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Introduction

The aim of these notes is to give a low-brow, elementary, and more-or-less
self-contained explanation of the action of the ideal class group of Z[

√
−p] on

the set of isomorphism classes of supersingular elliptic curves defined over Fp.
This is the basic mathematical structure underlying the CSIDH isogeny-based
cryptosystem.

There is nothing new in these notes. Everything is in Waterhouse’s landmark
paper [Wat69]. Nowadays Voight’s book [Voi21] is an important reference. My
hope is that the explicit and computational proofs in the present notes may be
of interest to readers who find those references inaccessible.

The notes were adapted from a series of lectures given at the 2022 NZMRI
summer workshop in Akaroa, New Zealand in January 2022. I thank Gabriel
Pan for help converting the lecture slides into this format.

1 Basic definitions

We give a very brief summary of ideals in imaginary quadratic fields. Good
general references for this include Stewart and Tall [ST02].

Throughout this section, we let R denote a commutative ring with multi-
plicative identity. We denote R[x] the ring of polynomials with coefficients in
R. If α is a root of a monic quadratic integer polynomial then Z[α] really means
all polynomials in α, but it can be identified with {a+ bα : a, b ∈ Z}.

When considering imaginary quadratic fields Q(
√
−p), for ease of proof we

generally consider the case where p ≡ 1 (mod 4), since then its ring of integers
is simply Z[

√
−p]. Many of the results proved will also hold in the case p ≡ 3

(mod 4), but we do not provide those proofs.
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1.1 Ideals

For completeness, we present some basic definitions regarding ideals of commu-
tative rings.

Definition 1.1. An ideal is a non-empty subset I ⊆ R such that I is a group
under addition and

m∑
i=1

airi ∈ I

for any m ∈ N, ai ∈ I and ri ∈ R for 1 ≤ i ≤ m.

The two simplest examples of ideals are I = {0} and I = R.

Definition 1.2. An ideal I is called proper if I is non-zero and I 6= R.

Definition 1.3. The ideal generated by a1, . . . , an ∈ R is the set (a1, . . . , an) =
{
∑n
i=1 airi : ri ∈ R}. Such an ideal is called finitely generated.

Definition 1.4. An ideal I is called principal if I = (a) for some a ∈ R.

Definition 1.5. A proper ideal I in a ring R is prime if, for any a, b ∈ R, ab ∈ I
implies a ∈ I or b ∈ I.

Definition 1.6. The product of two ideals I and J is

IJ =

{
n∑
i=1

aibi : ai ∈ I, bi ∈ J

}
.

1.2 Ideal classes

We now want to define an equivalence relation on ideals.

Definition 1.7. Let I, J be ideals in R. We define the equivalence relation
I ∼ J if there exist α, β ∈ R such that (α)I = (β)J .

We omit the details that this relation is well defined with respect to ideal
multiplication and is an equivalence relation.

Definition 1.8. Consider an ideal I. Define an inverse ideal I−1 (if it exists)
to be any ideal such that II−1 = (α) for some non-zero α ∈ R.

The ideal (0) is not considered to have an inverse. The ideal R is equal to
the principal ideal (1), and is its own inverse.

If an ideal has an inverse then it is called an invertible ideal. In a Dedekind
domain every non-zero ideal is invertible. This then allows us to define a useful
group structure on the set of ideals.

Definition 1.9. The ideal class group Cl(R) is the set of equivalence classes of
non-zero invertible ideals with the group operation being the product operation
from Definition 1.6.

Again, we omit the details that this satisfies the group axioms. See Stewart
and Tall [ST02] for details.
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1.3 Imaginary quadratic fields

Let d > 1 be a square-free integer. An imaginary quadratic field is Q(
√
−d),

which is a degree two extension of Q. The ring of integers is the set of α ∈
Q(
√
−d) that are roots of a monic polynomial with integer coefficients.

Proposition 1.10. If d ≡ 1 (mod 4), then the ring of integers of Q(
√
−d) is

Z[
√
−d].

Proof. We note that any number of the form u+ v
√
−d with u, v ∈ Z is a root

of the polynomial x2− 2ux+ v2 + dv2, which clearly has integer coefficients. So
Z[
√
−d] is a subset of the ring of integers of the quadratic field.

On the other hand, suppose u + v
√
−d is in the ring of integers. Then its

minimal polynomial, x2−2ux+u2 +dv2, must be in Z[x]. We proceed by cases.

1. Suppose u ∈ Z. Then since u2 + dv2 is an integer, we must have dv2 be
an integer. But since v ∈ Q and d is squarefree, this implies that v ∈ Z.

2. Suppose u /∈ Z. Then u′ := 2u ∈ Z, and u′2 ≡ 1 (mod 4). But since

u2+dv2 = u′2

4 +dv2 must be an integer, it follows that dv2 = z− 1
4 = 4z−1

4
for some integer z. Since d is also an integer, if we write v = a

b in the
lowest terms, we must have b = 2 and da2 ≡ 3 (mod 4). But this means
that a2 cannot be even, so a2 ≡ 1 (mod 4) and thus d ≡ 3 (mod 4), a
contradiction.

Thus the ring of integers is equal to Z[
√
−d]

Definition 1.11. The norm of an element u+v
√
−d is N(u+v

√
−d) = u2+dv2

1.4 Ideals in imaginary quadratic fields

Example:

I = (2, 1 +
√
−5) = {2α+ (1 +

√
−5)β : α, β ∈ Z[

√
−5]}

is an ideal in Z[
√
−5].

Exercise 1.12. Let I be an R = Z[
√
−d]-ideal. Show that I ∩ Z is an ideal in

Z. Let I ∩ Z = (a) for some integer a ≥ 0. Show that

1. I = (0) if and only if a = 0.

2. I = R if and only if a = 1.

3. If a is non-zero and u+ v
√
−d ∈ I then a | N(u+ v

√
−d).

4. I ⊇ (a).

5. I a prime ideal implies a is prime.

6. If there is some integer u > 1 such that I ⊆ (u), then I = (u)I ′ for some
ideal I ′ in R.
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Exercise 1.13. If I is a non-zero ideal in R = Z[
√
−d] such that I 6⊆ (u) for

any integer u > 1 then show there are integers a, b such that I = (a, b+
√
−d).

Further, show that a | (b2 + d).

Exercise 1.14. Let I be a prime ideal that is non-zero and not R. Show there
is a prime ` such that either

• I = (`,
√
−d) and ` | d,

• I = (`) and (−d` ) = −1,

• I = (`,±b+
√
−d) for some integer b such that b2 ≡ −d (mod `).

In the first case the ideal is its own inverse and I2 = (`). In the second case the
ideal is principal and its inverse is (1) = R. In the third case an inverse of I is

I−1 = (`,∓b+
√
−d)

(ie., the other choice of sign).

One can define the norm N(I) of an ideal I to be the index [R : I]. We do
not give all the details. However we remark that N(I) is positive integer and
if I = (a, b +

√
−d) with gcd(a, b) = 1 and a | (b2 + d) then N(I) = a. Also,

if I and J are ideals then N(IJ) = N(I)N(J). In the case I = (`,±b +
√
−d)

where ` is prime and ` | (b2 + d), we have N(I) = N(I−1) = `.
There is a reduction theory of ideals that allows to compute efficiently in

Cl(Z[
√
−d]), but we do not go into the details here.

2 Elliptic curves and isogenies

2.1 Elliptic curves

Definition 2.1. An elliptic curve E over a field K of characteristic > 3 is
a projective non-singular curve with affine equation y2 = x3 + Ax + B where
A,B ∈ K are such that 4A3 + 27B2 6= 0.

The set of K-rational points on an elliptic curve E over K is the set E(K) =
{(x, y) ∈ K2 : y2 = x3 + Ax + B} ∪ {0}, where 0 denotes the point at infinity,
which is the point [0 : 1 : 0] on the projective curve y2z = x3 +Axz2 +Bz3.

Two elliptic curves are isomorphic over K if there exists a birational map
defined over K between them. Concretely, two elliptic curves y2 = x3 +Ax+B
and y2 = x3 +A′x+B′ are isomorphic over K under an isomorphism that fixes
the point at infinity if and only if A′ = u4A and B′ = u6B for some u ∈ K. The
j-invariant of an elliptic curve is j(E) = 1728 · 4A3/(4A3 + 27B2). Two elliptic
curves E1, E2 over K have j(E1) = j(E2) if and only if there is an isomorphism
φ : E1 → E2 over K. We write E1

∼= E2.
The set of points on an elliptic curve is a group, with the point at infinity

as the identity. The details of this can be found in any reference text on elliptic
curves, such as [Sil09, Was03]. Since they are not relevant to our discussion,
however, we omit these details from these notes.
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2.2 Isogenies

Definition 2.2. Let E1, E2 be elliptic curves over a field K. An isogeny is
a non-constant map φ : E1 → E2 that is both a morphism in the sense of
geometry and a group homomorphism. The isogeny is defined over K if the
map is described by rational functions with coefficients in K.

The degree of an isogeny is its degree in the sense of a morphism in algebraic
geometry. An important property of degree is that deg(ψ ◦ φ) = deg(ψ) deg(φ).

We also have a notion of separability of an isogeny. Again, there are many
competing definitions, but for our purposes, the following property is sufficient.

Definition 2.3. An isogeny is separable if the degree of the isogeny is the size
of its kernel.

A key example of an isogeny is the multiplication map.

Example 2.4. Let E be an elliptic curve. The multiplication-by-n isogeny,
denoted [n] : E → E maps

P 7→ P + P + · · ·+ P (n times)

Its kernel is known as the n-torsion group and is denoted E[n].

An endomorphism is an isogeny from an elliptic curve E to itself. We denote

End(E) = {isogenies φ : E → E over K̄} ∪ {[0]}.

Then End(E) is a ring under pointwise addition and composition, with [0] and
[1] being the additive and multiplicative identities respectively. In the CSIDH
context we are interested in curves E over Fp and we focus on the ring of
endomorphisms that are defined over Fp (rather than over Fp). This ring is
sometimes denoted EndFp(E).

Exercise 2.5. Let E1 and E2 be elliptic curves over K and suppose φ : E1 → E2

is an isogeny over K. Show that ker(φ) is defined over K (in the sense that
P ∈ ker(φ) implies σ(P ) ∈ ker(φ) for all σ ∈ Gal(K̄/K)).

A deep theorem (due to Deuring in the elliptic curve case, but in general
known as “Tate’s isogeny theorem”) says that if E1 and E2 are elliptic curves
over a finite field Fq with the same number of points, then there exists an
isogeny defined over Fq from E1 to E2. A proof of this fact is beyond the scope
of these notes, but we need this fact to be able to prove that the group action
is transitive.

2.3 Frobenius map

We now discuss a particularly important endomorphism for elliptic curves over
finite fields.
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Definition 2.6. Let E be an elliptic curve over Fp. Define the Frobenius map
π : E → E by

(x, y) 7→ (xp, yp)

The Frobenius map is a group homomorphism, so

[n] ◦ π = π ◦ [n] (1)

for all n ∈ Z.
The Frobenius map encodes information about the elliptic curve, via its

characteristic polynomial.

Proposition 2.7. The Frobenius map π satisfies π2− tπ+ p = 0, where t is an
integer known as the trace of Frobenius and t2 − 4p < 0. We call X2 − tX + p
the characteristic polynomial of Frobenius.

What this means is that for all points P ∈ E(Fp) we have π(π(P ))−[t]π(P )+
[p]P = 0.

As a result, Z[π] ⊆ End(E) is an imaginary quadratic ring, where elements
of this ring act as (a + bπ)(P ) = [a]P + [b]π(P ). Indeed Z[π] is a subring of
EndFp(E).

We are now in a position to define supersingular elliptic curves. We provide
a definition for characteristic > 3.

Definition 2.8. If p 6= 2, 3, an elliptic curve E over Fp is supersingular if and
only if the trace of Frobenius is 0.

Exercise 2.9. Let E over Fp be supersingular, so that Frobenius satisfies π2 =
−p. This exercise is to show that we can identify Z[π] in End(E) with Z[

√
−p].

Formally, consider the map from Z[π] to Z[
√
−p] by mapping a+bπ to a+b

√
−p.

Show that this map is a ring isomorphism, where the multiplication on the left
side is composition of endomorphisms in Z[π] ⊆ End(E), and the multiplication
on the right side is polynomial multiplication in Z[

√
−p].

The above exercise is more subtle than it may appear. It is not true in
general that composition of polynomials and multiplication of polynomials give
the same result! This works in the case of Frobenius due to equation (1). What
this means is that, when E is a supersingular elliptic curve over Fp, then End(E)
contains a subring isomorphic to Z[

√
−p].

2.4 Isogenies from kernels

We now show that separable isogenies are entirely determined by their kernels.

Proposition 2.10. (Vélu) Given a finite subgroup G ⊆ E1(Fp) there exists
an elliptic curve E2 and a (separable) isogeny φ : E1 → E2 with ker(φ) = G.
The curve E2 and the isogeny φ are unique up to isomorphism, meaning that
if φ′ : E1 → E3 is another isogeny with kernel G then there is an isomorphism
η : E2 → E3 and φ′ = η ◦ φ.
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This result, as well as a concrete algorithm to calculate this isogeny from a
kernel, was presented by Vélu [Vél71].

Theorem 2.11. (Silverman [Sil09] Corollary III.4.11, Galbraith [Gal12] The-
orem 9.6.18) Let E1, E2, E3 be elliptic curves over K and φ : E1 → E2,
ψ : E1 → E3 isogenies over K. Suppose ker(φ) ⊆ ker(ψ) and that ψ is separable.
Then there is a unique isogeny λ : E2 → E3 defined over K such that ψ = λ◦φ.

A corollary of this result is that if φ : E1 → E2 is an isogeny with non-cyclic
kernel then one can factor out a multiplication by n map to get an isogeny
ψ : E1 → E2 with cyclic kernel.

3 The group action of Cl(Z[
√
−p]) on supersin-

gular elliptic curves

We are now able to introduce an action of ideals of the imaginary quadratic
ring Z[

√
−p] on a set of supersingular elliptic curves defined over Fp. To do

this, we use the fact that Z[
√
−p] is a subset of the endomorphism ring of any

supersingular elliptic curve E defined over Fp. As a result, an ideal of Z[
√
−p]

can be interpreted as a set of endomorphisms of E.
In this section, we will show how we can associate with every ideal a (unique

separable) isogeny, and vice versa. These ideals can be considered to be acting
on supersingular elliptic curves by sending a curve to its image curve under
their associated isogeny. We then show that the action is well-defined up to
ideal classes, when one works with isomorphism classes of elliptic curves.

3.1 Isogenies to ideals and back again

We begin by associating an ideal to an isogeny, and vice versa. We only do this
in the special case of a supersingular elliptic curve over Fp, and so End(E) has
a subring Z[

√
−p] ∼= Z[π]. We also avoid discussing some subtleties with the

ideal (
√
−p), which need to be handled using the language of group schemes;

these issues do not arise in CSIDH.
Let E be an elliptic curve with Z[

√
−p] ⊆ End(E). LetG be a finite subgroup

of E(Fp). Define the ideal

I(G) = {a+ b
√
−p ∈ Z[

√
−p] : (a+ bπ)(P ) = 0 for all P ∈ G}.

Similarly, given an isogeny φ : E → E′, define its kernel ideal to be

Iφ = I(ker(φ)) = {a+ b
√
−p ∈ Z[

√
−p] : (a+ bπ)(P ) = 0 for all P ∈ ker(φ)}.

Exercise 3.1. Show that I(G) is an ideal. Show that H ⊆ G implies I(G) ⊆
I(H).

Similarly, for a given (integral) ideal I of Z[
√
−p], we define the set

E[I] = {P ∈ E : α(P ) = 0 for all α ∈ I}
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where I is identified as being in End(E) and α : E → E, as in Exercise 2.9.
When I 6= (0) then E[I] is finite, since it is the intersection of the kernels of

all non-zero elements in I, and each kernel is a finite subgroup.

Exercise 3.2. Show that if I and J are ideals in Z[
√
−p] such that I ⊆ J , then

E[J ] ⊆ E[I].

Since E[I] is a finite subgroup of E it defines an isogeny φI from E with
kernel E[I]. We denote the image curve by EI (up to isomorphism), so we have
associated to an ideal I the isogeny φI : E → EI .

It is a fact that deg(φI) = N(I). This can be verified directly for ideals
I = (`,±b +

√
−d) in Z[

√
−d] where ` is prime and b2 ≡ −d (mod `), since

deg(φI) = ` = N(I). Another easy case is I = (n) and φI = [n]. The general
case follows from decomposition into ideals/isogenies of prime norm/degree.

Lemma 3.3. Let p ≡ 1 (mod 4) and let E be a supersingular elliptic curve over
Fp. Let I be an ideal in Z[

√
−p] and let φI : E → E′ be the associated isogeny.

Denote the p-power Frobenius maps on E and E′ by πE and πE′ respectively.
Then

φI ◦ πE = πE′ ◦ φI .

In other words, the isogeny φI : E → E′ associated with I is defined over Fp,
and E′ is defined over Fp.

Proof. Note that ker(φI) = E[I] = ∩a+b√−p∈I ker(a + bπ). Suppose a, b ∈ Z
and P ∈ ker(a+ bπ). Then (using equation (1))

0 = π(0) = π(aP + bπ(P )) = aπ(P ) + bπ(π(P )) = (a+ bπ)(π(P )).

Hence π(P ) ∈ ker(a + bπ). It follows that π(E[I]) = E[I]. From Vélu’s for-
mulae and Galois theory it follows that φI is given by rational functions with
coefficients in Fp. This means that φI commutes with Frobenius.

3.2 Action of Ideals

Let p ≡ 1 (mod 4) (as always, the results are true in greater generality, but
there are some subtleties that our presentation avoids). Fix a supersingular
elliptic curve E over Fp and consider the ideal class group of Z[

√
−p]. For an

ideal I in Z[
√
−p] we define I ∗ E to be the curve EI , which is the image of φI

as defined above.
Note that, by Lemma 3.3, EI = I ∗E is defined over Fp. We now show that

EI is supersingular and hence we still have Z[
√
−p] ⊆ End(EI).

Lemma 3.4. Let E over Fp be supersingular and let φ : E → E′ be an isogeny
defined over Fp. Then E′ is supersingular.

Proof. Let π be the Frobenius on E and π′ the Frobenius on E′. Since E is
supersingular we have π2 = [−p]. We have

π′2 ◦ φ = φ ◦ π2 = φ ◦ [−p] = [−p] ◦ φ.
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This means π′2(φ(P )) = [−p]φ(P ) for all points P ∈ E. Since isogenies are
surjective, this means π′2 = [−p] on all points of E′, and so π′2 = −p and E′ is
supersingular.

We will show that there is a well-defined action of ideal classes on isomor-
phism classes of elliptic curves. The main result is Theorem 3.9. First we need
some lemmas.

Lemma 3.5. A non-zero principal ideal I = (α) is associated with an endo-
morphism.

Proof. Since α ∈ I we have E[I] ⊆ ker(α). Conversely, every element of (α)
is a multiple of α so has kernel containing ker(α). Hence E[I] = ker(α). Let
φI : E → EI be the (uniquely defined) isogeny with kernel ker(α). Since α is
also an isogeny with kernel ker(α), it follows that φI = α (up to isomorphism),
which is an endomorphism.

Lemma 3.6. Let I, J ⊆ Z[
√
−p] be non-zero ideals. Then φIJ = φJ ◦ φI .

Proof. Consider some P ∈ ker(φJ ◦φI). By definition, φI(P ) ∈ ker(φJ); that is,
for all β ∈ J , β(φI(P )) = 0, where 0 here denotes the identity element on the
elliptic curve. Now β = a+ bπ for some integers a, b and so Lemma 3.3 implies
β ◦ φI = φI ◦ β. This means φI(β(P )) = 0, and by definition this is equivalent
to α(β(P )) = 0 for all α ∈ I, β ∈ J ; that is, P ∈ ker(φIJ).

Conversely, let P ∈ ker(φIJ). Then, for all α ∈ I, β ∈ J we have α(β(P )) =
0. It follows that β(P ) ∈ E[I] and so φI(β(P )) = 0. We deduce from Lemma 3.3
that β(φI(P )) = 0 for all β. Hence φI(P ) ∈ E[J ] and so P ∈ ker(φJ ◦ φI).

Since their kernels are equal, it follows that the isogenies are also equal (up
to isomorphism)

The isogeny φI−1 is the dual isogeny to φI . This is immediate from I−1I =
[N(I)] and the connection between deg(φI) and N(I) (neither of which we have
rigorously proved).

Lemma 3.7. Suppose I ∼ J as ideals. Let φI : E → EI and φJ : E → EJ .
Then EI ∼= EJ .

Proof. If I ∼ J , then there are non-zero α, β ∈ Z[
√
−p] with (α)I = (β)J . We

have φ(α)I = φ(β)J . By Lemma 3.6 we can factor this isogeny as

E
φI−→ EI

α−→ EI

and

E
φJ−→ EJ

β−→ EJ .

Here we are using the fact that α and β are principal ideals and so, by Lemma 3.5,
they are endomorphisms. Since φ(α)I = φ(β)J the elliptic curves on the right
hand side are isomorphic. This implies that EI and EJ are isomorphic.

We now consider the set of supersingular elliptic curves up to isomorphism.
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Lemma 3.8. Let E1, E2 be supersingular elliptic curves over Fp such that E1
∼=

E2 over Fp (this implies j(E1) = j(E2), but the converse isn’t necessarily true).
Let I be an ideal in Z[

√
−p]. Then I ∗ E1

∼= I ∗ E2.

Proof. Let α : E1 → E2 be an isomorphism defined over Fp and let φI : E2 →
E3 = I ∗ E2. It would be nice to argue using (α)I like in Lemma 3.6, but we
can’t say α ∈ Z[

√
−p] as it is not an endomorphism (it does not map the curve

E1 to itself).
Instead, we need to prove that ker(φI ◦ α) = E1[I]. To do this we need to

restrict to α being a group homomorphism, which is ok since we can compose
with a translation map on E1 if required. So α is a group homomorphism and
a bijection.

Since α is defined over Fp it commutes with Frobenius. Hence, for every
a+ bπ in I we have α ◦ (a+ bπ) = (a+ bπ) ◦ α. The result follows.

The requirement that the isomorphism is defined over Fp in Lemma 3.8 is
important. Two curves with the same j-invariant, but not isomorphic over Fp,
do not necessarily have the same Fp-endomorphism ring (this is shown in the
paper by Delfs and Galbraith).

We can now express the class group action formally.

Theorem 3.9. Let p ≡ 1 (mod 4). Then Cl(Z[
√
−p]) acts on the set of iso-

morphism classes of supersingular curves defined over Fp by

(E, I) 7→ I ∗ E

where I ∗E is the curve EI defined by the isogeny φI : E → EI with kernel E[I].

Proof. The well-definedness of the group action on classes stems from Lemma 3.7
and Lemma 3.8. The proof that it satisfies the axioms of a group action follows
from Lemma 3.5 and Lemma 3.6.

Let p ≡ 1 (mod 4) and let X be the set of Fp-isomorphism classes of su-
persingular elliptic curves over Fp with Fp-endomorphism ring isomorphic to
Z[π] ∼= Z[

√
−p]. We have shown that the ideal class group of Z[

√
−p] acts on

X, by (E, I) 7→ I ∗E. Indeed, the action is transitive, in the sense that for any
E1, E2 ∈ X there is some ideal I such that I ∗E1 = E2. This more-or-less1 fol-
lows from Tate’s isogeny theorem: there exists an isogeny φ : E1 → E2 defined
over Fp. Associated to φ is the ideal Iφ. We will show in Theorem 3.12 below
that Iφ ∗ E1 = E2.

3.3 Further properties

The definitive work by Waterhouse on this topic defines (in much greater gen-
erality) a kernel ideal to be an ideal I such that I(E[I]) = I. The property

1There are some details about invertibility of ideals and levels of the isogeny volcano I
don’t want to get into. An alternative approach to proving transitivity of the action is via
Deuring lifting and Hilbert class polynomials.

10



I(E[I]) = I for ideals in the full supersingular endomorphism ring is established
in Proposition 42.2.16 of Voight [Voi21]. We now show a direct proof of this
property in our setting of ideals in Z[

√
−p].

Lemma 3.10. Let p ≡ 1 (mod 4) and I = (a, b+
√
−p) be an ideal in Z[

√
−p]

of norm co-prime to p such that I ∩ Z = (a). Let E be an elliptic curve with
EndFp(E) = Z[

√
−p]. Then

I(E[I]) = I.

Proof. It is trivial that I ⊆ I(E[I]). To prove the opposite inclusion, let u +
v
√
−p ∈ I(E[I]).
Let P ∈ E[I] be a point of exact order a. (This is where we need the

norm of the ideal to be co-prime to p.) To show such a point exists consider
E[I] = E[a]∩ ker(b+

√
−p). Note that a | deg(b+ π) (as I ∩Z = (a)), and also

note that b+ π has cyclic kernel (because it is not divisible by any map [n] for
n > 1).

By definition (u + vπ)(P ) = 0. Since P ∈ E[I] it also follows that π(P ) =
−bP . Hence (u−vb)(P ) = 0. Since P has exact order a it follows that u−vb = ax
for some x ∈ Z. But then

u+ v
√
−p = (u− vb) + v(b+

√
−p) = ax+ v(b+

√
−p) ∈ I.

This completes the proof.

Lemma 3.11. Let E be a supersingular elliptic curve over Fp. Let H ⊆ G be
subgroups of E such that I(G) = I(H). Then G = H.

Proof. This is Proposition 42.2.15 of Voight [Voi21] in the case of the full endo-
morphism ring. We sketch an elementary argument.

Suppose G 6= H. Due to the structure of elliptic curve groups, there are
only two possibilities:

1. There is a prime ` and integer k such that `k divides the order of a point
P ∈ G but `k does not divide the order of any element in H.

2. There is a prime ` and integer k such that G contains E[`k] but H does
not contain E[`k].

In both cases one can write down maps a+bπ which are zero on H but non-zero
on G.

For example, in the first case let m be the exponent of H. Then a+bπ ∈ I(H)
implies (a + m) + bπ ∈ I(H). But `k - m so [m]P 6= 0. This means it can’t be
true that both a+ bπ and (a+m) + bπ are in I(G).

Theorem 3.12. Let p ≡ 1 (mod 4). Let E be a supersingular elliptic curve
over Fp.

1. Let I be an ideal in Z[
√
−p] of norm co-prime to p and let φI : E → E′

be the associated isogeny. Then

IφI = I.
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2. Let φ : E → E′ be a separable isogeny over Fp. Let Iφ be the associated
ideal. Then

φIφ = φ.

Proof. Let I be an ideal. Then ker(φI) = E[I]. Then IφI = I(kerφI) = I(E[I])
and the result follows from Lemma 3.10.

For the second claim note that G = E[Iφ] contains H = ker(φ). By
Lemma 3.11, if G 6= H then I(G) 6= I(H). But I(G) = I[E[Iφ]] = Iφ by
Lemma 3.10. (As always we are working up to isomorphism, meaning that two
isogenies with the same kernel, like φ and −φ, are considered equal.)
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