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RATIONAL POINTS ON X+
0 (N) AND QUADRATIC Q-CURVES

STEVEN D. GALBRAITH

Abstract. We consider the rational points on X0(N)/WN in the case where

N is a composite number. We give an experimental study of some of the cases
not covered by the results of Momose. We find exceptional rational points

in the cases N = 91 and N = 125. and we exhibit the j-invariants of the

corresponding quadratic Q-curves.

1. Introduction

Let N be an integer greater than one. Let X0(N) be the modular curve whose
non-cusp points correspond to isomorphism classes of isogenies between elliptic
curves φ : E → E′ of degree N with cyclic kernel. The Fricke involution WN on
X0(N) arises from taking the dual isogeny (see [31]) φ̂ : E′ → E. We define the
modular curve X+

0 (N) to be the quotient of X0(N) by the group of two elements
generated by WN . It is known that X0(N) has a model over Q and that the action
of WN is also defined over Q. Therefore there is a model for X+

0 (N) over Q and
one can study the Q-rational points on this curve.

The results of Mazur [24], Kenku [21] and others have completely classified the
rational points on the modular curves X0(N). In particular, it was shown that for
N > 37 the only rational points on X0(N) are cusps and points corresponding to
certain elliptic curves with complex multiplication (and of course the number of
CM cases is finite). In the famous case X0(37) the modular curve is hyperelliptic
but the involution is not an Atkin-Lehner involution. The images of the rational
cusps of X0(37) under the hyperelliptic involution are ‘exceptional’ rational points.

The modular curves X+
0 (N) are also an interesting object of study (for instance,

due to their connection with Q-curves). Momose [25], [26] has given some results of
a similar nature to those of Mazur but the results only apply to certain composite
values of N . Therefore, a classification of rational points on X+

0 (N) is not yet
complete.

In this paper we use computational methods to determine some exceptional
rational points on X+

0 (N) in cases where N is composite and not covered by the
results of Momose. This continues the work of [10] which gave a computational
study of the case when N is a prime number.

The most interesting examples given in this paper are the modular curvesX+
0 (91)

and X+
0 (125). As with X0(37), these are hyperelliptic curves but the hyperelliptic

involution is not an Atkin-Lehner involution. We find exceptional rational points
in these cases.

The conclusion is the following: We conjecture that the only N for which the
genus of X+

0 (N) is between 2 and 5 and such that X+
0 (N) has exceptional rational
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points are 73, 91, 103, 125, 137, 191 and 311. One further contribution of the paper
is the conjecture that Xsplit(p) (which is isomorphic to X+

0 (p2)) has no exceptional
rational points when p = 13. This result has implications in the study of two
dimensional Galois representations.

The first sections of the paper recall some well-known results on modular curves
and their points. Sections 6 to 8 are concerned with some properties of Heegner
points on X+

0 (N). Section 9 recalls the results of Momose. The remaining sections
deal with the experimental results.

2. Rational points on X+
0 (N)

The non-cusp points of X+
0 (N) can be interpreted as pairs {φ : E → E′, φ̂ :

E′ → E}. From [6] it is known that if a non-cusp point of X+
0 (N) is defined over

a field L then the corresponding pair of isogenies and elliptic curves may also be
taken to be defined over L. Therefore the only possibilities for rational points on
X+

0 (N) are as follows.

Proposition 1. A non-cusp rational point on X+
0 (N) corresponds to a pair {φ :

E → E′, φ̂ : E′ → E} such that one of the following holds.

(1) E, E′, φ and φ̂ are all defined over Q.
(2) E and E′ are defined over Q, the isogeny φ is defined over a quadratic field

L, and the non-trivial element σ ∈ Gal(L/Q) is such that φσ ∼= φ̂ and so
E ∼= E′.

(3) E, E′, φ and φ′ are defined over a quadratic field L, E 6∼= E′, and the
non-trivial element σ ∈ Gal(L/Q) is such that φσ ∼= φ̂ and E′ ∼= Eσ.

The first case is the case of rational points on X0(N), and these have been
classified. The second and third cases will be discussed further in Sections 5 and 6.

3. Cusps of X+
0 (N)

Over C we have that X0(N) is isomorphic to the quotient Γ0(N)\H∗ where
H∗ = {z ∈ C : Im(z) > 0}∪P1(Q), and the group Γ0(N) = {( a bc d ) ∈ SL2(Z) : c ≡ 0
(mod N)} acts (on the left) on H∗ by linear fractional transformations. The cusps
correspond to the Γ0(N)-orbits of P1(Q).

There are cusps on X0(N) for every divisor d|N . The cusps correspond to
elements [x : d] ∈ P1(Q) where x runs over the elements of (Z/ gcd(d,N/d)Z)∗ (see
Ogg [28]). There are td = ϕ(gcd(d,N/d)) such cusps and they are defined over
some number field L ⊂ Q(ζd) of degree td over Q. In particular, the cusps are
rational if and only if td = 1. The involution WN maps [x : d] to [−x−1 : N/d].

Pairs {[x : d], [−x−1 : N/d]} of rational cusps on X0(N) give rise to rational
cusps on X+

0 (N). The following result is easily proved.

Proposition 2. The only integers N for which non-rational cusps of X0(N) can
give a rational cusp on X+

0 (N) are N ∈ {9, 16, 36}. The corresponding cusps are
{[1 :

√
N ], [−1 :

√
N ]}.

4. Atkin-Lehner involutions

For every divisor n|N such that gcd(n,N/n) = 1 the Atkin-Lehner involution
[1] on X0(N) is defined by Wn(E,C) = (E/C[n], (E[n] + C)/C[n]) where E is the
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elliptic curve, C is the cyclic kernel of the N -isogeny, and E[n] and C[n] denote the
elements of order n of the corresponding group.

Over C we can define the Atkin-Lehner involutions as elements of Γ0(N)\SL2(R)
as follows. Let a, b, c, d ∈ Z be such that adn − bcN/n = 1 and define Wn =
1√
n

( na b
Nc nd ). This construction is well-defined up to multiplication by Γ0(N) and

therefore each Wn gives an involution on the modular curve X0(N). Note that if
gcd(n1, n2) = 1 then Wn1n2 = Wn1Wn2 .

The Wn also give rise to involutions on X+
0 (N). If n 6∈ {1, N} then Wn is non-

trivial and the action of Wn and WN/n is identical. The Atkin-Lehner involutions
are defined over Q and so they map L-rational points of X0(N) to L-rational points
for any field L/Q. Furthermore the Atkin-Lehner involutions map cusps to cusps.

5. Quadratic Q-curves

In Section 6 we discuss points corresponding to elliptic curves with complex
multiplication (CM). For the remainder of this section we consider the case of
points which do not arise in this way. A rational point of X+

0 (N) which is neither a
cusp, nor corresponds to a rational point of X0(N) or an elliptic curve with complex
multiplication will be called ‘exceptional’.

We state a result of Elkies concerning the interpretation of these exceptional
rational points as Q-curves. Recall that a Q-curve is an elliptic curve E over a
number field L which is isogenous to all its Galois conjugates [15], [30]. By a
‘quadratic Q-curve’ we mean a Q-curve E which is defined over some quadratic
number field L/Q and which cannot be defined over Q.

Theorem 1. (Elkies [7]) Every quadratic Q-curve without complex multiplication
(CM) corresponds to a rational point on X+

0 (N) for some N > 1. Conversely, every
non-cusp rational point on X+

0 (N) corresponds either to an elliptic curve with CM,
to a rational point of X0(N), or to a non-CM quadratic Q-curve.

Proof. Let E be a Q-curve over a quadratic field L. Write σ for the non-trivial
element of Gal(L/Q). Then, by hypothesis, there is some isogeny φ : E → Eσ.
Define N to be the degree of φ. Since E does not have CM it follows that
φσ ◦ φ = [±N ] ∈ End(E). In the case of [−N ] above we can compose φσ with
the automorphism [−1] since points of the modular curve correspond only to iso-
morphism classes of isogenies. It follows that φσ ∼= φ̂ and that we have a rational
point on X+

0 (N).
The converse follows from Proposition 1. The second case of that Proposition is

necessarily a CM curve. In the third case the elliptic curve may have CM, but if
not then we have a non-CM quadratic Q-curve. �

Elkies proves further that every quadratic Q-curve is isogenous to a quadratic
Q-curve curve which corresponds to a rational point on some X+

0 (N) where N is
square-free.

6. Heegner points

A Heegner point of X0(N) is a non-cusp point corresponding to an isogeny of
elliptic curves φ : E → E′ such that both E and E′ have complex multiplication
by the same order O of discriminant D in the quadratic field K = Q(

√
D). In this

case we say that the Heegner point has discriminant D.



4 STEVEN D. GALBRAITH

For the remainder of this paper we will use the following standard notation. We
write 〈α, β〉 for the lattice generated by α and β over Z. An elliptic curve E over C
is isomorphic to a complex torus C/〈1, τ〉 where τ ∈ C has positive imaginary part.
Two such elliptic curves are isomorphic if and only if the corresponding values of τ
are related by some ( a bc d ) ∈ SL2(Z) (acting as a linear fractional transformation).
The endomorphism ring End(E) is isomorphic to the Z-module {λ ∈ C : λ, λτ ∈
〈1, τ〉}. One has End(E) 6= Z if and only if τ is imaginary quadratic, in which case
End(E) is an order O in the quadratic field Q(τ). Orders in imaginary quadratic
fields are uniquely determined by their discriminant D via O ∼= Z[(D +

√
D)/2].

The conductor of an order O of discriminant D is the largest positive integer c
such that D/c2 ≡ 0, 1 (mod 4). The lattice 〈1, τ〉 is a projective O-module (or
‘proper O-lattice’ in the language of Lang [23]). The group of classes of projective
O-modules is denoted Pic(O). The order of the group Pic(O) is called the class
number of O.

The importance of Heegner points in the present context is due to the following.

Proposition 3. Suppose that the genus of X+
0 (N) is at least one. Then a non-cusp

rational point on X+
0 (N) corresponding to an elliptic curve with complex multipli-

cation (CM) is necessarily a Heegner point.

Proof. Proposition 1 gives three possibilities for a non-cusp rational point ofX+
0 (N).

Suppose now that one of the corresponding elliptic curves has CM, then the isoge-
nous elliptic curve must also have CM by an order in the same quadratic field.

The first case can only occur when the class number is one and either E ∼= E′

(and we have a Heegner point) or E 6∼= E′ and the isogeny is between two elliptic
curves whose endomorphism rings are different orders in the same quadratic field.
The only cases when this arises is when one of the curves has CM of discriminant
D = −12,−16,−27 or −28. The isogeny itself must be composed of an isogeny of
degree equal to the conductor of the order (see Proposition 11), followed by rational
isogeny (i.e., one corresponding to a ramified ideal, see Theorem 3). Therefore the
only candidate degrees for cyclic rational isogenies are N = 2, 3, 4, 6, 9, 14 and the
genus of X+

0 (N) is zero in all these cases.
Finally, in the second and third cases we have End(E) ∼= End(E′) and so the

point is a Heegner point. �

The following result is well known (see [3], [16], [10]).

Theorem 2. Heegner points on X0(N)(C) are in one-to-one correspondence with
Γ0(N)-equivalence classes of quadratic forms NAX2+BXY +CY 2 where A,B,C ∈
Z are such that A,C > 0 and gcd(NA,B,C) = gcd(A,B,NC) = 1.

Note that the Γ0(N)-equivalence class of a quadratic form NAX2 +BXY +CY 2

is simply the set of all forms NA(aX+bY )2+B(aX+bY )(cX+dY )+C(cX+dY )2

where ( a bc d ) ∈ Γ0(N).
The correspondence mentioned in Theorem 2 is as follows. Let τ be the root of

NAτ2 +Bτ +C = 0 with positive imaginary part. Then E = C/〈1, τ〉 is an elliptic
curve with complex multiplication by the order O of discriminant D = B2−4NAC
and the cyclic isogeny with kernel 〈 1

N , τ〉 maps to the elliptic curve E′ ∼= C/〈1, −1
Nτ 〉

which also has CM by O (see Lang [23] Theorem 8.1).
In particular, a Heegner point on X0(N) of discriminant D can only arise when

the primes p|N satisfy (Dp ) 6= −1. However this condition is not sufficient since
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there can be cases where all p|N split or ramify and yet one cannot find a suitable
triple (A,B,C) as above.

The Atkin-Lehner involutions Wn (where n|N is such that gcd(n,N/n) = 1)
map Heegner points to Heegner points with the same discriminant. Therefore it
makes sense to speak of Heegner points on X+

0 (N).

Proposition 4. Suppose the genus of X+
0 (N) is at least one. Let n|N be such that

gcd(n,N/n) = 1 and n 6∈ {1, N}. A rational point of X+
0 (N) which is fixed by the

Atkin-Lehner involution Wn must be a cusp or a Heegner point.

Proof. (Also see Gross [17] Proposition 3.1) Such a rational point corresponds to
some τ ∈ H∗ such that Wn(τ) = γ(τ) for some γ ∈ Γ0(N). It follows that τ satisfies
a quadratic equation over Z and so we either have a cusp or a CM point. The result
follows from Proposition 3. �

An immediate corollary to this result is the following.

Proposition 5. Suppose the genus of X+
0 (N) is at least one. Let ω(N) be the num-

ber of distinct primes dividing N . Then the exceptional rational points of X+
0 (N)

(if there are any) fall into orbits under the Atkin-Lehner involutions of the full size
2ω(N)−1.

7. Rationality of Heegner Points on X+
0 (N)

In the context of this paper it is important to determine when Heegner points of
X0(N) can give a rational point of X+

0 (N). The relevant results have already been
deduced by Gross [16] using the theory of complex multiplication and we recall
them here.

Let φ : E → E′ be a Heegner point on X0(N) with End(E) = O an order of
discriminant D in a quadratic imaginary field K. Then, as in Theorem 2, over C,
there is some τ such that NAτ2 + Bτ + C = 0, D = B2 − 4NAC, E ∼= C/〈1, τ〉
and E′ ∼= C/〈1/N, τ〉.

Following Gross [16] we write a for the projective O-module 〈1, τ〉 (the isomor-
phism class of the elliptic curve E depends only on the class of a in Pic(O)) and
write b for 〈1/N, τ〉. The isogeny φ then corresponds to the projective O-module
n = ab−1 which in this case is the O-module 〈N, (−B +

√
D)/2〉.

We emphasise that the elliptic curve E only depends on the class of the module
a whilst the isogeny depends on the specific module n rather than its class. The
fact that the kernel is cyclic may be expressed as O/n ∼= Z/NZ. Gross uses the
notation (O, n, [a]) for the Heegner point.

Theorem 3. (Gross [16]) The Heegner point (O, n, [a]) on X0(N) is defined over
the ring class field HO. Furthermore:

(1) Complex conjugation acts on (O, n, [a]) as (O, n, [a]) = (O, n, [a]−1).
(2) The group Gal(HO/K) acts on (O, n, [a]) as follows: For σ ∈ Gal(HO/K)

let b ∈ Pic(O) be a projective O-module (prime to the conductor of O)
corresponding to σ via the Artin map. Then (O, n, [a])σ = (O, n, [ab−1]).

(3) The Atkin-Lehner involution WN maps (O, n, [a]) to (O, n, [an−1]).

Proof. Note that Gross states this result only when gcd(N, c) = 1. The theory of
complex multiplication shows that the elliptic curves E and E′ are defined over
the ring class field HO. Thus the Heegner point is defined over some finite abelian
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extension of HO. Recall that Gal(HO/Q) is isomorphic to the semidirect product of
Pic(O) with the group Gal(K/Q) of order two generated by complex conjugation.

Property 1 is clear (see Lang [23] Remark 10.2 page 134). Property 2 follows
from Lang [23] Theorem 10.5. Property 3 follows from the fact that WN maps
(E,C) to (E/C,E[N ]/C).

Finally, suppose that the Heegner point is defined over some (Galois) extension
L. Then L/HO is abelian and the theory of complex multiplication shows that
the action of any element of Gal(L/HO) corresponds to some ideal b. This action
therefore maps the Heegner point C/a→ C/an−1 to C/ab−1 → C/ab−1n−1 which
is isomorphic to the original point. Thus the Heegner point is defined over HO. �

From this we easily deduce the following.

Theorem 4. Let x = {φ : E → E′, φ̂ : E′ → E} be a Heegner point of X+
0 (N)

with End(E) = O. Let n be the projective O-module corresponding to the isogeny.
Then x is defined over Q if and only if either

(1) hO = 1, or
(2) hO = 2, n is not principal and n = n.

Proof. By Theorem 3, a Heegner point of X+
0 (N) is defined over HO. The Galois

group Gal(HO/Q) is the semidirect product of Gal(HO/K) with Gal(K/Q). There-
fore, we obtain a rational point ofX+

0 (N) if and only if the set {(O, n, [a]), (O, n, [an−1])}
is fixed by these two Galois groups.

The action of Gal(HO/K) is trivial in the class number one case and it maps C/a
to C/ab−1 where b is non-principal in the class number two case. It follows that,
in the class number two case, the Heegner point is invariant under Gal(HO/K) if
and only if n is non-principal.

The action of Gal(K/Q) does not change the isomorphism class of C/a but it may
change the isogeny. Hence, in the class number two case one must have n = n. �

We now discuss the meaning of the condition n = n. In terms of the representa-
tion n = 〈N, (B +

√
D)/2〉 we see that n = n if and only if N |B. In the case when

N is coprime to the conductor of O it follows that every prime p dividing N must
ramify in O, and therefore N must be square-free. The case when N is not coprime
to the conductor of O will be discussed in more detail in Section 8.

We could end the analysis here, since Theorem 2 tells when a Heegner point of
X0(N) can arise (and can be used as the basis of an algorithm to list all Γ0(N)-
equivalence classes of suitable τ) while Theorem 4 tells when they give rational
points of X+

0 (N). Thus, from a computational point of view, we have all the
tools we need. However, there are some hidden subtleties regarding orders whose
conductors are not coprime to N and it would be dishonest not to give further
explanation.

8. The Action of Atkin-Lehner Involutions on Heegner Points

Let n|N be such that gcd(n,N/n) = 1 and consider the Atkin-Lehner involution
Wn. One can show that Wn maps the isogeny φ : C/〈1, τ〉 → C/〈1/N, τ〉 to the
isogeny φ′ : C/〈1, nτ〉 → C/〈n/N, τ〉.

We first consider the case where gcd(N, c) = 1.
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Proposition 6. (Gross [16]) Let (O, n, [a]) be a Heegner point on X0(N) with N
coprime to the conductor of O. Suppose pα‖N and suppose n = pαm where p decom-
poses as pp in O. Then the Atkin-Lehner involution Wpα acts by Wpα(O, n, [a]) =
(O, pαm, [ap−α]).

The following result is then immediate.

Proposition 7. Let N be a positive integer. Let O be an order of conductor
coprime to N for which there exist rational Heegner points on X+

0 (N). Let ω′(N)
be the number of distinct primes dividing N which split in O.

(1) If the class number of O is one then there are max{1, 2ω′(N)−1} rational
Heegner points on X+

0 (N) corresponding to the order O and they are all
mapped to each other by Atkin-Lehner involutions.

(2) If the class number of O is two then there is only one such Heegner point
(i.e., ω′(N) = 0 and it is fixed by all the Atkin-Lehner involutions).

Proof. From the above arguments and the notation (O, n, [a]) it follows that the set
of all rational Heegner points on X+

0 (N) corresponding to an order O is obtained
by taking the images of one of them under the group of Atkin-Lehner involutions.

The statements about the number of rational points which arise then follow from
Proposition 6. �

We emphasise that the property of all Heegner points being related by Atkin-
Lehner involutions is special to the case of rational points on X+

0 (N). For instance,
if O has class number three or more then obviously all Heegner points on X+

0 (p)
(where p is prime) cannot be related by Atkin-Lehner involutions.

As seen in [10], rational Heegner points coming from class number two orders
are rather rare.

Proposition 8. Let D be the discriminant of an order of class number two and
conductor c. Then for N > 89 coprime to c, there are no rational Heegner points
on X+

0 (N) corresponding to the discriminant D.

Proof. In this case we require that N be square-free and that all primes p|N ramify
(i.e., N |D).

The list of all class number two discriminants D is −15, −20,−24,−32,−35,
−36,−40,−48,−51, −52,−60,−64,−72, −75,−88,−91, −99, −100,−112, −115,
−123, −147,−148,−187, −232,−235,−267, −403, −427. This already severely
limits the number of possible values of square-free N for which N |D.

A further condition is that the projective O-module n which has norm N must
satisfy n = n and be non-principal. For most of the larger discriminants in the list
one sees that D is itself square-free and that by unique factorisation the only ideal
of norm N = −D is the ideal (

√
D) which is principal.

One can check that 89 is the largest N for which N |D, gcd(N, c) = 1 and for
which a suitable ideal n exists. Indeed, there is a rational point on the genus one
curve X+

0 (89) corresponding to the class number two discriminant D = −267. �

There are further examples of rational Heegner points of class number two. For
instance, in Section 11 it is shown that the curve X+

0 (74) is an example of a com-
posite value of N for which there is a rational a class number two heegner point.

We now consider the case where N is not coprime to the conductor of O.
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The following result is well-known. An explicit proof for elliptic curves over C
may be found in the appendix to [11].

Proposition 9. Let E be an elliptic curve over C such that End(E) ∼= O of dis-
criminant D. Suppose p is a prime dividing the conductor of O. Then, up to
isomorphism, there is exactly one p-isogeny from E ‘up’ to an elliptic curve E′

such that End(E′) has discriminant D/p2 and that there are exactly p isogenies of
degree p from E ‘down’ to elliptic curves whose endomorphism ring has discrimi-
nant p2D. If p does not divide the conductor of O then there are 1 + (Dp ) isogenies
of degree p to elliptic curves E′ with End(E′) = O and there are p− (Dp ) isogenies
of degree p down to elliptic curves whose endomorphism ring has discriminant p2D.

Returning to the context of Heegner points, we have the following. Note that I
write f ◦ g for the composition of functions f(g(·)).

Proposition 10. Suppose φ : E → E′ is a Heegner point on X0(N) of discriminant
D and that p is a prime dividing gcd(N, c). Then φ factors as ψ2 ◦ ψ ◦ ψ1 where

(1) ψ1 is an isogeny of degree p up from E to an elliptic curve E1 whose endo-
morphism ring has discriminant D/p2.

(2) ψ is an isogeny of degree N/p2 from E1 to some elliptic curve E2 such that
End(E2) has discriminant D/p2.

(3) ψ2 is an isogeny of degree p from E2 down to E′.

Proof. We can write E as C/〈1, τ〉 where τ satisfies NAτ2 +Bτ +C = 0. From the
condition p|D = B2−4NAC we have p|B. One can show that p2|N . The isogeny φ
has kernel 〈1/N, τ〉 and we define ψ1 to be the isogeny having kernel 〈1/p, τ〉. This
isogeny maps E to E1 = C/〈1/p, τ〉 ∼= C/〈1, pτ〉 where pτ satisfies (NA/p2)X2 +
(B/p)X + C = 0 and so the elliptic curve E′ has complex multiplication by the
order of discriminant D/p2.

The remaining statements are now immediate. �

Indeed, when gcd(p,N/p2) = 1 then we can also factor φ as ψ′◦ψ2◦ψ1 or ψ2◦ψ1◦
ψ′ (where ψ′ here is an N/p2-isogeny between elliptic curves whose endomorphism
rings have discriminant D).

I call the following the ‘no-down-up’ result.

Proposition 11. Let φ be an N -isogeny with cyclic kernel. Then φ cannot be
factored as ψ1 ◦ψ2 ◦ · · · ◦ψn where ψi is some isogeny of prime degree p up and ψj
for j > i is some p-isogeny down.

Proof. If such a factorisation exists then it is possible to obtain a factorisation for
which there are two consecutive p-isogenies ψi and ψi+1 such that ψi goes up and
ψi+1 goes down. Since isogenies up are unique we must have ψi ∼= ψ̂i+1 and thus
the composition does not have cyclic kernel. �

The following result is now clear.

Theorem 5. Suppose N is a positive integer and that O is an order of discriminant
D and conductor c in an imaginary quadratic field K. Let d be the largest positive
integer such that d|c and d2|N . Then there can be a Heegner point on X0(N)
corresponding to the order O only if gcd(N/d2, c/d) = 1.
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In general, the isogenies down from an elliptic curve map to different elliptic
curves. However, there are some exceptions to this rule in the cases when End(E)
has units other than ±1. In particular, this can arise when End(E) has discriminant
−3 or−4. We see that there are isogenies ψ,ψ′ : E → E′ down which are isomorphic
in the sense that ψ′ = ψ ◦ ε where ε is a unit in End(E). Note that both ψ and ψ′

have the same dual isogeny (which is the unique isogeny up from E′ to E) and that
the isogenies ψ̂ ◦ ψ and ψ̂ ◦ ψ′ are isomorphic while the isogenies ψ ◦ ψ̂ and ψ′ ◦ ψ̂
are not isomorphic (since End(E′) has no non-trivial units).

The isogeny φ factors as ψ2 ◦ ψ ◦ ψ1 and so φ̂ factors as ψ̂1 ◦ ψ̂ ◦ ψ̂2. Since
the isogeny up is always unique, we have that ψ1 and ψ̂2 are uniquely determined.
However, the isogenies ψ2 and ψ̂1 are only constrained by the condition that the
full composition has cyclic kernel.

We now give a few results which show how the above ideas can be used to give
information about Heegner points on X+

0 (N).

Proposition 12. Let N be an integer greater than one and O an order of discrim-
inant D and conductor c divisible by 2. Suppose that (D/c

2

2 ) = +1. Then a Heegner
point of X0(N) of discriminant D can arise only if N/c2 is even.

Proof. Suppose instead that N/c2 is odd and that we have a Heegner point on
X0(N). Without loss of generality we may assume c = 2.

The isogeny φ factors as ψ2◦ψ◦ψ1 where ψ1 is an isogeny up of degree 2 and ψ2 is
an isogeny down. Indeed, since N/c2 is odd we may instead factor φ as ψ′ ◦ψ2 ◦ψ1.

Since (D/c
2

2 ) = +1 the choice of the isogeny ψ2 down is unique. It follows that
ψ2
∼= ψ̂1 and therefore the isogeny does not have cyclic kernel. �

In Section 10 the case N = 64 and D = −28 appears. This is an interesting
example of how a rational point of X+

0 (N) can arise when both c and N/c2 are
even.

It is useful to know when a Heegner point is fixed by an Atkin-Lehner involution.
We give one result in this direction which can apply when p is 2 or 3.

Proposition 13. Suppose φ : E → E′ is a Heegner point on X+
0 (N) of discrim-

inant D and having prime conductor p. Suppose that the class number of D is
one, that p2‖N and that p − (D/p

2

p ) = 2. Then the Heegner point is fixed by the
Atkin-Lehner involution Wp2 .

Proof. Write N = p2m. Since the class number of D is one it follows that E ∼= E′.
We can factor φ as ψ2 ◦ ψ1 ◦ ψ where ψ1 is a p-isogeny up and ψ2 is a p-isogeny
down and ψ has degree m. Since p− (D/p

2

p ) = 2 there are only two choices for the

isogeny down. It follows that ψ2 is uniquely specified by the condition ψ2 6= ψ̂1.
It remains to show that the m-isogeny ψ is fixed by Wp2 (this argument is

applies in more general cases too). Let τ correspond to the Heegner point, so that
NAτ2 +Bτ + C = 0 where B2 − 4NAC = D. We focus on the isogeny ψ given as
(C/〈1, τ〉, 〈1/m, τ〉). The class number one condition implies that Wp2(τ) = γ(τ)
for some γ ∈ SL2(Z). Using the quadratic equation for τ one can deduce that
γ ∈ Γ0(m) and that the isogeny ψ is preserved.

Therefore, the involution Wp2 must fix the Heegner point. �
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An example of the above situation occurs with N = 52 and D = −16. We
have p = 2, (−4

2 ) = 0 and there is only one rational Heegner point on X+
0 (52)

corresponding to the discriminant −16. In contrast, with N = 52 and D = −12
we have (−3

2 ) = −1 and there are two rational Heegner points on X+
0 (52) arising

(each mapped to the other by W4).
In the cases where there is more than one Heegner point of a given discriminant

arising it is interesting to know whether they are mapped to each other by certain
Atkin-Lehner involutions.

Proposition 14. Let D be a discriminant of an order O of class number one and
suppose that the conductor of O is a prime p. Let N be an integer such that p2|N
and suppose there are rational Heegner points on X+

0 (N) of discriminant D. Let
α be such that pα‖N . Then these Heegner points are mapped to each other by the
Atkin-Lehner involution Wpα .

Proof. The candidates for D are −12,−16,−27 and −28 and so p is equal to either
2 or 3. All rational Heegner points must correspond to isogenies ψ2 ◦ ψ ◦ ψ1. The
isogeny ψ1 is unique and there are at most two choices each for ψ and ψ2. Hence
there can be at most two rational Heegner points arising.

Let τ be such that (C/〈1, τ〉, 〈1/N, τ〉) corresponds to one of these two Heegner
points. So τ satisfies some polynomial NAτ2 +Bτ+C = 0 where B2−4NAC = D.
From p2|N and p2|D it follows that p|B. Write pα for the exact power of p dividing
N . By considering the cases one can show that pα 6 |B.

Consider the action of Wpα on τ . From the class number one hypothesis we have
Wpα(τ) = γ(τ) for some γ ∈ SL2(Z). Write Wpα = ( p

αa b
Nc pαd ) and γ = ( r st u ). Then

Wpα(τ) = γ(τ) implies

(pαat−Ncr)τ2 + (pαau+ bt− pαrd+Nsc)τ + (bu− pαsd) = 0.

Comparing this with NAτ2 +Bτ+C = 0 we have that N/pα|t and p|t. Since pα 6 |B
it follows that pα 6 |t. Therefore γ 6∈ Γ0(N).

Write pβ‖t (so 1 ≤ β < α). We have that Wpα has mapped the Heegner point to
(C/〈1, τ〉, 〈(1+Npβ−ατ)/N, τ〉) which is evidently not Γ0(N)-isomorphic to 〈1/N, τ〉
or 〈1, τ/N〉. Thus we have shown that Wpα maps the one Heegner point on X+

0 (N)
to the other one. �

One sees that it is possible to state results about the action of the Atkin-Lehner
involutions on Heegner points, but that the amount of work involved is inordinate
compared with the case when N is coprime to the conductor of the order. As a
result, we refrain from stating any further such results.

We mention that in any specific example it is easy to determine whether τ and
Wn(τ) are Γ0(N)-equivalent for any n|N .

It seems likely that all rational Heegner points on X+
0 (N), corresponding to

discriminants D of class number two are fixed by all the Atkin-Lehner involutions.

Proposition 15. Let N > 89, then there are no rational Heegner points on X+
0 (N)

corresponding to elliptic curves whose endomorphism ring has class number two.

Proof. Suppose we have a Heegner point on X+
0 (N) of discriminant D. The

case where gcd(N, c) = 1 has been handled in Proposition 8, so we assume that
gcd(N, c) 6= 1 and that we have some isogenies up and down of degree d (where d
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divides c). It follows that N |D. It remains to determine which possible values for
N can arise with d > 1.

The only ‘large’ values for D with non-trivial conductor are D = −72,−75,−99,
−100,−112 and −147 (for which we have c = 3, 5, 3, 5, 4 and 7 respectively).

The possibilities for N > 89 are therefore 99, 100, 112 and 147. These cases
do not have rational points since the corresponding ideal n would necessarily be
principal. �

As we have seen, X+
0 (89) has a class number two Heegner point. Rational

Heegner points corresponding to class number two discriminants for which N is not
coprime to the conductor seem to be extremely rare. In fact, the only example I
know occurs with N = 8 and D = −32.

9. Results of Momose

Momose [25], [26] has studied the question of whether there are exceptional
rational points on X+

0 (N).

Theorem 6. (Momose [26]) Let N be a composite number. If any one of the fol-
lowing conditions holds then X+

0 (N)(Q) has no exceptional rational points (i.e., all
rational points of X+

0 (N) are cusps, rational points of X0(N), or Heegner points).
(1) N has a prime divisor p such that p ≥ 11, p 6= 13, 37 and #J−0 (p)(Q) finite.
(2) The genus of X+

0 (N) is at least 1 and N is divisible by 26, 27 or 35.
(3) The genus of X+

0 (N) is at least 1, N is divisible by 49, and m := N/49 is
such that one of the following three conditions holds: 7 or 9 divides m; a
prime q ≡ −1 (mod 3) divides m; or m is not divisible by 7 and (−7

m ) = −1.

Regarding the first condition above, Momose states that the number of points
of #J−0 (p)(Q) is finite for p = 11 and all primes 17 ≤ p ≤ 300 except 151, 199, 227
and 277.

Of course, when the genus of X+
0 (N) is zero then there will be infinitely many

exceptional rational points. The N for which this occurs are N ≤ 21, 23 ≤ N ≤ 27,
29, 31, 32, 35, 36, 39, 41, 47, 49, 50, 59 and 71 (see Ogg [29]). Information about the
quadratic Q-curves in the cases N = 2, 3, 5, 7 and 13 was found by Hasegawa [20].
González and Lario [13] determined the j-invariants of Q-curves when X∗0 (N) has
genus zero or one and so their results also contain all these cases of quadratic Q-
curves (although their results give polyquadratic j-invariants and the quadratic
cases are not readily distinguishable from the others).

It is also possible to have infinitely many exceptional points in the case when
the genus of X+

0 (N) is one.

10. Genus one cases

It can be shown (see González and Lario [13] Section 3 for the square-free
case) that X+

0 (N) has genus one when N is 22, 28, 30, 33, 34, 37, 38, 40, 43, 44,
45, 48, 51, 53, 54, 55, 56, 61, 63, 64, 65, 75, 79, 81, 83, 89, 95, 101, 119 and 131. In the
cases 37, 43, 53, 61, 65, 79, 83, 89, 101 and 131 the rank of the elliptic curve X+

0 (N)
is one and so there are infinitely many rational points.

A particularly interesting case in the context of this paper is that of 65, since it is
the only value above which is not prime. Thus there are infinitely many quadratic
j-invariants of elliptic curves which are 65-isogenous to their Galois conjugate.
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It would be interesting to know how many of these 65-isogenous Q-curves also
admit an n-isogeny for some smaller n. In fact, what happens in general with all
quadratic Q-curves when the isogeny has large degree?

For the remaining cases the rank of the elliptic curve is zero and we can ask
whether the only points are cusps and Heegner points. Momose’s result covers
many of these cases and so the only N we must consider are 28, 30, 40, 45, 48,
56, 63, 64 and 75. The following table lists the results and we see that there are
no exceptional rational points in these cases. Note that in this case, unlike the
other tables in this paper, the number of rational points on X+

0 (N) is known to be
correct.

N X+
0 (N) (see [5]) # Q-points # Q-cusps Heegner point D

28 14 A4(A) 6 3 One D = −7, two D = −12
30 15 A8(A) 4 4 None
40 20 A2(A) 6 4 Two D = −16
45 15 A8(A) 4 2 Two D = −11
48 24 A4(A) 4 4 None
56 14 A4(A) 6 4 One each D = −7,−28
63 21 A4(A) 4 2 Two D = −27
64 32 A2(A) 4 2 One each D = −7,−28.
75 15 A8(A) 4 2 Two D = −11

11. Higher genus cases

We now turn attention to the values of N for which the genus of X+
0 (N) is two

or more. For these cases there are only finitely many rational points. The following
table lists all the values of N for which the genus of X+

0 (N) is between 2 and 5 and
for which Momose’s theorem does not apply.

Genus N
2 42, 72, 74, 80, 91, 111, 125
3 60, 96, 100, 128, 169
4 84, 90, 117
5 112, 144, 185

We now embark on a computational study of these cases using the methods of
[9], [10].

The results are given in the following table. Note that the number in the second
column is not proven to be correct; it is simply the number of points of low height
found by a simple search as in [10]. Nevertheless, we conjecture that this is the
correct number of points in each case.
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N #X+
0 (N)(Q) # cusps Heegner points

42 4 4 None.
60 6 6 None.
72 4 4 None.
74 6 2 Two D = −7, one each D = −4,−148.
80 4 4 None.
84 8 6 Two D = −12.
90 4 4 None.
91 10 2 Has exceptional points, see Section 12.
96 4 4 None.
100 4 3 One D = −16.
111 6 2 Two D = −11, one each D = −3,−12.
112 6 4 One each D = −7,−28.
117 4 2 Two D = −27.
125 6 1 Has exceptional points, see Section 13.
128 4 2 One each D = −7,−28.
144 4 4 None.
169 7 1 One each D = −3,−4,−12,−16,−27,−43.
185 8 2 Two each D = −4,−11,−16.

12. The case N = 91 = 7 · 13

In this case there are exceptional rational points. We give the details of the cal-
culations in this case and we exhibit the j-invariants of the corresponding quadratic
Q-curves.

A basis for the weight two forms on Γ0(91) which have eigenvalue +1 with respect
to W91 is given (see [4]) by the two forms

f = q − 2q3 − 2q4 − 3q5 + q7 + q9 + 4q12 + q13 + · · ·
g = q − 2q2 + 2q4 − 3q5 − q7 − 3q9 + 6q10 − 6q11 − q13 + · · ·

Following the techniques of [12], [27], [19], [9] we set h = (f − g)/2, x = f/h and
y = −q(dx/dq)/h and find the equation

y2 = x6 − 4x5 + 4x4 − 4x3 + 12x2 − 12x+ 4

for X+
0 (91). The hyperelliptic involution is not an Atkin-Lehner involution in this

case and so we find ourselves in an analogous situation to the case X0(37).
There are two rational cusps on X+

0 (91) and three candidate discriminants D =
−3,−12 and −27 for Heegner points. The primes 7 and 13 both split in each of the
orders of these discriminants and so there are always two rational Heegner points
for each of them.

The Heegner point of discriminant −91 does not give a rational point since the
corresponding ramified ideal is principal.

It is easy to find 10 points on the model above, which confirms that there are
two exceptional rational points on X+

0 (91).
The Atkin-Lehner involution W7 (which is equivalent to W13 on X+

0 (91)) maps
the exceptional points to each other. It can be shown by considering the original
modular forms that W7 maps a point (x, y) to (x/(x− 1), y/(x− 1)3).

The following table lists all the data.
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Point Discriminant
+∞ Cusp ∞
−∞ D = −12
(0, 2) D = −27

(0,−2) D = −27
(1, 1) Cusp [1/7]

(1,−1) D = −12
(3, 7) Exceptional

(3,−7) D = −3
(3/2, 7/8) Exceptional

(3/2,−7/8) D = −3
The exceptional points correspond to quadratic Q-curves as in Section 5. The

j-invariants can be computed using the method of Elkies [8]. The point (3, 7)
corresponds to the elliptic curve having j-invariant equal to

−27048390693611915236875/214 ± 6098504215856136863625/214
√
−3 · 29.

The point (3/2, 7/8) corresponds to the elliptic curve having j-invariant equal to

8366877442964720618049886816125/292±32028251460268098916979319375/292
√
−3 · 29.

We comment that the powers 14 and 92 in the denominators follow the pattern
14 = 13+1 and 92 = 91+1 which suggests an analogue of Theorem 3.2 of González
[14].

As in [10] and [14] we observe that these j-invariants have some properties similar
to those enjoyed by the singular j-invariants (see Gross and Zagier [18]).

Also note that the j-invariants are of the form α/213 and α′/291 where α, α
are algebraic integers such that the norms satisfy gcd(N(α), 213) = 27−1 and
gcd(N(α′), 291) = 291−1.

We list some of these properties below (here N(j) represents the norm over the
quadratic extension, while ‘Coefficient’ means the coefficient of

√
−3 · 29 in the

j-invariant).

N(j1) 2−20 · 32 · 56 · 75 · 173 · 1993 · 553263533

N(j2) 2−92 · 32 · 56 · 75 · 173 · 1993 · 536813

N(j1 − 1728) 2−20 · 32 · 3732 · 32977872 · 10667796962512

N(j2 − 1728) 2−92 · 32 · 234 · 3732 · 84963686332

Coefficient 2−14 · 32 · 53 · 7 · 11 · 19 · 23 · 53 · 67 · 71 · 101 · 103 · 239 · 257
Coefficient 2−92 · 33 · 54 · 7 · 11 · 19 · 23 · 43 · 61 · 71 · 131 · 241 · 313 · 701 · 1901

We see, as usual, that N(j) is ‘nearly a cube’ and that N(j − 1728) is square.
Notice the similarities in the primes arising above. Also note that the ‘coefficient’
is divisible by 7 in both cases but not 13.

13. The case N = 125

We are again in the situation where X+
0 (N) is genus two and where the hy-

perelliptic involution is not an Atkin-Lehner involution. An equation for X+
0 (125)

is
y2 = x6 + 2x5 + 5x4 + 10x3 + 10x2 + 8x+ 1.

We find six rational points on the curve. There is one rational cusp, and we get
Heegner points for each of the discriminants D = −4,−11,−16 and −19. In each
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case there is only one Heegner point. It follows that there is an exceptional point.
We first give the table of points.

Point Explanation
∞ Cusp
−∞ D = −19
(0, 1) D = −11
(0,−1) D = −16
(−2, 5) Exceptional
(−2,−5) D = −4

As usual the exceptional rational point corresponds to a quadratic Q-curve. We
calculate the j-invariant of the curve to be

−2140988208276499951039156514868631437312/115

±94897633897841092841200334676012564480/115
√

509.

The following factorisations occur.
N(j) 236 · 36 · 11−6 · 1754659015213

N(j − 1728) 212 · 312 · 58 · 74 · 11−6 · 27412

Coefficient 220 · 37 · 5 · 73 · 11−5 · 13 · 17 · 19 · 29 · 31 · 59 · 101 · 113
of
√

509 ·131 · 179 · 463 · 563 · 1553

The j-invariant is of the form α/115 where α is an algebraic integer and the
norm of α satisfies gcd(N(α), 115) = 115−1.
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12. J. González, Equations of hyperelliptic modular curves, Ann. Inst. Fourier, 41, , p. 779-795
(1991)

13. J. González, J.-C. Lario, Rational and elliptic parametrizations of Q-curves, J. Number The-

ory 72, No.1, p. 13–31 (1998)
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