
Kangaroos, Card Tricks and Discrete Logarithms

Steven Galbraith

Mathematics Department, University of Auckland

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 1 / 29



Outline

Explaining the card trick.

A computational problem about searching a list.

The Pollard kangaroo algorithm.

Open questions.

Thanks: LMS and NZMS.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 2 / 29



Alexander Aitken

Born in Dunedin, NZ.

Studied Otago Boys’ High
School and Otago University.

Served in WWI at Gallipoli
and the Somme.

PhD Edinburgh 1926.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 3 / 29



Alexander Aitken

“Professor Aitken’s first year mathematics lectures were rather
unusual. The fifty minutes were composed of forty minutes of clear
mathematics, five minutes of jokes and stories and five minutes of
tricks.”

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 4 / 29



The Kruskal Trick

Random walk along deck of cards from left to right.

Number on the current card tells how many cards to the right to
move.

King, Queen, Jack count as 5.

Ace means one step.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 5 / 29



Crucial property

Once two walks land on the same card, their paths are identical.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 6 / 29



Crucial property

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 7 / 29



The Kruskal Trick

When dealing the cards I run this walk starting from the first
card.

The last card in the deck visited by this walk is “distinguished”.

The contestant starts a new walk at a “random” card on the left
hand side.

I win if the contestant’s walk visits any of the cards I visited in
my walk.

The contestant wins if their walk avoids all my cards.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 8 / 29



The Kruskal Trick

Average step length is about 5.38.

Average length of walk is about 52/5.38 ≈ 9.66 steps.

Probability my contestant wins is roughly(
1− 1

5.38

)9.66 ≈ 0.137 < 1
7
.

I win with probability greater than 6/7.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 9 / 29



Finding an integer in a list

Fix n ∈ N and let A = {1, 2, . . . , n}.
Let F : A→ Z be an injective function.

Computational problem: Given an integer b, determine
whether b ∈ F (A) and, if so, compute a ∈ A such that F (a) = b.

This is not a sorted list.

Theorem: If F is arbitrary and one only has oracle access to F ,
then it is necessary to perform Ω(n) evaluations of the function
to solve this problem on average.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 10 / 29



Finding an integer in a list

Fix n ∈ N and let A = {1, 2, . . . , n}.
Let F : A→ Z be an injective function.

Computational problem: Given an integer b, determine
whether b ∈ F (A) and, if so, compute a ∈ A such that F (a) = b.

This is not a sorted list.

Theorem: If F is arbitrary and one only has oracle access to F ,
then it is necessary to perform Ω(n) evaluations of the function
to solve this problem on average.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 10 / 29



Finding an integer in a list

Fix n ∈ N and let A = {1, 2, . . . , n}.
Let F : A→ Z be an injective function.

Computational problem: Given an integer b, determine
whether b ∈ F (A) and, if so, compute a ∈ A such that F (a) = b.

This is not a sorted list.

Theorem: If F is arbitrary and one only has oracle access to F ,
then it is necessary to perform Ω(n) evaluations of the function
to solve this problem on average.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 10 / 29



More Structure

Recall A = {1, 2, . . . , n}.
Suppose the injective function F : A→ Z satisfies
F (x + y) = F (x) + F (y) for all x , y ∈ A such that x + y ≤ n.

Can one do better than the previous theorem?

Suppose b = F (a) for some a ∈ A.

Let M = d
√

ne.
Then a = a0 + a1M for some integers 0 ≤ a0, a1 < M .

Since b = F (a) = F (a0) + F (Ma1) we have

F (a0) = b − F (Ma1).

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 11 / 29



More Structure

Recall A = {1, 2, . . . , n}.
Suppose the injective function F : A→ Z satisfies
F (x + y) = F (x) + F (y) for all x , y ∈ A such that x + y ≤ n.

Can one do better than the previous theorem?

Suppose b = F (a) for some a ∈ A.

Let M = d
√

ne.
Then a = a0 + a1M for some integers 0 ≤ a0, a1 < M .

Since b = F (a) = F (a0) + F (Ma1) we have

F (a0) = b − F (Ma1).

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 11 / 29



More Structure

Given b we wish to find a0, a1 such that

F (a0) = b − F (Ma1).

So compute and store L = {(F (a0), a0) : 0 ≤ a0 < M}
Then compute b − F (Ma1) for a1 = 0, 1, 2, · · · checking each
time if the value lies in L.

If no match then there is no solution. If there is a match then
the solution is a0 + a1M .

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 12 / 29



The baby-step-giant-step algorithm

Attributed to Shanks (1973), though Nechaev states it was
known to Gel’fond in 1962.

It requires O(
√

n) evaluations of the function F and requires
storing O(

√
n) integers.

Can one do better?

Theorem: (Shoup, 1997) If F is arbitrary (satisfying
F (x + y) = F (x) + F (y)) and one only has oracle access to F ,
then it is necessary to perform Ω(

√
n) evaluations of F to solve

the problem.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 13 / 29



The baby-step-giant-step algorithm

Attributed to Shanks (1973), though Nechaev states it was
known to Gel’fond in 1962.

It requires O(
√

n) evaluations of the function F and requires
storing O(

√
n) integers.

Can one do better?

Theorem: (Shoup, 1997) If F is arbitrary (satisfying
F (x + y) = F (x) + F (y)) and one only has oracle access to F ,
then it is necessary to perform Ω(

√
n) evaluations of F to solve

the problem.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 13 / 29



Low storage algorithm

Baby-step-giant-step requires storing O(
√

n) integers.

Can one get the same running time but with lower storage?

Before explaining such an algorithm, I should reveal that the
function F I am most interested in is

F (i) = ig = g + g + · · ·+ g

where g ∈ G is an element of a finite abelian group of order at
least n.

Hence, F is a non-injective function F : Z→ G .
But F is injective on {1, 2, . . . , n}.
Note that F (x + y) = F (x) + F (y) for all x , y ∈ Z.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 14 / 29



Discrete Logarithm Problem

Let g ∈ Z and p a prime, the function F (a) = g a mod p is the
canonical such function.

The discrete logarithm problem is: Given F (a) to determine a.

This computational problem is fundamental to public key
cryptography.

In multiplicative groups of finite fields there exist algorithms for
this problem that are much more efficient than the ones in this
talk.

For the group of points on an arbitrary elliptic curve over a finite
field, no better algorithm is known.

For elliptic curves it is traditional to write the group operation
additively as F (a) = aP .

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 15 / 29



Low storage algorithm

Given F : A→ G such that F (x + y) = F (x) + F (y), and given
b ∈ G . Find a ∈ A (if it exists) such that F (a) = b.

Fix a set {s1, . . . , sk} ⊂ A.

Choose a function H : G → {1, 2, . . . , k}.
Essentially this is just a “random” partition of G .

Set u0 = F (bn/2c) ∈ G . Perform the following “random walk”
for i = 0, 1, 2, · · ·

ui+1 = ui + F (sH(ui )).

This is a “random walk” along G , whose steps are determined by
the values ui .

Note that ui = F (ai) where a0 = bn/2c
and ai+1 = ai + sH(ui ).

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 16 / 29



This is the Kruskal walk

We have defined a walk ui+1 = F (ai + sH(ui )).

Let C be the set of 52 cards and F : {1, 2, . . . , 52} → C the
function that puts them in a row.
(We have now induced a binary operation + on C by
F (x) + F (y) := F (x + y).)

ui = F (ai) means that the ai -th card is the card ui .

The value sH(ui ) is the numerical value of the card (or 5 if the
card is K, Q or J).

The next step of the walk depends only on the card ui , not its
position.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 17 / 29



Low storage algorithm

Run the “random walk”, starting from u0 = F (a0) where
a0 = bn/2c ∈ A.

From time to time, store a “distinguished point” ui .

In parallel, run another “random walk” starting at v0 = b and
with the same rule

vi+1 = vi + F (sH(vi )).

We also keep track of bi ∈ Z such that vi = b + F (bi).

If vj = ui for some integers i and j then the walks follow the
same path.

The “collision” is detected when the same “distinguished point”
is visited twice.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 18 / 29



Low storage algorithm

At that distinguished point we have

F (ai) = ui = vj = b + F (bj)

and so b = F (ai)− F (bj) = F (ai − bj) and the problem is solved.

This is the “kangaroo algorithm” invented by John Pollard in
1978.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 19 / 29



A standard result in probability

Lemma: Let m > 0 and let E be an event that occurs with
probability 1/m. The expected number of independent trials until E
occurs is m.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 20 / 29



Optimal average running time

Let m be the mean step size of the jumps.
The set {s1, . . . , sk} mentioned earlier is chosen so that

1
k

k∑
j=1

sj ≈ m.

The rear kangaroo requires, on average, n/(4m) steps to catch
up with front Kangaroo.

From this point, roughly 1 in every m elements has been visited
by the front kangaroo.

Probability that the rear kangaroo lands on a “footprint” of the
front kangaroo at each step is roughly 1/m.

By the previous lemma, the expected number of steps until a
collision is m.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 21 / 29



Optimal average running time (heuristic)

So the total running time is 2(n/(4m) + m) steps
(plus a little more to get to the next distinguished point after the
collision)

This is minimised by taking m = 1
2

√
n.

The average case running time is 2
√

n steps of the walk.
(Technically: heuristic (2 + o(1))

√
n group operations.)

The algorithm may not terminate (either because there is no
solution, or because the walks do not collide).

This analysis was given by van Oorschot and Wiener in 1996.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 22 / 29



Can one do better?

Is (2 + o(1))
√

n group operations optimal for this problem (still
requiring low storage)?

When n = #G then one can do better using a random walk
algorithm based on the birthday paradox.

The Pollard rho algorithm requires
(
√
πn/2 + o(1)) ≈ (1.25 + o(1))

√
n group operations on

average (heuristic).

It is based on collisions of the form aP + bQ = cP + dQ for
P ,Q ∈ G

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 23 / 29



Pollard row

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 24 / 29



Pollard row

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 24 / 29



Can one do better?

For the case n� #G there was no improvement in nearly 15
years until recent joint work with Pollard and Ruprai.

Using three kangaroos we get an algorithm requiring
(1.819 + o(1))

√
n group operations.

The idea is to shift the interval [0, n] to [−n/2, n/2] and to run
kangaroos from b = F (a), −b = F (−a) and u0 = F (a0) for
suitable choice of a0.

Using further techniques and a slightly different algorithm (based
on a variant of the birthday paradox) we get a running time of
(1.661 + o(1))

√
n operations.

Recently my student Alex Fowler gave some evidence that this
running time cannot be improved when using kangaroos.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 25 / 29



Birthday paradox

Suppose we sample uniformly at random from a set of size N .
The expected number of trials until an element is sampled twice
is
√
πN/2.

When N = 365 this expected number is ≈ 23.94.

Now sample uniformly at random from a set of size N and record
each element in one of two lists.
The expected number of trials until an element appears in both
lists is

√
πN .

The expected number of people in a room before there is a boy
and a girl with the same birthday is ≈ 33.86.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 26 / 29



Birthday puzzle

In my hotel there is a meeting of the “boys born in January”
club, and a meeting of the “random girls” club.

I wish to invite some boys and girls into the lobby so that I have
a boy and a girl with the same birthday.

I wish to minimise the total number of people in the lobby.

What ratio of each should I invite? (As 31→∞.)

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 27 / 29



Open questions and future work

What is the best-possible constant c such that there exists a
low-storage algorithm for the problem with running time c

√
n,

when n� #G ?

Can one match the (1.25 + o(1))
√

n of Pollard rho?

Can one do better in elliptic curve groups?

What is the best average-case running time for a variant of the
baby-step-giant-step algorithm?
(Recent work by Bernstein and Lange gives the “grumpy giants”
algorithm, but leaves open the possibility of better algorithms.)

Similar ideas can be used to find paths between vertices in an
expander graph in sub-linear time with low storage, but handling
small cycles in the walks is inconvenient.

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 28 / 29



Thank you for your attention

For further details...

Steven Galbraith Kangaroos, Card Tricks and Discrete Logs October 20, 2015 29 / 29


