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Abstract. Frey and Rück gave a method to transform the discrete logarithm
problem in the divisor class group of a curve over Fq into a discrete logarithm
problem in some finite field extension Fqk . The discrete logarithm problem in

the divisor class group can therefore be solved using index calculus algorithms
as long as k is small.

In the elliptic curve case it was shown by Menezes, Okamoto and Vanstone
that for supersingular curves one has k ≤ 6. In this paper curves of higher
genus are studied. Bounds on the possible values for k in the case of supersin-
gular curves are given. Ways to ensure that a curve is not supersingular are
also discussed.

A constructive application of supersingular curves to cryptography is given,
by generalising an identity-based cryptosystem due to Boneh and Franklin.

1. Introduction

Frey and Rück [13] described how the Tate pairing can be used to map the
discrete logarithm problem on the divisor class group of a curve C over a finite field
Fq into the multiplicative group F

∗
qk of some extension of the base field. This has

significant implications for cryptography as there are well-known subexponential
algorithms for solving the discrete logarithm problem in a finite field. Therefore,
there is a method for solving the discrete logarithm problem in the divisor class
group in those cases where the extension degree k is small.

The extension degree required is the smallest integer k such that the exponent of
the divisor class group Pic0

C(Fq) divides qk−1. In general, the value of k depends on
both the curve and the finite field and it is usually very large (i.e., log(k) ≈ log(q)).

Menezes, Okamoto and Vanstone [27] showed that for supersingular elliptic
curves the value k above is always less than or equal to 6. This is an impor-
tant result as it provides a good upper bound on the complexity of the attack in
the supersingular case. The conclusion which has traditionally been drawn is that
supersingular elliptic curves should be considered to be weaker than the general
case for cryptography.

When generalising cryptography to divisor class groups of higher genus curves
[20] it is important know what values of k can arise. In Section 9 we will show
that for supersingular curves there is an upper bound, which depends only on the
genus, on the values of the extension degree k. This bound is sufficiently small that
supersingular curves must be considered a weak case for cryptography.
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It is important to be able to detect these weak cases in advance, especially when,
as is often the case, one is considering curves defined over small fields and using the
zeta function to compute the group order over extension fields. The authors of [35]
were unable to find any secure hyperelliptic curves of genus two over F2. In Section
12 we explain how to avoid equations for supersingular curves in characteristic two,
and we give some examples of secure genus two curves over F2, thereby solving the
problems of [35].

Recently the Weil pairing has found positive applications in cryptography. In
Section 3 we generalise an identity-based cryptosystem due to Boneh and Franklin
[4]. Our scheme provides the same functionality as the scheme of Boneh and
Franklin but with a significant improvement in bandwidth.

2. The Tate pairing

Let C be a non-singular, irreducible curve of genus g over a finite field Fq where
q is a power of a prime p. The Jacobian of the curve C is an abelian variety Jac(C)
of dimension g defined over Fq. Since all curves over finite fields have a rational

degree one divisor the Jacobian represents the divisor class group of the curve Pic0
C

(for details see [7], [20], [42]).
Those readers only interested in elliptic curves can take C to be an elliptic curve

and can think of Jac(C)(Fq) = Pic0
C(Fq) = C(Fq).

2.1. Definition of the Tate pairing. The Tate pairing is defined in full generality
as a pairing between abelian varieties over local fields. We follow the definitions of
Frey and Rück [13] (who themselves follow the formulation of Lichtenbaum) and
therefore consider the pairing on the prime-to-p part of the divisor class group of a
curve C over a finite field Fq. (We do not consider the p-part, although see Rück
[34].)

Let l be a positive integer which is coprime to q. In most applications l is a
prime and l|#Pic0

C(Fq). Let k be a positive integer such that the field Fqk contains

the lth roots of unity (in other words, l|(qk − 1)). Let G = Pic0
C(Fqk) and write

G[l] for the subgroup of divisors of order l and G/lG for the quotient group (which
is also a group of exponent l). Then the Tate pairing is a mapping

(1) 〈·, ·〉 : G[l] ×G/lG→ F
∗
qk/(F

∗
qk)l.

The Tate pairing satisfies the following properties [13]:

(1) (Well-defined) 〈0, Q〉 ∈ (F∗
qk)l for all Q ∈ G and 〈P,Q〉 ∈ (F∗

qk)l for all

P ∈ G[l] and all Q ∈ lG.
(2) (Non-degeneracy) For each divisor class P ∈ G[l]−{0} there is some divisor

class Q ∈ G such that 〈P,Q〉 6∈ (F∗
qk)l.

(3) (Bilinearity) For any integer n, 〈nP,Q〉 ≡ 〈P, nQ〉 ≡ 〈P,Q〉n modulo lth
powers.

There are more properties, but these are the ones which will be used in the rest of
the paper. We will think of the left hand parameter of the pairing as the ‘interesting’
divisor and the right hand one as ‘auxiliary’.

In general there is no relationship between the Tate pairing and the Weil pairing,
as they are defined on different sets. However, when E is an elliptic curve such that
l2‖#E(Fqk) and P,Q are independent points in E(Fqk)[l] then we have el(P,Q) =
〈P,Q〉/〈Q,P 〉. A consequence of this is that the Tate pairing is not symmetric.
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The Weil pairing requires working over the field Fq(E[l]) generated by the coor-
dinates of all the l-division points. In general, one would expect the Weil pairing to
require a larger field than that used for the Tate pairing. One observation is that
for elliptic curves these fields are usually the same.

Theorem 1. (Koblitz) Let E be an elliptic curve over Fq and let l be a prime
dividing #E(Fq). Suppose that l 6 |(q−1). The E[l] ⊂ E(Fqk) if and only if l|(qk−1).

Proof. The proof was given by Koblitz at ECC 1997 but we give a sketch here.
Let E[l] be generated by {P,Q} where P is defined over Fq. The Frobenius au-

tomorphism of Gal(Fq/Fq) corresponds to σ = ( 1 0
a q ) ∈ GL2(Z/lZ). under the

representation on E[l]. It is clear that σk = (
1 0

(1+q+···+qk−1)a qk ). When q 6≡ 1

(mod l) it follows that σk = 1 if and only if qk ≡ 1 (mod l). �

It is an interesting question to study generalisations of this property to the higher
genus setting.

2.2. Computing the Tate pairing. The Tate pairing may be computed using the
following process: Since lP = 0 there is some function f on the curve C such that
the divisor of the function f , which is denoted (f), is equal to l(P ) − l(∞). Then
〈P,Q〉 = f(Q′) where Q′ is a divisor in the same class as Q such that the support
of Q′ is disjoint with the support of (f). This computation is easily implemented in
practice by using the double and add algorithm and evaluating all the intermediate
functions at Q′ (see [13], [14] for details).

The value f(Q′) lies in Fqk and is only determined up to a multiple of an lth

power. By raising it to the power (qk − 1)/l we obtain a precise lth root of unity.
One subtlety when implementing the Tate pairing is finding a divisor class Q′

with support disjoint from the partial terms in the addition chain for lP . In the
elliptic curve case this is done by taking Q′ = (Q + S) − (S) where Q is the
target point and where S is an arbitrary point (not necessarily of order l). In
the higher genus case general Riemann-Roch algorithms can give an analogous
solution. In practice, it is often easier not to choose the class Q first but to just
choose two ‘random’ effective divisors E1 and E2 of degree g and set Q′ = E1−E2.
If E1 and E2 are chosen randomly over Fqk then with high probability we expect

〈P,Q′〉(qk−1)/l 6= 1.

2.3. The Frey-Rück attack. We now recall how the Tate pairing is used to attack
the discrete logarithm problem in the divisor class group of a curve (this approach
is often called the Frey-Rück attack, after [13]). Let D1, D2 ∈ Pic0

C(Fq) be divisors
of order l for which we want to solve the discrete logarithm problem D2 = λD1.
Let k be the smallest integer such that l|(qk − 1). The method proceeds as follows:

(1) Choose random divisors Q ∈ Pic0
C(Fqk) until 〈D1, Q〉 6∈ (F∗

qk)l.

(2) Compute ζi = 〈Di, Q〉 ∈ F
∗
qk .

(3) Map the ζi to lth roots of unity (by raising to the power (qk − 1)/l).
This step is actually optional since the linear algebra in the index calculus
method should be performed modulo l.

(4) Solve the discrete logarithm problem ζ2 = ζλ
1 in the subgroup of order l of

the finite field F
∗
qk using an index calculus method.
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This strategy is practical when k is small. This leads to the following important
question for cryptography:

Main Question: Are there certain weak cases of curves for which k is always
small?

One of the goals of this paper is to show that, as in the case of elliptic curves,
supersingular curves always have small k.

Of course, there are lots of non-supersingular elliptic curves for which the Frey-
Rück attack applies (for instance, elliptic curves E over Fp with p − 1 points). In
general an elliptic curve E/Fq may be vulnerable to the attack when considered as
a group over some extension Fqm but not when considered as a group over some
other extension Fqm′ . However, if E is supersingular over Fq, then the bound k is

small for all groups E(Fqn) regardless of the value of n.

2.4. Non-degeneracy of the Tate pairing. We now discuss the non-degeneracy
property a little more closely. Let P ∈ G[l]. We consider the possibilities for 〈P, P 〉.

To compute 〈P, P 〉 it is necessary to compute a divisor Q in the same class as P
but which has support disjoint from all the intermediate terms in the computation
of lP . One can then compute 〈P,Q〉 to obtain the value of the pairing. If P ∈ lG
then 〈P, P 〉 ∈ (F∗

qk)l. If P ∈ Pic0
C(Fq) then 〈P, P 〉 ∈ Fq, and if l does not divide

(q − 1) then every element of F
∗
qk)l is an lth power and thus the pairing is trivial.

Hence to have 〈P, P 〉 6∈ (F∗
qk)l it is necessary (but not sufficient) that l|(q − 1) and

so k = 1.
For elliptic curves the following result holds.

Lemma 1. Let P ∈ E(Fq) be a point of prime order l. Let Fqk be the extension over

which all points of order l are defined, and write G = E(Fqk). Suppose that l2‖#G
(i.e., that G[l] ∼= G/lG). Then for every point R ∈ G[l] such that R 6∈ Pic0

C(Fq)
one has 〈P,R〉 6∈ (F∗

qk)l.

Proof. There is some point Q ∈ G of order l such that 〈P,Q〉 6= 1 and so Q 6∈
Pic0

C(Fq). Therefore {P,Q} form a basis for G[l]. Every R ∈ G[l] is of the form

R = aP + bQ and if R 6∈ Pic0
C(Fq) then b 6= 0 and so 〈P,R〉 ≡ 〈P,Q〉b 6≡ 1 modulo

(F∗
qk)l. �

Since an endomorphism maps an element of order l to another, we obtain the
following Corollary.

Corollary 1. In the situation of the above lemma, let ψ be an endomorphism of
Jac(C) which is not defined over Fq. If ψ(P ) 6∈ Pic0

C(Fq) then 〈P, ψ(P )〉 6= 1.

The above corollary gives a very useful technique for finding points where the
pairing is non-degenerate. We refer to the maps ψ as ‘non-Fq-rational endomor-
phisms’ (Verheul [46] calls them ‘distortion maps’). These endomorphisms always
exist for supersingular elliptic curves, but they do not exist for non-supersingular
curves (see Verheul [46] Theorem 4.1). In many (but not all) cases it is possible to
choose ψ to be an automorphism of the curve.

In the higher genus case there are usually many ‘independent’ choices for ψ.
One question for further study is whether there are always enough non-Fq-rational
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endomorphisms which arise from non-Fq-rational mappings from the curve C to
itself.

Non-Fq-rational endomorphisms can be used to solve the decision Diffie-Hellman
problem on supersingular curves (see Joux and Nguyen [19]).

In all cases, to compute the pairing, there is still the task of finding an auxiliary
divisorQ = E1−E2. If P is defined over a subfield of Fqk then pair of divisorsE1, E2

must be truly defined over the large field Fqk . The probability of randomly chosen
E1, E2 which are not defined over a subfield yielding a non-degenerate pairing should
be approximately 1 − 1/l.

3. Identity-based cryptosystems using the Tate pairing

Identity based cryptography was proposed by Shamir [37] as a response to the
problem of managing public keys. The basic principle is that it should be possible
to derive a user’s public data only from their identity. It is therefore necessary to
have a trusted dealer who can provide a user with the secret key corresponding to
the public key which is derived from their identity. It has turned out to be rather
difficult to construct efficient and secure identity-based cryptosystems.

Recently, Boneh and Franklin [4] developed a new identity-based cryptosystem
using the Weil pairing on a specific supersingular elliptic curve. In this section we
describe a generalised version of their scheme which applies to elliptic curves and
higher genus curves and which has some efficiency improvements over the original
scheme. Note that we only discuss the basic scheme of [4]; the extension to a scheme
secure against a chosen ciphertext attack is straightforward.

Note that Cocks [8] has recently proposed an identity-based encryption scheme
which is quite different from the approach of Boneh and Franklin.

3.1. Dealer’s system parameters. The dealer sets up the scheme by choosing a
finite field Fq and a curve C over Fq of genus g such that:

(1) There is a large prime l dividing the order of the group Pic0
C(Fq).

(2) The degree k needed for the Tate pairing embedding of the subgroup of
order l (i.e., the smallest k such that l|(qk − 1)) is relatively small.

One approach is to take C to be a supersingular curve.
The dealer then chooses a divisor P ∈ Pic0

C(Fq) of order l and a secret integer
1 < s < l and computes P ′ = sP . The dealer publishes q, C, l, k, P and P ′ and
keeps the integer s secret. The public data for the scheme also includes two hash
functions H1 and H2 (these are called G and H in [4]). The function H1 is used to
map identities to bitstrings which are then used to represent divisors in Pic0

C(Fqk).
The function H2 maps elements of the subgroup of order l of F

∗
qk to bitstrings of a

certain length N . Both hash functions are required to be cryptographically strong
and are modelled in the security proofs as random oracles.

Assuming the difficulty of the discrete logarithm problem in Pic0
C(Fq) it is not

possible for anyone to know the value of s except the dealer.

3.2. User’s public key. We now discuss how a user’s identity gives rise to a public
key. Write G = Pic0

C(Fqk). Each user A in the system has an identity (such as their
name or email address). We must specify a deterministic procedure for converting
an identity to a divisor QA ∈ G = Pic0

C(Fqk). This procedure must satisfy the
following properties:
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(1) QA must be such that 〈P,QA〉 6∈ (F∗
qk)l.

(2) The process should be one-way, in the sense that it be infeasible to find an
identity which gives rise to a given point QA.

(3) The points QA should be distributed uniformly in an appropriate set.

In [4] this process (which Boneh and Franklin call ‘MapToPoint’) is solved using
a cryptographically strong hash function H1 and a non-Fq-rational endomorphism
ψ.

This method can be generalised as follows. The identity bitstring is concate-
nated with a padding string and then passed through the hash function H1 (which
is constructed to yield a full domain output). This process is repeated using a
deterministic sequence of padding strings until the output is the x-coordinate (or
a(x)-term in the higher genus case) of an element Q of Pic0

C(Fq). It is then easy
to find the rest of the representation of Q. One then sets QA = ψ(mQ) ∈ G, for
a suitable choice of non-Fq-rational endomorphism from the available possibilities,

where m is the cofactor #Pic0
C(Fq)/l

a. For elliptic curves, by Corollary 1, we have

〈P,QA〉(q
k−1)/l 6= 1.

Another approach (which does not require non-Fq-rational endomorphisms) is
to use the hash of the bitstring to obtain a divisor E1. One can then extend to
a divisor class QA = E1 − E2 by using a fixed choice for E2. One should then
check that 〈P,QA〉 6= 1 (note that checking this non-degeneracy requires some
computational effort). If this check fails then a new divisor QA must be chosen
(e.g., by continuing the process to get the next candidate divisor). The probability
that 〈P,QA〉 ∈ (F∗

qk)l for randomly chosen QA is approximately 1/l, so this case is

almost guaranteed to never occur. Of course, one can check that l divides the order
of QA by multiplying by the cofactor (which is known) but this calculation is not
required. The fact that QA should represent an element of G/lG rather than G[l]
is no problem in practice, since we usually expect to have G[l∞] = G[l].

To summarise, every user A has a public key consisting of the divisor QA and
everyone can obtain this public key just knowing the identity of the user.

3.3. Extraction of a user’s secret key. Each user asks the dealer for a private
key Q′

A = sQA. This must be transmitted to the user using a secure channel.

3.4. Encryption. Let the message M be a bitstring of length N and suppose we
want to send this to user A with a given identity. The first step is to derive their
public key QA from their identity. We must also obtain the public keys P and P ′

of the dealer. The remaining steps are

(1) Choose a random integer 1 ≤ r ≤ l.
(2) Compute R = rP .

(3) Compute S = M ⊕H2(〈P ′, QA〉r(qk−1)/l). (Here 〈P ′, QA〉 is an element of
F
∗
qk which is then raised to the appropriate power.)

(4) Send (R,S).

Note that, when using the Tate pairing (instead of the Weil pairing), it is nec-
essary to raise the value to some cofactor as the value of the Tate pairing is not
uniquely determined. This has been presented in the case where l‖(qk − 1) but it
works more generally too.

A more versatile encryption process is obtained by using H2(〈P ′, QA〉r) as the
key for a fixed symmetric encryption function and encrypting M in the usual way.
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3.5. Decryption. To decrypt, user A simply uses their private key Q′
A to compute

〈R,Q′
A〉. Since 〈rP, sQA〉 ≡ 〈P,QA〉rs ≡ 〈P ′, QA〉r modulo lth powers the message

is recovered from

M = S ⊕H2(〈R,Q′
A〉(q

k−1)/l).

3.6. Security. The security of this system relies on the following variation of the
Diffie-Hellman problem:

Definition 1. The Tate-Diffie-Hellman problem (TDH) is the following:
Given P, P ′ = sP,R = rP in Pic0

C(Fq) of order l and QA ∈ G such that 〈P,QA〉 6∈
(F∗

qk)l compute ζ = 〈P,QA〉rs(qk−1)/l.

Let P ∈ Pic0
C(Fq) be any divisor of large prime order. We make the assump-

tion that the Tate-Diffie-Hellman problem is hard over random divisors P ′, R,QA

with respect to either of the two methods we have given for generating points QA

corresponding to users’ identities.
Certainly, if one can solve the elliptic curve Diffie-Hellman problem then one

can compute rsP and thus 〈rsP,QA〉. It is not clear whether the converse holds.
Similarly, if one can solve the Diffie-Hellman problem in F

∗
qk then one can solve

TDH.
We point out that TDH is obviously at least as hard as the Decision Diffie-

Hellman problem (DDH) in Pic0
C(Fq), but this is not very interesting since DDH

is easy for supersingular curves which have a non-Fq-rational endomorphism (see
[19], [46]).

To produce a cryptosystem with strong security properties (indistinguishability
of encryptions under a chosen ciphertext attack) one uses a method of Fujisaki and
Okamoto which is discussed thoroughly in [4]. First it is necessary to establish that
the basic scheme has the ‘one-way encryption’ (ID-OWE) security property (see
Section 2 of [4]).

The proof that the scheme has the ID-OWE property depends on the public key
generation process. If non-Fq-rational endomorphisms are used then the argument
is analogous to the one used in Theorem 4.1 of [4]. The security result holds under
the assumptions that the hash functionsH1 andH2 are random oracles and that the
computational TDH problem is hard. The reader is referred to [4] for the details.

If non-Fq-rational endomorphisms are not used in the public key derivation pro-
cess then the arguments of [4] do not apply. I have heuristic arguments for the
security of the scheme but it is an open problem to provide a rigorous reductionist
proof of security.

3.7. Parameter sizes. To resist algorithms for solving the Diffie-Hellman problem
in Pic0

C(Fq) it is necessary that qg ≥ 2160. To resist algorithms for solving the Diffie-
Hellman problem in F

∗
qk it is necessary that qk ≥ 21024.

Boneh and Franklin [4] use g = 1 and k = 2 and so they must take q to be of size
at least 512 bits (actually they take q to have at least 1024 bits, but 512 bits would
have been sufficient). The whole point of our generalisation is the observation that
if k can be taken to be larger than 2 then q may be taken to be smaller. In the
next subsection we discuss the advantages which can be obtained from using larger
values of k. In 3.9 we give the details for a curve with k = 6.
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3.8. Performance. We briefly list some advantages and disadvantages of the gen-
eralised scheme compared with the scheme of [4].

• The bandwidth (number of bits) of an encryption (R,S) is roughly qg+N ,
while the security depends on the size of qk. Typically N might be 160 bits.
For the scheme of Boneh and Franklin q must be at least 512 bits, which is
rather large. The bandwidth requirements can be easily reduced by using
curves with larger values of k (see the example in 3.9 below).

• For the same reason, the dealer’s public keys also require less storage and
communication bandwidth with the new scheme.

• The dominant cost in encryption and decryption is the evaluation of the
Tate pairing. This involves computations in the large field Fqk so the cost
of encryption and decryption depends only the number of bits in the large
prime l. Hence the computation cost for both schemes is comparable when
they are equally optimised (see [4]), although there are some time savings
when working in characteristic two.

• If non-Fq-rational endomorphisms are not used then the process of finding
a user’s public key from their identity is slightly more complicated for our
scheme and more memory is required for this process. Hence both the
dealer and the encryptor require higher computational overhead. However,
this data is never transmitted.

3.9. Characteristic three example. With elliptic curves one can realise an im-
provement of k from 2 to 6 by taking the elliptic curves

E1 : y2 = x3 − x+ 1 and E2 : y2 = x3 − x− 1

over F3l , which have characteristic polynomial of Frobenius PE1
(X) = X2 +3X+3

and PE2
(X) = X2−3X+3 respectively. These curves are thoroughly discussed by

Koblitz in [22].
We first list some values for m where the group order of Ei(F3m) is equal to a

small cofactor times a large prime l.

m i # bits in l c
79 2 125 1
97 1 151 7
149 1 220 7 · 15199
163 1 256 7
163 2 259 1
167 1 262 7
167 2 237 8017 · 44089
173 2 241 16420688749
193 2 306 1
239 2 379 1

A convenient non-F3-rational endomorphism for E1 is

ψ : (x, y) 7−→ (α− x, iy)

where i ∈ F32 satisfies i2 = −1 and α ∈ F33 satisfies α3 − α + 2 = 0. Similarly, a
convenient non-F3-rational endomorphism for E1 is

ψ : (x, y) 7−→ (β − x, iy)
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where β3 − β + 1 = 0. Using these maps one can implement a method analogous
to that of [4] for computing a point QA corresponding to a users identity. In this
case the proof of security is almost exactly the same as that in [4].

Consider, say, the case l = 163 which is a 259 bit field. Since k = 6 the size of
the field Fqk is 1551 bits. If messages are of length N = 160 bits then an encryption
requires 160 + 260 = 420 bits (259 bits for the x-coordinate of the point and one
bit to specify the y-coordinate). For equivalent security using the Boneh-Franklin
scheme with k = 2 one must take p to be ⌈1551/2⌉ = 776 bits and so an encryption
will require 160 + 776 = 936 bits (we have 776 as the Boneh-Franklin scheme only
requires sending the y-coordinate). Hence our scheme requires less than half the
bandwidth of the Boneh-Franklin scheme for the same security level.

On the other hand, it seems to be non-trivial to obtain a fast implementation of
finite field arithmetic in characteristic three (this is a subtlety which also has some
impact on the results of [22]).

3.10. Characteristic two example. In characteristic two there are curves avail-
able which attain the Frey-Rück embedding degree k = 4. In these cases the
bandwidth improvement is not as significant as that seen with the characteristic
three example above. However, it is easy to get an improvement in performance
over the scheme in [4].

Consider the elliptic curves

E1 : y2 + y = x3 + x and E2 : y2 + y = x3 + x+ 1

over F2. One can easily see that #E1(F2) = 5 and #E2(F2) = 1. Then E1 has
characteristic polynomial of Frobenius PE1

(X) = X2 + 2X + 2 while E2 is the
quadratic twist of E1 and has PE2

(X) = X2 − 2X + 2.
Some suitable field extensions giving large prime factors are as follows. Given m

and i we have #Ei(F2m) = cl where l is a large prime and where c is a cofactor.

m i # bits in l c
233 1 210 5 · 3108221
239 2 239 1
241 2 241 1
271 1 252 5 · 97561
283 1 281 5
283 2 283 1
353 2 353 1
367 2 367 1
397 2 397 1
457 2 457 1

A convenient non-F2-rational endomorphism for both these curves is given by

ψ : (x, y) 7→ (u2x+ s2, y + u2sx+ s)

where u ∈ F22 satisfies u2 + u+ 1 = 0 and s ∈ F24 satisfies s2 + (u + 1)s+ 1 = 0.
We implemented the Tate pairing in Magma using only the built-in finite field

routines. We give a comparison between characteristic 2 and large characteristic
p for equivalent sized finite fields. We give the average time (in seconds) for the
computation of the Tate pairing and the finite field exponentiation. We also give a
comparison of the communication bandwidth (number of bits) for the basic scheme
(assuming a 160 bit hash function H).
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The first case is with 965 bit finite field security (i.e., using E2 over F2241 , which
has a prime number of points).

Characteristic Time Bandwidth
2 2.4 402
p 4.3 642

Now for 1132 bit finite field security. This time using E1(F2283) whose number
of points is 5 times a prime.

Characteristic Time Bandwidth
2 3.4 444
p 6.1 726

Clearly, the elliptic curves used by Boneh and Franklin lead to a scheme which
requires about twice the computation time and over one and a half times the band-
width compared with using curves in characteristic two.

3.11. Examples in characteristic greater than three. The curves used by
Boneh and Franklin applied in the case of large characteristic and had k = 2. This
is optimal when working over Fp.

However, by working over Fp2 one can obtain curves with k = 3. For example
let p be a prime such that p ≡ 2 mod 3 and let α ∈ Fp2 be a non-cube. Then

E : y2 = x3 + α

has P (T ) = T 2 ± pT + p2 and the embedding degree is k = 3. Of course, the
ECDLP on curves with p2 + p + 1 points can be reduced to F

∗
p3 , and so we truly

have k = 6 only for curves with p2 − p+ 1 points.

3.12. Open questions. We have seen that larger values of k help to make a more
efficient identity-based cryptosystem. The problem is therefore to find curves C
which have suitable large values of k (without being too large). This is very closely
related to the Main Question of section 2.3

For supersingular curves we will show in Section 9 that there is an upper bound
k(g) (depending only on the genus g) for the values of k. The values of k(g) are large
enough to give good performance for the identity-based cryptosystem. However,
it does not seem to be possible to find suitable curves to realise this performance
improvement. Therefore it does not seem to be worthwhile to use curves of genus
greater than one for the identity based cryptosystem (or any of the other new
applications of the Weil and Tate pairings in cryptography).

It is not necessary to insist on supersingular curves for the identity-based cryp-
tosystem. There exist other curves of genus g over fields Fq for which k is of the
size we desire. However, if E is a non-supersingular elliptic curve over Fq with
small k then it is usually the case that the order of E(Fq) is not divisible by a large
prime. (One exception is the case l = (p− 1)/2, but these only have k = 1.) This
phenomena is indicated by the results of Balasubramanian and Koblitz [2] and is
confirmed by computer experiments. It would be interesting to have a construction
for suitable non-supersingular curves (for instance, using the CM method). It is an
open problem to provide an efficient construction (if one exists).

In conclusion, it seems that the supersingular elliptic curves with k = 4 and
k = 6 (see Subsections 3.10 and 3.9) are the optimal choice for the identity-based
cryptosystem.
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4. Background on curves over finite fields

Let C be a non-singular, irreducible curve over a finite field Fq. The Frobenius
endomorphism π on the Jacobian is induced by the endomorphism π : x 7→ xq of
the field Fq. As an endomorphism of Jac(C), π satisfies a characteristic polynomial
P (X) of degree 2g with integer coefficients. We have P (X) = X2gL(1/X) where
L(t) is the polynomial arising in the numerator of the zeta function of the curve
(called the L-polynomial in Stichtenoth [42] V.1.14 and called P1(T ) in Theorem

V.2.2 of [38]). We can factor P (X) over the complex numbers as P (X) =
∏2g

i=1(X−
αi). It turns out that the algebraic integers αi have certain remarkable properties.
The following result (see Stichtenoth [42] Theorem V.1.15) combining results due
to Weil and others gives some of these facts.

Theorem 2. Let C be a curve of genus g over Fq and let P (X) =
∏2g

i=1(X − αi)
be the characteristic polynomial of the Frobenius endomorphism on Jac(C). Then

(1) The algebraic integers αi satisfy |αi| =
√
q.

(2) The algebraic integers αi come in (complex) conjugate pairs and can be
ordered so that αiαi+g = q. In particular, if some αi = ±√

q then so does
αi+g.

(3) P (X) has the following form

X2g + a1X
2g−1 + a2X

2g−2 + · · · + agX
g + qag−1X

g−1 + · · · + qg−1a1X + qg

where a1, . . . , ag ∈ Z are, up to sign, the elementary symmetric polynomials
in the αi.

(4) For any integer r ≥ 1 we have

#C(Fqr ) = qr + 1 −
2g
∑

i=1

αr
i .

(5) For any integer r ≥ 1 we have

#Jac(C)(Fqr ) =

2g
∏

i=1

(1 − αr
i ).

(6) |#C(Fqr ) − (qr + 1)| ≤ 2gqr/2.
(7) (

√
q − 1)2g ≤ #Jac(C)(Fqr ) ≤ (

√
q + 1)2g.

Note that statements 3, 6 and 7 follow easily from the others. We also remark
that the bound given in item 6 of the above theorem has been improved by Serre
to |#C(Fqr ) − (qr + 1)| ≤ g⌊2qr/2⌋ (see Stichtenoth [42] Theorem V.3.1).

The formula of property 5 for #Jac(C)(Fqr ) is extremely useful. It gives an
efficient method for computing the number of points in the divisor class group of
a curve over a large-degree extension of the field Fq once one has computed P (X)
(see the next section for details about computing P (X)).

For cryptography one wants a curve such that #Jac(C)(Fqr ) is divisible by a
large prime l. The strategy is to try values of r until one is found for which the
prime l is sufficiently large for the required security of the application. Note that
composite r are likely to give highly composite group orders due to subgroups,
and so one invariably uses prime values of r. To be sure that the group resists
the known attacks ([13], [34]) on the discrete logarithm problem one should check
that gcd(l, q) = 1 and that qkr 6≡ 1 (mod l) for ‘small’ k. If the original curve is
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supersingular then, as we will show, it is futile to try many different values for r
since the Frey-Rück attack will always work. Hence, it is important to know that
such curves should be discarded right from the start.

5. Computing P (X)

From a theoretical point of view, the problem of computing P (X) for any curve
has a polynomial time solution (asymptotically as the field size increases and the
genus remains fixed) due to Pila [31], however this algorithm does not seem to be
suited for practical computation.

Recently there have been some breakthroughs in algorithms for counting points
on higher genus curves, particularly in the case of small characteristic. Nevertheless
there is still interest in using subfield curves. In this section we focus on some
elementary methods which can be used in cases where q is fairly small.

Given a curve C/Fq of genus g > 1 compute #C(Fqr ) for 1 ≤ r ≤ g by exhaustive
search. If the curve is given as a non-singular plane curve f(x, y) = 0 with a known
number of rational points at infinity then the exhaustive search involves trying all
values x0 ∈ Fqr and then calculating the number of roots of f(x0, y) in Fqr . From

the values tr = qr +1−#C(Fqr ) =
∑2g

i=1 α
r
i one can obtain the coefficients of P (X)

using Newton’s identities am = 1
m (−tm−∑m−1

i=1 aitm−i) (see Cohen [9] Proposition
4.3.3). This naive algorithm takes time O(qg(log qg)c) for some constant c, which
can also be written as O(qg+ǫ).

One method to speed this up is to compute #C(Fqr ) for r = 1, . . . , g − 1
and then to try all values of #C(Fqg ) − (qg + 1) (i.e., all integers in the inter-

val [−2gqg/2, 2gqg/2]) and test the correctness of the group order probabilistically
by computations on Jac(C) over Fq or over some extension Fqm . This produces a
method of complexity O(qg−1+ǫ).

A variation on the above strategy is to use the method of Stein and Teske [40]
which computes #Jac(C)(Fq) in time proportional to qd where d ∈ Z is a suitable
rounding of (2g − 1)/5. One computes #C(Fqr ) for r = 1, . . . , g − 1 and then
computes #Jac(C)(Fq) from which it is possible to deduce P (X). This method
also has complexity O(qg−1+ǫ).

Similarly, one can compute #C(Fqr ) only up to r = g − 2 and then compute
#Jac(C)(Fq) and #Jac(C)(Fq2 ) using [40]. This method has the superior complex-
ity O(qg−2+ǫ) when g = 4 or g ≥ 6. This trick cannot be extended.

6. Supersingular Elliptic Curves

We now recall some facts (see Silverman [38] Theorem V.3.1) about supersingular
elliptic curves.

Theorem 3. Let q = pn and let E be an elliptic curve over Fq. Suppose the
characteristic polynomial of the Frobenius endomorphism is P (X) = X2 − tX + q
so that #E(Fq) = q+1− t. The following conditions are equivalent (in which case,
the elliptic curve is said to be ‘supersingular’).

(1) The endomorphism ring of E (over the algebraic closure of Fq) is non-
commutative (it is an order in a quaternion algebra).

(2) E has no points of order p, i.e., E(Fq)[p] = {0}.
(3) p|t.
(4) There is some integer k such that πk = ±qk/2.
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If none of these conditions hold then the elliptic curve is said to be ‘ordinary’.

We now explain why supersingular elliptic curves are always susceptible to the
Frey-Rück attack.

Corollary 2. ([27]) Suppose E is a supersingular elliptic curve over Fq. Then
statement 4 of Theorem 3 is satisfied for some k ≤ 6. Furthermore, for that k we
have, for every r, that the exponent of the group E(Fqr ) divides qrk − 1.

Proof. The usual proof that k ≤ 6 uses results of Waterhouse [47]. We will give an
alternative argument in Section 9. Note that k is always such that qk/2 ∈ Z.

For all points P ∈ E(Fqr ) we have P = πrk(P ) = ±[qrk/2]P . In other words,
[qrk − 1]P = 0 which proves the second assertion. �

This result means that, as discussed in Section 2.3, it is possible to map the
discrete logarithm problem on a supersingular elliptic curve E(Fqr ) into a discrete
logarithm problem in the multiplicative group of the finite field Fqkr with k ≤ 6. The
discrete logarithm problem may then be solved using a subexponential algorithm.

Of course, for any elliptic curve and for any r, if N is the prime-to-p part of
#E(Fqr ) then there is some integer k such that N |(qrk − 1) (namely, the order of
qr in the group (Z/NZ)∗). The importance of Corollary 2 is that k does not depend
on r and that it is universally bounded over all supersingular curves. If the degree
could be arbitrarily large then supersingular elliptic curves would not necessarily
be weak for cryptography.

Condition 3 of Theorem 3 (that E is supersingular if and only if p|t) is often
used in practice as a test for whether an elliptic curve is supersingular or not. In
Section 8 we will give an analogue of this test in the higher dimensional situation.

7. Generalisation of the notion of Supersingularity

To understand the effect of the Frey-Rück attack on divisor class groups of curves
we need a suitable analogue of the notion of supersingularity. We will see that the
following definition is the one which is appropriate for our application.

Definition 2. (Oort [28]) An abelian variety A over Fq is called supersingular

if A is isogenous (over Fq) to a product of supersingular elliptic curves. A curve C
over Fq is called supersingular if Jac(C) is supersingular.

In fact, as can be deduced from Oort [28], the isogeny is defined over some finite
extension of Fq. Furthermore, since all supersingular elliptic curves are isogenous
over some finite extension one can assume that A is isogenous to Eg.

It is clear that a supersingular abelian variety can have no points of order p.
An abelian variety A over Fq such that A(Fp)[p] = {0} is called ‘very special’ [24].
In dimensions one and two it happens that every very special abelian variety is
supersingular, but for dimension three or more this is no longer necessarily the case
(see Li and Oort [24] p. 9).

We note, for completeness, that an abelian variety A of dimension g over a finite
field Fq is said to be ‘ordinary’ if and only if #A(Fq)[p] = pg. Therefore, when
the dimension is two or more then there are abelian varieties which are between
the cases of ordinary and very special (e.g., the product Ei

1 × Eg−i
2 where E1 is a

supersingular elliptic curve and E2 is an ordinary elliptic curve). The amount of
p-torsion can be determined by considering PA(T ) modulo p (see [26], [41]).
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An equivalent definition of supersingularity for abelian varieties is that the en-
domorphism ring End

Fq
(A) has rank 4g2 over Z. Supersingular abelian varieties

have non-commutative endomorphism rings but the converse is not in general true
(e.g., the example Ei

1 × Eg−i
2 above).

An important tool in the study of abelian varieties over finite fields is the fol-
lowing powerful theorem due to Tate [44].

Theorem 4. Let A and B be abelian varieties over Fq and let PA(X) and PB(X)
be the respective characteristic polynomials of Frobenius. Then B is isogenous over
Fq to an abelian subvariety of A if and only if PB(X)|PA(X).

The following result follows from the work of Manin and Oort and the theorems
quoted above.

Theorem 5. The following conditions on an abelian variety A over Fq of dimension
g are equivalent.

(1) A is isogenous (over some finite extension of Fq) to Eg for some super-
singular elliptic curve E (i.e., A is supersingular).

(2) There is some integer k such that the characteristic polynomial of Frobe-
nius on A over Fqk is P (X) = (X ± qk/2)2g.

(3) There is some integer k such that πk = ±qk/2.
(4) For some positive integer k we have #A(Fqk) = (qk/2 ± 1)2g.

The third property is the one which is most important for our application (due
to an analogue of Corollary 2). However, it is not yet clear what values for k might
arise for such curves.

There is a wealth of literature within coding theory about supersingular curves
as, over certain extensions, they have the maximal number of points. There is also
a wealth of literature in algebraic geometry about supersingular abelian varieties,
due to their importance to the study of certain moduli problems (see [24]).

8. A criterion for supersingularity

The following result is a restatement of Proposition 1 of [43]. It gives a simple
test for whether or not an abelian variety is supersingular, once P (X) has been
computed. Due to its importance in this paper we provide a proof.

Theorem 6. Suppose q = pn and suppose A is an abelian variety of dimension g
over Fq. Suppose

P (X) = X2g + a1X
2g−1 + a2X

2g−2 + · · · + agX
g + · · · + qg−1a1X + qg

is the characteristic polynomial of the Frobenius endomorphism on A. Then A is
supersingular if and only if, for all 1 ≤ r ≤ g,

p⌈rn/2⌉ | ar.

Proof. The roots αi are algebraic integers in some number field K. For each prime
℘ of OK above p there is an extension ν of the p-adic valuation, so choose one of
these arbitrarily and normalise so that ν(q) = 1.

Results of Manin and Oort (see [28] p. 116) show that A is supersingular if and
only if ν(αi) = 1/2 for all i (this is essentially the content of Property 3 of Theorem
5). The statement then follows easily from the fact that the ar ∈ Z are symmetric
polynomials of degree r in the αi.
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Conversely, if A is not supersingular then there must be some ν(αi) < 1/2. From
αiαg+i = q we see that there are at most r ≤ g values with ν(αi) < 1/2 and for
all other values we have ν(αi) ≥ 1/2. Now consider the coefficient ar which is the
rth symmetric polynomial in the αi. This coefficient therefore has one term with
valuation strictly less than all other terms (and strictly less than r/2). Therefore,
the numerical condition in the theorem cannot be satisfied for ar. �

9. The bound on the extension degree

The number k in Theorem 5 is related to the degree of the isogeny Jac(C) ∼ Eg.
There are several interesting open problems relating to the degrees of isogenies in
the splitting of Jacobians. The case of supersingular curves is the easiest case for
these problems.

The values of k which arise depend on properties of cyclotomic polynomials (i.e.,
irreducible factors over Z of Xm − 1 for some m). Hence we make the following
definitions.

Definition 3. For each positive integer g let Pg = {p(X) ∈ Z[X ] : deg p(X) =
2g, p(X) irreducible over Z, p(X)|(Xm − 1) for some m}. For each p(X) ∈ Pg

define m(p(X)) = min{m : p(X)|(Xm − 1)}. Define k′(g) to be max{m(p(X)) :
p(X) ∈ Pg}. Define k(g) to be

max
{

lcm
(

m(p1(X)), . . . ,m(pn(X))
)

: g =

n
∑

i=1

gi, pi(X) ∈ Pgi

}

.

Theorem 7. Let A be a supersingular abelian variety of dimension g over a field
Fq, then there exists an integer k ≤ k(g) such that, for all integers r ≥ 1, the
exponent of A(Fqr ) divides qkr − 1.

We emphasise that the bound k(g) depends only on the genus and not on the
abelian variety A.

Proof. First, take a quadratic extension so that qr is a square, i.e., consider q0 = q2r.
Let P (X) be the characteristic polynomial of the Frobenius endomorphism on A
over Fq0

and write αi for the roots (they are the squares of the values of the roots
corresponding to A over Fq).

We follow the proof of Theorem 4.2 of Oort [28] and consider

P ′(X) = P (
√
q0X)/qg

0 = X2g + (a1/
√
q0)X

2g−1 + · · · + 1

which has roots αi/
√
q0. By Theorem 6 the coefficients of P ′(X) are integers.

The numbers αi/
√
q0 are algebraic integers which are units but, by Theorem 4.1

of Manin [25], it follows that they are actually roots of unity. Therefore P ′(X) is a
product of cyclotomic polynomials.

By definition of k(g) there is some k ≤ k(g) such that (αi/
√
q0)

k = 1 for all i.

In other words, αk
i = q

k/2
0 for all i and so πk = q

k/2
0 . It follows by the argument

of Corollary 2 that the exponent of A(Fqk
0

) divides q
k/2
0 − 1 (also see Stichtenoth

and Xing [43] Proposition 2). Since q
k/2
0 − 1 = qrk − 1 and the exponent of A(Fqr )

divides the exponent of A(Fq0
) the result is proven. �

We now consider the values of k(g). Cyclotomic polynomials Xm − 1 factor into
products of polynomials Φn(X) for each n|m (see Lang [23] VI.3). The polynomials
Φn(X) have degree ϕ(n) (this is the Euler ϕ-function) so the values of k′(g) are
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g k′(g) k(g) k(g)/g
1 6 6 6
2 12 12 6
3 18 30 = lcm(6, 10) 10
4 30 60 = lcm(10, 12) 15
5 22 120 = lcm(8, 10, 6) 24
6 42 210 = lcm(6,10,14) 35
7 ⋆ 420 = lcm(5,7,12) 60
8 60 840 = lcm(3,5,7,8) 105

Table 1. Values of k(g). The symbol ⋆ indicates the fact that
there are no irreducible cyclotomic polynomials of degree 14 (since
there are no integers N with ϕ(N) = 14).

related to the problem of finding the largest value of n for which ϕ(n) = 2g.
The extremal case is when n is the product of the first k primes and so ϕ(n) =

n 1
2

2
3 · · ·

pk−1
pk

(e.g., ϕ(6) = 2, ϕ(30) = 8, ϕ(210) = 48 etc). The values of k(g) relate

to the ways of taking least common multiples of the m(p(X)). Table 1 lists the
values of k′(g) and k(g) for small values of g.

The notation in the k(g) column of Table 1 indicates how the maximum value is
attained. For example the case k(3) = 30 comes from the cyclotomic polynomials
Φ6(X) = X2 −X + 1 and Φ10(X) = X4 −X3 +X2 −X + 1. It follows that the
smallest degree m such that Φ6(X)Φ10(X)|(Xm−1) is m = lcm(6, 10) = 30. Hence
an abelian variety with P (X) = q3Φ6(X/

√
q)Φ10(X/

√
q) (which must exist by the

Honda-Tate theorem [45]) would have embedding degree 30.
We observe that the above result gives the exact bound k = 6 in the elliptic curve

case g = 1. We only go as far as g = 8 since there are subexponential algorithms for
solving the discrete logarithm problem on high-genus curves. Indeed, experimental
results (e.g., Gaudry [16]) suggest that curves of genus greater than 5 are unlikely
to be used for cryptography, as the field size would have to be rather larger than
had previously been thought (thus reducing any other advantage which they may
have had).

The bound k(g) is sharp, in the sense that there exists an abelian variety over
some finite field Fq for which the bound k(g) is attained. However, we are more
interested in Jacobian varieties of curves than in general abelian varieties. When
the dimension is sufficiently large none of the abelian varieties for which large values
of k are obtained are isogenous to Jacobians of curves. We return to this problem
in Section 11.

What do these results tell us about the security of the discrete logarithm problem
in the divisor class group of a curve? Recall that the advantage of the divisor class
group of a curve of genus g over Fq is that, over a field Fq the group has size
approximately qg. Hence, to determine the applicability of the subexponential
algorithms for solving the discrete logarithm problem in finite fields, we really
should consider k(g)/g which is seen in Table 1 to grow rather slowly. This supports
the notion that supersingular curves should be considered weaker than the general
case for cryptography.
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10. The Curves of Interest in Cryptography

In cryptography the curves under consideration are those for which there are
efficient methods for computing in the divisor class group. The main example is
of course elliptic curves. One can also use hyperelliptic curves (quadratic function
fields) [7], [20]. Recently algorithms have been given for cubic function fields (see
[36], [3]) and, more generally, superelliptic curves [15] and curves which have a
totally ramified point [1].

For curves of genus 2 or more it has often been the case that curves are defined
over small fields such as F2 or F22 to facilitate easy point counting as discussed in
Sections 4 and 5.

For now we recall a couple of facts. A hyperelliptic curve of genus g has a
non-singular affine equation of the form

y2 + h(x)y = f(x)

where deg h(x) ≤ g+1 and deg f(x) ≤ 2g+2. In characteristic not equal to two we
can take h(x) = 0 and the curve has one point at infinity if deg f(x) = 2g + 1 and
two points at infinity (possibly defined over a quadratic extension) if deg f(x) =
2g + 2. In characteristic two the curve has two points at infinity if and only if
deg(h(x)) = g + 1 (and if h(x) has a root then one may transform to an equation
with only one point at infinity). The case of hyperelliptic curves with one point at
infinity is favoured for simplicity but the other case is more general. See [29], [30]
for more details.

A superelliptic curve (see [15]) has an affine equation of the form yn = f(x) over
Fq where gcd(n, q) = 1, gcd(n, deg f(x)) = 1 and gcd(f(x), f ′(x)) = 1. Such curves
have only one point at infinity and they have genus 1

2 (n− 1)(deg f(x) − 1).
When working with a new family of curves it is important to know that they

give examples not already found in the earlier families. The following result shows
that there exist superelliptic curves which are not hyperelliptic.

Theorem 8. Consider the superelliptic curve C : ym = f(x) over a field k where
m ≥ 3 is odd and coprime to the characteristic of the field k. Suppose that
deg(f(x)) = d, gcd(m, d) = 1, gcd(f(x), f ′(x)) = 1, and that (3m−1)/(m−1) ≤ d.
Then C is not hyperelliptic.

Proof. Suppose instead that C is hyperelliptic with function field F . Then there
exists a function w such that [F : k(w)] = 2. From the equation for the curve we
have [F : k(x)] = m.

The condition (3m− 1)/(m− 1) ≤ d implies that m ≤ g and so, by Proposition
VI.2.4 (a) of [42] we have k(x) ⊂ k(w).

It follows that m = [F : k(x)] = [F : k(w)][k(w) : k(x)] which is a contradiction
since m is odd. �

11. Are large values of k attained for curves?

In Section 9 we have given an upper bound on the value of k which can arise.
This bound is sharp, in the sense that it is attained for some supersingular abelian
variety of dimension g. However, when the genus is three or more, not every abelian
variety is isogenous to the Jacobian of a curve. Hence it makes sense to ask what
the maximum values of k are for supersingular curves of genus g.
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In this section some examples of curves with relatively large values for k are
given. When g > 2 it is seen that the values are much lower than the upper bounds
given above. To actually prove sharp bounds in this case is an interesting open
problem and we do not have any theoretical results in this direction.

Note that the maximum value for k is attained in the case of genus one and
two curves. This fact is not surprising since every elliptic curve is a Jacobian, and
every isogeny class of abelian varieties of dimension two contains a representative
which is either a product of elliptic curves or the Jacobian of a hyperelliptic curve
(possibly this process requires an extension of the ground field). However, in the
case of dimension four or more we would not necessarily expect the bounds to be
attained.

The case of dimension three is particularly interesting, since every isogeny class
of absolutely simple abelian varieties of dimension three should contain a Jacobian
of a genus three curve (not necessarily hyperelliptic) over some extension field.
However, we have not found any supersingular curves giving values of k near the
bound. One further surprising fact is that we have not found any supersingular
hyperelliptic curves of genus three in characteristic two.

Field Curve C P (X) # points k

Fp
(1) y2 = x3 + a X2 + p p+ 1 2

F3 y2 = x3 + 2x± 1 X2 ± 3X + 3 7,1 6
F2 y2 + y = x5 + x3 X4 + 2X3 + 2X2 + 4X + 4 13 12
F3 y2 = x6 + x+ 2 X4 + 3X2 + 9 13 3
F5 y2 = x5 + 2x4 + x3 + x+ 3 X4 − 5X3 + 15X2 − 25X + 25 11 5

F22 = F2(θ) x4 + θxy3 + yz3 (2) X6 − 8X3 + 26 57 9
F3 y2 = x7 + 1 X6 + 33 28 6
F5 y2 = x8 + 2x4 + 3x2 + 2 X6 − 5X5 + 20X4 − 50X3 66 10

+100X2 − 125X + 125
F7 y2 = x8 + x4 + 5x3 X6 + 7X5 + 21X4 + 49X3 + 147X2 911 14

+6x2 + x+ 2 +73X + 73

F2 y2 + y = x9 + x4 + 1 X8 − 2X7 + 2X6 − 4X5 5 12
+8X4 − 8X3 + · · · + 24

Notes: (1) In the first row p must be an odd prime congruent to 2 modulo 3.
(2) This genus 3 curve is a plane quartic and is not hyperelliptic. It can be

written as the affine superelliptic curve z3 = x4 + θx2.

It should be possible to generate supersingular curves of genus two and three
using the CM method. This is an avenue for further research.

It may strike the reader as strange that we mainly list curves over small fields
such as F2 or F3. Remember that one can consider the group Pic0

C(Fql) for some
large prime number l and the value k for this case will be exactly the same. More
importantly, it is known that for elliptic curves one can only obtain k > 3 in
characteristic two or three, and we expect analogous results in the higher genus
case (this is another avenue for further research). Hence it makes sense to search
for large values of k only when the characteristic of the field is small.
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12. Equations of supersingular curves

For applications, especially when using subfield curves, it is very important to
know in advance which equations are likely to give rise to supersingular curves.
For instance, Sakai, Sakurai and Ishizuka [35] suggested some hyperelliptic curves
for use in cryptography. On page 172 they mention that they were unable to find
any secure genus 2 curves over F2. The reason for this is that they restricted their
attention to equations of the form C : y2 + y = f(x) for some monic polynomial
f(x) ∈ F2[x] of degree 5. We will show that all genus two curves of this form over
F2n are supersingular.

The first observation is that any hyperelliptic curve in characteristic two of the
form y2 + h(x)y = f(x) with 1 ≤ deg(h(x)) ≤ g + 1 cannot be supersingular.
To see this note that any root x0 of h(x) gives rise to a point (x0, y0) (possibly
over a quadratic extension) of order 2, and recall that a supersingular curve in
characteristic p has no points (even over algebraic extensions) of order p.

Therefore, curves of the form y2 + y = f(x) are certainly a poor choice in
characteristic two if one wants to avoid supersingular cases. However, the argument
sketched above does not imply that all such curves are necessarily supersingular.
Our main result in this section is that this is true in the case of genus two curves.
The first result concerns the polynomial P (X) for curves of this form.

Lemma 2. Let C be a genus 2 curve over F2n of the form y2 + cy = f(x) where
f(x) is monic of degree 5 and c ∈ F

∗
2n . Then the coefficients a1 and a2 in the

polynomial P (X) are both even.

Proof. For equations of this form the number of points on the curve over all ex-
tensions F2nm is odd, since apart from the point at infinity, points come in pairs
(x0, y0) and (x0, y0 + c). The fact that #C(F2n) = 2n + 1 − a1 is odd implies that
a1 is even.

On C(F22n) there are two points for each possible x0 ∈ F2n (the corresponding
y-coordinates may be in F2n or F22n). For any point with x0 6∈ F2n there are
the four distinct ‘conjugates’ (x0, y0), (x0, y0 + c), (π(x0), π(y0)), (π(x0), π(y0) + c)
where π is the Frobenius automorphism of F22n/F2n . It follows that #C(F22n) ≡ 1
(mod 2n+1). Write t2 = 22n + 1 − #C(F22n). Then t2 is divisible by 4 and from
a2
1 = t2 + 2a2 it follows that a2 is even. �

If the curve C is actually defined over F2 then Theorem 6 implies that the curve
is supersingular. In the general case we need a further argument.

Theorem 9. Let C be a genus 2 curve over F2n of the form y2 + cy = f(x) where
f(x) is monic of degree 5 and c ∈ F

∗
2n . Then C is supersingular.

Proof. Using Lemma 2 we see that P (X) ≡ X4 (mod 2). By a result of Manin [26]
(also see Stichtenoth [41] Satz 1) it follows that Jac(C)(F2n) has no points of order
2. In the case of dimension 2, this condition is known (see Li and Oort [24] p. 9)
to be equivalent to supersingularity. �

An alternative proof of the above result can be given by using the theory of the
Newton polygon and some class field theory. One shows that, in genus 2, the only
polynomials P (X) which satisfy the condition of Lemma 2 also satisfy the condition
of Theorem 6 (see Rück [32] for details of this approach).
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Note that both of these arguments rely heavily on the fact that we are in the
genus 2 case (indeed, below we give a secure genus three example).

We note that #C(F2) and #C(F22 ) being odd does not alone imply that C is
supersingular. An example is the genus two curve y2 +(x2 +x+1)y = x5 +1 which
has 3 points over F2 and 7 points over F22 and so P (X) = X4 +X2 + 4 and C is
not supersingular.

The authors of [35] could also have considered curves of the form y2 +xy = f(x)
(with degree five f(x) ∈ F2[x]). In these cases it is clear that #C(F2n) is always
even, in which case a1 is always odd and, by Theorem 6 the curve cannot be
supersingular. Indeed, the same argument shows that curves of the form y2 +xy =
f(x) with f(x) ∈ F2n [x] of odd degree are an infinite family of non-supersingular
hyperelliptic curves. It is easy to find suitable examples of genus 2 curves of this
form, for instance C : y2 + xy = x5 + x2 + 1 has P (X) = X4 −X3 − 2X + 4. One
can show that

#Jac(C)(F297) = 2 · 389 · 1747·
18473392463868826910318794676754071940716909907019619

#Jac(C)(F2103 ) = 2 · 47381·
1085287719049570327739050925845914539948927360923370110769

where the large numbers are proven primes according to Magma. In both cases the
Frey-Rück embedding degree exceeds 1050 so there are no worries here.

The above arguments suggest that, in characteristic two, only curves of the form
y2 + h(x)y = f(x) with deg(h(x)) ≥ 1 should be used in cryptography. However,
this is not necessarily the conclusion one wants to draw, since equations of the form
y2 + y = f(x) give some implementation efficiency (see Smart [39] Section 1 and
[12] Theorem 14). In the case of genus three it is possible to give ‘safe’ examples.
For instance, the curve C : y2 + y = x7 of [35] has P (X) = X6 − 2X3 + 23 and
the fact that a3 is not divisible by 2⌈3/2⌉ means that C is not supersingular. Note
however that such a curve is necessarily very special (i.e., it has no 2-torsion).

Another strategy would be to use genus two curves of the form y2+h(x)y = f(x)
over F2n which always have two points at infinity (i.e., deg(h(x)) = 3 such that
h(x) has no root in the ground field). In these cases one also has a1 odd, and so
the curves are not supersingular.

13. Some Examples of Superelliptic Curves

The case of hyperelliptic curves has been fairly thoroughly explored in the past
[20], [21], [6], [35], [39]. In particular, [6] mention cases which are guaranteed to
be non-supersingular. We give some examples of superelliptic curves with group
orders suitable for cryptography. (When they were first written then these were
the first examples; nowadays there are much better examples available using the
p-adic point counting methods [17]).

In all cases the large numbers l are proven primes according to Magma. In
all cases the curves are resistant to the Frey-Rück attack (to calculate the exact
embedding degree involves factoring l − 1 but it is sufficient to find all factors of
l− 1 less than say 1000 to convince oneself that the curve is acceptable).

Note that the curve y3 = f(x) over F2n has exactly 2n + 1 points when n is odd
(since in those cases 3 is coprime to the order of F

∗
2n). This means that, in the case

where the ground field is an odd degree extension of F2, to compute P (X) it is only
necessary to count the number of points over even degree extensions of the ground
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g = 3 C : y3 = x4 + x3 + αx2 + x+ α over F22

P (X) = X6 + 3X4 + 4X3 + 12X2 + 26

#Jac(C)(F22·41 ) = 22 · 3 · 7 · 1231 · 12547 · 839353·
103838175651664516641765501325467649197030008300761187148661 (197 bit)
g = 3 C : y3 = x4 + x3 + αx+ 1 over F25

P (X) = X6 + 39X4 + 1248X2 + 215

#Jac(C)(F25·23 ) = 24 · 32 · 55 · 7 · 11 · 83·
249210979849057649603915759933900855778626741247624026770184646815
70978869983922408175831537959 (314 bit)
g = 4 C : y3 = x5 + 1 over F2

P (X) = X8 − 2X4 + 16
#Jac(C)(F243 ) = 3 · 5 · 4129·
96654730063895670508796204430057604912608599311 (157 bit)
g = 4 C : y3 = x5 + x+ 1 over F2

P (X) = X8 + 2X6 + 6X4 + 8X2 + 16
#Jac(C)(F243 ) = 3 · 11·
181403354742656313080878192304365317354825710535649 (167 bit)
#Jac(C)(F261 ) = 3 · 11 · 12323·
69516604910881473963537569029137158267066937810090081
343111639513643 (226 bit)

Table 2. Examples of superelliptic curves suitable for cryptography.

field. In other words, when g is odd, one can compute P (X) in time O(qg−1+ǫ)
without using the tricks of Section 5. Note however that while such curves are not
supersingular, they are also not ordinary (i.e., they do not have full 2-torsion).

Table 2 lists some non-supersingular superelliptic curves. In all cases the symbol
α represents a generator of the multiplicative group of the field of definition. As
usual, one must be careful about the use of curves such as these due to the large
automorphism group [10], [16].

14. Conclusion

We have studied the impact of the Frey-Rück attack on supersingular curves.
We emphasise that even in the non-supersingular case one should be careful: Given
a divisor class group of a curve of genus g over Fq such that the group order is
divisible by a large prime l one should always check that gcd(l, q) = 1 and that

qk 6≡ 1 (mod l)

for all k between 1 and, say, 20g.
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