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1 Number Theory Begat Hurwitz Algebras

Mathematicians were always interested, when a sum of n squares of integers
times another sum of n squares of integers is a sum of n squares of integers
again? For n = 1 the corresponding identity:

x2
1y

2
1 = (x1y1)

2

immediately follows from the commutativity of integers. For n = 2 the
corresponding identity

(x2
1 + x2

2)(y
2
1 + y2

2) = (x1y1 + x2y2)
2 + (x1y2 − x2y1)

2.

is not so trivial and has been used by many mathematicians. Diophantos
used it sometime between 2nd to 4th century but maybe even he was not the
first. The corresponding identity for four squares

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4) =

= (x1y1 + x2y2 + x3y3 + x4y4)
2 + (x1y2 − x2y1 − x3y4 + x4y3)

2 +

+ (x1y3 + x2y4 − x3y1 − x4y2)
2 + (x1y4 − x2y3 + x3y2 − x4y1)

2.

was first announced by Euler in his letter to Goldbach in 17481 In 1818 C.F.
Degen2 found the first example of a similar identity for the sum of eight

1Thanks to Garry Tee for these two historical comments.
2Mem Acad.Sci. St. Petersbourg 8, (1818), 207–219.
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squares which then went unnoticed. It was followed by numerous publica-
tions where a number of false identities for the sum of sixteen squares were
suggested.

In 1843 Hamilton noted that the existence of an identity

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n) = (z2
1 + · · · + z2

n), (1)

where the zi’s are bilinear functions of xi’s and yi’s, is equivalent to the
existence of a division algebra with dimension n over the field R of real
numbers. Indeed, in this case we can define in R

n the following multiplication:
if x = (x1, . . . , xn) and y = (y1, . . . , yn), then set x · y = z, where z =
(z1, . . . , zn) and the zi are functions of x’s and y’s determined by the identity
(1). Since for such an algebra (1) can be written as

|x||y| = |x · y| (2)

then it is clear that x · y = 0 implies x = 0 or y = 0. In general, this
algebra may not be associative. The identities for the sums of 1, 2 and 4
squares follow immediately from the identity (2) for real numbers R, complex
numbers C, and quaternions H.

In 1845 Cayley constructed an eight-dimensional division algebra of octo-
nions O giving the identity for the sum of eight squares. As later appeared,
Graves constructed the same algebra one year earlier, in December 1843. He
called octonions octaves. This algebra is not associative but every two ele-
ments in O generate an associative (usually quaternion) subalgebra. Algebras
with this property are called alternative because in such algebras associator

(x, y, z) = (xy)z − x(yz)

is an alternating function of its arguments.
To familiarize ourselves with quaternions and octonions we might think

that

H = {(α, u) | α ∈ R, u ∈ R
3}

with componentwise addition, and the multiplication

(α, u)(β, v) = (αβ − (u, v) , αv + βu + u × v).

Also, we can view octonions as 2 × 2 matrices

O =

{(
α u
v β

)
| α, β ∈ R, u, v ∈ R

3

}
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with componentwise addition, and the multiplication

(
α1 u1

v1 β1

) (
α2 u2

v2 β2

)
=

(
α1α2 + (u1, v2) α1u2 + β2u1 − v1 × v2

α2v1 + β1v2 + u1 × u2 β1β2 + (v1, u2)

)
.

In attempts to obtain division algebras of larger dimensions Dickson gen-
eralized the process that leads us from R to C, from C to H, and from H to
O in the following way. Let A be an algebra with 1, of dimension n over R,
with an involution a �→ ā such that for every a ∈ A elements both a + ā and
aā are scalars

a + ā = t(a)1, aā = n(a)1,

t(a), n(a) ∈ R. Then one can construct an algebra B with involution, of
dimension 2n over R, by defining it as the set of all ordered pairs b = (a1, a2)
with componentwise addition, multiplication defined by

(x1, x2)(y1, y2) = (x1y1 − y2x̄2 , x̄1y2 + y1x2), (3)

and involution

(x1, x2) = (x̄1,−x2). (4)

This doubling process, which is known now as Cayley-Dickson process [5],
reproduces the sequence of division algebras

R → C → H → O

but it leads nowhere further. The next algebra does not have a division. We
see how dramatic this picture is. We have to pay at each step. For the sake
of constructing a division algebra of larger dimension we sacrifice one good
thing after another. At first step we had to introduce nonidentical involution,
then we lose commutativity, then associativity. Finally at the dimension 8
we have nothing valuable to sacrifice with.

Therefore we cannot get more identities for sums of squares going along
these lines, and we cannot get them in any other way because in 1898 Hurwitz
proved that such identities exist only for n = 1, 2, 4, 8. This means also that
absolute valued division algebras, i.e. division algebras with the property (2)
exist only in dimensions n = 1, 2, 4, 8. Sometimes, altogether they are called
Hurwitz algebras.
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2 Applications to Differential Geometry and

Topology

The existence of these four algebras leads to the fact that mathematics
in these dimensions looks different than in the others. For instance, for
n = 1, 2, 4, 8, due to (2), a continuous multiplication can be induced from
the corresponding Hurwitz algebra to the (n − 1)-dimensional sphere Sn−1

which consists of vectors of length 1. This multiplication converts it into a
topological group for n = 2, 4 and a topological loop for n = 8. Due to this,
spheres S0, S1, S3 and S7 are parallelizable. Parallelizability of a manifold
means that the tangent space at each point is isomorphic to any other tan-
gent space by an isomorphism induced by a parallel transport along a curve,
and that this isomorphism is independent of the choice of curve joining the
two points.

To see the parallelizability of S0, S1, S3 and S7, take the standard basis
{e1, . . . , en} of R

n (n = 1, 2, 4, 8), where e1 = 1 is the unit element of the
Hurwitz algebra, and arbitrary x ∈ Sn−1. Consider vectors w1(x) = e1 · x =
x, w2(x) = e2 ·x, . . . , wn(x) = en ·x. Since multiplication by x does not change
norms, it does not change angles. Therefore the vectors w1(x), . . . , wn(x) are
orthogonal, and the vectors w2(x), . . . , wn(x) are tangential to the sphere
Sn−1 at point x. The mappings x �→ wi(x) are clearly diffeomorphisms.

In fact, we do not need a Hurwitz algebra to parallelize Sn−1. A small
additional effort allows us to prove that existence of an arbitrary division
algebra of dimension n over the reals implies parallelizability of Sn−1. But
even such division algebras in other dimensions do not exist. It follows from
the famous theorem of Bott and Milnor that spheres are parallelizable only
in dimensions n = 1, 2, 4, 8.

An m-dimensional vector bundle over Sn is a real vector space E to-
gether with a continuous projection mapping p : E → Sn, such that, for
every x ∈ Sn, the fibre Ex = p−1(x) is an m-dimensional vector space,
and for every point in Sn there exists neighborhood U and m cross-sections
v1, . . . , vn : U → E (that is continuous mappings with p ◦ vi = Id) such that
for every x ∈ U , the m vectors v1(x), . . . , vm(x) form a basis of Ex. Vector
bundle is one of the most fundamental concept of differential topology and
differential geometry. A central role among vector bundles over Sn play the
four so-called Hopf bundles ρ1, ρ2, ρ4, ρ8, associated with the division algebras
R, C, H, O, respectively. They are constructed as follows. For n = 1, 2, 4, 8,
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we divide Sn into its upper and low hemispheres and we assume that both
contain the equator Sn−1, which points are temporarily duplicated:

Sn = H+ ∪ H−, H+ ∩ H− = Sn−1.

Then, due to existence of a division algebra of dimension n, we can identify
it with R

n. We form the trivial vector bundles H+×R
n and H+×R

n on the
upper and lower hemispheres and identify each point (x, v) ∈ Sn−1×R

n with
(x, x · v), where the dot denotes the multiplication in the division algebra.
For n = 1 we obtain the famous Mobius strip.

The Hopf bundles, especially ρ8, play a pivotal role in proving Bott’s
isomorphism and Bott’s periodicity theorem, which essentially says, that no
new phenomena can be found beyond n = 8.

3 Applications to Geometry

A few words about geometry. The most striking feature of the Hilbert’s
Grundlangen der Geometrie of 1899 was the discovery of the relation between
geometric incidence theorems (lock theorems) and axioms for algebraic struc-
tures. To formulate these relations we choose projective geometry instead of
Euclidean, as did Hilbert.

Adding Desargues’s theorem as a “lock incidence theorem” to the “trivial”
incidence axioms, one gets a class of geometries which can be described alge-
braically as that of projective geometries over an associative division algebra.
Adding Pappus-Pascal’s theorem algebraically means postulating commuta-
tivity. In 1932-34 Moufang discovered that for projective planes, the little
Desargues’s theorem is equivalent to being a projective geometry over an al-
ternative division algebra. The projective plane over octonions satisfies the
little Desargues’s theorem but not the full Desargues’s theorem. This effect
disappears in higher dimensions where the little Desargues’s theorem implies
Desargues’s theorem [3].

Let A be now an arbitrary Hurwitz algebra, one of the four. Let us
consider the set of Hermitian 3 × 3 matrices

H3(A) =





 α a b

ā β c
b̄ c̄ γ


 , α, β, γ ∈ R; a, b, c ∈ A




5



with the ordinary addition and the symmetrized multiplication

X � Y =
1

2
(XY + Y X).

Thus we obtained a sequence of simple Jordan matrix algebras

H3(R) → H3(C) → H3(H) → H3(O)

whose dimensions are 6, 9, 15, 27. The last Jordan algebra is especially
interesting. It is exceptional in the sense that each of the other three belongs
to an infinite series of simple algebras but this is not the case with H3(O)
[5].

A natural way to construct a Lie algebra is to take the set of derivations
Der(U) of some algebra U . Indeed, the commutator [D1, D2] = D1D2−D2D1

of two derivations is again a derivation, and Der(U) is a Lie algera with
respect to the usual addition of linear transformations and the commutator
as the multiplication.

Let A be one of the four Hurwitz algebras, and J be one of the four
Jordan matrix algebras constructed from the Hurwitz algebras. Define

A0 = {a ∈ A | t(a) = 0}, J0 = {X ∈ J | tr(X) = 0},

which are the sets of elements with zero trace. These sets A0 and J0 will be
closed under the following operations:

a ∗ b = ab − 1

2
t(ab), X ∗ Y = XY − 1

3
tr(XY ).

We form the set

L = Der(A) ⊕ (A0 ⊗ J0) ⊕ Der(J)

with the following multiplication [ , ]. This multiplication agrees with the
ordinary commutators in Der(A) and Der(J) and satisfies [Der(A), Der(J)] =
0. Also

[a ⊗ X, D] = aD ⊗ X, [a ⊗ X, E] = a ⊗ XE

for all D ∈ Der(A), E ∈ Der(J) and a ∈ A0, X ∈ J0. Moreover,

[a ⊗ X, b ⊗ Y ] =
1

12
tr(XY )Da,b + (a ∗ b) ⊗ (X ∗ Y ) +

1

2
t(ab)DX,Y ,
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where a, b ∈ A0, X, Y ∈ J0 and

Da,b = R[a,b] − L[a,b] − 3[Lx, Ry], DX,Y = [RX , RY ]

are inner derivations of A and J , written with the help of operators of right
and left multiplications Rx : a �→ ax, Lx : a �→ xa. The algebra L so con-
structed is a Lie algebra. This construction is known as Tits’s construction
[4].

If in this construction we take A = O and J = R, H3(R), H3(C), H3(H),
H3(O), we obtain all five exceptional simple Lie algebras:

G2, F4, E6, E7, E8,

of dimensions 14, 52, 78, 133, 248. These Lie algebras and corresponding
Lie groups lead to exceptional geometries [1].
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