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Abstract. The Weil and Tate pairings are defined for elliptic curves
over fields, including finite fields. These definitions extend naturally to
elliptic curves over Z/NZ , for any positive integer N , or more generally
to elliptic curves over any finite commutative ring, and even the reduced
Tate pairing makes sense in this more general setting.

This paper discusses a number of issues which arise if one tries to develop
pairing-based cryptosystems on elliptic curves over such rings. We argue
that, although it may be possible to develop some cryptosystems in this
setting, there are obstacles in adapting many of the main ideas in pairing-
based cryptography to elliptic curves over rings.

Our main results are: (i) an oracle that computes reduced Tate pairings
over such rings (or even just over Z/NZ ) can be used to factorise in-
tegers; and (ii) an oracle that determines whether or not the reduced
Tate pairing of two points is trivial can be used to solve the quadratic
residuosity problem.

Keywords: Elliptic curves modulo N , pairings, integer factorisation,
quadratic residuosity.

1 Introduction

Pairings are a major topic in elliptic curve public key cryptography, following
the success of cryptosystems such as Joux’s three-party key exchange protocol
[10] and the Boneh-Franklin identity-based encryption scheme [1]. Recall that if
E is an elliptic curve over a field K and if r is coprime to the characteristic of
K then the Weil pairing maps E[r] × E[r] to µr, where µr is the group of r-th
roots of unity in the field K. The Tate pairing [5, 6] is usually used in practical
implementations for efficiency reasons, though it is necessary to consider the
so-called reduced Tate pairing which takes values in µr.

Elliptic curves modulo composite integers N have also been proposed for
cryptography. The motivation is that security can also rely on the integer fac-
torisation problem and that new functionalities might be possible due to the
extra trapdoor. It is therefore a natural problem to try to develop pairing-based
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cryptosystems on elliptic curves modulo composite integers N . The fundamental
question is whether pairings can be computed on elliptic curves over rings, and
whether other aspects of pairing-based cryptography can be generalised to this
situation. Indeed, the first author has been asked by several researchers whether
this is possible.

We might imagine a system in which the factorisation of N is secret, but N
is public, and a user is required to compute a pairing on some elliptic curve over
Z/NZ (or some extension ring). The security of the cryptosystem is presumed
to rely on the hardness of factoring and possibly some other computational
problems.

We will explain that the Weil pairing can be computed successfully in this
setting (as long as certain data is provided). On the other hand, we show in
Theorem 3 that the reduced Tate pairing cannot be computed without knowing
the factorisation of N . As a companion to this result we show in Theorem 4 that
even just being able to detect whether or not the reduced Tate pairing of two
points is trivial would allow one to solve the quadratic residuosity problem. We
will also argue that certain operations which are essential to many pairing-based
cryptosystems (such as hashing to a point) cannot be performed with elliptic
curves over rings if the factorisation is unknown.

Our opinion is that the use of pairings on elliptic curves over rings will not be
as successful as the case of elliptic curves over finite fields. We believe that the
potential secure and practical applications are, at best, limited to a few special
situations. One might imagine, for example, a scheme where only the holder of
secret information is supposed to be able to compute pairings.

The structure of the paper is as follows. We recall some results for elliptic
curves over Z/NZ , making some observations concerning quadratic residuosity
and the natural generalisations to finite extensions of Z/NZ . There follows an
example which introduces some of the issues which arise when considering pair-
ings on elliptic curves over rings. In particular, there are issues concerning the
splitting of N = pq where p − 1 and q − 1 (or p + 1 and q + 1) share some
common factor: we recall some techniques for integer factorisation of numbers of
this form. Then we gather some well-known results concerning the equivalence of
factoring and extracting roots, put in the setting of surjective homomorphisms
from (Z/NZ)∗ to roots of unity. We then define what we mean by pairings for
elliptic curves over Z/NZ and over more general finite commutative rings, and
prove the results stated above (Theorems 3 and 4).

When giving complexity estimates for algorithms over Z/NZ, the computa-
tion of the greatest common divisor of two numbers between 1 and N is counted
as a single ‘ring operation’.

2 Elliptic curves modulo N

Let N be an integer greater than 1 with gcd(N, 6) = 1 (this restriction on N is
not essential, but it simplifies the exposition in places). An elliptic curve E over
the ring Z/NZ is the set of solutions (x : y : z) in projective space over Z/NZ



(insisting that gcd(x, y, z,N) = 1) to a Weierstrass equation

y2z = x3 + a4xz
2 + a6z

3 , (1)

where the discriminant of the cubic on the right, namely 4a3
4 + 27a2

6, has no
prime factor in common with N . There is a group law on E(Z/NZ) given by
explicit formulae which can be computed without knowledge of the factorisation
of N . The identity element is 0 = (0 : 1 : 0). We refer to Lenstra [13, 14] for
details about elliptic curves over rings.

If the prime factorisation of N is N =
∏m

i=1 p
ai
i , then E(Z/NZ) is isomorphic

as a group to the direct product of elliptic curve groups
∏m

i=1E(Z/pai
i Z). If we

let Ei be the reduction of E modulo pi, then Ei is an elliptic curve over the field
Fpi . One finds that

#E(Z/pai
i Z) = pai−1

i #Ei(Fpi
)

(see, for example, [7]).
The first proposal to base cryptosystems on elliptic curves over the ring

Z/NZ was by Koyama, Maurer, Okamoto and Vanstone [12]. Other proposals
have been given by Demytko [4], Meyer and Mueller [21], and Vanstone and
Zuccherato [31]. The security of such cryptosystems is related to the difficulty
of factorising N .

The following theorem was established in [11].

Theorem 1. Let N be a composite integer satisfying gcd(N, 6) = 1. Given an
oracle that takes as its input an elliptic curve over Z/NZ, and outputs the number
of points on the curve, one can factorise N in random polynomial time.

We remark that an oracle that merely tells us whether or not two elliptic
curves over Z/NZ have the same number of points can be used to solve the
quadratic residuosity problem.

Theorem 2. Suppose that O is an oracle that determines whether or not two
elliptic curves over Z/NZ have the same number of points. Let a ∈ (Z/NZ)∗

be such that
(

a
N

)
= 1. Then there is a randomised polynomial time algorithm

that makes one call to the oracle and returns a guess as to whether or not a is
actually a square in (Z/NZ)∗, with the following probabilities of success:

– if a is a square in (Z/NZ)∗, then the algorithm will return the guess ‘square’;
– if a is not a square in (Z/NZ)∗, then the algorithm will return the guess ‘not

a square’ with probability 1− ε, where

ε = O(log p log log p/
√
p) ,

with p being any prime dividing N such that
(

a
p

)
= −1.

Proof. Suppose that we are given a ∈ (Z/NZ)∗ with
(

a
N

)
= 1. We choose random

a4, a6 in Z/NZ such that equation (1) defines an elliptic curve E over Z/NZ. If
a is a square in (Z/NZ)∗, then the twisted curve E(a) with equation

y2z = x3 + a4a
2xz2 + a6a

3z3



has the same number of points as E. Otherwise, let p be any prime dividing N
such that

(
a
p

)
= −1. Suppose that N = prn, with gcd(p, n) = 1. We can write

the number of points on E over Z/NZ as

#E(Z/NZ) = (p+ 1− t)m1 ,

where p + 1 − t = #E(Z/pZ) and m1 = pr−1#E(Z/nZ). Then the number of
points on E(a) is

#E(a)(Z/NZ) = (p+ 1 + t)m2 ,

where m2 = pr−1#E(a)(Z/nZ). The numbers of points on E and E(a) are dif-
ferent unless

t = (p+ 1)(m1 −m2)/(m1 +m2) .

Conditioning on the value of the pair (m1,m2) this value of t occurs with prob-
ability

O(log p log log p/
√
p)

(Theorem 2 in [18]). The implied constant here is absolute, not depending on
(m1,m2), or on a. The result follows immediately. �

More generally, one might not have access to an oracle as in Theorems 1 and
2, but might simply be given a single elliptic curve over Z/NZ with a known
number of points,M . Two complementary approaches for attempting to factorise
N from this limited information have appeared in the literature:

1. One method is to multiply a point on a random quadratic twist by M . In
general, it is hard to find points in E(Z/NZ) (for example, choosing an x-
coordinate, putting z = 1, and solving for y requires taking a square root).
However, there are formulae for performing point multiplications which use
x-coordinates only (on the affine piece z = 1: see the Formulary of Cassels,
and the exercises at the end of chapter 26, in [3]).
A random x ∈ Z/NZ is the x-coordinate of a point (x : y : 1) on Ei with
probability roughly 1/2. If this is the case then M(x : y : 1) = 0 on Ei. On
the other hand, if x is not a valid x-coordinate then there is a corresponding
point (x : y : 1) on a quadratic twist E(d) over Fpi and for most curves we
would not expect M(x : y : 1) = 0 on E(d)(Fpi).
The algorithm to factorise N is to take random x-coordinates (with z =
1) and to multiply by M , using x-coordinates only. With high probability
the resulting point will be the identity modulo some, but not all, primes p
dividing N . So taking the gcd of the resulting z-coordinate with N will split
N . Details of this method are given in Okamoto and Uchiyama [24].

2. Another way to obtain this result is to mimic the standard randomised re-
duction from knowing #(Z/NZ)∗ to factoring (similar to the Miller-Rabin
primality test). We write

M = #E(Z/NZ) = 2mM ′



where M ′ is odd. We then choose random x-coordinates (with z = 1) and
multiply by M ′ and then compute the sequence of doublings of this point.
The details are given in [17]. In [11] it is noted that the prime 2 can be
replaced by a larger prime.

3 Extension rings

In practice, especially when considering pairings, we may be interested in ex-
tending our ring Z/NZ. For example, we may wish to force the full r-torsion
onto our curve for some r. To this end we consider elliptic curves over rings of
the form

RN,f = (Z/NZ)[x]/(f(x)) ,

where f(x) is some polynomial in (Z/NZ)[x]. The splitting of f(x) may be
different modulo different prime divisors of N . The above results readily extend
to this setting, twisting by random elements of R. If N is squarefree, and f(x) is
squarefree modulo every prime dividing N , then R = RN,f is a product of finite
fields.

4 An example

To clarify the discussion above, and to introduce some of the issues which arise
when considering pairings, we give an example.

Let p1, p2 be primes congruent to 2 modulo 3 and let r be a prime such that
r | (pi + 1), r2 - (pi + 1) for i = 1, 2. Let E be the elliptic curve y2 = x3 + 1. For
each i = 1, 2 let Ei be the reduction of E modulo pi. It is well known that Ei is
supersingular, that #E(Fpi) = pi +1, and that E[r] ⊂ E(Fp2

i
). Let P , Q ∈ Ei[r].

Then the Weil (or reduced Tate) pairing gives an r-th root of unity

er(P,Q) ∈ F∗
p2

i
.

The field Fp2
i

can be defined as Fpi(θ) where θ2 + θ + 1 = 0. If P and Q are
points of order r such that P 6= 0 lies in Ei(Fpi) and Q does not lie in E(Fpi)
then it is easy to show that er(P,Q) 6= 1.

Define N = p1p2 and define the ring

R = (Z/NZ)[θ]/(θ2 + θ + 1) .

Then
R ∼= Fp2

1
× Fp2

2
.

Let E be the elliptic curve above. Then

#E(R) = (p1 + 1)2(p2 + 1)2 .

Note that there seems to be no reason to use large embedding degrees for
elliptic curves over rings since the ground ring is already large due to the factoring



problem. Indeed, one might prefer embedding degree 1, but then r | (pi − 1),
and in the case of the Weil pairing also r2 | #E(Fpi), for each prime pi dividing
N , and so the attacks of Section 5 must be borne in mind.

Let P and Q be points of order r in E(R) such that P 6= 0 lies in E(Z/NZ)
and Q 6∈ E(Z/NZ). Then, as before, er(P,Q) is a non-trivial r-th root of unity
in R∗. The distortion map

ψ(x, y) = (θx, y)

can be used to map points P ∈ E(Z/NZ) into points in E(R) and so we can
obtain a non-trivial pairing between points of order r in E(Z/NZ).

We will argue in Section 8 that the reduced Tate pairing cannot be computed
without knowing the factorisation of N . But, if E, R, P , Q and r are given, then
one can compute the Weil pairing using Miller’s algorithm [22, 23] as

er(P,Q) = (−1)rFr,P (Q)/Fr,Q(P )

without knowing the factorisation of N , where Fr,P is a function on E with
divisor

(Fr,P ) = r(P )− r(0)

(see [23]).
Hence, one can solve decision Diffie-Hellman problems in E[r] and one can

implement Joux’s three-party key exchange protocol [10] in this setting. It is
therefore plausible that cryptosystems can be developed based on elliptic curves
over rings which exploit both the hardness of the integer factorisation problem as
well as aspects of pairing-based cryptography. Such systems might have potential
functionalities which cannot be realised using elliptic curves over finite fields.

However, there are a number of issues which differ from the case of elliptic
curves over finite fields which should be considered before one can develop such
cryptosystems:

– The value r must play a symmetric role for all primes pi | N .
For example, if ζ ∈ R∗ is such that ζ (mod p1) has order r but ζ ≡ 1
(mod p2) then one can split N by computing gcd(ζ − 1, N). Similarly, if P
is a point which has order r on E1 but order coprime to r on E2 then one
can split N by multiplying E by r and computing gcds.

– The point order r must be provided to compute pairings.
This is because Miller’s algorithm essentially involves the operation of point
multiplication by r. We know of no way to compute pairings if r is not
provided. Since we are obliged to use the Weil pairing, both points must
have order r. The information on r can be used to improve certain factoring
algorithms (see Section 5 below). Hence, r should be chosen to be much
smaller than the primes pi (for the above example we would recommend
choosing r to have 160 bits and the pi to have at least 512 bits).

– Generating points on elliptic curves over rings is a hard problem.
This is not an obstacle to a cryptosystem such as Joux’s three-party key
exchange if a base-point P is included in the system parameters. However, for



some protocols it may be necessary for users to find random points Q ∈ E(R)
without simply multiplying an existing point by some integer.
There are two traditional solutions to this problem. The first, used in the
KMOV cryptosystem [12], is to choose P = (xP , yP ) and to modify the curve
equation so that P lies on E. This solution could be used in pairing applica-
tions, though note that it does not preserve existing points. The second solu-
tion, due to Demytko [4], is to work with x-coordinates only. It is not possible
to compute pairings exactly using x-coordinates only, but it may be possible
to compute traces of pairings, as done by Scott and Barreto [28]. A different
solution is to choose xP and extend the ring as R′ = R(

√
x3

P + a4xP + a6).
It is unclear whether any of these solutions would be practical for pairing-
based cryptosystems.

– Hashing to a point of order r is hard.
In many pairing-based cryptosystems it is necessary to hash to a point of
order r. The hashing process first involves finding a random point in E(R),
which as mentioned above is already a potential difficulty. Further, to obtain
a point of exact order r it is necessary to multiply the point by a cofactor
m. Since r is public then, once m is also given, the exponent of the group
E(R) or E(Z/NZ) is known, and we can therefore hope to factorise N using
the methods discussed at the end of Section 2.
Due to this issue, it seems unlikely that cryptosystems such as the Boneh-
Franklin identity-based encryption scheme [1] or the Boneh-Lynn-Shacham
signature scheme [2] can be developed for elliptic curves over extensions of
Z/NZ without revealing the factorisation of N .

5 Factoring if r is known

From time to time (e.g., [9], [15]) authors propose variants of RSA, with or
without elliptic curves, in which N = pq and there is some r greater than 1 such
that both r | (p− 1) and r | (q − 1). If r is small, then it cannot be kept secret,
as observed in [20]: it will be a factor of N − 1, and Lenstra’s Elliptic Curve
Method [13] or Pollard’s ρ method [25] can be used to recover r. Even if r is
secret, it cannot be too large: applying Pollard’s ρ method with the ‘random’
map

x 7→ xN−1 + 1 (mod N)

will produce a sequence that repeats modulo p after O(
√
p/r) terms, on aver-

age (this observation also appeared in [20]), so that if r is too large then the
factorisation of N will be found.

If r is known, then more powerful factorisation attacks are possible. Let us
assume that N = pq with p and q of similar size. Following [20], we can now
employ a variant of Lehmer’s method (described in [19]). Write

p = xr + 1 , q = yr + 1 .

Then
(N − 1)/r = xyr + (x+ y) = ur + v



where u and v (0 ≤ v < r) are known and x, y are unknown. We have

x+ y = v + cr , xy = u− c ,

where c is the (unknown) carry in expressing (N −1)/r in base r as above. Since
cr ≤ x+ y and both x and y are of size about

√
N/r, there are of order

√
N/r2

values of c to test. A candidate for c can be tested quickly, since

r2c2 + (2rv + 4)c+ v2 − 4u = (x− y)2

must be a square.
Again following [20] (see also [16] for the same idea in a different setting),

we can improve this O(
√
N/r2) attack to one that takes only O(N1/4/r) ring

operations (still assuming that N = pq with p and q roughly equal). Note that
the price for this improvement in speed is either to have increased storage or a
heuristic algorithm. We observe that the exponent of (Z/NZ)∗ is given by

lcm(p− 1, q − 1) = lcm(xr, yr) ,

and so divides xyr. Take random a ∈ (Z/NZ)∗. Then

aur = axyr+cr = acr .

Putting b = ar, we have
bu = bc

in (Z/NZ)∗. Since c has magnitude
√
N/r2, we can recover c (modulo the order

of b, which with high probability will have order nearly as large as xy ≈ N/r2)
in O(N1/4/r) ring operations, either using the baby-step giant-step method of
Shanks [29] or Pollard’s λ method [26].

Similar remarks hold if both r | (p+ 1) and r | (q+ 1), as in Section 4. Small
r can be spotted as a factor of N − 1. Large r make N vulnerable to Pollard’s
ρ method with the map

x 7→ xN−1 + 1 (mod N) .

If r is known, we can determine q + p modulo r2, and hence perform a similar
attack to the above that will split N in O(N1/4/r) ring operations if p and q are
of similar size.

Finally in this context we should consider the implications of knowing a
divisor d of the group order of E(Z/NZ). From Section 2, we must imagine that
the group order M is secret. We might hope to split N using Lenstra’s Elliptic
Curve Method [13] or Pollard’s λ method [26], with the curve E and the base
point d(x : y : 1) for random x. The worst case complexity of these attacks is

O

(
min
p|n

√
#E(Fp)/ gcd(d,#E(Fp))

)
ring operations.



6 Computing a surjective homomorphism from (Z/NZ)∗

to certain roots of unity is as hard as factoring

It is well-known that computing square-roots modulo a composite is as hard as
factoring [27], and indeed the same applies to rth roots if r is not too large and

gcd(r, p− 1) > 1

for some prime p dividing N . The ability to extract rth roots modulo N implies
the ability to generate random rth roots of unity, and it is of course the latter
that allows us to split N . We record these remarks here in a few Lemmas.

Let N > 1 be an odd integer that is not a prime power, and let r > 1 be any
integer. Let GN,r be the unique maximal subgroup of (Z/NZ)∗ having exponent
dividing r, i.e.,

GN,r = {a ∈ (Z/NZ)∗ | ar = 1} .

Another way of saying this is that GN,r contains all the rth roots of unity in
(Z/NZ)∗.

Any oracle which computes a surjective group homomorphism from (Z/NZ)∗

to GN,r can be used to factor N if r is not too large and GN,r is non-trivial: this
statement is made precise in the Lemmas below. The homomorphic property
simply ensures that the preimage of each element of GN,r is the same size: any
map with this property, or something close to it, would suffice.

Let O(N, r, a) be an oracle which takes as input integers N and r and an
element a ∈ (Z/NZ)∗ and returns the image of a under a surjective group
homomorphism from (Z/NZ)∗ to GN,r, where the homomorphism depends on
N and r, but not a.

For example, if N is squarefree and r | (pi−1) for all i then O(N, r, a) might
return the Chinese remainder of the values

a(pi−1)/r (mod pi)

for 1 ≤ i ≤ m (but any surjective homomorphism would do). In the case r = 2
and N odd and squarefree, this particular choice of oracle returns the Chinese
remainder of the Legendre symbols for all p dividing N . We stress that this is
not the same thing as the Jacobi symbol (which is the product of the Legendre
symbols, and does not give a surjective homomorphism to GN,2).

In the following Lemmas, we fix the notation

N =
m∏

i=1

pai
i , (2)

where p1, . . . pm are distinct odd primes, and m ≥ 2. Then

GN,r
∼=

m∏
i=1

Gi , (3)

where each Gi is cyclic of order dividing r.



Lemma 1. Let N be as in (2) and let r be a positive integer greater than 1 such
that

r | pai−1(pi − 1)

for 1 ≤ i ≤ m. Let O be an oracle computing a surjective homomorphism from
(Z/NZ)∗ to GN,r.

There is a randomised algorithm with negligible storage that will find a non-
trivial factorisation of N in expected time O(r) ring operations, using O(r) oracle
calls, on average.

Proof. The algorithm is simply to choose random a ∈ (Z/NZ)∗ and to obtain

b = O(N, r, a) .

One can then compute gcd(b− 1, N). This will split N as long as there are two
primes p and q dividing N such that

b ≡ 1 (mod p) but b 6≡ 1 (mod q) .

In (3), each Gi now has order r. Of the r2 possibilities for the image of a in
G1 ×G2, 2(r− 1) of them will split N , regardless of the image of a in the other
Gi (3 ≤ i ≤ m). For random a, the probability that we split N is therefore at
least 2(r − 1)/r2, so that the expected number of oracle calls is O(r). �

The running time of the above algorithm can be reduced at the expense of
some storage.

Lemma 2. Let N be as in (2) and let r be a positive integer greater than 1 such
that

r | pai−1
i (pi − 1)

for 1 ≤ i ≤ m. Let O be an oracle computing a surjective homomorphism from
(Z/NZ)∗ to GN,r.

There is a randomised algorithm requiring O(
√
r logN) storage that will find

a non-trivial factorisation of N in expected time O(
√
r log r log log r) ring oper-

ations, using O(
√
r) oracle calls, on average.

Proof. The algorithm chooses random a ∈ (Z/NZ)∗ and forms a list of values
O(N, r, a). When the list has length O(

√
r), one checks for repeats in the list

modulo some but not all prime factors of N by standard fast polynomial eval-
uation techniques [30]. It is likely that there is a repeat modulo some prime
dividing N whilst being very unlikely that there is a repeat modulo N . If r is
not known, or if no repeat has been found, one can repeatedly double the length
of the list until success. �

With the extra hypothesis thatO(N, r, a) (mod p) depends only on a (mod p),
there is a low-storage variant using Pollard’s ρ method [25]. Not all homomor-
phic oracles have this property. For example, with N = pq and r = 2, we could
perversely map a to the Chinese remainder of(

a

p

)
(mod q) and

(
a

q

)
(mod p) .



Lemma 3. Let N be as in (2) and let r be a positive integer greater than 1 such
that

r | pai−1
i (pi − 1)

for 1 ≤ i ≤ m. Let O be an oracle computing a surjective homomorphism from
(Z/NZ)∗ to GN,r satisfying the additional property that O(N, r, a) (mod p) de-
pends only on a (mod p) (for each prime p dividing N).

There is a heuristic algorithm requiring negligible storage that will find a non-
trivial factorisation of N in heuristic expected time O(

√
r) ring operations, using

O(
√
r) oracle calls, on average.

Proof. Apply Pollard’s ρ method [25] with the ‘random’ map

x 7→ O(N, r, x) + 1 .

(We add 1 to improve the pseudorandom behaviour of the map, by mixing ad-
dition with the multiplicative nature of our homomorphic oracle.) Described
simply (but not optimally), we compute (but do not store) sequences xn and
yn = x2n, starting with (say) x0 = y0 = 1, and using the rule

xn+1 = O(N, r, xn) + 1 .

At each step we compute
gcd(xn − yn, N)

until we find a non-trivial factor of N .
The complexity is as standard for Pollard’s ρ method. �

The situation is of course much more trivial if r is a prime such that

r | pai−1
i (pi − 1)

for some but not all primes pi dividing N .

Lemma 4. Let N be as in (2) and let r be a prime such that

r | pai−1
i (pi − 1)

for at least one but not all of the pi. Let O be an oracle computing a surjective
homomorphism from (Z/NZ)∗ to GN,r.

Then there is a randomised algorithm to find a non-trivial factorisation of
N which runs in expected time O(1) ring operations, using O(1) oracle calls, on
average.

Proof. The algorithm is simply to choose random a ∈ (Z/NZ)∗ and to obtain

b = O(N, r, a) .

One can then compute
gcd(b− 1, N) .



Since there is at least one prime pi dividing N such that

r - pai−1
i (pi − 1)

we know that
b ≡ 1 (mod pai

i ) .

Hence, all that is required is that

b 6≡ 1 (mod pj)

for some other prime pj dividing N . The probability of this event is at least
(r − 1)/r, so that the expected number of oracle calls is at most 2. �

Similar results hold for the rings RN,f , but the performance of the analogous
algorithms has worse dependence on r. If the r-torsion of the p-component of
RN,f has order rnp (for p a prime dividing N), then the expected running time
for the analogue of Lemmas 1, 2 and 3 has r replaced by rmin(np). The analogue
of Lemma 4 remains just as trivial.

The case r = 2 in Lemma 1 is particularly attractive, since if N is odd then
we know that r | (p− 1) for all p dividing N .

7 The Tate pairing on curves over finite commutative
rings

One of the main results of this paper is to argue that there is no way to compute
reduced Tate pairings on general E(Z/NZ) without knowing the factorisation
of N . We achieve this by showing that if O is an oracle for computing reduced
Tate pairings on such curves then one can use O to factorise N .

We first recall the Tate pairing for elliptic curves over finite fields (see Frey
and Rück [5, 6] for details). Let E be an elliptic curve over Fq (q being a power of
a prime) and let r be coprime to q. Let k ∈ N be minimal such that r | (qk − 1).
The integer k depends on both q and r (indeed, it is the order of q modulo
r) and is often called the ‘embedding degree’. Define by E[r] the set of points
P ∈ E(Fqk) such that rP = 0 (we assume that #E[r] > 1). The Tate pairing is
a non-degenerate pairing

〈·, ·〉r : E[r]× E(Fqk)/rE(Fqk) −→ F∗
qk/(F∗

qk)r .

In practice the Tate pairing is computed using an algorithm due to Miller [22,
23]. If P ∈ E[r] and Q ∈ E(Fqk) then there is a function Fr,P having divisor

(Fr,P ) = r(P )− r(0) .

Miller’s algorithm builds up this function Fr,P in stages in a way analogous to
the double and add algorithm for point exponentiation. Then

〈P,Q〉r = Fr,P (Q+ S)/Fr,P (S)



for a suitable auxiliary point S ∈ E(Fqk). Different choices of auxiliary point S
will give different values in F∗

qk , but they are all equivalent in the quotient group
F∗

qk/(F∗
qk)r.

Henceforth we shall not insist that the values of r and k satisfy r | (qk − 1).
Provided that P ∈ E[r], and that we can find a suitable auxiliary point S, we can
still perform Miller’s algorithm. The pairing may no longer be non-degenerate,
and of course

(F∗
qk)r = (F∗

qk)gcd(r,qk−1) .

Let N =
∏m

i=1 pi be a squarefree positive integer. As with other applications
of elliptic curves, the natural way to generalise the Tate or Weil pairings to points
on elliptic curves over Z/NZ is to use the Chinese remainder theorem to piece
together the values of the pairing over Fp for the various p dividing N . If the
factorisation of N is known, then of course this computation can be done. One
can readily generalise this to curves over the rings RN,f , considered in section 3,
provided that RN,f is a product of fields. Further generalisations are considered
below.

If the factorisation of N is not known, then one can still compute the Weil
pairing (of points P and Q of known order), or the ‘raw’ Tate pairing (where
only the order of P is needed) over Z/NZ simply by following Miller’s algorithm,
working modulo N throughout.

For cryptographic applications the fact that the Tate pairing assumes values
defined modulo rth powers is intolerable. Hence, returning first to the case of
finite fields, one uses the ‘reduced’ Tate pairing

e(P,Q) = 〈P,Q〉(q
k−1)/ gcd(r,qk−1)

r .

There is some choice in how to generalise this reduced Tate pairing to elliptic
curves over rings. We give two definitions below. We will show in Theorem 3
that (with either definition) computing the reduced Tate pairing is as hard as
factoring.

For clarity, we give both definitions for the simplest case where N is square-
free and we do not extend the ring Z/NZ. Generalisations will be discussed
immediately afterwards.

Definition 1. Suppose that N =
∏m

i=1 pi is a squarefree positive integer, and
that r is a positive integer. Let E be an elliptic curve over Z/NZ defined by
(1). Suppose that P and Q are points on E, with the order of P dividing r. Let
〈P,Q〉r,i be the raw Tate pairing of P and Q+ rE over Z/piZ. Define

ei(P,Q) = 〈P,Q〉(pi−1)/ gcd(r,pi−1)
r,i .

Then the reduced Tate pairing e(P,Q) is defined to be the unique element of
(Z/NZ)∗ satisfying

e(P,Q) ≡ ei(P,Q) (mod pi)

for each i (1 ≤ i ≤ m).



Definition 2. Suppose that N =
∏m

i=1 pi is a squarefree positive integer, and
that r is a positive integer. Let E be an elliptic curve over Z/NZ defined by
(1). Suppose that P and Q are points on E, with the order of P dividing r. Let
〈P,Q〉r be the raw Tate pairing of P and Q+ rE over Z/NZ. Then the reduced
Tate pairing e(P,Q) is defined by

e(P,Q) = 〈P,Q〉g/ gcd(r,g)
r ,

where g is the exponent of (Z/NZ)∗.

The first definition seems more natural because it behaves well under reduc-
tion, but we recognise that there is a choice here.

If N is not squarefree, then Z/NZ is not a product of fields. How can we
interpret any of our pairings in this setting? To clarify this issue consider the case
of an elliptic curve E over Z/p2Z, not anomalous over Z/pZ. Then #E(Z/p2Z) =
p#E(Fp) and E[p] is cyclic of order p. Define µp = {1 + xp : 0 ≤ x < p} ⊂
(Z/p2Z)∗. One can certainly define a bilinear pairing on E[p] taking values in
µp, but both the geometric theory and Miller’s algorithm break down for curves
over such rings: the entire p-torsion lies on a straight line.

As a result, we propose to map each Z/paZ to its residue field Z/pZ, and
hence to map E(Z/NZ) to a product of curves over finite prime fields (the Ei in
Section 3). Our pairings are defined for such curves, and we can define the pairing
over Z/NZ to be any preimage of the gluing together of these pairings. (In the
context of oracles, we insist that the choice of preimage is made in a deterministic
way.) As in the squarefree case, this can be further generalised to curves over
the rings RN,f considered in Section 3. This generalisation is essential if we wish
to consider embedding degrees greater than 1. For the reduced Tate pairing, the
second definition extends in the obvious way: g is replaced by the exponent of
(RN,f )∗. For the first definition, a little care is required: in each local factor we
power up by the exponent of the local multiplicative group divided by its gcd with
r, then we glue together the local values by the Chinese Remainder Theorem.
Again we comment that this generalisation of the first definition behaves well
under reduction.

We can even abstract this further, and consider an elliptic curve over any
finite commutative ring R. (This includes rings such as RN,f .) Such a ring is a
product of local rings, each having prime power order. Each local factor has a
residue field (of prime power order), and we can map our curve over R to a curve
over the product of these residue fields. Then, as above, we can define a pairing
value in each residue field, glue these together, and finally take a preimage in R.
Again both definitions of the reduced Tate pairing extend equally naturally.

8 Reduced Tate pairing oracles

What is the minimum amount of information that we must feed to an oracle for
computing reduced Tate pairings over rings of the form R = RN,f? Certainly
we must supply the oracle with N and f , and an elliptic curve E defined over



the ring R, and two points P and Q on E(R) whose pairing is to be returned.
We might also supply the value of r (with P , but not necessarily Q, supposed to
have order dividing r: something that the oracle can easily check), or we might
leave it to the oracle to compute suitable r. (One pleasing feature of the reduced
Tate pairing is that the pairing value coming from the minimal possible r is the
same as that computed using a multiple of it: see Section 6 of [8].) If the curve
has no points of order r over R, or if R does not contain an element of order r,
then the pairing value is still defined, but may well be trivial.

We have therefore two flavours of oracle, depending on whether or not we
know the value of r.

Oracle 1 This oracle takes as its input N ∈ N, f ∈ Z[X], E defined by equation
(1) for some a4, a6 in R = RN,f , points P and Q in E(R), and r ∈ N.

The oracle performs the following checks, and returns ‘fail’ if any of them
fail:

– gcd(N, 6) = 1;
– gcd(N, 4a3

4 + 27a2
6) = 1;

– P and Q are in E(R);
– rP = 0.

If all of these consistency checks are passed, then the oracle returns the re-
duced Tate pairing of P and Q, with value in R.

Oracle 2 This oracle takes as its input N ∈ N, f ∈ Z[X], E defined by equation
(1) for some a4, a6 in R = RN,f , and points P and Q in E(R).

The oracle performs the following checks, and returns ‘fail’ if any of them
fail:

– gcd(N, 6) = 1;
– gcd(N, 4a3

4 + 27a2
6) = 1;

– P and Q are in E(R).

If all of these consistency checks are passed, then the oracle chooses (but does
not reveal) r such that rP = 0, and returns the reduced Tate pairing of P and
Q, with value in R.

If one can factor N then, by Miller’s algorithm, one can implement either of
these oracles in polynomial time (to find suitable r for the second, we can use
fast point-counting techniques).

We now claim that such oracles can be used to build an integer factorisation
algorithm.

Theorem 3. Let O be a reduced-Tate-pairing oracle, either of the form Oracle 1
or of the form Oracle 2.

Given a composite integer N , not a prime power, with gcd(N, 6) = 1, we can
use the oracle O to find a non-trivial factorisation of N in expected time O(1)
ring operations, using O(1) oracle calls, on average.



Proof. We work with Definition 1 of the reduced Tate pairing in the proof, and
remark afterwards how the proof adapts trivially if one prefers Definition 2.

Choose a random integer a in the range 1 < a < N , and define

Ea : y2z = x(x− z)(x− az) = x3 − (a+ 1)x2z + axz2

which has discriminant 16a2(a − 1)2. (We could transform this equation into
Weierstrass form, as in (1), if desired.) This is an elliptic curve over Z/NZ
as long as gcd(N, 2a(a − 1)) = 1. We take r = 2 and note that the points
P = (0 : 0 : 1), Q = (1 : 0 : 1) and R = (a : 0 : 1) all have order 2.

One can compute the Tate pairing over Q of P with itself. The function
F = x satisfies (F ) = 2(P ) − 2(0). If Q is taken to be the auxiliary point then
the Tate pairing of P and P + 2E is

〈P, P 〉2 = F (P +Q)/F (Q) = x(R)/x(Q) = a/1 = a.

If another auxiliary point (u : v : 1) is used then

P + (u : v : 1) = (a/u : −av/u2 : 1)

and so the pairing value is a/u2.
Calling the oracle O (with arguments N , f = 1, P = Q = (0 : 0 : 1), and

r = 2 (if needed)) performs exactly the operation of the oracle O(N, 2, a) in
Section 6. Hence we can use the reduced Tate pairing oracle O to find a non-
trivial factorisation of N in O(1) ring operations, as in Lemma 1 (with r = 2).
�

We remark that if instead the reduced Tate pairing were defined by Definition
2, then the reduction to integer factorisation is just as simple. If the power of
2 dividing pi − 1 is the same for each prime pi dividing N , then the identical
argument works. If not, then the reduced pairing is guaranteed to be trivial
modulo at least one but not all of the pi, and a similar argument goes through,
analogous to Lemma 4.

The idea of the proof can be generalised to other small values of r, starting
from a curve over Q (or a low-degree number field) with an r-torsion point.

Inspired by the quadratic residuosity observations in section 2, we note that
the situation is still more favourable here, at least if we work with our preferred
definition of the reduced Tate pairing.

Theorem 4. Let N be an odd, composite integer, and let O be an oracle that
tells us whether or not the reduced Tate pairing (as in Definition 1) of two points
on an elliptic curve over Z/NZ is trivial.

Given a ∈ (Z/NZ)∗ satisfying
(

a
N

)
= 1, we can use the oracle O to determine

whether or not a is a square in (Z/NZ)∗ with a single call to the oracle O.

Proof. As above, we take the curve

Ea : y2z = x(x− z)(x− az) = x3 − (a+ 1)x2z + axz2 ,

and ask the oracle O whether or not the reduced Tate pairing of P = (0 : 0 : 1)
with itself is trivial. The answer is ‘yes’ precisely when a is a square in (Z/NZ)∗.
�
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