# KANI FOR BEGINNERS 

STEVEN D. GALBRAITH

We give a brief and self-contained description of Kani's reducibility theorem, as used by Castryck-Decru and Maino-Martindale.

There is nothing original in this note. It is just a translation of Kani's paper, with the goal of showing the very close relationship between Kani's work and the SIDH protocol.

Let $E_{0}$ be an elliptic curve with subgroups $H_{1}$ and $H_{2}$ of co-prime order. Let $\phi: E_{0} \rightarrow E_{1}=E_{0} / H_{1}$ and $\gamma: E_{0} \rightarrow E_{2}=E_{0} / H_{2}$. Let $\phi^{\prime}$ have kernel $\gamma\left(H_{1}\right)$ and $\gamma^{\prime}$ have kernel $\phi\left(H_{2}\right)$. Consider the standard SIDH square, which Kani calls an "isogeny diamond configuration".

$$
\begin{array}{ccc}
E_{0} & \xrightarrow{\phi} & E_{1}=E_{0} / H_{1} \\
\gamma \downarrow & & \gamma^{\prime} \downarrow \\
E_{2}=E_{0} / H_{2} & \xrightarrow{\phi^{\prime}} & E_{3}
\end{array}
$$

We have the following basic facts.
Lemma 0.1. Let notation be as above. Then
(1) $\gamma^{\prime} \circ \phi=\phi^{\prime} \circ \gamma$
(2) $\phi \circ \hat{\gamma}=\hat{\gamma}^{\prime} \circ \phi^{\prime}$
(3) $\gamma \circ \hat{\phi}=\hat{\phi}^{\prime} \circ \gamma^{\prime}$
(4) $\hat{\phi} \circ \phi=\left[\# H_{1}\right]$
(5) $\hat{\gamma} \circ \gamma=\left[\# H_{2}\right]$.

Let $N=\# H_{1}+\# H_{2}$. Let $\left\{P_{0}, Q_{0}\right\}$ be a basis for $E_{0}[N]$. Let $\left(P_{1}, Q_{1}\right)=$ $\left(\phi\left(P_{0}\right), \phi\left(Q_{0}\right)\right),\left(P_{2}, Q_{2}\right)=\left(\gamma\left(P_{0}\right), \gamma\left(Q_{0}\right)\right)$ and

$$
\left(P_{3}, Q_{3}\right)=\left(\phi^{\prime}\left(P_{2}\right), \phi^{\prime}\left(Q_{2}\right)\right)=\left(\gamma^{\prime}\left(P_{1}\right), \gamma^{\prime}\left(Q_{1}\right)\right)
$$

We now define a map

$$
\rho: E_{2} \times E_{1} \rightarrow E_{0} \times E_{3}
$$

by

$$
\rho(X, Y)=\left(\hat{\gamma}(X)+\hat{\phi}(Y), \phi^{\prime}(X)-\gamma^{\prime}(Y)\right)
$$

One can verify that this makes sense since $\hat{\gamma}: E_{2} \rightarrow E_{0}, \hat{\phi}: E_{1} \rightarrow E_{0}$ and so on. Similarly, since all the maps are isogenies, it follows that $\rho$ is a group homomorphism.

Kani proves that $\rho$ is an isogeny with kernel $H=\left\langle\left(P_{2}, P_{1}\right),\left(Q_{2}, Q_{1}\right)\right\rangle$. Such a map of Abelian surfaces is called an $(N, N)$-isogeny. To prove this properly requires the theory of Abelian varieties and polarizations. But for beginners we just prove two simpler claims.

Lemma 0.2. There is a map $\hat{\rho}: E_{0} \times E_{3} \rightarrow E_{2} \times E_{1}$ such that $\hat{\rho} \circ \rho=[N]$. (Hence it makes sense to think of $\rho$ as having degree $N^{2}$.)
Proof. Write

$$
\rho(X, Y)=\left(\begin{array}{cc}
\hat{\gamma} & \hat{\phi} \\
\phi^{\prime} & -\gamma^{\prime}
\end{array}\right)\binom{X}{Y} .
$$

Define

$$
\hat{\rho}(X, Y)=\left(\begin{array}{cc}
\gamma & \hat{\phi}^{\prime} \\
\phi & -\hat{\gamma^{\prime}}
\end{array}\right)\binom{X}{Y}
$$

One can check that

$$
\hat{\rho} \circ \rho=\left(\begin{array}{cc}
\gamma \circ \hat{\gamma}+\hat{\phi^{\prime}} \circ \phi^{\prime} & \gamma \circ \hat{\phi}-\hat{\phi}^{\prime} \circ \gamma^{\prime} \\
\phi \circ \hat{\gamma}-\hat{\gamma^{\prime}} \circ \phi^{\prime} & \hat{\gamma}^{\prime} \circ \gamma^{\prime}+\phi \circ \hat{\phi}
\end{array}\right) .
$$

Applying Lemma 1 one sees this is the matrix $(N, 0 ; 0, N)$, which corresponds to the map $[N]: E_{2} \times E_{1} \rightarrow E_{2} \times E_{1}$ as required.
Lemma 0.3. $\rho$ maps $H=\left\langle\left(P_{2}, P_{1}\right),\left(Q_{2}, Q_{1}\right)\right\rangle$ to $(0,0)$.
Proof.

$$
\begin{aligned}
\rho\left(P_{2}, P_{1}\right) & =\left(\hat{\gamma}\left(P_{2}\right)+\hat{\phi}\left(P_{1}\right), \phi^{\prime}\left(P_{2}\right)-\gamma^{\prime}\left(P_{1}\right)\right) \\
& =\left(\hat{\gamma} \circ \gamma\left(P_{0}\right)+\hat{\phi} \circ \phi\left(P_{0}\right), \phi^{\prime} \circ \gamma\left(P_{0}\right)-\gamma^{\prime} \circ \phi\left(P_{0}\right)\right) \\
& =\left([N] P_{0}, 0\right)
\end{aligned}
$$

using the properties of Lemma 1 (in particular that $\phi^{\prime} \circ \gamma-\gamma^{\prime} \circ \phi=0$ ). Same argument applies to $\left(Q_{2}, Q_{1}\right)$ and hence any linear combination of these group elements.

Since $H$ has order $N^{2}$ and $\rho$ has degree $N^{2}$ it follows that $\operatorname{ker}(\rho)=H$.
Hopefully this note is sufficient to convince you that $\rho$ is an $(N, N)$-isogeny from $E_{2} \times E_{1} \rightarrow E_{0} \times E_{3}$. What is not obvious from this note, but crucial to the attack, is that if $H$ is a "random" (Weil isotropic) subgroup then $E_{2} \times E_{1} / H$ is not likely to be a product of elliptic curves, but is the Jacobian of a genus 2 curve.

Mathematics Department, University of Auckland, NZ.
Email address: s.galbraith@auckland.ac.nz

