to the Dodgson rule.
It would be interesting to produce a full comparison of the results regarding the Dodgson
rule, including those in this thesis, with the corresponding results for the Kemeny rule.

In the production of this thesis, a considerable amount of software was written and
also reused from previous researchers in the field. This software could be of assistance
to those who would continue work in this area. See http://dansted.org/thesis06/

for files relating to the thesis that have been omitted from the main text. Also feel free

3These preliminary results are available at http://dansted.org/papers/paper_kemeny.pdf.
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to contact the author at gmatht@gmail.com as to the use of these files and for more
experimental data.
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Appendix A

Preliminary Mathematics

A.1 Probability Space
A Probability space is a triple (U ,F , m), where U is the set of outcomes, F is the set of
events and m is a probability measure that assigns probabilities to events (Durret, 2005,
p1). In Durret’s definition F can be any σ-field on U ; for simplicity will let F be the Borel
sets of U , the closure of the open sets of U under countable unions and intersections. As
F is fully determined by U , we may consider a probability space to be a pair (U , m). For
discrete probability spaces the Borel sets of U are 2U , the set of all subsets of U , so F = 2U .
The function m is a probability measure if

1. m(U) = 1 ≥ m(A) ≥ m(∅) = 0, and

2. For a countable sequence of disjoint events A1,A2, . . .

m(∪iAi) = Σim(Ai).

Where u is the actual outcome, and p is a statement that is true if and only if u ∈ E,
we define the probability P (p) as m(E). We define a random vector X as a function
X : U → R

n of u. A random variable is 1-dimensional random vector. For example, if we
roll a normal six-sided dice we have

U = {1, 2, 3, 4, 5, 6},
m(E) = |E|/|U|,

X > 4 ⇐⇒ X ∈ {5, 6},
X = u,
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so

P (X > 4) = P (u ∈ {5, 6})
= m({5, 6})
= 2/6.

The definition of a probability measure above gives us the axioms of probability. Given
any two statements p and q on which P (p) and P (q) are defined,

1. 0 ≤ P (p) ≤ 1

2. P (false) = 0, P (true) = 1.

3. P (p ∨ q) = P (p) + P (q)− P (p ∧ q).

We may also derive the following laws of probability,

1. P (¬p) = 1− P (p).

2. P (p1 ∨ p2 ∨ · · · ∨ pi) ≤
∑i

j=1 P (pj).

The conditional probability of p given q (see e.g. Kemeny et al., 1974, p 97) is

P (p|q) =
P (p ∧ q)

P (q)
,

where P (q) > 0. For joint continuous distributions when it may happen that P (q) = 0,
we use the following definition (see e.g. Anderson, 1984, p12),

P (x1 ≤ |X| ≤ x2 | Y = y) = lim
h→0

P (x1 ≤ |X| ≤ x2 | y ≤ Y ≤ y + h)

=

∫ x2

x1

f(u|y)du,

where

f(u|y) = f(u, y)/g(y),

g(y) =
∂F (∞, y)

∂y
,

f(x, y) =
∂2F (x, y)

∂x∂y
,

F (x, y) = P (X ≤ x ∧ Y ≤ y).

98



BINOMIAL DISTRIBUTION

We define the product space (U1, m1)× (U2, m2) of two probability spaces as follows

(U1, m1)× (U2, m2) = (U , m),

where

U = {(u1, u2) : u1 ∈ U1 ∧ u2 ∈ U2},
m(A1, A2) = m1(A1)×m2(A2).

We define the nth power (U , m)n of a probability space similarly.
Sometimes we may wish to simplify a probability space by discarding some informa-

tion about the actual outcome. For example, we may consider the outcomes U when
rolling a six sided die to be {1, 2, 3, 4, 5, 6}. However we may only be interested in the
parity of the result, in which case we may want to treat U as {odds, evens}.

Let Û be a partition of U such that each member of Û is a member of the events F . Let
m̂ be a probability measure such that for each x in U we have m̂(x) = m({x}). Then we
call (Û , m̂) a simplified probability space of (U , m).

For example, let U = {1, 2, 3, 4, 5, 6} and m(S) = 1
6
|S| for all S in F . Let Û be the set

{{1, 3, 5}, {2, 4, 6}}. Let m̂ be a probability measure where m̂({{1, 3, 5}}) = m({1, 3, 5}) =

1/2 and m̂({{2, 4, 6}}) = m({2, 4, 6}) = 1/2, i.e. m̂(S) = 1
2
|S|. Then probability space (Û , m)

is a simplified probability space of (U , m).
We may also want to relabel the elements of Û , for example relabeling {1, 3, 5} as

odds and {2, 4, 6} as evens. In this case we have Û = {odds, evens} and m̂({odds}) =

m({1, 3, 5}) = 1
2

= m({2, 4, 6}) = m̂({evens}).

A.2 Binomial Distribution
We define a (p)-Bernoulli trial as a probability space (U, m), where U={success, failure}
and m({success}) = p. For convenience we denote q = m({failure}) = 1 − p. We de-
fine an (n, p)-binomial probability space as the product space of n distinct (p)-Bernoulli
trials. We call the random variable X that represents the number of trials whose actual
outcome is “success” an (n, p)-binomially distributed random variable, and we call the
distribution of this random variable an (n, p)-binomial distribution.

It is well known that:

1. E[X] = np,

2. var(X) = npq.
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The probability of x successes in n trials is

P (X = x) =
n!

x!(n− x)!
pxqn−x,

where x ∈ Z ∩ [0, n] (see e.g. Walpole and Myers 1993).

Lemma A.2.1 For all positive integers n, the number of ways of choosing n objects from 2n, is at
least 4n

2
√

n
, i.e.

(

2n

n

)

≥ 4n

2
√

n
.

Proof. Clearly for n = 1 the lemma holds.
(

2

1

)

= 2 ≥ 4

2
√

1
.

If the lemma holds for some n then
(

2(n + 1)

n + 1

)

=
(2n + 2)(2n + 1)

(n + 1)(n + 1)

(

2n

n

)

=
4(n + 1

2
)

(n + 1)

(

2n

n

)

≥ 4(n + 1
2
)

(n + 1)

4n

2
√

n

=
(n + 1

2
)

√

n(n + 1)

4n+1

2
√

n + 1

>
4n+1

2
√

n + 1
,

since

(n + 1
2
)

√

n(n + 1)
=

√

n2 + n + 1
4

n2 + n + 0
> 1.

By induction this lemma holds for all n.

Note A.2.2 Stirling’s formula implies
(

2n
n

)

∼ 4n√
πn

, however the result above provides a lower
bound for

(

2n
n

)

. By starting the induction where n � 1 rather than n = 1, we may get a lower
bound exceedingly close to 4n√

πn
. As we are only interested in rates of convergence, the bound

provided above will suffice.
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Corollary A.2.3 A (2n, 0.5)-binomial random variable X has a probability of at least 1√
2n

of
equaling n where n > 0, i.e.

P (X = n) ≥ 1

2
√

n
.

Lemma A.2.4 A (2n, 0.5)-binomial random variable X has at least a probability of 0.5 of being
even.

Proof. Let Pi be the probability that there has been an even number of successes in the
first i samples. Clearly P0 = 1 ≥ 0.5. Assume that Pi ≥ 0.5.

Pi+1 = (1− p)Pi + p(1− Pi)

= (1− 2p)Pi + p,

so

Pi+2 = (1− 2p)[(1− 2p)Pi + p] + p

= Pi − 4pPi + 4p2Pi + p− 2p2 + p,

by replacing Pi+2 with (Pi+2 − 0.5) + 0.5 and subtracting 0.5 from both sides we get

Pi+2 − 0.5 = (Pi − 0.5) + 0.5− 4p(Pi − 0.5)− 2p + 4p2(Pi − 0.5) + 2p2 + 2p− 2p2 − 0.5

= (Pi − 0.5)− 4p(Pi − 0.5) + 4p2(Pi − 0.5)

= (Pi − 0.5)(1− 2p)2 ≥ 0.

Hence by induction Pi ≥ 0.5 for all even i.

A.3 Multinomial Distribution

The multinomial distribution is a generalisation of the binomial distribution.
Let k be a positive integer and p = (p1, p2, . . . , pk) be a k-dimensional vector such

∑k
i=1 pi = 1 and pi is non-negative for all i. We define a (k,p)-multinomial trial as an

(U, m)-probability space where U = {1, 2, . . . , k} and m({i}) = pi for all i ∈ U . For
convenience, we define qi to be 1 − pi, the probability that the actual outcome is not i.
We define an (n, k,p)-multinomial probability space as the product space of n distinct
(k,p)-multinomial trials.
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The actual outcome u = (u1, u2, . . . , un) in the outcomes Un of an (n, k,p)-multinomial
probability space is an n-dimensional vector where ui is in U for each i. We define a
random vector X so that for each i the value of Xi is the number of values of j for which
uj equals i. Informally, this means that Xi is the number of multinomial trials that resulted
in outcome i. We call X an (n, k,p)-multinomially distributed random vector.

It is well known that:

1. E[Xi] = npi,

2. var(Xi) = npiqi,

3. cov(Xi, Xj) = −npipj .

The probability that actual outcome i occurs xi times for each i in {1, 2, . . . , k} is

P (X = x) =
n!

x1!x2! . . . xk!
px1

1 px2
2 . . . pxk

k ,

where x1 + x2 + · · ·+ xk = n.
Let p = (p1, p2) with p1 in the range [0, 1] and p2 = 1 − p1. A (2,p)-multinomial trial

has two outcomes, 1 and 2. Where (1,2)=(success,failure), the trial is a (p)-Bernoulli trial.
Given a random vector X distributed according to an (n, 2,p)-multinomial distribution,
X1 is distributed according to an (n, p1)-binomial distribution.

Lemma A.3.1 Let X be a random vector distributed according to an (n, k,p)-multinomial dis-
tribution. We partition the set of elementary outcomes {1, 2, . . . , k} of each (k,p)-multinomial
trial into l sets S1, S2, . . . , Sl. Let p̂ be an l-dimensional vector such that p̂i =

∑

j∈Si
pj. Let y be

an l-dimensional vector such that yi =
∑

j∈Si
xj . Then y is a random vector distributed according

to an (n, l, p̂)-multinomial distribution.

Proof. We define a simplified probability space (Û , m̂) of the multinomial trial (U, m)

such that the elementary outcome i of (Û , m̂) corresponds to the event Si, i.e. the actual
outcome of (Û , m̂) is i if an only if the actual outcome of (U, m) is in the set Si. Clearly
m̂({i}) = m(Si) = p̂i. Note that (Û , m̂) is an (l, p̂)-multinomial trial. The product of the n

distinct (l, p̂)-multinomial trials is an (n, l, p̂)-multinomial probability space. We note that
the multinomially distributed random vector on this multinomial probability space is y.
Hence the result.

For example, let X = (X1, X2, X3, X4, X5, X6)
T be a random vector distributed accord-

ing to an (n, 6,p)-multinomial distribution. Then U = {1, 2, 3, 4, 5, 6}, let l = 3 so Û =

{1, 2, 3}. Let S1 = {1, 2, 3}, S2 = {4}, S5 = {5, 6}. Then the vector X̂ = (X1 + X2 +
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X3, X4, X5 + X6)
T is a random vector distributed according to an (n, 3, p̂)-multinomial

distribution where p̂ = (p1 + p2 + p3, p4, p5 + p6)
T .

Corollary A.3.2 If X is an (n, k,p)-multinomially distributed random vector, and i is an integer
in the range [0, n], then Xi is an (n, pi)-binomially distributed random variable.

Corollary A.3.3 If X is an (n, k,p)-multinomially distributed random vector, and i is an integer
in the range [0, n], then Xi has at least a probability of 0.5 of being even.binomially distributed
random variable.

Obvious from the fact that a (2n, 0.5)-binomial random variable Xi has at least a proba-
bility of 0.5 of being even (Lemma A.2.4).

Definition A.3.4 Let X = (X1, X2, . . . , Xk)
T be a k-dimensional vector. Let n be an integer less

than or equal to k. Let I = {i1, i2, . . . , in} be a subset of {1, 2, . . . , k}, the possible subscripts of
X . We define the subvector XI as follows:

XI = (Xi1, Xi2 , . . . , Xin)T .

Definition A.3.5 We define the sum
∑

x of a vector x to be the sum of xi over all subscripts i.

Lemma A.3.6 Let X be a random vector distributed according to an (n, k,p)-multinomial dis-
tribution for some (n, k,p). Let y be a non-negative integer less than or equal to n. Let XA be a
subvector of X , and Ā be the complement of A.

Then, given that
∑

XA = y, the conditional probability distribution of X is that of two indepen-
dent multinomial distributions; XA is distributed according to a (y, |A|,pA/

∑

pA)-multinomial
distribution and XĀ is distributed according to an (n − y, k − |A|,pĀ/

∑

pĀ)-multinomial dis-
tribution.

Proof. From the standard law of probability that

P (A|B) =
P (A ∧B)

P (B)
,

we know that

P (X = x |
∑

XA = y) =
P (X = x ∧∑XA = y)

P (
∑

XA = y)
.

If
∑

xA 6= y and X = x then by substitution
∑

XA 6= y. Clearly if
∑

xA 6= y we have

P (X = x ∧
∑

XA = y) = 0,
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and so

P (X = x |
∑

XA = y) = 0.

We consider the case where
∑

xA = y. Now, by substitution,

X = x =⇒
∑

XA = y,

and we have,

P (X = x ∧∑XA = y)

P (
∑

XA = y)
=

P (X = x)

P (
∑

XA = y)
.

From Lemma A.3.1 (
∑

XA,
∑

XĀ) is multinomially distributed. Thus
∑

XA is binomially
distributed and hence:

P (
∑

XA = y) =
n!

y!(n− y)!

(

∑

pA

)y (∑

pĀ

)n−y

,

and P (X = x) is determined by the standard multinomial formula:

P (X = x) =
n!

x1!x2! . . . xk!
px1

1 px2
2 . . . pxk

k

=
n!

∏

i xi!

∏

i

pxi

i

= n!

∏

i∈A pxi

i
∏

i∈A xi!

∏

i∈Ā pxi

i
∏

i∈Ā xi!

Combining these formulae, we get:

P (X = x)

P (
∑

XA = y)
=

(

y!
∏

i∈A xi!

∏

i∈A pxi

i

(
∑

pA)y

)(

(n− y)!
∏

i∈Ā xi!

∏

x∈Ā pxi

i

(
∑

pĀ)n−y

)

.

As
∑

A xi = y and therefore
∑

Ā xi = n− y we may rearrange the equation above to be:

P (X = x)

P (
∑

XA = y)
=

(

y!
∏

i∈A xi!

∏

i∈A

(

pi
∑

pA

)xi

)(

(n− y)!
∏

i∈Ā xi!

∏

i∈Ā

(

pi
∑

pĀ

)xi

)

.

Note that this is the product of two multinomial distributions. Hence the result.

Corollary A.3.7 Let X be a random vector distributed according to an (n, k,p)-multinomial
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distribution. We partition the elementary outcomes U = {1, 2, . . . , k} of each (k,p)-multinomial
trial into l sets S1, S2, . . . , Sl. Let y = (y1, y2, . . . , yl) be an l-dimensional vector such that

∑

y =

n. Given that
∑

XSi
= yi for all i, the conditional probability distribution of X is that of l

independent multinomial distributions; for each i the corresponding random subvector XSi
is

distributed according to a (y, |Si|,pSi
/
∑

pSi
)-multinomial distribution.

Recall that on page xii we defined 1x that 16 = (1, 1, 1, 1, 1, 1)T , 13 = (1, 1, 1)T , and 12 =

(1, 1)T . Let X = (X1, X2, X3, X4, X5, X6)
T be a random vector distributed according to a

(70, 6, 1
6
16)-multinomial distribution. Let l = 3, S1 = {1, 2, 3}, S2 = {4}, S5 = {5, 6}.

Then, given y = (40, 20, 10)T = (
∑

XS1 ,
∑

XS2 ,
∑

XS3) the conditional distribution of
XS1 is a (40, 3, 1

3
13)-multinomial distribution; the conditional distribution of XS2 is a trivial

(20, 1, (1))-multinomial distribution, i.e. the product space of 20 trials that always pick the
same result; the conditional distribution of XS3 is a (10, 2, 1

2
12)-multinomial distribution.

Also, the conditional distributions of XS1 , XS2 and XS3 are mutually independent.

Lemma A.3.8 Let X be a (2n, k, p)-multinomially distributed random vector. Let ω be an in-
teger in the range [0, 2n]. Let Rω be the statement “Xi ∈ 2Z for i = 1, 2, . . . , ω”. Then the
probability that R2n is true, is at least 2−k+1.

Proof. Let Sω be the statement “for k = 1, 2, . . . , ω, this lemma holds”.
Proof of S1: If k = 1, X1 = 2n which is even. Thus the probability that all variables are

even is one.
Proof of Sω by strong induction where k > 1: Assume Sω−1. Let Qi be the statement

“Xω = i”.
Let i be an integer: From Lemma A.3.6, the conditional probability distribution of the

random vector (X1, X2, . . . , Xk−1), given Xω = 2i, is a multinomial distribution with k−1

variables. Hence Sk−1 implies P (Rω|Q2i) ≥ 2−(k−1)+1. From the definition of a conditional
probability, we know that:

P (Rω|Q2i) =
P (Rω ∧Q2i)

P (Q2i)
,

by multiplying both sides by P (Q2i) we get

P (Rω ∧Q2i) = P (Rω|Q2i)P (Q2i),

from substituting P (Rω|Q2i) ≥ 2−(k−1)+1 into the above formula we find that

P (Rω ∧Q2i) ≥ 2−(k−1)+1P (Q2i).
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As Qi implies not Qj where i 6= j,

P (Rω) =

2n
∑

i=0

P (Rω ∧Qi)

≥
n
∑

i=0

P (Rω ∧Q2i)

≥
n
∑

i=0

2−(k−1)+1P (Q2i)

= 2−(k−1)+1
n
∑

i=0

P (Q2i).

From Corollary A.3.3, we know that Xω has a probability of at least 0.5 of being even.
Thus

∑n
i=0 P (Q2i) ≥ 1/2, and so

P (Rω) ≥ 2−(k−1)+1

(

1

2

)

= 2−k+1.

A.4 Multivariate Normal Distribution

A multivariate normal distribution (see e.g. Anderson, 1984; pp. 6–50, Seber, 1977;
pp. 20–41)is a generalisation of the familiar univariate normal distribution. We call a
univariate normal distribution with mean µ and variance σ2 a (µ, σ2)-normal distribution.
The distribution of a multivariate normally distributed variable X = (X1, X2, . . . , Xn) is
determined by three parameters; the number of dimensions n, the vector of means b for
each dimension, and covariance matrix Ω with Ωij = cov(Xi, Xj). We call this distribution
an (n,b, Ω)-normal distribution.

Like a univariate normal distribution, a multivariate normal distribution can be sin-
gular or non-singular. A singular univariate distribution has a mean of 0. Likewise a
singular multivariate distribution has a covariance matrix Ω with a determinant |Ω| equal
to 0, i.e. Ω is singular (see e.g. Anderson, 1984; pp. 31–3). We are only interested in
non-singular normal distributions, that is normal distributions that are not singular.

It is well known that a non-singular (µ, σ2)-normal distribution has the density func-

106



MULTISETS

tion:

f(x) = ke−
1
2
σ−2(x−µ)2 ,

= ke−
1
2
(x−µ)σ−2(x−µ),

where k is number chosen so that
∫∞
−∞ f(x) = 1. Similarly, for a non-singular (n,b, Ω)-

normal distribution, the probability density function is:

f(x) = ke−
1
2
(x−b)T Ω−1(x−b),

where k is chosen so that
∫

Rn f(x)dx = 1.
For non-singular multivariate normal distributions these distributions the inverse Ω−1,

of the covariance matrix, is a positive definite matrix (see e.g. Anderson, 1984; p15). Thus
(x− b)T Ω−1(x− b) is non-negative for all values of x. For any non-negative y, we know
that e−y is in the range (0, 1], so f is bounded within the range (0, k].

Lemma A.4.1 Let X be an n-dimensional random vector distributed according to a non-singular
multivariate normal distribution. Let S be a set of measure 0, for example, a subspace with a lower
dimension than n. Then the probability that X ∈ S, is 0.

Proof. The probability that X is in S, is the integral of the probability density function
over the set S:

P (X ∈ S) =

∫

S

f(x)dx

≤ max(f(x))

∫

S

1dx,

this is zero because f is finite and bounded, and S has measure 0.

A.5 Multisets
A multiset is like a set, but allows multiple occurrences of each element. For example the
multiset {1,2,3} is equivalent to the multiset {3,2,1}, but not the multiset {1,2,2,3}. We may
also denote this multiset as {1, 22, 3}.

Definition A.5.1 A multiset is an ordered pair (A, m) where A is a fixed set and m is a function
M : A→ {0, 1, 2, . . .} (see e.g. Stanley 1997).

107



PRELIMINARY MATHEMATICS

Definition A.5.2 A multiset N = (A, n) is a submultiset of M = (A, m) if n(a) ≤ m(a) for
all a in A. We write this as N ⊆ M .

Definition A.5.3 We define the cardinality |M | of a multiset M = (A, m) as

M =
∑

a∈A

m(a)

Lemma A.5.4 Let A = {a1, a2, . . . , a|A|} be a set and m be a variable function m : A→ {0, 1, 2, . . . , }.
Then we may represent the variable multiset M = (A, m) with O(ln |M |) bits.

Proof. Let V = (a1, a2, . . . , a|A|) be an ordered set, containing the elements of the
unordered set A. V is fixed, so we may represent V using O(1) bits. We may represent m

by an ordered set F = (f1, f2, . . . , f|A|), where fi = m(ai) for all i in {1, 2, . . . , |A|}. Then
fi ≤ |M | for all i in {1, 2, . . . |A|}, and so we may represent fi using O(ln |M |) bits. Thus
we may represent F using O(|A| ln |M |) bits which is in O(ln |M |) since |A| is fixed.

108



Appendix B

Code and Output

B.1 Asymptotic Simpson’s Rule
Using the model developed in Section 3.3.1, we generate 100,000 random elections with
and infinite number of agents. We count how often the Simpson winner is the same as
the Dodgson winner.

B.1.1 asymp.sh — wrapper script
This shell script is used as a wrapper to ask the R statistical tool to generate randomly
generated numbers and feed them into asymp.c.

#!/bin/sh

mkdir tmp
cd tmp &&
echo ’while(1){writeLines(format(rnorm(10000),digits=22))}’ | nice R --vanilla

2>&1 | (

name=asymp
arch=pentium4 #If you must change this if you do not have a p4

orig_c_file=../$name.c
mod_c_file=$name.tmp.c
obj_file=./$name
output_file=./$name.output

for a in 3 4 5 6 7 8
do

sed "s/^#define.*NUM_ALTERS.*/#define NUM_ALTERS $a/" < $orig_c_file >
$mod_c_file

gcc -Wall $mod_c_file -O3 -march=$arch -o $obj_file
nice $obj_file | tee -a $name.output
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done

)

exit

B.1.2 asymp.c

/*******************************************************************************
* INPUT: A list of normally distributed random numbers in stdin
* OUTPUTS: The asymptotic frequency that the Simpson winner is the Tideman
* winner as $n->\infty$. Note that the Tideman winner converges to the
* Dodgson winner as $n->\infty$, and so this frequency is also the

frequency
* that the Simpson winner is the Dodgson winner.
*/

#include <stdlib.h>
#include <assert.h>
#include <stdio.h>

#define rand_int(n) ( (int) ( ((float)n)*rand()/(RAND_MAX+1.0) ) );
#define NUM_ALTERS 4
#define MAX_VOTE_TYPES 500000
#define RAND_STATE_SIZE 256

char rand_state_array[RAND_STATE_SIZE];

typedef double FREQ;

char preflist[NUM_ALTERS];
FREQ adv_matrix[NUM_ALTERS][NUM_ALTERS];

unsigned int NUM_VOTE_TYPES;

unsigned int factorial (unsigned int x){
unsigned int f=1;
unsigned int i;

for (i=2;i<=x;i++) f*=i;

return f;
}

FREQ votefreq[MAX_VOTE_TYPES];

void init (){
int i;
initstate(0,rand_state_array,RAND_STATE_SIZE);
for (i=0;i<NUM_ALTERS;i++) preflist[i]=i;
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NUM_VOTE_TYPES=factorial(NUM_ALTERS);
assert(MAX_VOTE_TYPES>=factorial(NUM_ALTERS));

}

int pref_number;

/*Adds freq instances of the current permutation to the
* advantages matrix */
static void add_to_adv_matrix (FREQ freq) {

int i,j; /* positions in the preference list */
int a,b; /* candidate b is prefered over a */

for (i=0;i<NUM_ALTERS;i++) {
a=preflist[i];
for (j=0;j<i;j++) {

b=preflist[j];
adv_matrix[b][a]+=freq;
adv_matrix[a][b]-=freq;

}
}

}

int display_perms=0;

static void ForAllPerms (char varsection[], int varlen){
int i;
char swap1,swap2;

if (varlen>1) {

ForAllPerms(varsection+1,varlen-1);
swap1=varsection[0];
for (i=1;i<varlen;i++) {

swap2=varsection[i];
varsection[i]=swap1;
varsection[0]=swap2;

ForAllPerms(varsection+1,varlen-1);

varsection[i]=swap2;
}
varsection[0]=swap1;

} else {

if (display_perms && votefreq[pref_number] > 0 ) {
printf ("%d: ",(int)votefreq[pref_number]);
for (i=0;i<NUM_ALTERS;i++) printf("%c

",’a’+(char)preflist[i]);
printf("\n");

}

add_to_adv_matrix(votefreq[pref_number]);
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pref_number++;

}
}

static void calc_adv_matrix() {
int i,j;
for (i=0;i<NUM_ALTERS;i++)

for (j=0;j<NUM_ALTERS;j++)
adv_matrix[i][j]=0;

pref_number=0;
ForAllPerms(preflist,NUM_ALTERS);
if (display_perms) {
for (i=0;i<NUM_ALTERS;i++) {

for (j=0;j<NUM_ALTERS;j++) {
printf("%d\t",(int)adv_matrix[i][j]);

}
printf("\n");

}
}

return;
}

/*
static void display_profile() {

display_perms=1;
calc_adv_matrix();
display_perms=0;

}
*/

/*********************************************************************
* IMPARTIAL_CULTURE
* randomly generates a voting culture distributed according to
* impartial culture hypothesis.
* Inputs: nvoters - number of voters in election
* : votefreq_size - number of possible different types of votes
* Output: votefreq - frequency of each type of vote.
*
* returns "first citizen’s" vote, may be useful for tie-breaking.
********************************************************************/

static unsigned int impartial_culture(FREQ* votefreq, int votefreq_size, int
nvoters){

int i;
double x;
for (i=0;i<votefreq_size;i++)

{
scanf("%lf",&x);
votefreq[i]=(FREQ)x;

}

return 0;
}
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/* Returns the maximum defeat for each candidate */
void calc_Simpson_scores(FREQ* score_array){

FREQ score_of_i, adv;
int i,j=1;

for (i=0;i<NUM_ALTERS;i++) {
score_of_i=adv_matrix[0][i];
for (j=1;j<NUM_ALTERS;j++) {

adv=adv_matrix[j][i];
if (adv>score_of_i) score_of_i=adv;

}
score_array[i]=score_of_i;

}
}

void calc_Tideman_scores(FREQ* score_array){
FREQ score_of_i, adv;
int i,j;

for (i=0;i<NUM_ALTERS;i++) {
score_array[i]=0;

}
for (i=0;i<NUM_ALTERS;i++) {

score_of_i=0;
for (j=0;j<NUM_ALTERS;j++) {

adv=adv_matrix[j][i];
if (adv>0) score_of_i+=adv;

}
score_array[i]=score_of_i;

}
}

#ifdef FREQ_INT
void calc_DQ_scores(FREQ* score_array){

FREQ score_of_i, adv;
int i,j;

for (i=0;i<NUM_ALTERS;i++) {
score_array[i]=0;

}
for (i=0;i<NUM_ALTERS;i++) {

score_of_i=0;
for (j=0;j<NUM_ALTERS;j++) {

adv=adv_matrix[j][i];
if (adv>0) score_of_i+=(adv+1)/2; /*c floors all ints*/

}
score_array[i]=score_of_i;

}
}
#endif

int calc_winners(FREQ* score_array) {
int i;
FREQ min=score_array[0];
int winners; /*stored as bits*/
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for (i=1;i<NUM_ALTERS;i++) {
if (min>score_array[i]){

min=score_array[i];
}

}

winners=0;
for (i=0;i<NUM_ALTERS;i++) {

winners=winners*2;
if (min==score_array[i]){

if (winners!=0) printf("Warning, tied winners exist\n");
winners++;

}
}

return winners;

}

void display_scores(FREQ *scores) {
int i;
for (i=0;i<NUM_ALTERS;i++){ printf("%lf\t",scores[i]); }
printf("\n");
printf("%d\n",calc_winners(scores));

}

int main(){
int numVoters=2;
int num_runs=100000;
int run;

int acc1,acc2; /* # of times approximation was accurate */
int acc2b;
int Simpson_winners;
int Tideman_winners;

FREQ scores[NUM_ALTERS];

char buf[999];
for (run=1;run<200;run++){ /* required to get skip past init info and

get into random numbers */
scanf("%99s",buf);
/*printf("str: %s\n",buf);*/

}

init();

FREQ *vf=votefreq;

acc1=0;
acc2=0;
acc2b=0;

114



ASYMPTOTIC SIMPSON’S RULE

for (run=0;run<num_runs;run++){

impartial_culture(vf,NUM_VOTE_TYPES,numVoters);

calc_adv_matrix();

calc_Tideman_scores(scores);
Tideman_winners=calc_winners(scores);

calc_Simpson_scores(scores);
Simpson_winners=calc_winners(scores);
acc1+=(Tideman_winners==Simpson_winners);

if (Tideman_winners & Simpson_winners) {
acc2++;

}

fprintf (stderr,"%c%d/%d",(char)13,acc1,run);

}

fprintf (stderr,"%c",(char)13);
fprintf (stderr," ");
fprintf (stderr,"%c",(char)13);

printf("%d \t%d \t%d\n",NUM_ALTERS,acc1,acc2);

return 0;
}

B.1.3 Output
The first column of the output is the number of alternatives. The second column repre-
sents the asymptotic limit of the probability that the set of tied Simpson winners are the
set of tied Dodgson winners, as the number of agents tends to infinity. The third column
represents the asymptotic limit of the probability that the set of tied Simpson winners has
a non-empty intersection with the set of tied Dodgson winners. However as the number
of agents tends to infinity, the probability of a tie tends to zero. Hence both the second
and third columns are simply the probability that the Simpson winner is the Dodgson
winner.

3 100000 100000
4 99319 99319
5 98282 98282
6 97274 97274
7 96067 96067
8 94982 94982
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B.2 Dodgson Quick vs Tideman vs Simpson
This code is designed to generate random elections, under the impartial culture hypoth-
esis, and compare how often various rules pick the same winner as the Dodgson Rule.

B.2.1 SiTiDQ.sh— wrapper script

#!/bin/sh

mkdir tmp
cd tmp && (

name=SiTiDQ
arch=pentium4 #If you must change this if you do not have a p4

orig_c_file=../$name.c
mod_c_file=$name.tmp.c
obj_file=./$name
output_file=./$name.output

#for a in 4 5 6 7 8
for a in 3
do

sed "s/^#define.*NUM_ALTERS.*/#define NUM_ALTERS $a/" < $orig_c_file >
$mod_c_file

gcc -Wall $mod_c_file -O3 -march=$arch -o $obj_file
nice $obj_file | tee -a $name.output

done

)

B.2.2 SiTiDQ.c

#include <stdlib.h>
#include <assert.h>
#include <stdio.h>

#define rand_int(n) ( (int) ( ((float)n)*rand()/(RAND_MAX+1.0) ) );
#define NUM_ALTERS 5
#define MAX_VOTE_TYPES 100000
//#define RAND_STATE_SIZE 256
#define RAND_STATE_SIZE 8

#define BOOL int

char rand_state_array[RAND_STATE_SIZE];
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typedef signed long FREQ;

char preflist[NUM_ALTERS];
FREQ adv_matrix[NUM_ALTERS][NUM_ALTERS];
FREQ direct_above_matrix[NUM_ALTERS][NUM_ALTERS];

unsigned int NUM_VOTE_TYPES;

inline static unsigned int factorial (unsigned int x){
unsigned int f=1;
unsigned int i;

for (i=2;i<=x;i++) f*=i;

return f;
}

FREQ votefreq[MAX_VOTE_TYPES];

inline static void init (){
int i;
initstate(0,rand_state_array,RAND_STATE_SIZE);
for (i=0;i<NUM_ALTERS;i++) preflist[i]=i;
NUM_VOTE_TYPES=factorial(NUM_ALTERS);
assert(MAX_VOTE_TYPES>=factorial(NUM_ALTERS));

}

int pref_number;

/*Adds freq instances of the current permutation to the
* advantages matrix */
inline static void add_to_adv_matrix (FREQ freq) {

int i,j; /* positions in the preference list */
int a,b; /* candidate b is prefered over a */

for (i=0;i<NUM_ALTERS;i++) {
a=preflist[i];
for (j=0;j<i;j++) {

b=preflist[j];
adv_matrix[b][a]+=freq;
adv_matrix[a][b]-=freq;

}
}

for (i=1;i<NUM_ALTERS;i++) {
a=preflist[i];
b=preflist[i-1];

direct_above_matrix[b][a]+=freq;
}

}

int display_perms=0;
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static void ForAllPerms (char varsection[], int varlen){
int i;
char swap1,swap2;

if (varlen>1) {

ForAllPerms(varsection+1,varlen-1);
swap1=varsection[0];
for (i=1;i<varlen;i++) {

swap2=varsection[i];
varsection[i]=swap1;
varsection[0]=swap2;

ForAllPerms(varsection+1,varlen-1);

varsection[i]=swap2;
}
varsection[0]=swap1;

} else {

if (display_perms && votefreq[pref_number] > 0 ) {
printf ("%d: ",(int)votefreq[pref_number]);
for (i=0;i<NUM_ALTERS;i++) printf("%c

",’a’+(char)preflist[i]);
printf("\n");

}

add_to_adv_matrix(votefreq[pref_number]);

pref_number++;

}
}

inline static void calc_adv_matrix() {
int i,j;
for (i=0;i<NUM_ALTERS;i++)

for (j=0;j<NUM_ALTERS;j++) {
adv_matrix[i][j]=0;
direct_above_matrix[i][j]=0;

}
pref_number=0;
ForAllPerms(preflist,NUM_ALTERS);
if (display_perms) {
for (i=0;i<NUM_ALTERS;i++) {

for (j=0;j<NUM_ALTERS;j++) {
printf("%d\t",(int)adv_matrix[i][j]);

}
printf("\n");

}
}

return;
}
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inline static void display_profile() {
printf("asdfasdf\n");
display_perms=1;
calc_adv_matrix();
display_perms=0;

}

/*********************************************************************
* IMPARTIAL_CULTURE
* randomly generates a voting culture distributed according to
* impartial culture hypothesis.
* Inputs: nvoters - number of voters in election
* : votefreq_size - number of possible different types of votes
* Output: votefreq - frequency of each type of vote.
*
* returns "first citizen’s" vote, may be useful for tie-breaking.
********************************************************************/
inline static unsigned int impartial_culture(FREQ* votefreq, int votefreq_size,

int nvoters){
int i;
unsigned int vote=9999;
for (i=0;i<votefreq_size;i++) votefreq[i]=0;
for (i=0;i<nvoters;i++){

vote=rand_int(votefreq_size);
assert(vote<votefreq_size);
votefreq[vote]++;

}

return vote;
}

/* Returns the maximum defeat for each candidate */
inline static void calc_Simpson_scores(FREQ* score_array){

FREQ score_of_i, adv;
int i,j=1;

for (i=0;i<NUM_ALTERS;i++) {
score_of_i=adv_matrix[0][i];
for (j=1;j<NUM_ALTERS;j++) {

adv=adv_matrix[j][i];
if (adv>score_of_i) score_of_i=adv;

}
score_array[i]=score_of_i;

}
}

inline static void calc_Tideman_scores(FREQ* score_array){
FREQ score_of_i, adv;
int i,j;

for (i=0;i<NUM_ALTERS;i++) {
score_array[i]=0;

}
for (i=0;i<NUM_ALTERS;i++) {

119



CODE AND OUTPUT

score_of_i=0;
for (j=0;j<NUM_ALTERS;j++) {

adv=adv_matrix[j][i];
if (adv>0) score_of_i+=adv;

}
score_array[i]=score_of_i;

}
}

inline static BOOL calc_DQ_scores(FREQ* score_array){
FREQ score_of_i, adv;
int i,j;

BOOL allexact=1;

for (i=0;i<NUM_ALTERS;i++) {
score_array[i]=0;

}
for (i=0;i<NUM_ALTERS;i++) {

score_of_i=0;
for (j=0;j<NUM_ALTERS;j++) {

adv=adv_matrix[j][i];
adv=(adv+1)/2; /*c floors all ints*/
if (adv>0) {

score_of_i+=adv;
if (adv>direct_above_matrix[j][i]) {

allexact=0;
}

}
}
score_array[i]=score_of_i;

}

return allexact;
}

inline static int calc_winners(FREQ* score_array) {
int i;
int min=score_array[0];
int winners; /*stored as bits*/

for (i=1;i<NUM_ALTERS;i++) {
if (min>score_array[i]){

min=score_array[i];
}

}

winners=0;
for (i=0;i<NUM_ALTERS;i++) {

winners=winners*2;
if (min==score_array[i]){

winners++;
}

}
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return winners;

}

static inline void display_scores(FREQ *scores) {
int i;
for (i=0;i<NUM_ALTERS;i++){ printf("%d\t",(int) scores[i]); }
printf("\n");
printf("%d\n",calc_winners(scores));

}

int main(){
//int numVoteTypes=factorial(numAlters);
int numVoters=2;
//int i;
int num_runs=100000;
int run;

int acc1,acc2; /* # of times approximation was accurate */
int acc2b;
int acc2c;
int acc3;
int DQ_winners;
int Simpson_winners;
int Tideman_winners;

FREQ scores[NUM_ALTERS];

init();

FREQ *vf=votefreq;

printf("Number of alternatives: %d\n", NUM_ALTERS);
printf("Number of runs: %d\n",num_runs);
printf("1st col: number of voters\n");
printf("2nd col: # of runs where the set of Tideman winners is the set

of DQ winners\n");
printf("3rd col: # of runs where the set of Simpson winners is the set

of DQ winners\n");
printf("4th col: # of runs where the intersection of the Simpson winners

and the DQ winners is non-empty\n");
printf("5th col: # of runs where the intersection of the Tideman winners

and the DQ winners is non-empty\n");
printf("6th col: # of runs where we know all DQ scores equal all Dodgson

Scores.\n\n");

printf("#voters\t#TI=DQ\t#SI=DQ\tSI^DQ>0\tTI^DQ>0\tDQexact\n");

while (numVoters<200000) {
//while (1) {

acc1=0;
acc2=0;
acc2b=0;
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acc2c=0;
acc3=0;

for (run=0;run<num_runs;run++){

impartial_culture(vf,NUM_VOTE_TYPES,numVoters);

calc_adv_matrix();

acc3+=calc_DQ_scores(scores);
DQ_winners=calc_winners(scores);

calc_Tideman_scores(scores);
Tideman_winners=calc_winners(scores);
acc1+=(DQ_winners==Tideman_winners);

calc_Simpson_scores(scores);
Simpson_winners=calc_winners(scores);
acc2+=(DQ_winners==Simpson_winners);

/* display_scores(scores);*/

if (DQ_winners & Simpson_winners) {
acc2b++;

} else {
//printf("\n%d,%d\n",DQ_winners,Simpson_winners);
//display_profile();

}

if (Tideman_winners & DQ_winners) {
acc2c++;

}

}

printf("%d\t%d\t%d\t%d\t%d\t%d\n",numVoters,acc1,acc2,acc2b,acc2c,acc3);
fflush(stdout);

numVoters=numVoters*2-1;

}

printf("\n\n");

return 0;
}

B.2.3 Output

Number of runs: 100000
1st col: number of voters
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2nd col: # of runs where the set of Tideman winners is the set of DQ winners
3rd col: # of runs where the set of Simpson winners is the set of DQ winners
4th col: # of runs where the set of Simpson winners has a non empty intersection

with the set of Tideman winners
5th col: # of runs where the set of Tideman winners has a non empty intersection

with the set of DQ winners
6th col: # of runs where we know all DQ scores equal all Dodgson Scores.

Number of alternatives: 3
#voters #TI=DQ #SI=DQ SI^DQ>0 TI^DQ>0 DQexact
2 100000 100000 100000 100000 83306
3 100000 100000 100000 100000 55721
5 100000 100000 100000 100000 78933
9 100000 100000 100000 100000 94718
17 100000 100000 100000 100000 99589
33 100000 100000 100000 100000 99997
65 100000 100000 100000 100000 100000
... ... ... ... ... ...
131073 100000 100000 100000 100000 100000

Number of alternatives: 4
#voters #TI=DQ #SI=DQ SI^DQ>0 TI^DQ>0 DQexact
2 100000 100000 100000 100000 45876
3 100000 92371 100000 100000 6017
5 100000 92236 100000 100000 22977
9 99808 93787 99997 100000 54499
17 99492 95341 99980 100000 86222
33 99323 96541 99954 100000 98857
65 99361 97272 99858 100000 99994
129 99434 97859 99770 100000 100000
257 99584 98381 99697 100000 100000
513 99664 98586 99562 100000 100000
1025 99746 98796 99532 100000 100000
2049 99820 98920 99455 100000 100000
4097 99842 98956 99362 100000 100000
8193 99901 99074 99345 100000 100000
16385 99934 99195 99366 100000 100000
32769 99959 99197 99323 100000 100000
65537 99969 99265 99344 100000 100000
131073 99967 99221 99294 100000 100000

Number of alternatives: 5
#voters #TI=DQ #SI=DQ SI^DQ>0 TI^DQ>0 DQexact
2 100000 100000 100000 100000 19788
3 100000 86127 100000 100000 108
5 99901 84814 100000 100000 1896
9 99291 87184 99957 100000 13176
17 98646 90186 99872 100000 46905
33 98440 92658 99777 99999 86162
65 98453 94000 99575 99999 99281
129 98678 95252 99340 99998 99999
257 98993 96128 99106 99999 100000
513 99252 96764 98965 99997 100000
1025 99454 97167 98767 99999 100000
2049 99585 97530 98680 100000 100000
4097 99698 97683 98547 100000 100000
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8193 99772 97826 98430 99999 100000
16385 99840 97958 98373 100000 100000
32769 99887 98073 98381 100000 100000
65537 99920 98049 98272 99999 100000
131073 99934 98156 98305 100000 100000
262145 99962 98166 98283 100000 100000
524289 99976 98236 98304 100000 100000

Number of alternatives: 6
#voters #TI=DQ #SI=DQ SI^DQ>0 TI^DQ>0 DQexact
2 100000 100000 100000 100000 7389
3 100000 81137 100000 100000 0
5 99761 78746 99998 100000 38
9 98709 81197 99875 100000 1177
17 97692 85351 99638 100000 13080
33 97514 88668 99530 99998 53736
65 97584 91135 99169 99993 92654
129 97927 92689 98766 99991 99851
257 98425 94009 98524 99990 100000
513 98814 94800 98128 99993 100000
1025 99078 95446 97919 99995 100000
2049 99365 96034 97795 99999 100000
4097 99528 96297 97586 99996 100000
8193 99678 96494 97394 99998 100000
16385 99777 96689 97313 100000 100000
32769 99811 96732 97181 100000 100000
65537 99877 96997 97309 100000 100000
131073 99908 97007 97224 99999 100000

Number of alternatives: 7
#voters #TI=DQ #SI=DQ SI^DQ>0 TI^DQ>0 DQexact
2 100000 100000 100000 100000 2229
3 100000 76941 100000 100000 0
5 99652 73983 99991 100000 0
9 98174 76108 99767 100000 31
17 96844 81372 99357 99997 1680
33 96542 85501 99123 99990 20830
65 96830 88411 98720 99985 71794
129 97407 90518 98293 99982 98147
257 97970 91947 97781 99982 99997
513 98445 93050 97348 99988 100000
1025 98798 93830 97084 99983 100000
2049 99246 94524 96762 99994 100000
4097 99399 94965 96631 99993 100000
8193 99558 95219 96417 99998 100000
16385 99670 95427 96280 99996 100000
32769 99759 95591 96228 99995 100000
65537 99810 95616 96077 99998 100000
131073 99878 95747 96079 99999 100000

Number of alternatives: 8
#voters #TI=DQ #SI=DQ SI^DQ>0 TI^DQ>0 DQexact
2 100000 100000 100000 100000 613
3 100000 73583 100000 100000 0
5 99487 69644 99983 100000 0
9 97678 71966 99630 100000 0
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17 96219 78016 99031 99995 74
33 95734 82752 98746 99983 4569
65 96144 86006 98326 99962 41193
129 96781 88241 97521 99966 90701
257 97516 90120 97083 99971 99873
513 98157 91485 96707 99975 100000
1025 98621 92356 96140 99980 100000
2049 99044 93094 95775 99989 100000
4097 99293 93570 95540 99986 100000
8193 99476 93997 95422 99997 100000
16385 99618 94221 95246 99996 100000
32769 99754 94593 95235 99993 100000
65537 99823 94583 95072 99998 100000
131073 99855 94718 95097 99997 100000

B.3 Exact Dodgson Algorithm
This is the code we used to calculate the exact Dodgson scores. This module was called by
a custom built library of MATLAB and R report generation code. This library is over 2000
lines long and will not be printed here. See http://dansted.org/thesis06/ for files
relating to the thesis that have been omitted from the main text. Also feel free to contact
the author at gmatht@gmail.com as to the use of these files and for more experimental
data.

/**************************************************************************
* Computes Dodgson Scores (See bottom for matlab mex interface)
* ************************************************************************
* This programlet calculates the Dodgson scores for a given profile
*
* This programlet links against the GPL’d library gplk. This means that if this
* program is distributed, permission must be given to the recipents to
* redistribute it under the terms of the GPL.
*
* compile mex file by typing:
* mex DodgsonScores_C.c libglpk.a
*
* For some reason you may need to copy libglpk.a and glp*.h into the current
* working directory to compile.
*
* ************************************************************************/

#define HAS_MAINLINE

#ifndef HAS_MAINLINE
#define MATLAB

#endif

#ifdef MATLAB
#include "mex.h"
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#endif

/*#ifdef MATLAB
#include "mex.h"

#else
#define HAS_MAINLINE

#endif*/

#include <stdio.h>
#include <stdlib.h>
#include "glpk.h"
#include "math.h"

/* using the interior point method may be faster.
#define USE_INTERIOR_POINT
*/

typedef short alter_t;
typedef short index_t;

typedef struct node_struct {
short count;
alter_t a;
index_t up;
index_t down;
index_t left;

} node_t;

typedef struct dodgsn_struct {
/* Graph representation of Dodgeson Problem */
node_t *nodearray; /* nodes in graph of dodgsn problem */

/* Linear Problem Array */
int nz; /* Number of non-zero elements */
int *rn; /* row of ith non-zero element */
int *cn; /* col of ith non-zero element */
double *a; /* value of ith non-zero element */

/* glpk’s representation of linear programming problem*/
LPX *glpk;

} dodgsn_t;

static void error(char* err) {
#ifdef MATLAB

mexErrMsgTxt(err);
#else

printf("%s\n",err);
exit(0);

#endif
}

/******************************************************************************
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* newnode - Creates a new node
* ****************************************************************************/

index_t newnode(node_t nodearray[],
int *nextnode,
index_t up,
alter_t alternative){

node_t *p;
int node;

node=(*nextnode)++;
p=&(nodearray[node]);
p->count=0;
p->up=up;
p->left=0;
p->down=0;
p->a=alternative;

return ((index_t)node);
}

/*********************************************************************
* addvote: Adds a vote to the Dodgson Node Array
* **********************************************
*
* INPUTS: vote - a list of alternatives, first element is voters 1st pref.
* d - The alternative we are calculating the dodgsn score for.
* nextnode - The index of the first empty node in the node array.
* nodearray - see below
*
* OUTPUTS: nextnode - The index for first empty node once the vote added
* nodearray -
*
* The nodearray contains a tree. The root node is at position 0, and represents
* an empty dodgsn string.
*
* node.count - the number of votes that transverse this node.
* node.a - choosing this node represents unswapping this alternative.
* node.up - represents the dodgsn node that must be chosen before this.
* node.down - following this link represents choosing node.alter.
* node.left - links to another node that shares the same node.up
*
* CAUTION: does not check that nodearray is large enough to store all required
* nodes. To ensure that a buffer overrun does not occur, nodearray’s size
* should be at least ((numvoters*numalters)+1)
*
*************************************************************************/
static void addvote( node_t nodearray[], int *nextnode, double vote[], alter_t

d) {
int node;
node_t *node_ptr;
double* alt_ptr;
int next_alt;

node_ptr = nodearray;
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node = 0;

alt_ptr=vote-1;
while ( d != ( next_alt = (alter_t)(*(++alt_ptr)) ) ) {

if (node_ptr->down == 0){
node_ptr->down=

newnode(nodearray,
nextnode,
(index_t)node,
(alter_t)next_alt);

}
node=(int)nodearray[node].down;
node_ptr=&nodearray[node];

while (node_ptr->a != next_alt) {
if (node_ptr->left == 0) {

node_ptr->left=
newnode(nodearray,nextnode,
node_ptr->up,next_alt);

}
node=node_ptr->left;
node_ptr=&nodearray[node];

}

node_ptr->count++;
}

}

int global_pref_number;
int global_nodearray;
int global_nextnode;

static void ForAllPerms (char varsection[], int varlen){
int i;
char swap1,swap2;

if (varlen>1) {

ForAllPerms(varsection+1,varlen-1);
swap1=varsection[0];
for (i=1;i<varlen;i++) {

swap2=varsection[i];
varsection[i]=swap1;
varsection[0]=swap2;

ForAllPerms(varsection+1,varlen-1);

varsection[i]=swap2;
}
varsection[0]=swap1;

} else {

if (display_perms && votefreq[pref_number] > 0 ) {
printf ("%d: ",(int)votefreq[pref_number]);
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for (i=0;i<NUM_ALTERS;i++) printf("%c
",’a’+(char)preflist[i]);

printf("\n");
}

add_to_adv_matrix(votefreq[pref_number]);

pref_number++;

}
}

/*****************************************************************************
* CreateDodgsonGraph - creates a graph that represents the options availiable
* for reducing the number of swaps while still having d being a condorcet
* winner.
*****************************************************************************/

static void CreateDodgsonGraph(node_t *nodearray,/*array of nodes in dodgsn
graph*/

int* nextnode, /*first empty node in array*/
alter_t d, /*calculating dogson score for alt d*/
int numalter, /*number of alternatives */
int numvoter, /*number of voters*/
double* profmatrix){ /*array of votes*/

int vote;
*nextnode=0;

global_nextnode=nextnode;
global_nodearray=nodearray;

newnode(nodearray,nextnode,(index_t)0,(alter_t)0);
for(vote=0;vote<numvoter;vote++){

addvote(nodearray,nextnode,&profmatrix[vote*numalter],d);
}
}

/* ****************************************************************************
* Calculates the Dodgson score for the initial state of the linear programming
* problem. Final Dodgson score = initial dodgsn score + f, f found from linear
* programming
* ****************************************************************************/
static int InitalDodgsonScore(node_t nodearray[],int nextnode){

int i;
int score;

score=0;
for (i=1;i<nextnode;i++)

score+=nodearray[i].count;
return(score);

}

/* ***************************************************************************
* adds a non-zero value a to the matrix
* OUTPUTS: Updated linear problem
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* INPUTS: rn - row number
* cn - col number
* a - value to add
* NOTE: This cannot be used to overwrite an existing non-zero number

*************************************************************************** */

static void add_nz_val(dodgsn_t *dodg, int rn,int cn, double a) {
int nz = dodg->nz;
dodg->rn[nz]=rn;
dodg->cn[nz]=cn;
dodg->a[nz]=a;
dodg->nz=nz+1;

}

/* ****************************************************************************
* CreateInequalities - Creates the inequalities for the linear programming
* problem used to calculate the dodgsn score for d
*
* REMEMBER to delete the dodg->glpk that this procedure allocates

****************************************************************************/
static void CreateInequalities(dodgsn_t *dodg,

node_t nodearray[],/*array of nodes in dodgsn graph*/
int nextnode, /*first empty node in array*/
alter_t d, /*calculating dogson score for alt d*/
int numalter, /*number of alternatives */
int numvoter /*number of voters*/
){

int i;
int nextrow;
int child;
node_t *n;
double max_losses; /* max times d can lose and still be condorcet winner */
int numnodes=nextnode-1;
LPX* glpk;

glpk=lpx_create_prob();
dodg->glpk=glpk;
lpx_add_cols(glpk, numnodes);
dodg->nz=0;

max_losses=(double)(int)(numvoter/2);
/*max_losses=(double)(int)((numvoter-1)/2);*/

/* Add constrants requiring d to be a condorcet winner, d cannot be a winner
* if we transverse (lose to) any other alternitive more than max_losses times*/
lpx_add_rows(glpk,numalter);

for (i=1;i<nextnode;i++){
n=&nodearray[i];
add_nz_val(dodg,n->a,i,1.0);

}
for (i=1;i<=numalter;i++){

lpx_set_row_bnds(glpk, i, LPX_UP, 0.0, max_losses);
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}

nextrow=numalter+1;

/* Add constraints requiring that we do not transverse any node more times
* than its capacity, nor lest times than zero */
for (i=1;i<nextnode;i++){

n=&nodearray[i];
lpx_set_col_bnds(glpk,i, LPX_DB, 0.0, (double)(n->count));

}

/* Add constraints requiring that we must transverse parent nodes to reach
* child nodes
* */
for (i=1;i<nextnode;i++){

n=&nodearray[i];
if (n->down != 0) {

lpx_add_rows(glpk,1);
child=n->down;
while (child!=0){

/* for all children */
add_nz_val(dodg,nextrow,child,1.0);
child=nodearray[child].left;

}
add_nz_val(dodg,nextrow,i,-1.0);
lpx_set_row_bnds(glpk, nextrow, LPX_UP, 0.0, 0.0);

nextrow++;

}
}
lpx_set_obj_dir(glpk, LPX_MAX);
for (i=1;i<nextnode;i++){

lpx_set_col_coef(glpk, i, 1.0);
}

lpx_load_mat3(glpk, dodg->nz , dodg->rn-1, dodg->cn-1, dodg->a-1);

}

void print_dodson_str(node_t nodearray[],int node) {
if (node!=0){

print_dodson_str(nodearray,nodearray[node].up);
printf("%d",nodearray[node].a);

}
}

/* ****************************************************************************
* DisplayInequalities - Test function only
*
* NOTE - only works if we have solved problem with simplex algorithm.
* it would be a simple modification to get this to work with interior point
* solutions as well.
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*
* ****************************************************************************/

#ifdef DEBUG

static void DisplayInequalities(dodgsn_t *dodg,
node_t nodearray[],/*array of nodes in dodgsn graph*/
int nextnode, /*first empty node in array*/
alter_t d, /*calculating dogson score for alt d*/
int numalter, /*number of alternatives */
int numvoter /*number of voters*/
){

int cols,col;
int node;
double num_transverse;

cols=nextnode-1;
for(col=1;col<=cols;col++){

node=col;
printf("S");
print_dodson_str(nodearray,node);

lpx_get_col_info(dodg->glpk, col, NULL, &num_transverse, NULL);
printf("\t = %g/%d\n",num_transverse,nodearray[node].count);

}
printf("\n Z = %4g , d = %4d\n\n",lpx_get_obj_val(dodg->glpk),d);

/* lpx_write_mps(dodg->glpk,"Dodgson.mps");
lpx_print_sol(dodg->glpk,"Dodgson.sol");*/

}

#endif

static double solve_lp_real(dodgsn_t *dodg){
int return_code;
double obj_val;
int cols;
LPX *glpk=dodg->glpk;
int i;

int o;

#ifdef USE_INTERIOR_POINT
return_code = lpx_interior(dodg->glpk);
if (return_code != LPX_E_OK)

printf("ERROR - cannot solve linear problem(interior)");
obj_val=lpx_get_ips_obj(dodg->glpk);

#else
/* lpx_scale_prob(dodg->glpk);*/
/* lpx_set_int_parm(dodg->glpk,LPX_K_DUAL,1);*/

return_code = lpx_simplex(dodg->glpk);
if (return_code != LPX_E_OK)

printf("ERROR - cannot solve linear problem(simplex)");
obj_val=lpx_get_obj_val(dodg->glpk);

#endif
return (obj_val);

}
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/* ********************************************************************
* Returns the integer solution to the Dodgson LP.
* Note that solve_lp_real must be called first.*/

static double solve_lp_integer(dodgsn_t *dodg){
int return_code;
double obj_val;
int cols;
LPX *glpk=dodg->glpk;
int i;

int o;

lpx_set_class(glpk,LPX_MIP);
cols=lpx_get_num_cols(glpk);
for (i=1;i<=cols;i++) {

lpx_set_col_kind(glpk,i,LPX_IV);
}

lpx_set_int_parm(dodg->glpk,LPX_K_BRANCH,1);
return_code = lpx_integer(glpk);
if (return_code != LPX_E_OK)

printf("ERROR - cannot solve linear problem(integer)");
else

obj_val=lpx_get_mip_obj(glpk);

/* o=(int)(obj_val+0.002);

if (( o - obj_val + 0.001) < 0 ) {
printf("\n*************************************************\n");
printf("******************** NON INTEGER:

%d,%g,%g\n",o,o-obj_val,obj_val);
printf("*************************************************\n");
lpx_write_mps(dodg->glpk,"Dodgson.mps");
lpx_print_sol(dodg->glpk,"Dodgson.sol");

}*/
/*printf("vals: %g,%g\n\n",obj_val,lpx_get_ips_obj(dodg->glpk));*/

return (obj_val);
}

/* ********************************************************************
* Makes the 4 alternative problem described by A. Slinko in his
* "Untidy Notes on Complexity of Several Voting Procedures"
*
* must set num_alter to 4, and num_voter to 21
* testing purposes only.
*
* ********************************************************************/

void make_slinkos_4alt_problem(double *vote) {
double* p=vote;
int i;
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for (i=0;i<4;i++){ *(p++)=4.0; *(p++)=1.0; *(p++)=2.0; *(p++)=3.0; }
for (i=0;i<3;i++){ *(p++)=4.0; *(p++)=2.0; *(p++)=3.0; *(p++)=1.0; }
for (i=0;i<3;i++){ *(p++)=4.0; *(p++)=3.0; *(p++)=1.0; *(p++)=2.0; }
for (i=0;i<3;i++){ *(p++)=1.0; *(p++)=2.0; *(p++)=3.0; *(p++)=4.0; }
for (i=0;i<4;i++){ *(p++)=2.0; *(p++)=3.0; *(p++)=1.0; *(p++)=4.0; }
for (i=0;i<4;i++){ *(p++)=3.0; *(p++)=1.0; *(p++)=2.0; *(p++)=4.0; }

}

/*******************************************************************
* Frees the memory allocated to a dodgsn structure
*******************************************************************/

static void dodgsn_free(dodgsn_t *dodg) {
free(dodg->nodearray);
free(dodg->rn);
free(dodg->cn);
free(dodg->a);
free(dodg);

}

/**********************************************************************
* Allocates memory for a dodgsn structure
* INPUT: size - the size of the dodgsn problem = (numvoter*numalter)
* RETURNS: a Dodgson structure (filled with garbage)
**********************************************************************/

static dodgsn_t *dodgsn_alloc(int size) {
dodgsn_t *dodg;
int max_nz=3*size; /* Max number of non-zero elements in lp matrix*/

dodg=malloc(sizeof(dodgsn_t));
if (dodg!= NULL) {

dodg->nodearray=malloc((size+1)*sizeof(node_t));
dodg->rn=malloc((max_nz)*sizeof(int));
dodg->cn=malloc((max_nz)*sizeof(int));
dodg->a=malloc((max_nz)*sizeof(double));
if (dodg->nodearray&&dodg->rn&&dodg->cn&&dodg->a) {

/*fine*/
} else {

dodgsn_free(dodg);
dodg=NULL;

}
}
if (dodg==NULL) {

printf("*********** ERROR ***********\n");
printf("**Could not allocate Memory**\n");

error("Could not allocate Memory.");

}
return(dodg);

}
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static int dodgsn_lowerbound(
int* buffer,
node_t *nodearray,
int nextnode,
int numalters,
int numvoters

) {
int a;
int total_min_swaps;
int max_losses;
node_t *n;

max_losses=(double)((numvoters-1)/2);
for (a=1;a<=numalters;a++) {

buffer[a]=-max_losses;
}
for (n=nodearray+1;n<nodearray+nextnode;n++){

buffer[n->a]+=n->count;
}

total_min_swaps=0;
for (a=1;a<=numalters;a++) {

if (buffer[a] > 0){
total_min_swaps+=buffer[a];

}
}

return (total_min_swaps);
}

/************************************************************************
* calc_dodgsn_scores: calculates all Dodgeson scores for a set of votes
* **********************************************************************
*
* INPUTS:
* dodg - a preallocated chunk of memory
* d - the alternative to calculate the dodgsn score for.
* votes - An array of voter preferences
* votes[0]=1st voter’s first preference
* votes[1]=1st voter’s second preference
* ...
* votes[numalters-1]=1st voter’s last preference
* votes[numalters]=2nd voter’s first preference
* votes[numalters+1]=2nd voter’s second preference
*
* numalters - number of alternatives that voters can vote for
* numvoters - number of voters
*
* RETURNS: the dodgsn socore for the alternative d.
*
* NOTE: does not check that array contains valid data. If it does not memory
* corruption may occur
*
*
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*************************************************************************/

static double calc_dodgsn_score(
dodgsn_t *dodg,
alter_t d,
double *votes,
int numalter,
int numvoter,
double *real_lbound_ptr) {

node_t *nodearray;
int max_swaps;
double Z,real_Z;
int nextnode;
nodearray=dodg->nodearray;

CreateDodgsonGraph(nodearray,&nextnode,d,numalter,numvoter,votes);

/* printf ("%d ++++\n",dodgsn_lowerbound(dodg->rn,nodearray,nextnode,
numalter,numvoter));*/

/* min_swaps=dodgsn_lowerbound(dodg->rn,nodearray,nextnode,
numalter,numvoter);*/

/* for (n=nodearray;n<nodearray+nextnode;n++)
printf("i:%d c:%d u:%d d:%d l:%d a:%d\n",

n-nodearray,n->count,n->up,n->down,n->left,n->a);*/
max_swaps=InitalDodgsonScore(nodearray,nextnode);

if (nextnode<=1){
Z=0.0; real_Z=0.0;

} else {

CreateInequalities(dodg,nodearray,nextnode, d, numalter, numvoter);
lpx_set_int_parm(dodg->glpk,LPX_K_MSGLEV,1);
real_Z=solve_lp_real(dodg);
Z=solve_lp_integer(dodg);

/* printf("%d:%d-%g=%g >= %d\n",d,max_swaps,Z,max_swaps-Z,min_swaps);*/
lpx_delete_prob(dodg->glpk);

}

if (real_lbound_ptr!=NULL)
*real_lbound_ptr=(max_swaps-real_Z);

return(max_swaps-Z);
}

/* Finds lower bounds (DQ-scores) on all the dodgson scores
static void dodgsn_lowerbounds(

double *lbounds,
double *votes,
int numalter,
int numvoter

) {
int max_losses;
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int *lostto;
int lost;
int min_swaps;
int above,below;
double* vote;
int v,i,j;

max_losses=numvoter/2;
/*max_losses=(numvoter-1)/2;*/

lostto = calloc (sizeof(int),numalter*numalter);
if (lostto==NULL)

error("Could not allocate Memory for lostto.");
for(i=0;i<numalter*numalter;i++) {

lostto[i]=0;
}

vote=votes;
for (v=0;v<numvoter;v++) {

for (i=1;i<numalter;i++) {
for (j=0;j<i;j++) {

above=(int)vote[j];
below=(int)vote[i];
lostto[(below-1)*numalter+(above-1)]++;

}
}
vote=vote+numalter; /* goto next vote */

}

for (i=0;i<numalter;i++) {
min_swaps=0;
for (j=0;j<numalter;j++) {

lost=lostto[(i)*numalter+(j)]++;
/* printf(" lost %d\n",lost);*/

if (lost > max_losses) {
min_swaps+=lost-max_losses;

}
}
lbounds[i]=(double)(min_swaps);

/* printf("%d\n",min_swaps);*/
}
free(lostto);

}

/************************************************************************
* calc_dodgsn_scores: calculates all Dodgeson scores for a set of votes
* **********************************************************************
*
* INPUTS: votes - An array of voter preferences
* votes[0]=1st voter’s first preference
* votes[1]=1st voter’s second preference
* ...
* votes[numalters-1]=1st voter’s last preference
* votes[numalters]=2nd voter’s first preference
* votes[numalters+1]=2nd voter’s second preference
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*
* numalters - number of alternatives that voters can vote for
* numvoters - number of voters
*
* OUTPUTS: scores - An array of the Dodgson Scores for each alternative
*
* NOTE:
* - does not check that array contains valid data. If it does not memory
* corruption may occur
*
* - Does not calculate exact dogdson scores for alternatives which we
* know are not winners, I.e alternatives for which even the
* DQ-score (lower-bound) is greater than the Dodgson score for some other
* alternative. This does not affect the set of tied winners calculated
* from these scores.
*
*************************************************************************/

static void calc_dodgsn_scores(
double *lbounds,
double *real_lbounds,
double *scores,
double *votes,
int numalter,
int numvoter)

{

alter_t d;
dodgsn_t *dodg;
double large_number=numalter*numvoter; /* > max score */
double min_score;
double lowest_known;
double score;
int min_score_index;
int i;

dodgsn_lowerbounds(lbounds,votes,numalter,numvoter);
memcpy(scores,lbounds,sizeof(double)*numalter);
memcpy(real_lbounds,lbounds,sizeof(double)*numalter);

dodg = dodgsn_alloc(numalter*numvoter);

lowest_known=HUGE_VAL;
min_score=large_number;
while (lowest_known > min_score) {

min_score=scores[0];
min_score_index=0;
for(i=1;i<numalter;i++) {

if (scores[i]<min_score) {
min_score_index=i;
min_score=scores[i];

}
}
if (min_score <= lowest_known) {

/* as min_score is currently an upper bound, we do not
* know if min_score >= lowest_known */
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d=min_score_index+1;

/* printf("LB: %g = ",min_score);*/
score=calc_dodgsn_score(dodg,d,votes,numalter,numvoter,

&(real_lbounds[min_score_index]) );

/* Add a large number to score so we don’t pick it again */
scores[min_score_index]=score+large_number;

if (score<lowest_known) {
lowest_known=score;

}
}

}
for(i=0;i<numalter;i++) {

if (scores[i] >= large_number) {
scores[i]-=large_number;

}
}
dodgsn_free(dodg);

}

#ifdef HAS_MAINLINE

int main() {
double vote[255];
double scores[255];
double lbounds[255];
double real_lbounds[255];

alter_t d;
int numalter=4;
int numvoter=21;
make_slinkos_4alt_problem(vote);

calc_dodgsn_scores(lbounds,real_lbounds,scores,vote,numalter,numvoter);
for (d=1;d<=numalter;d++){

printf ("Ds[%d]=%g\n",d,scores[d-1]);
}

return(0);
}

#endif

/* INPUTS
* votes is a MxN array of votes.
* In C it appears as a 0..MxN-1 array of doubles
* votes[j*numalters+i] is voter j’s ith preference
*
* Returns:
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* 0 - An array of lower bounds on the Dodgson scores
* These lower bounds are O(m(n+m)) to compute
* Are based on the Case where there are no "wasted swaps"
* 1 - As above, but tightens the lower bounds by using a real approximation
* to the Dodgson LP.
* Note only tightens the bounds of alternatives which might be
* a dodgson winner
* 2 - As above, but uses integer linear programming to find exact values
* for the dodgson scores of alternatives which might be
* a dodgson winner.
*
* If you use these scores you will always find the correct dodgson
* winner.
* an array Scores where Score(i) is the Dodgeson Score of the ith alternative*/

#ifdef MATLAB
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])
{

double *scores;
double *real_lbounds;
double *lbounds;
int mrows,ncols;
int numvoters,numalters;
double *votes;

/* Check for proper number of arguments. */
if (nrhs != 1) {

mexErrMsgTxt("One input required.");
} else if (nlhs > 3) {

mexErrMsgTxt("Too many output arguments");
}

mrows = mxGetM(prhs[0]);
ncols = mxGetN(prhs[0]);

numvoters=ncols;
numalters=mrows;

/* The input matrix must contain scalar doubles.*/
if (!mxIsDouble(prhs[0])) {

mexErrMsgTxt("Matrix elements must be scalar doubles.");
}

/* Create matrix for the return argument. */
plhs[0] = mxCreateDoubleMatrix(1,numalters, mxREAL);
plhs[1] = mxCreateDoubleMatrix(1,numalters, mxREAL);
plhs[2] = mxCreateDoubleMatrix(1,numalters, mxREAL);
lbounds = mxGetPr(plhs[0]);
real_lbounds = mxGetPr(plhs[1]);
scores = mxGetPr(plhs[2]);

votes=mxGetPr(prhs[0]);

calc_dodgsn_scores(lbounds,real_lbounds,scores,votes,numalters,numvoters);
}
#endif
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EXACT DODGSON ALGORITHM

Figure B.1: Overview of Concepts Relevant to this Thesis
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Legend: a→ b indicates that the concept b was derived from a.

This figure is included solely to assist those who find visual summaries easier to under-
stand. It does not introduce any new material, nor is it otherwise required to understand
this thesis.
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