
Tunable balancing of RSA

S. D. Galbraith, C. Heneghan and J. F. McKee?

Department of Mathematics,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK.
[Steven.Galbraith,C.Heneghan,James.McKee]@rhul.ac.uk

Abstract. We propose a key generation method for RSA moduli which
allows the cost of the public operations (encryption/verifying) and the
private operations (decryption/signing) to be balanced according to the
application requirements. Our method is a generalisation of using small
public exponents and small Chinese remainder (CRT) private exponents.
Our results are most relevant in the case where the cost of private oper-
ations must be optimised. We give methods for which the cost of private
operations is the same as the previous fastest methods, but where the
public operations are significantly faster. For example, the fastest known
(1024 bit) RSA decryption is using small CRT private exponents and
moduli which are a product of three primes. In this case we equal the
fastest known decryption time and also make the encryption time around
4 times faster.
The paper gives an analysis of the security of keys generated by our
method, and several new attacks. The ingredients of our analysis include
several ideas of Coppersmith and a new technique which exploits lineari-
sation. We also present a new birthday attack on low Hamming-weight
private exponents.

1 Introduction

In many implementations of the RSA cryptosystem the public exponent e is
chosen to be very small. Encryption and signature verification then use very few
operations modulo N . On the other hand, decryption and signature generation,
even if they are performed using the Chinese remainder theorem (CRT), cost
much more than encryption/verifying.

This imbalance can be inconvenient in some situations. One example is when
a device with limited computational power (such as a smart card) is required to
generate RSA signatures. A related issue for such devices is the space require-
ment for storing private keys, which we would like to minimise. Another example
is when a server is required to handle a large number of decryptions of messages
from numerous clients and so its computational burden should be minimised. A
related issue in this case is to ensure that such a server is not overly vulnerable

? All three authors were supported in their research by a grant from the MathFIT
programme, jointly sponsored by the EPSRC and the LMS.

to denial-of-service attacks. Hence there has been much interest in speeding up
the private operations in RSA. Many of the previous solutions have achieved
this at the cost of a significant loss of performance of the public operations. Our
goal is to have fast private operations without paying such a high price for the
public operations.

In some applications it might be desired that the public and private opera-
tions can be performed with the same computational effort. For example, this
may be the case in protocols where two parties are required to act synchronously
without idle time, or in systems where, to ensure fairness (i.e., that no party is
at an advantage to others), the computational burden of all parties should be
equal.

One early proposal to speed up the private operations was to choose the
private exponent d to be small (note that e then becomes large). This was
cryptanalysed by Wiener [25] who showed that the scheme is insecure if d <
N0.25. These results were extended by Boneh and Durfee [1] to d < N0.292.

Wiener proposed two countermeasures to the above attacks. The first is to
increase the size of the public exponent e, which causes a severe penalty on
the public operations. The second variant is to use a private exponent d which
is not itself small, but which reduces to small values when performing decryp-
tion/signing using the CRT. We call these “small CRT private exponents”. There
is a birthday attack (see [16]), which means that the CRT private exponents must
have at least 160 bits. Apart from this attack, the security of such variants has
been analysed by May [14] and the only serious attack known is in the unbal-
anced case (i.e., where the modulus is a product of primes of differing size).

One drawback of using small CRT private exponents is that the public ex-
ponent e is large and then the cost of encryption/verification is very expensive
(much worse than original cost of decryption/signing).

In this paper we propose a combination of ‘small’ public exponents e and
‘small’ CRT private exponents. Of course, they cannot both be very small. Our
approach allows the designer to choose the parameters in a suitable way to get
a trade-off between the costs of encryption/verification and decryption/signing.

A proposal to balance public and private exponents in RSA was given by
Sun, Yang and Laih [21] (improved in [20], to resist an attack in [8]).

These results do not utilise CRT private exponents and so their solution is
not competitive with ours.

Lim and Lee [13] gave methods for generating RSA private exponents with
relatively low Hamming weight. Some of their methods do not use the Chinese
remainder theorem, and so are slow. Section 5 of [13] does use CRT private
exponents, but there seems to be no suggestion that the exponents may be
taken to be short. Hence the cost of private operations in [13] is much slower
than we achieve.

Other methods which allow faster private operations are multiprime RSA
(products of more than two primes, see [4], [2] and [15]) and the Takagi system
[22] (which uses moduli of the form pkq). The use of 3-prime moduli with small
CRT private exponents is the fastest method (for 1024-bit moduli) for RSA

2

decryption/signing, but the public operations are slow since the public exponent
then has 1024 bits. The Takagi system is particularly appealing as it requires
small public exponents (otherwise the Hensel lifting is slow) and so both public
and private operations are fast. Note that it is impossible to ‘equalise’ encryption
and decryption times using Takagi.

The Rabin cryptosystem [17] is based on squaring modulo N . The easiest
case is when all primes dividing N are congruent to 3 modulo 4, in which case
the decryption time is comparable to standard RSA decryption using the CRT,
which in the present context is considered to be slow.

Our results are most relevant in the case where the cost of private operations
must be optimised. We give methods where the cost of private operations is
the same as (or almost as good as) the previous fastest methods, but where
the public operations are significantly faster. For example, the fastest known
(1024 bit) RSA decryption is using small CRT decryption exponents and moduli
which are a product of three primes. In this case we match the fastest known
decryption time and also make the encryption time around four times faster. For
a comparison with previous systems see the timings given in section 11.

Some applications may require the cost of public and private operations to
be equal. Our method gives a solution to this problem which is roughly twice as
fast as previously known solutions.

We give a thorough analysis of the security of keys generated by our method,
including several new attacks. Some of our attacks use ideas of Coppersmith [5,
6]. Another of our attacks exploits linearisation. We also develop a new birthday
attack on RSA private exponents of low Hamming weight.

It is clear that our parameter choices are carefully specified to provide op-
timum performance and are not suitable for all applications. For example, our
schemes would be inappropriate in situations where partial knowledge of private
keys is likely to be available.

Independently, a related but less general scheme has been proposed in [19,
26].

2 The key generation method

Let N = p1p2. Then CRT private exponents are integers d1, d2 such that

edi ≡ 1 (mod (pi − 1)) for i = 1, 2.

Such an equation may be written as

edi = 1 + ki(pi − 1) = kipi − (ki − 1). (1)

Clearly edi > pi−1 and so e and di cannot both be very small. But we would like
to have e and di so that log2(e) + log2(di) ≈ log2(pi) by imposing the condition
that ki be small. The case ki = 1 is uninteresting, but ki = 2 is possible, as are
large values of ki.

The method we propose in this section allows us to choose the sizes of e
and the di and then construct primes pi so that equation (1) will be satisfied.

3

The modulus is therefore generated by a special algorithm which depends on
parameters which are likely to be known to an adversary. We will analyse the
security of moduli arising from this key generation algorithm in later sections.

Choose parameters nN , np, ne, nd, nk which will be the bit-lengths of N , pi,
e, di and the ki respectively (i = 1, 2). For example, one typical case would be

nN = 1024, np = 512, ne = 160, nd = 354, nk = 2

while another would be

nN = 1024, np = 512, ne = 512, nd = nk = 269

(we must have ne + nd − nk = np).

Key generation algorithm:

– Input: ne, nd, nk.
– Choose an odd ne-bit integer e (one may wish to choose e to have low

Hamming weight or to be prime).
– For i = 1, 2: choose random nk-bit integers ki coprime to e and odd nd-bit

integers di satisfying the congruence

di ≡ e−1 (mod ki). (2)

until pi = 1 + (edi − 1)/ki is prime.
– Output: (p1, p2, d1, d2).

Note that the primes pi are roughly ne + nd − nk bits long. The public
key (N = p1p2, e) has an ne-bit value for e and we have nd-bit CRT private
exponents, clearly giving us the opportunity to strike a balance between the
costs of encryption/verification and decryption/signing.
Notes:

– Clearly, the key generation algorithm runs in random polynomial time. For
fixed e we expect to need to choose roughly np/2 values for k1 and d1 until
the corresponding odd number p1 is prime. Doing the same for p2 leads
to around np primality tests in total. Hence, the cost of key generation is
comparable to usual RSA systems.

– Due to equation (2) we usually assume nd ≥ nk. It is possible to develop more
general key generation methods but they have much worse performance.

– In some settings we may also want to choose the di to have low Hamming
weight. This is easily done if the ki are small. Security in this case is discussed
in section 6 below.

– An analogous algorithm can be used for moduli of the form pkq, pqr etc.

4

3 Security

The key generation method produces special moduli, and so the security of the
resulting public keys must be analysed. We are concerned with attacks which
enable an adversary to obtain either of the private keys d1 and d2 of the system
(equivalently, the factorisation of the modulus). We consider later the case of
moduli which are a product of more two primes.

As is already well known, there is a birthday attack on the individual CRT
private exponents (see [16] for some details). Hence, we always require that
nd ≥ 160.

The security analysis falls naturally into two cases. The first is where the
values k1 and k2 are known to the attacker (for example, they may take especially
small values, such as k1 = k2 = 2). The security in this case is addressed in
section 4. The second case is where the values k1 and k2 are private (in which
case the entire security may depend on whether or not it is possible to calculate
one or both of them). This is studied in section 5.

4 Known ki

Suppose that the ki are known (e.g., because they are small and can be guessed,
or because they have been obtained from some computation).

The first attack is to note that equation (1) implies that

pi ≡ k−1
i (ki − 1) (mod e) .

Hence we are in a strong position to apply results of Coppersmith on factoring
with partial knowledge of a factor. The original results of Coppersmith [5] were
phrased in terms of most or least significant bits of p1 whereas we have informa-
tion modulo e. The presentation in section 5 of [6] is more general than [5], and
from results stated there it is easy to deduce the following result.

Theorem 1. Let N = pq where p, q ≈ N1/2. Suppose e > N1/4. Then the
factorisation of N can be obtained in polynomial time if p0 ≡ p (mod e) is
known.

This technique will split N for us if ne > nN/4. This attack can be extended
to larger ranges by combining it with exhaustive search, Namely, suppose pi ≡
a (mod e) and so pi = a + ex for some unknown x. We can write x = x0 + 2my
and search over all 0 ≤ x0 < 2m, trying the attack for each guess (actually, since
e and pi are odd we only need try those x0 ≡ a + 1 (mod 2)). This extends the
range of the attack to cases where ne +m ≥ nN/4, but multiplies the complexity
by 2m. For security we impose the condition

ne ≤ nN/4−m , (3)

where m is a security parameter. We shall take m = 80 for 1024-bit moduli.
This choice of m is fairly conservative; since the running time of Coppersmith’s

5

method for 1024-bit moduli is much more than one bit operation. One might be
tempted to use a smaller value for m, but note that attack variant 3 below is
rather more efficient than the above attack, so m cannot be taken to be much
smaller than 80. The sample parameters above in the case ki = 2 resist this
attack.

There are several alternative attacks: see [10] for details. Briefly, the key ideas
are as follows.

1. It is easy to see that d1 is a small solution to the equation ex + (k1 − 1) ≡ 0
(mod p1). One can thus apply the standard lattice methods to obtain d1.
The value d1 can potentially be recovered by such methods if

d1 < N1/4.

This attack is therefore a lattice-based ‘small CRT private exponents’ at-
tack. We comment that the knowledge of k1 is essential to make this attack
possible; it is an open problem to find a small CRT private exponents attack
for standard RSA (though see May [14]).
The security condition (3) combined with the equation ne + nd = np + nk

implies that nd > nN/4 + m and so the attack is avoided.
Interestingly, as pointed out by Ellen Jochemsz, this attack can be improved
if k1 is larger. Recall that the equation is

ed1 + (k1 − 1) = k1p1.

Writing M = k1p1 and N = k1N we have a polynomial f(x) = ex+(k1−1)
with a small root modulo M and where M | N for a known N . If k1 = N ε

then N = N1+ε and so M = N (1/2+ε)/(1+ε). Standard results (for example,
page 28 of [6]) show that x can be recovered if

x < N ((1/2+ε)/(1+ε))2 = N
1
4+

3
4 ε+

ε2

(1+ε) .

So, in general, the attack becomes more powerful.
For our system, condition (3) must always be satisfied. Hence we require
ne < nN/4 − m and so nd > nN/4 + m + nk. For the attack to work we
need (ignoring the term ε2/(1 + ε), which is acceptable for the parameters
of interest) nd < nN (1/4 + 3ε/4) = nN/4 + 3nk/4. So for our system, as nk

increases, the attack becomes less powerful.
2. The equation

e2d1d2 = (k1p1 − (k1 − 1))(k2p2 − (k2 − 1)) = k1k2N − ε

(where log2(ε) ≈ 2nk + np) implies that the product d1d2 ≈ k1k2N/e2 if ne

is sufficiently large. For example, if e2 > ε then given N , e, k1 and k2 one
immediately obtains d1d2 which would be relatively easily factored.

3. If k1 = k2 then, by the equation used above,

p1 + p2 ≡ (k1(k1 − 1))−1(k2
1N + (k1 − 1)2) (mod e2).

6

Once again, if e2 > 2
√

N then this determines p1 + p2 and the factorisation
is easily obtained. More generally, we can express the problem as a small
discrete logarithm search on (p1 +p2) (via the fact ap1+p2 ≡ aN+1 (mod N))
using knowledge of (p1 + p2) (mod e2). Hence the problem can be solved in
time O(N1/4/e).
Note that the running time of this attack if ne = nN/4−m is O(2m) multi-
plications modulo N , so this attack is faster than the one above which uses
Coppersmith’s method.

4. If k1 is known then d1 ≡ e−1 (mod k1) which reduces the uncertainty about
d1. Hence, if ki is known then we should impose nd ≥ 160 + log2(ki). The
case ki = 2 simply states that the di are odd, which is nothing new.

Condition (3) guards against all of these attacks.

5 Unknown ki

We now turn to the case where the ki are private. We will give methods to find
the ki, from which it is usually immediate to recover the full private key using
the methods of the previous section. Indeed for this section we imagine that the
parameters are such that knowledge of the ki would mean that the private key
can be obtained using the methods of the previous section.

One can perform an exhaustive search on, say, k1 and (if the parameters are
suitable) apply the methods of section 4 to check each guess. Hence, we impose
the condition nk ≥ m for security.

We have investigated the possibility of a direct birthday attack on the indi-
vidual ki. Our attempts in this direction have been unsuccessful (although there
is a closely related birthday attack on the sum of the ki which we present in
subsection 5.2). Hence, we are led to believe that there is no direct birthday at-
tack in this case. Part of the obstruction seems to be the combination of additive
and multiplicative roles played by the ki. In any case, as we will see in the next
subsection, in the two prime case we must take nk > 2m. The 3-prime case will
be analysed in section 9.

5.1 Linearisation attack

An obvious attack is to use information available by taking equation (1) modulo
e. We have (for i = 1, 2)

kipi ≡ (ki − 1) (mod e) .

Multiplying these two equations together we see that (x, y) = (k1, k2) is a solu-
tion to the multivariate equation

xy(N − 1) + x + y − 1 ≡ 0 (mod e). (4)

7

For this subsection we suppose that 2nk ≤ ne which implies that (k1, k2) is a
relatively small solution to equation (4). We linearise by defining u = xy and
v = x + y − 1 and define 0 < A < e by A = (1−N) (mod e). We have

uA ≡ v (mod e) (5)

where u and v have bounded size. Candidate (u, v) pairs can be found in poly-
nomial time using the continued fraction method as long as uv < e (the details
are standard, and are given below in a more general setting).

Hence, to resist the attack we are required to impose the restriction

nk ≥ ne/3.

We now give details of how the algorithm can be extended to the case when
3nk is only slightly larger than ne by adding an exhaustive-search. A similar
problem was investigated by Wiener [25] and Verheul and van Tilborg [24], who
both give extensions to the continued fraction method.

First we recall a famous result on good rational approximations.

Theorem 2. (see e.g., Theorem 184 of [9]). Suppose that gcd(a, b) = gcd(c, d) =
1 and that ∣∣∣a

b
− c

d

∣∣∣ ≤ 1
2d2

.

Then c/d is one of the convergents of the continued fraction expansion of a/b.

The congruence Au ≡ v (mod e) means that there is some integer l such
that

Au = v + le . (6)

In our situation, we know that v has about nk + 1 bits, and u has about 2nk

bits, but we may as well handle the most general situation. We suppose that
there are parameters r and s bounding the sizes of u and v:

0 < v ≤ r ≤ e , 0 < u ≤ s ≤ e .

(The analysis where u and/or v is allowed to be negative is similar.)
We also suppose that 0 < A < e, with gcd(A, e) = 1. We then have l ≥ 0.

Dividing equation (6) by ue and adding j/2s2 to each side gives

A

e
+

j

2s2
=

v

eu
+

j

2s2
+

l

u
.

Now we apply theorem 2 to see that l/u is a continued fraction convergent
to A/e + j/2s2 if ∣∣∣∣ v

eu
+

j

2s2

∣∣∣∣ ≤ 1
2u2

,

and this will certainly hold if j is the nearest integer to −2vs2/eu, since 1/2s2 ≤
1/2u2.

8

If u lies in the range s/2 < u ≤ s, then we have −4rs/e ≤ j ≤ 0. To find
smaller values of u, we repeat with the ranges

s/4 < u ≤ s/2, s/8 < u ≤ s/4, . . .

(i.e., substitute s/2t for s everywhere).
We have established the following theorem.

Theorem 3. Consider the congruence Au ≡ v (mod e), where 0 < A < e and
gcd(A, e) = 1. All solutions (u, v) satisfying

0 < v ≤ r ≤ e , 0 < u ≤ s ≤ e

have that u is a multiple of a denominator of a continued fraction convergent
for one of

A/e + 4tj/2s2 , t ≤ log2 s , j ≤ 0 , |j| ≤ 4rs/e2t .

In particular, all solutions with gcd(u, v) = 1 can be found in time O(drs/ee(log e)2).
Any solutions with gcd(u, v) > 1 can be obtained from those with gcd(u, v) = 1
by scaling.

Naively, the expected number of solutions to Au ≡ v (mod e) with 0 < v ≤ r
and 0 < u ≤ s is rs/e (but this does depend on A and e: for extreme cases,
consider A = 1, or let e be the product of all primes up to r). Hence Theorem 3
is essentially optimal. A qualitatively similar result was obtained by Dujella [7]
by other means.

In our case, r ≈ 2nk+1 and s ≈ 22nk . We can restrict to t = 0 in the above.
Therefore, we obtain the following result.

Theorem 4. Let N = p1p2 be produced by the key generation method with pa-
rameters (ne, nk). If ne + m ≥ 3nk + 2 then with the computation of continued
fraction approximations to O(2m) rational numbers near A/e, we will find the
pair (u, v) = (k1k2, k1 + k2 − 1), up to scaling.

Since it is improbable that k1k2 and k1 + k2 − 1 will have a large common
factor, scaling is not a significant issue. Hence, to keep the ki secret, we impose
the condition

3nk ≥ ne + m . (7)

For our suggested parameters in the case of ki private we have 3nk = ne +m,
and so the attack is avoided.

Note that the algorithm yields u = k1k2 which is already enough for attack
variant 2 in Section 4. If the actual values k1 and k2 are required then they can
be recovered as solutions to the quadratic t2 − (v + 1)t + u = 0. For parameters
of interest, the value of e will be sufficiently large that the methods of Section 4
immediately recover the private key.

9

5.2 Further attacks

As in section 4 we have presented the most successful attack on our scheme. We
briefly discuss a number of other approaches to the problem, some of which are
reformulations or special cases of the attack described in section 5.1. Full details
will appear in [10]. In all cases, the parameter restrictions are either already
implied by condition (7) or require ne to be larger than is of interest. For any
lattice-based attack, one needs to allow for a brute-force extension: one could
try 2m lattices if any one of them can be checked quickly.

1. One can perform a birthday attack on the variable v in equation (5). Note
that 0 < v < 21+nk .
The idea of the attack is as follows. Let M = b2(1+nk)/2c. We write v =
v0 + v1M with 0 ≤ vi < M . Then the statement that u ≡ A−1v (mod e) is
small (as before, we assume 2nk < ne) is equivalent to A−1v0 (mod e) and
−A−1Mv1 (mod e) being close.
The algorithm is then as follows. Compute and store a sorted list of values
A−1v0 (mod e) for 0 ≤ v0 < M . Then compute the values−A−1Mv1 (mod e)
for v1 = 0, 1, 2, . . . and try to find a close match on the top bits in the list.
look for agreement with an entry in the list in the top ne−2nk bits. One ex-
pects about 23nk−ne candidates for (u, v) pairs to be found, all of which must
be checked. The attack requires work Õ(max(2nk/2, 23nk−ne)), and storage
Õ(2nk/2).
For security we require max(nk/2, 3nk − ne) > m. This is implied by condi-
tion (7). Indeed we saw that Theorem 3 is essentially best-possible for solving
the congruence Au ≡ v (mod e).

2. One can attempt to find a small solution to the multivariate equation (4) us-
ing lattice-based methods, following the methods of Coppersmith [5, 6] and
Boneh and Durfee [1]. The details are standard and one can check that the
method yields the same asymptotic security requirement as the linearisa-
tion/continued fraction method we have presented. In practice the lattice
approach would be more complicated and would not be competitive with
the attack presented above.

3. Another lattice attack was suggested to us by an anonymous referee. Multi-
plying together the key equations edi − 1 = ki(pi − 1) we observe that the
polynomial

f(x, y, z) = 1− ex− (N + 1)y + yz

has the “small” solution (x, y, z) = (d1 + d2, k1k2, p1 + p2) modulo e2. One
can then attempt a trivariate lattice attack.
This attack is thwarted by (7) unless ne > 0.65nN , which is well outside the
space of interesting parameters.

4. Another lattice-based attack arises from reducing equation (1) modulo p1.
In other words (x, y) = (d1, k1 − 1) is a very small root of the polynomial

f(x, y) = ex + y

modulo p1. Again, this attack is not effective for parameters satisfying con-
dition (7).

10

5. Another attack is to note that equation (1) implies that the polynomial
f(x, y) = xy − 1 has the solution (x, y) = (k1, p1 − 1) modulo e. For param-
eters of interest, ne < np and so this attack has no chance of succeeding.

6 Low Hamming weight private CRT exponents

In some situations it is useful to choose the exponents di to have low Hamming
weight. We now discuss the security requirements in this setting.

Suppose that the CRT private exponents di are chosen to have low Hamming
weight w. We have ed1 ≡ 1 (mod p1 − 1) and so

ged1 ≡ g (mod p1)

for any g such that gcd(g, p1) = 1. In other words, our goal is to solve the discrete
logarithm problem of g to base ge modulo p1 where the discrete logarithm is
known to have low Hamming weight.

We mimic a randomised algorithm of Coppersmith (see Algorithm 3 of Stin-
son [18]) for discrete logarithms modulo a known prime p. If the bit-length of
the exponent is m (in our application we will have m = nd) and the Hamming
weight is w then this algorithm has complexity Õ(

√
w

(
m/2
w/2

)
).

The idea is to guess a partition (B,B′) of {0, 1, . . . ,m− 1} (i.e., B ∩B′ = φ
and B∪B′ = {0, 1, . . . ,m−1}) where #B1 ≈ #B2 ≈ m/2. We interpret (B,B′)
as a partition of the bit positions of m-bit integers. Then d1 can be decomposed
as a sum d1 = x1 + x2 where xi is a binary number with non-zero bits only
in positions corresponding to numbers in Bi. We then hope that each xi has
Hamming weight ≈ w/2.

If a suitable partition has been guessed then the number of choices for each
xi is approximately equal to the value of the binomial coefficient

M =
(

nd/2
w/2

)
.

Hence, one has
gex1+ex2−1 ≡ 1 (mod p1).

The strategy is to perform a birthday attack on the problem using the
time/memory tradeoff. Note that we are not seeking an equality, but a pair

u = gex1−1 (mod N) and v = gex2 (mod N)

such that gcd(uv−1, N) is non-trivial. Hence we use the FFT approach employed
in [16]. This is done by first computing all the terms uj ≡ gex1−1 (mod N) as
x1 runs over integers whose binary representation uses bit positions only from
the set B1 and has Hamming weight approximately w/2. One then forms the
polynomial

G(x) =
M∏

j=1

(ujx− 1) (mod N).

11

This polynomial has degree M and requires O(M(log N)2) steps to construct.
The polynomial G(x) requires M(log N) storage.

Now, compute v = ge (mod N). We wish to evaluate G(vx2) (mod N)
for each of the candidate values for x2 (to obtain a list of M values). This
can be performed using an FFT-based algorithm (see Theorem 4 of [23]) in
time O(M(log M)2(log log M)(log N)2). We then traverse the list of all values
G(vx2) (mod N) and, for each value, we can compute

gcd(G(vx2), N)

to see if we have split N .
One can see that each of the three stages in the attack has complexity Õ(M)

and so the total complexity of the attack is Õ(M). As explained in [18], one
expects to need to try

√
w possible partitions until one finds a suitable one.

Hence, to ensure that the system resists the attack we require that
√

w
(
nd/2
w/2

)
is

larger than 2m.
Note that if the Hamming weight w is not known exactly then one can take

some upper bound w for the Hamming weight and then try xi with weight≤ w/2.
The number of possible values for each xi is a sum of binomial coefficients which
is dominated by the final term. Hence the complexity of the attack is the same
as before.

It is an interesting problem to obtain a low memory version of the attack in
[16].

7 Further attacks and security analysis

We have become aware of at least one other lattice attack on our system. We
briefly mention this attack.

The attack applies in the case of unknown ki. This attack is similar to the
trivariate attack in subsection 5.2. One observes that (x, y, z) = (d1(k2 − 1) +
d2(k1 − 1), k1k2, k1 + k2 − 1) is a solution to the linear polynomial ex + (1 −
N)y− z ≡ 0 (mod e2). Being linear, the problem is easily solved using LLL. To
guard against this attack, one can take nd + 4nk ≥ 2ne + 4m.

With a system as complicated as this, there is always potential for further
attacks. Since the parameters are tunable, a new attack does not necessarily
destroy the system. However new attacks might add further constraints onto the
parameters. We encourage readers to contact the first author if they have found
a new attack on the system.

8 Summary of parameter restrictions in the two prime
case

We summarise the restrictions on parameters imposed by the above attacks.
For a fixed modulus length nN which is a product of two primes of the size

12

np = nN/2 we must specify parameters ne, nk and nd. Let m be a security pa-
rameter (e.g., m = 80) so that we want security against an adversary whose total
computational power is at most 2m operations. The parameters must satisfy:

ne + nd − nk = np (8)
nd ≥ 2m (9)
nd ≥ nk. (10)

The final condition is due to the key generation technique.
Now we must separate the two cases in our security analysis.
If the ki are small (or are not supposed to contribute to security) then the

restrictions on parameters also include

ne ≤ nN/4−m. (11)

If the ki are meant to stay private and add to the security of the system then
we must have

nk ≥ (ne + m)/3, (12)
nd + 4nk ≥ 2ne + 4m. (13)

Also, if ne is large, then the third attack in subsection 5.2 introduces an extra
parameter restriction, but this not a concern if ne ≤ 0.5nN .

The sample parameters given above satisfy all of these requirements.
The case of small ki is good for the application of equalising public and

private operations using RSA. The case of large ki seems to be more suitable for
the application of minimising the cost of private operations using RSA.

It is possible to give general families of parameters for large N . For example,
in the case where the ki are private, choosing nk = nd leads to the general family
of secure parameters

ne = np ≈ nN/2, nk = nd = (2np + 4m)/5 ≈ 2np/5 ≈ nN/5.

For these parameters we have private operations about 2.5 times faster than
standard RSA (using CRT) and public operations twice as fast as if using large
public exponents (which would previously have been the case with such fast
decryption).

Similarly, in the case when nk = 2 we obtain the general family

ne = np/3−m ≈ nN/6, nd = 2np/3 + m ≈ nN/3.

This gives private operations with about 2/3 the running time of standard RSA,
and public operations about 6 times faster than was previously possible in the
setting of private operations faster than RSA-CRT.

13

9 Multiprime and Takagi

The Takagi system [22] requires e to be extremely small, and so our approach
cannot be applied. We therefore turn our attention to the multiprime case. The
key generation method is easily generalised to the case of products of three (or
more) primes. We now consider the security of our keys in the multiprime case.
See [3, 11] for related analyses of private exponent attacks on multiprime RSA.

9.1 Known ki

As in section 4, if k1 is known then we obtain p1 ≡ k−1
1 (k1 − 1) (mod e) and we

are in the situation of trying to factor N when given partial information about
one of the factors.

Using the analogous result in Theorem 1 in the more general setting, we have

Theorem 5. Coppersmith Let N = pq where p = Nβ and q = N1−β. Suppose
p0 ≡ p (mod e) is known where e = Nα. If α > β(1 − β), then the p can be
recovered in polynomial time.

In the multiprime case, assuming we have

N =
∏
i=1

rpi

and β ≈ 1
r this attack works providing

ne >
(r − 1)

r2
nN

Therefore in order to thwart this attack in general, we need to ensure that

ne <
(r − 1)

r2
nN −m. (14)

We apply these result in the multiprime case by taking p to be one of the
prime factors of N and by taking q = N/p. The algorithm will produce the
prime p, which means that factoring N is reduced to the problem of factoring
the smaller number q. The process can be iterated using partial knowledge of
the prime factors of q, or general purpose factoring methods can be applied.

Other variants of this attack can be considered (for example, considering
information from several primes at once). Further analysis will appear in [10].

9.2 Unknown ki

We generalise the linearisation attack of subsection 5.1. Suppose that N =
p1p2 . . . pr. The equations kipi ≡ (ki − 1) (mod e) multiply to give

r∏
i=1

kipi ≡
r∏

i=1

(ki − 1) (mod e).

14

Performing the linearisation u =
∏r

i=1 ki and v = u −
∏r

i=1(ki − 1) as before
gives the equation

u(1−N) ≡ v (mod e) (15)

where u ≈ 2rnk and v ≈ r2(r−1)nk . The continued fraction method finds (u, v)
in polynomial time if e > uv = r2(2r−1)nk .

Once the values u and v have been computed then one can find the values ki

by factoring u and combining the factors in various combinations. One can then
attempt to recover the private key as in section 4.

Hence, to resist this attack (and the extension by Theorem 3) requires nk ≥
(ne + m)/(2r − 1) (where, say, m = 80 for 1024-bit moduli). In practice, this
condition is much more easily satisfied than the analogous condition in the two
prime case. Note that the lattice attacks seem to be much less effective in the
multiprime case, since the resulting polynomials are much more complicated.

Indeed, we propose the following parameters

nN = 1024, np = 341, ne = 261, nd = 160, nk = 80.

This choice of parameters recovers the fastest known decryption time for RSA
(i.e., 160-bit CRT private exponents in the 3-prime case) but with public oper-
ation nearly 4 times faster than previously realisable using this method.

For the 2048-bit case we set m = 128 and suggest the parameters (nN , np, ne,
nd, nk) = (2048, 683, 582, 256, 156). Once again, we match the fastest speed for
the private operations (256-bit 3-prime CRT exponents) while the public expo-
nent is reduced from 2048 bits to 582 bits.

As in section 5.2 we can consider a birthday attack on equation (15). As
before, the continued fraction approach is essentially optimal and so the birthday
attack cannot perform better.

10 Equalising cost of encryption and decryption

We now consider the problem of finding RSA keys such that the cost of public
and private operations is approximately equal. This can be already achieved in
the usual 2-prime RSA-CRT by taking ne ≈ nN/3. Our methods lead to faster
performance for equalises public and private operations.

10.1 General case

We assume that N =
∏r

i=0 pi, where pi prime. We assume that, for the range of
values we are interested in, Karatsuba/Montgomery multiplication is the most
efficient way of computing ab (mod N). The complexity of this operation is
therefore O((log2 b)(log2 nN)1.58) bit operations. We then have that encryption
takes approx O(nen

1.58
N), while decryption using CRT takes O(rnd(np)1.58).

If we assume that nN ≈ rnp and equate both sides we have

ne(rnp)1.58 = rnd(np)1.58

15

and, as nd = np + nk − ne, this simplifes to give the balancing condition of

ne =
np + nk

1 + r0.58

10.2 2-prime case

In the 1024 bit case, using k = 2 we get the following parameter set

(ne, nd, nk) = (206, 308, 2)

However, this parameter set fails to satisfy condition (11) above for an attacker
of power 280.

If we look at the 2048 bit case, the balanced parameters become

(ne, nd, nk) = (411, 615, 2)

In this case, condition (11) is true for an attacker of the same power as above
(i.e., 80 bits of security).

10.3 3-prime case

The balanced parameters in this case are

(ne, nd, nk) = (119, 224, 2)

which satisfy easily satisfy condition(14) for r = 3.
Our implementation shows that encryption and decryption times for the

above parameters are indeed balanced at approx 3.3ms each.

11 Performance comparison

In Figure 1 we present timings from an implementation of these RSA variants.
These timings are very approximate and should only be treated as a relative
guideline. Note that all entries are using the Chinese remainder theorem for
decryption. In the tunable case the triple indicates the values (ne, nd, nk) and
we provide timings for the parameters suggested in the analysis.

As we can see from the Tunable(512,269,269) timing, it is possible reduce
decryption times by approximately 50%, but with much faster public operations
than had been possible with previously known techniques. Note that in the 3-
prime Tunable(119,224,2) example, we have been able to successfully balance
the timings of encryption and decryption.

12 Acknowledgements

The authors thank J.-S. Coron, A. May and E. Jochemsz for comments (the latter
visited Royal Holloway with support from the ECRYPT Network of Excellence
in Cryptology). In particular, J.-S. Coron suggested the linearisation attack in
Section 5 and A. May pointed out a number of lattice-based attacks. The authors
also acknowledge the useful comments provided by several anonymous referees.

16

Variant Key Generation Encryption Decryption

RSA-CRT (e = 216 + 1) 340 0.5 8.2
3-prime (e = 216 + 1) 148 0.5 4.4
Takagi (e = 216 + 1) 99 0.5 3.2
RSA small CRT private exponents 370 41 2.8
3-prime small CRT private exponents - 41 2.3

Tunable (176,338,2), wt(d)=38 375 4.4 5.2
Tunable (512,269,269) 399 12.5 4.6
3-prime tunable (261,160,80) 170 6.3 2.3
3-prime tunable (119,224,2) 153 3.1 3.2

Fig. 1. Comparative timings for RSA variants examined in this paper. All timings are
in ms. for 1024-bit moduli on a 1.80 GHz Pentium 4 desktop using the GMP library

References

1. D. Boneh and G. Durfee, Cryptanalysis of RSA with private key d less than N0.292,
in J. Stern (ed.), Eurocrypt ’99, Springer LNCS 1592 (1999) 1–11.

2. D. Boneh and H, Shacham, Fast variants of RSA, CryptoBytes, 5, No. 1 (2002) 1–9.
3. M. Ciet, F. Koeune, F. Laguillaumie and J.-J. Quisquater, Short private exponent

attacks on fast variants of RSA, Louvain technical report CG-2003/4 (2003).
4. T. Collins, D. Hopkins, S. Langford and M. Sabin, Public key cryptographic appa-

ratus and method. US Patent (1997).
5. D. Coppersmith, Small solutions to polynomial equations and low exponent RSA

vulnerabilities, J. Crypt., 10 (1997) 233–260.
6. D. Coppersmith, Finding small solutions to small degree polynomials, in J. H. Sil-

verman (ed.), CaLC 2001, Springer LNCS 2146 (2001) 20–31.
7. A. Dujella, Continued fractions and RSA with small secret exponent, Tatra Mt.

Math. Publ., 29 (2004) 101-112.
8. G. Durfee and P. Nguyen, Cryptanalysis of the RSA scheme with short secret expo-

nent from Asiacrypt ’99, in T. Okamoto (ed.) Asiacrypt 2000, Springer LNCS 1976
(2000) 14–29.

9. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed.,
Oxford (1979).

10. C. Heneghan, Ph.D. thesis, in preparation.
11. M. J. Hinek, M. K. Low and E. Teske, On some attacks on multi-prime RSA, in

K. Nyberg and H. M. Heys (eds.), SAC 2002, Springer LNCS 2595 (2003) 385–404.
12. N. A. Howgrave-Graham, Finding small solutions of univariate modular equations

revisited, in M. Darnell (ed.), Cryptography and Coding, Springer LNCS 1355 (1997)
131–142.

13. C. H. Lim and P. J. Lee, Sparse RSA secret keys and their generation, Proc. of 3rd
Annual Workshop on Selected Areas in Cryptography (SAC’96), (1996) 117–131.

14. A. May, Cryptanalysis of unbalanced RSA with small CRT-exponent, in M. Yung
(ed.) CRYPTO 2002, Springer LNCS 2442 (2002) 242–256.

15. C. A. M. Paixão, An efficient variant of the RSA cryptosystem, preprint (2003).
16. G. Qiao and K.-Y. Lam, RSA signature algorithm for microcontroller implemen-

tation, J.-J. Quisquater and B. Schneier (eds.), CARDIS ’98, Springer LNCS 1820
(2000) 353–356.

17. M. O. Rabin, Digital signatures and public key functions as intractable as factori-
sation, Technical report MIT/LCS/TR-212 (1979).

17

18. D. Stinson, Some baby-step-giant-step algorithms for the low Hamming weight
discrete logarithm problem, Math. Comp. 71, No. 237 (2001) 379–391.

19. H.-M. Sun and M.-E Wu, An Approach Towards Rebalanced RSA-CRT with Short
Public Exponent, Cryptology ePrint Archive, 2005/053.

20. H.-M. Sun and C.-T. Yang, RSA with balanced short exponents and its application
to entity authentication, in S. Vaudenay (ed.), PKC 2005, Springer LNCS 3386 (2005)
199–215.

21. H.-M. Sun, W.-C. Yang and C.-S. Laih, On the design of RSA with short secret
exponent, in K. Y. Lam et al (eds.), ASIACRYPT ’99, Springer LNCS 1716 (2000)
150–164.

22. T. Takagi, Fast RSA-type cryptosystem modulo pkq, in H. Krawczyk (ed.),
CRYPTO ’98, Springer LNCS 1462 (1998) 318–326.

23. J. W. M. Turk, Fast arithmetic operations on numbers and polynomials, in H. W.
Lenstra Jr. and R. Tijdeman (eds.), Computational methods in number theory, Part
1, Mathematical Centre Tracts 154, Amsterdam (1984).

24. E. R. Verheul and H. C. A. van Tilborg, Cryptanalysis of ‘less short’ RSA secret
exponents, Applicable Algebra in Engineering, Communication and Computing, Vol.
8 (1997) 425–435.

25. M. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Trans. Inf. Th.,
36 (1990) 553–558.

26. M.-E. Wu, A Study of RSA with Small CRT-Exponent, Thesis of Master Degree,
Department of Applied Mathematics, National Chiao Tung University, Taiwan, June
2004.

18

