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Abstract. The technique of Weil restriction of scalars has significant impli-
cations for elliptic curve cryptography. In this paper we apply these ideas to

the case of the discrete logarithm problem in the Jacobian of a curve of genus

greater than one over a finite field Fqn where n > 1.

1. Introduction

The idea of using Weil restriction of scalars as a means to solve the elliptic curve
discrete logarithm problem was suggested by Frey [5] and then developed further
in [6] and [9].

In this paper we consider the Jacobian of a genus g > 1 curve C over a finite
field Fqn where q is a prime or a power of a prime and where n > 1. The discrete
logarithm problem is as follows: Suppose there is a divisor D1 in the divisor class
group of C over Fqn which has (large) prime order L. Then given any other divisor
D2 in the group generated by D1 the problem is to find an integer λ such that
D2 = λD1.

As in the case of elliptic curves, one can consider the Weil restriction of the
g-dimensional abelian variety Jac(C) with respect to the Galois extension Fqn/Fq
and obtain an Abelian variety A of dimension ng over Fq. One then searches for a
curve C lying on A in such a way that one can pull the divisors D1 and D2 back
to Jac(C)(Fq) and then solve the discrete logarithm problem there using one of
the available algorithms (see [1], [4], [8]) for solving such problems on ‘high’ genus
curves.

Before giving flesh to this skeleton, we discuss the practical situation we have in
mind.

2. The Cryptographic Application

The most relevant cases of Jacobians of curves for cryptography are when C is
a hyperelliptic curve of genus 2 or 3 or possibly 4. For these cases there are few
efficient methods to construct cryptographically suitable curves with known group
order.

One commonly used method to construct curves with known group order is to
use ‘subfield curves’, i.e., curves C defined over a small field Fq but considered as
a group over some larger extension field Fql (the group order can be deduced from
the characteristic polynomial of the Frobenius map).
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This strategy first appeared in Koblitz [11]. His examples involve curves C/F2

and the group used for cryptography is Jac(C)(F2l) for some prime number l. In
practice we have g = 2, 3 and l roughly in the range 70 < l < 100. We emphasise
that, in practice, it is always the case that the extension degree is prime.
Since otherwise it is not possible to obtain a group order which has very large prime
factor.

One advantage with using subfield curves is that the action of the Frobenius
endomorphism can be used to accelerate the arithmetic on these curves [11], [10].
However, this Frobenius action also makes the Pollard methods more effective as
one can consider random walks on equivalence classes as in [3]. Therefore there
is slightly less security than was first imagined from using these curves. Another
drawback is that there are very few curves available when one restricts to curves
over F2.

To obtain a larger number of examples and to reduce the effectiveness of the
Pollard methods one might prefer to choose the original curve C over a slightly
larger extension F2n and consider the group as Jac(C)(F2nl) for some prime number
l. For curves of genus 2 or 3 we then take 2 ≤ n ≤ 5 and correspondingly 12 < l < 50
so that we have gnl ∼ 200.

It is exactly the case outlined in the previous paragraph which will be the main
focus of this paper. We will consider the Weil restriction of Jac(C)(F2nl) with
respect to the extension Fqnl/Fql to obtain an abelian variety of dimension ng over
Fql . We show that Weil descent can give a feasible attack in this situation.

In this case the curve C is defined over the larger field with respect to the exten-
sion Fqn/Fq. This means that, from the point of view of Weil descent, the curve is
not a ‘subfield curve’. As emphasised above, Weil descent is rarely interesting for
subfield curves as the corresponding field extensions always have fairly large prime
degree. Of course, the techniques are also applicable in the case where the curve C
is actually defined over the full field F2nl , though this case is not so prominent in
the applications.

This paper is primarily concerned with fields of characteristic two as they are the
most important in practice. The odd characteristic case is discussed in Section 7.

It is not very easy to express the complexity of Weil descent in a meaningful sense
(i.e., one which can be used to determine the security of a discrete logarithm prob-
lem). Part of the problem is a lack of experience with solving discrete logarithms
on high genus curves (although see [4], [8], [12]). Examples 2 and 3 (subsections 4.7
and 4.8) show that there are cases of curves of genus 3 over certain field extensions
for which the discrete logarithm problem is significantly easier to solve than had
been previously thought (although still exponential complexity).

To completely avoid the threat of Weil descent one may use curves over prime
fields Fp (where p is prime). Curves over fields of the form F2l where l is prime (and
thus l > 40) will in general be resistant to the Weil descent attack. In particular,
the curves in Koblitz [11] seem to resist our methods.

Of course there is a ‘constructive’ aspect to this work as in [9] (i.e., giving
a method to construct abelian varieties or Jacobians with known group order).
This is not as interesting as the elliptic curve case where the Schoof-Atkin-Elkies
algorithm is available. Also, the abelian varieties arising will be very special (see
[7] for a discussion of the elliptic curve case).
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3. The Algebraic Approach

The approach given by Gaudry, Hess and Smart in [9] used only algebraic tech-
niques (function fields and norm maps) and was extremely successful. We will
mimic that approach in this paper. First, we explain the algebraic approach in
geometric terms.

Let K = Fqn , k = Fq (where q is a power of any prime), let C be a curve of
genus g over K and suppose we have a discrete logarithm problem D2 = λD1 in
the divisor class group Pic0

K(C) of the curve. We identify the divisor class group
Pic0

K(C) with the K-valued points of the Jacobian Jac(C). A prime divisor on C
over K corresponds to a place of the function field K(C) and so we can manipulate
divisors by manipulating places of the field.

The starting point of the approach of [9] is to construct a certain function field F
over the fieldK. This is an algebraic field extension ofK(C) constructed specifically
so that there is a Galois action which allows us to view F as having constant field
k. In [9] this is motivated by taking a curve C which lies on the Weil restriction of
E/K and defining F = K(C).

In this paper we mimic the construction of F given in [9] (see subsection 4.2). At
first sight there seems to no longer be any geometry in the picture since we have not
written down any equations for the Weil restriction of the abelian variety Jac(C).
However, given the function field F over K there exists some curve C which (except
for some special cases) may be defined over K and is such that F = K(C). The
inclusion K(C) ↪→ K(C) induces a rational map φ : C → C of curves over K and
this then induces a map of abelian varieties Jac(C)→ Jac(C) over K.

The next step of [9] is to pull back the discrete logarithm problem to C. This
is done using the conorm (see Stichtenoth [14] Definition III.1.8). The geometric
picture behind the definition of the conorm is simply that, under the map φ : C→ C,
a place of C is pulled back to a divisor of places on C counted with a multiplicity
which corresponds to the ramification. A principal divisor (f) on C is pulled back
to the principal divisor (f ◦ φ).

We can therefore transfer the discrete logarithm problem from Jac(C)(K) to
Jac(C)(K). Now, by the construction of F = K(C) it follows (at least, except for
some special cases) that C can be defined over k. There is the inclusion Jac(C)(k) ↪→
Jac(C)(K) and it remains to pull the discrete logarithm problem back along this
map. The obvious method to achieve this is to take a ‘trace’ map D ∈ Pic0

K(C) 7→∑
σ∈Gal(K/k)D

σ ∈ Pic0
k(C). The norm map of [9] is precisely this trace converted

to the function field notation. The image of a principal divisor (f) is simply the
principal divisor (

∏
σ f

σ).
It is possible that some of these maps can be degenerate on certain divisors.

However, this will happen with low probability in the general case.

4. A Specific Class of Curves

The Weil descent strategy outlined in the previous section applies in a very
general way. The key step is the construction of the function field F . In this section
we discuss a special class of curves C over fields of characteristic two, analogous
to the elliptic curves considered in [9], for which we have a construction for the
function field F . We can then prove some strong results about the curves C which
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arise. In particular it is possible to bound the genus of the curves C and to prove
that they are hyperelliptic.

4.1. The Curves. We let k = Fq be a finite field of characteristic two (i.e., q = 2t)
and let K = Fqn be the Galois extension of k of degree n. A general hyperelliptic
curve of genus g over a characteristic two field K is given by an equation of the
form y2 + h(x)y = f(x) where deg(h(x)) ≤ g + 1 and deg(f(x)) ≤ 2g + 2.

In this section we consider the most commonly appearing special case, namely
C given by an equation y2 + xy = f(x) where f(x) = x2g+1 + a2gx

2g + · · · a1x+ a0

is a monic polynomial of degree 2g+ 1 over K. Up to a change of variable (defined
over K) this case includes all curves with deg(h(x)) = 1. The case deg(h(x)) = 0
is handled with the same ease. Cases where deg(h(x)) > 1 can often be handled
by these methods (see Examples Four and Five), but our theoretical results do not
cope with this case.

Note that there will be further conditions imposed on C below and so not all
curves can be handled using the method of this section.

4.2. Weil Restriction. Let C be a curve over K = Fqn of genus g with generic
point (x, y). The Weil restriction of C with respect to the Galois extension K/k =
Fqn/Fq is the variety whose generic point is

∏
ρ∈Gal(K/k)(x

ρ, yρ). In our case we

let σ be a generator for Gal(K/k) and write (xi, wi) for the point (xσ
i

, yσ
i

). Each
such point satisfies the equation w2

i + xiwi = fσ
i

(xi).
The principle adopted in [6] and [9] of taking a product over P1 of Galois twists

of curves (equivalently, imposing that the function x is Galois invariant) gives rise
to a function field F = K(x,w0, w1, . . . wn−1) defined by the equations

w2
0 + xw0 = f(x)

w2
1 + xw1 = fσ(x)
...

...
...

w2
n−1 + xwn−1 = fσ

n−1
(x).

This is analogous to the variety D of Section 3.1 of [9].
The first equation implies that K(C) is a subfield of F . Indeed, F may be

considered as an algebraic extension of K(C) obtained by taking a sequence of
quadratic extensions.

4.3. Artin-Schreier Extensions. We now study the results of [9] in the context
of our more general extension of function fields. We define the ‘magic number’ m
to be such that 2m = [F : K(x)]. In general we have m = n.

To generalise the expression of m in terms of the dimension of a simple vector
space as in [9] requires some care as the equations under consideration have more
terms on the right hand side.

We now mimic the changes of variable used in [9] so that we can study the
function field F by means of the theory of Artin-Schreier extensions. We make the
change of variable si = (wi +

√
a0
σi

)x−1 for i = 0, 1, . . . , n− 1 to obtain the set of
equations

(1) s2i + si = x2g−1 + aσ
i

2gx
2g−2 + · · ·+ aσ

i

2 + (aσ
i

1 +
√
a0
σi

)x−1
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where i = 0, 1, . . . , n− 1. We then define ti = si + s0 for i = 1, . . . , n− 1 to obtain
the set of equations

(2) t2i + ti = (a2g + aσ
i

2g)x
2g−2 + · · ·+ (a1 +

√
a0 + aσ

i

1 +
√
a0
σi

)x−1

where i = 1, . . . , n− 1. Clearly, F = K(x, s0, s1, . . . , sn−1) = K(x, s0, t1, . . . , tn−1).
At first our Artin-Schreier extensions (2) seem much more complicated than

those in [9], and it seems unlikely that we can obtain equations of the form

t2i + ti = γi + δix
−1 or t2i + ti = γi + δix.

The crucial property of the above two equations is linearity in x−1 or x and we will
call them ‘Type A’ and ‘Type B’ respectively. However, recall that Artin-Schreier
extensions are only defined up to terms of the form α2 + α and so one can easily
eliminate any even-degree terms from the right hand side. Also recall that odd-
degree terms (e.g., the term x2g−1) will possibly have been removed by subtraction
using the first equation.

Nevertheless, there are curves C for which this process does not give a non-trivial
linear equation and the results of this section do not apply in those cases. We give a
few examples to illustrate which curves can be tackled with this approach and which
cannot. In all these examples we let ci lie in k while elements θ ∈ K are chosen
such that θσ

i 6= θ for all 1 < i < n where σ generates Gal(K/k) (in particular, if θ
does not lie in any proper subfield of K then this property will hold). We first list
some curves for which a Type A or B equation always arises

y2 + xy = x2g+1 + · · ·+ c3x
3 + c2x

2 + c1x+ θ

y2 + xy = x2g+1 + · · ·+ c3x
3 + c2x

2 + θx+ c1

y2 + xy = x2g+1 + · · ·+ θx3 + c3x
2 + c2x+ c1

y2 + xy = x2g+1 + · · ·+ θ′x3 + c1x
2 + θx+ θ2.

Here the terms in the · · · all have coefficients defined over the small field k. On
the other hand, curves of the form y2 + xy = x2g+1 + θx2 + c1x+ c2 or y2 + xy =
x2g+1 + θ2x4 + θx3 + c1x

2 + c2x+ c3 are not amenable to our methods.

4.4. Hyperellipticity and Genus Formulae. We now restrict to the case where
the equations (2) can be massaged so that they are of Type A or B (i.e., are linear
in either x or x−1).

In both cases the method and result of Lemma 7 of [9] applies verbatim where
z = x−1 if we have Type A curve and z = x if the curve is Type B. It follows that
there is a function c (which is a linear combination of the functions ti over K) such
that z = Λ(c) where Λ is a polynomial over K of the form λ−1 +

∑m−1
j=0 λjc

2j

. It
also follows that λ0 and λm−1 are both non-zero.

We write L = K(c). This rational function field is a subfield of F . Furthermore F
is obtained from L by adjoining the function s0 given by the quadratic equation (1)
The following result is therefore immediate.

Proposition 1. The function field F is hyperelliptic.

We now want to estimate the genus of the function field F . The following result
is a generalisation of Lemma 9 of [9]. We will give a different proof to the one given
in [9]. Our proof is rather elementary but it has the mild disadvantage of only
providing an upper bound on the genus.
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Proposition 2. Let F be the function field over K as above and suppose we are
in the Type A or Type B case. Then the genus of the hyperelliptic function field F
is less than or equal to g2m−1 where g is the genus of the original curve C.

Proof. In the Type A case we have x−1 = Λ(c) while in the Type B case we have
x = Λ(c) where Λ(c) has degree 2m−1. Starting from the i = 0 equation in (1) we
will exhibit a particular hyperelliptic equation for the function field F over L.

In the Type A case define w = Λ(c)gs0 and obtain (writing a′1 = (a1 +
√
a0)

which in the Type A case is non-zero)

(3) w2 + Λ(c)gw = Λ(c) + a2gΛ(c)2 + · · · a2Λ(c)2g + a′1Λ(c)2g+1.

In the Type B case we define w = Λ(c)s0 and obtain

(4) w2 + Λ(c)w = Λ(c)2g+1 + a2gΛ(c)2g + · · ·+ a′1Λ(c).

To show that the curve y2 + h(c)y = f(c) has genus ≤ g2m−1 we will show that
deg(h(c)) ≤ g2m−1 and deg(f(c)) ≤ g2m + 1. For the two equations (3) and (4)
we have h(c) = Λ(c)g or h(c) = Λ(c) and so the condition on the degree of h(c)
is satisfied. However, the condition on f is initially violated since Λ(c)2g+1 has
terms of degree g2m + 2m−1, g2m + 2m−2, . . . , g2m + 2. Note that the powers of c
appearing in the term Λ(c)2g have degree at most g2m which is no problem.

It remains to perform an inductive sequence of changes of variable to remove the
terms of degree more than g2m + 1. Set v1 = w and suppose that our equation is
of the form

v2
i + h(c)vi = f(c)

where the leading term of f(c) is αcg2
m+2m−i

and where the only terms in f(c) of
degree greater than g2m + 1 have degrees of the form g2m + 2k (with k ≤ (m− i)).
Define vi+1 = vi +

√
αcg2

m−1+2m−i−1
. Then we have

(5) v2
i+1 + h(c)vi+1 = f(c) + αcg2

m+2m−i

+ h(c)
√
αcg2

m−1+2m−i−1
.

It remains to show that the high degree terms in the right hand side have degree
g2m + 2k with k ≤ (m− i). In the Type B case this is immediate since deg(h(c)) ≤
2m−1 and so no new terms of high degree have appeared. In the Type A case
observe that h(c) = h0c

g2m−1
+ h1c

g2m−1−2m−2
+ · · · and so h(c)cg2

m−1+2m−i−1
=

h0c
g2m+2m−i−1

+ h1c
g2m+2m−i−1−2m−2

+ · · · and since i ≥ 1 the second term above
has degree ≤ g2m+1. Hence our new equation does satisfy the inductive hypothesis.

Eventually we obtain an equation for the function field F of the form v2
m +

h(c)vm = f(c) where deg(f(c)) ≤ g2m+1. Of course it is possible that the equation
be singular or that deg(f(c)) < g2m+ 1 in which case the genus is smaller than our
bound. But in the case when the equation is non-singular and deg(f(c)) = g2m + 1
then one can show that the hyperelliptic curve has genus g2m−1 and that there is
only one point at infinity. �

4.5. Finding the Curve C over k. The function field F is defined over K. We
can take the fixed field F ′ of F with respect to the Galois action as in [9] to
obtain a function field corresponding to a curve C′ over k. In general we have
K(C′) ∼= F = K(C) and thus have obtained an equation for C which is defined over
k. Note that there is the possibility that K(C′) is a proper subfield of F which could
mean that the Weil descent strategy has failed. This special situation is excluded
in [9] by the condition (†) (see Section 1 of [9]).
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The curve C can be constructed explicitly using the method of Lemma 13 of [9]
which is as follows: Let µ ∈ K be such that TrK/k(µ) = 1 and define

X = TrK/k(µλ0c) and Y ′ = TrK/k(µw0).

Then X = λ0c+λ′′ for some λ′′ ∈ K and Y ′ = w0 +r(c) for some polynomial r over
K. It follows that k(X) is a subfield of L which is fixed by the Galois action and that
K(X) = L. It also follows that k(X,Y ′) is a subfield of F , [k(X,Y ′) : k(X)] = n
and that K(X,Y ′) = F which shows that the functions X and Y ′ are the functions
we require.

An equation relating X and Y ′ may be easily obtained from the earlier equations.
To get an equation of small degree it will be necessary to perform a change of
variable in Y ′ analogous to those used in the proof of Proposition 2. This process
is illustrated in the examples given below.

Finally, one must consider the norm maps which enable the pulling-back of the
discrete logarithm problem. This stage proceeds exactly as in [9].

In cases where the curve C has more than one point at infinity, the base point
for the divisor representation on C can be chosen arbitrarily. This is because we
are only concerned with divisor classes.

4.6. Example One. We consider the curve C : y2 + xy = x5 + x4 + θ2x2 + θx+ 1
over K = F22 = F2[θ] where θ2+θ+1 = 0. This curve has characteristic polynomial
of Frobenius equal to P (T ) = T 4+T 3+4T+16 and #Jac(C)(F2122) = 2·11·28549·L
where L is the 225 bit prime

45009621474489074968234394447177137700613877917580561425898884250597.

We perform the Weil descent of Jac(C) with respect to the extension F22/F2

(note that the curve is not a ‘subfield curve’ with respect to this extension). We
can worry about the divisors over F2122 in the final stage, but the job of finding C
can be performed completely over F22 . We first obtain the pair of equations (where
si = (wi + 1)x−1)

s20 + s0 = x3 + x2 + θ2 + θ2x−1(6)
s21 + s1 = x3 + x2 + θ + θx−1(7)

and we see that m = 2. Setting t = s0 + s1 and subtracting we get

(8) t2 + t = 1 + x−1

and so the curve is Type A. This immediately gives the rational function field
L = K(t) with x = (t2 + t+ 1)−1.

As an aside we note that it is crucial that equation (8) only contains a term x−1.
For instance, if equation (8) was t2 + t = 1 +x−1 +x−2 then we could eliminate all
the x terms and we would find that we have m = 1 and that the function field F is
isomorphic to the function field of the original curve C. Of course, t2 + t = 1 +x−2

would be fine as modifying the equation by x−1 + x−2 gives an acceptable form.
On the other hand, if equation (8) was t2 + t = x+ 1 +x−1 then it would no longer
be true that x lies in the rational field generated by t.

Continuing with the example, we obtain an equation for F over K by combining
these equations, i.e.,

s20 + s0 = (t2 + t+ 1)−3 + (t2 + t+ 1)−2 + θ2 + θ2(t2 + t+ 1).
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To obtain a model for C over F2 we follow the method of subsection 4.5 with
c = t, λ0 = 1 and µ = θ. We find that TrF4/F2(µλ0c) = θt + θ2t = t. To compute
Y ′ = TrF4/F2(µw0) we note that wi = xsi+1 and so Y ′ = x(θs0 +θ2s1)+(θ+θ2) =
x(θ2t+ s0) + 1.

We find the equation

(Y ′)2 + xY ′ = x5 + x4 + x2(θt2 + θ2t+ θ2) + θx+ 1.

To get this in terms of a polynomial in t we multiply by x−6 and find (x−3Y ′)2 +
x−2(x−3Y ′) = t12 + t10 + t9 + t8 + t6 + t5 + t2. The degree of the right hand
side now appears to be too large. We therefore perform the change of variable
Y = x−3Y ′ + t6 to obtain

Y 2 + (t4 + t2 + 1)Y = t9 + t5 + t2

which is a genus 4 curve over F2.
We can now pull divisors on Jac(C)(F2122) back to divisors on Jac(C)(F261) using

the conorm and norm maps.
The solution of the discrete logarithm problem in Jac(C) can be found using a

version of Gaudry’s algorithm [8]. It was shown in [9] that for curves of genus four
this algorithm does run slightly faster than the Pollard method on an elliptic curve
and so we are sure that we have transformed the discrete logarithm problem from
Jac(C) to an easier problem (though still exponential time). In this case (as with
the other examples in this paper) the use of the Frobenius endomorphism gives a
very important improvement to the running time of Gaudry’s algorithm (see [3],
[8]).

4.7. Example Two. We now consider a Type B example. Consider the genus 3
curve over F22

C : y2 + xy = x7 + x5 + θx3 + 1
which has characteristic polynomial of Frobenius equal to T 6−T 5−4T 3−16T +64.
We find that #Jac(C)(F258) = 22 · 11 · L where L is the 169 bit prime

544210065162879673276249722680357412546827447416957.

We can perform Weil descent of Jac(C) with respect to the extension F22/F2 as
outlined above.

We first obtain the equations

w2
0 + xw0 = x7 + x5 + θx3 + 1

w2
1 + xw1 = x7 + x5 + θ2x3 + 1.

We then perform the usual changes of variable to get s20 + s0 = x5 + x3 + θx+ x−1

and t2 + t = x which shows that we have a Type B curve. We have m = n = 2 for
this example.

The function field F = F22(x,w0, w1) = F22(s0, t) is thus a hyperelliptic function
field over the rational function field L = F22(t).

To obtain a model over F2 we write Y ′ = x(s0 + θ2t) + 1. From this we obtain
the equation

(Y ′)2 + xY ′ = x7 + x5 + θx3 + (θt2 + θ2t)x2 + 1.

Expanding out the terms and setting Y = Y ′ + t7 gives

C : Y 2 + (t2 + t)Y = t13 + t11 + t9 + t8 + t6 + t3 + 1
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which is a genus 6 curve over F2 and one can check that #Jac(C)(F229) = 22 · 11 ·L
as expected.

Once again, one can pull a discrete logarithm problem from Jac(C)(F258) to
Jac(C)(F229) using conorms and norms and then solve the discrete logarithm prob-
lem in the genus six Jacobian.

4.8. Example Three. Let F23 = F2(θ) where θ3 + θ + 1 = 0. Consider the curve

C : y2 + xy = x7 + x4 + θx3 + 1

of genus 3. The characteristic polynomial of Frobenius for this curve is P (T ) =
T 6 − T 5 + 4T 4 + 32T 2 − 64T + 512. Thus #Jac(C)(F23·23) = 22 · 112 · 796813 · L
where L is the 179 bit prime

533343896894265191739797030807410720780166091007800491.

Performing the method as described gives s20 + s0 = x5 + x2 + θx + x−1 and
similarly for s1 and s2. We get t21 + t1 = θ4x and t22 + t2 = θ2x and m = 3.

Put c = t2 + θ6t1. Then c2 + c = θt1 from which we obtain t1 = θ6c2 + θ6c,
t2 = θ5c2 + θ4c and x = θc4 + θ4c2 + θ2c. It follows that K(c) = K(x, t1, t2).

To get functions over F2 we find X = θ2c and Y ′ = x(s0 + t1 + t2)+1. We obtain
(Y ′)2 + xY ′ = X28 +X26 +X25 + · · ·+ 1. Putting Y = Y ′ +X14 +X13 gives

C : Y 2 + (X4 +X2 +X)Y = X25 +X24 +X21 +X19 +X11 +X9 +X7 +X4 + 1

which is a non-singular hyperelliptic curve of genus 12 as expected.
One can compute the characteristic polynomial of Frobenius for this curve and

see that it is P (T 3)(T 6 − T 5 − 4T + 8).
Once again we can transfer discrete logarithms from the Jacobian of the genus 3

curve over F269 to the Jacobian of the genus 12 curve over F223 . Since the Pollard
methods on the original curve will take time O(q9/2) (where q = 223) we expect the
solution of the discrete logarithm problem on the genus 12 curve to be rather easy
compared with the original problem.

5. More General Algebraic Approach

The above strategy, which is generalised from the method of [9], seems to be
very effective. However, there are many curves for which the method does not seem
to apply: we may have difficulties when deg(h(x)) > 1, the magic number m may
be too small or the ‘ti equations’ may not reduce to a simple enough form to have
a Type A or Type B curve (and thus to be able to deduce hyperellipticity).

On the other hand, we stress that the philosophy of the method does not depend
on these details and, in principle, any discrete logarithm problem on any curve over
any extension of fields can be approached using these techniques. To illustrate this
point we now give some examples which are not covered by the results of Section 4.

5.1. Example Four. This example concerns the case where deg(h(x)) > 1. Let
F22 = F2(θ) and consider the curve C : y2 + x(x + 1)y = x5 + θx2 + 1 which has
P (T ) = T 4 − T 2 + 16.

Performing Weil descent in the usual manner results in the two equations

y2
0 + x(x+ 1)y0 = x5 + θx2 + 1
y2
1 + x(x+ 1)y1 = x5 + θ2x2 + 1.
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Define t′ = y0+y1 to get (t′)2+x(x+1)t′ = x2. Thus t = x−1t′ satisfies t2+(x+1)t =
1 and so we have x = (t2 + t+ 1)/t and the function field F22(x, y0, y1) = F22(t, y0).

To get an equation over F2 we define Y ′ = TrF4/F2(θy0) = y0+θ2xt. We therefore
obtain the equation (Y ′)2+(t2+1)(t2+t+1)/t2Y ′ = (t+1)3(t7+t7+t5+t4+1)/t5.
Setting Y = t3Y ′/(t+ 1) yields

C : Y 2 + (t4 + t)Y = t9 + t5 + t2 + t

which is a genus 4 curve having characteristic polynomial of Frobenius equal to
P (T 2).

This example shows that there are cases when deg(h(x)) > 1 which still yield a
nice hyperelliptic curve.

5.2. Example Five. In this case we consider what happens when deg(h(x)) > 1
and when h(x) is defined over K rather than k. Consider the genus two curve over
F22 given by

C : y2 + (x2 + θ)y = x5 + θx.

The usual Weil descent construction gives two equations

w2
0 + (x2 + θ)w0 = x5 + θx

w2
1 + (x2 + θ2)w1 = x5 + θ2x.

Writing t = w0 + w1 gives

t2 + (x2 + θ)t+ w1 = x.

Therefore we can write w1 = t2 + (x2 + θ) + x and insert into the second equation
to obtain

C : t4 + (x4 + x2)t2 + (x4 + x2 + 1)t+ x5 + x3 + x2 = 0

which is a genus 7 curve over F2 with singular points only at infinity.
We see that this curve does not satisfy the theoretical results of the previous

section. Nevertheless, it is possible to transfer a discrete logarithm problem in
Jac(C)(F22l) to a discrete logarithm problem in Jac(C)(F2l). It is not clear how
efficiently the discrete logarithm problem can be solved on Jac(C) in practice, but
in theory (using methods like those of [8]) one can achieve a complexity which is
better than the Pollard methods on Jac(C).

Another approach for performing Weil descent would be to use a more geometric
strategy. We briefly discuss this approach below.

6. The Geometric Approach

As we noted in the previous sections, the algebraic approach is very successful.
However, there are cases to which it does not seem to apply. One could attempt
a more geometric approach following the methods of [6]. The basic idea of this
approach is to represent Jac(C) as an affine variety, take Weil restriction of scalars
explicitly to get an affine part of A, find a curve C on A, pull back the discrete
logarithm problem from A to Jac(C) and then solve it as before.

The representation of Jac(C) as an affine variety uses a technique going back to
Mumford which was explicitly described by Spallek [13]. To be precise we recall
the Cantor representation of a reduced divisor of degree g on C. A generic divisor
on C has degree g and is represented as a pair of polynomials (u(x), v(x)) where
u(x) = xg + ug−1x

g−1 + · · · + u0 and v(x) = vg−1x
g−1 + · · · + v0. The points
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(x0, y0) in the support correspond to those values of x0 which satisfy u(x0) = 0
and where y0 = v(x0). It follows from the equation y2 + h(x)y = f(x) that we
have u(x)|(v(x)2 + h(x)v(x) − f(x)). This means that the divisor corresponding
to (u, v) may be represented as the element (u0, u1, . . . , ug−1, v0, . . . , vg−1) in 2g-
dimensional affine space. The Jacobian is then the set of points for which the
equation (v(x)2 + h(x)v(x)− f(x)) ≡ 0 (mod u(x)) is satisfied.

This is of course only generic (it misses the so-called theta divisor which is a flag
variety of dimension g − 1). If given target divisors do not have the full degree g
then they can be easily modified by adding a small multiple of the base point.

Once an affine equation for A is obtained it remains to find a suitable affine
curve C on A and to pull back the discrete logarithm problem to a divisor on C.
To achieve this seems to require considerable computer algebra computations. This
leads to a situation where the security of the original discrete logarithm problem
is now related to the difficulty of solving some non-linear multivariate equations.
These calculations seem to be difficult to perform in practice, but we do not know
if they are as difficult as solving discrete logarithm problems. We give an example.

6.1. Example Six. Consider the genus two curve

C : y2 + xy = x5 + θx2 + 1

over F22 = F2[θ] where θ2 + θ + 1 = 0.
Note that this curve is actually isomorphic to one defined over F2 under the map

(x, y) 7→ (X,Y +αX) where α2 +α+ θ = 0 (so α ∈ F24). Thus the curve C can be
called a quartic twist of the genus two curve C ′ : Y 2 +XY = X5 + 1 over F2.

We will perform a Weil descent of Jac(C) with respect to the extension F22/F2.
Using the algebraic approach developed above one finds oneself in a degenerate case
(in fact, the function field F contains a proper constant field extension and so the
curve C cannot be defined over F2).

Taking the geometric approach, we first construct a model for Jac(C) in terms
of the generic polynomials x2 +u1x+u0 and v1x+ v0. The hyperelliptic involution
on C corresponds to the involution v1 7→ v1 + 1 on this model. We aim to preserve
this involution.

One obtains the equations

0 = u0u
3
1 + u0v

2
1 + u0v1 + θu0 + v2

0 + 1
0 = u2

0 + u0u
2
1 + u4

1 + u1v
2
1 + u1v1 + θu1 + v0

for Jac(C) as a two dimensional variety in four dimensional affine space.
One can then perform a Weil descent on this in the usual manner by writing

u0 = u0,1 + u0,2θ etc. One obtains a four dimensional variety in eight dimensional
affine space.

Two of these equations have the form v0,i = pi(u0,1, u0,2, u1,1, u1,2, v1,1, v1,2)
and so these two variables are immediately eliminated to obtain a two dimensional
variety in six dimensional affine space.

We want to intersect this variety with hypersurfaces. The first choice is to
set u1,1 = u1,2 = 0 since these variables appear to the highest degree. This is
interpreted as setting u1 = 0 or, in other words, restricting the curve to lie on
the divisors of the form 2(x1, y1) − 2P∞ (this will not be a problem since we are
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interested in divisors of odd order). One obtains the equations

0 = u4
0,1 + u0,1v

2
1,1 + u0,1v1,1 + u0,1v

2
1,2 + u0,2v

2
1,2 + u0,2v1,2 + u0,2 + 1

0 = u0,1v
2
1,2 + u0,1v1,2 + u0,1 + u4

0,2 + u0,2v
2
1,1 + u0,2v1,1 + u0,2v1,2 + u0,2.

We now intersect with the hypersurface u0,1 = 0 to obtain a very simple pair of
equations. Writing x for u0,2, y for v1,1 (recall that the hyperelliptic involution is
v1,1 7→ v1,1 + 1) and w for v1,2 we have

x = (w2 + w + 1)−1

y2 + y = x3 + w + 1.

From this we obtain the genus 4 curve (writing Y = (w2 + w + 1)2y)

C : Y 2 + (w4 + w2 + 1)Y = w9 + w8 + w5 + w4 + w2.

The hyperelliptic involution on C is inherited from that on the original curve C.
It remains to transfer instances of the discrete logarithm problem on Jac(C) to

Jac(C). This is not at all easy and so we give some discussion.
Consider a point (w, Y ) of C. By substituting back into the formulae above one

sees that this point corresponds to the point

(9) (u0,1, u0,2, u1,1, u1,2, v0,1, v0,2, v1,1, v1,2) = (0, α−1, 0, 0, α−2, α−2, Y α−2, w)

where α = w2 +w+ 1. As an example, the point (0, 1) ∈ C(F2) corresponds to the
divisor (x2 + θ, x+ θ2) on C(F22). One can see from equation (9) that the process
is undefined when w satisfies w2 + w + 1 = 0. This is a reflection of the fact that
the group homomorphism from Jac(C)(F2m)→ Jac(C)(F22m) is only defined when
m is odd.

To pull back a target divisor D1 in Jac(C) we aim to find k reduced divisor
classs Bi in Jac(C) coming from divisor classes (wi, Yi)− (∞) in Jac(C) such that
B1 +B2 + · · ·+Bk = D1 in Jac(C). Ideally we would take k = g = 4, however these
points will be Galois conjugates over an extension of degree k and our mappings
may not be defined when the field extension is not coprime to n. Therefore we
should take k = 5 in our example, though k = 3 would span a set of divisors of
density 1/q.

The easiest way to find this seems to be to split it into halves. In the case k = 3
we must solve solve (B1 + B2) = −(B3 − D1) using the fact that inverses in the
additive group can be easily understood. To do this we need some kind of ‘addition
formulae’ rather than the addition algorithm for divisors. Such a mechanism was
provided by Spallek [13] in the case of genus two and, as we may assume that our
initial points are generic, the numerous special cases do not arise.

Given the resulting expressions in terms of the variables wi and Yi we hope to
be able to find a solution defined over the ground field. Experiments using Magma
indicate that solving these sorts of equations using Groebner basis techniques re-
quires significant computing resources. We have not been able to pull back a target
divisor for this example.

7. Characteristic Greater than Two

One can also consider Jacobians of curves over fields of characteristic p > 2.
Even for elliptic curves the techniques are not very well developed in the odd
characteristic case, though see Diem [2]. In general we cannot apply the theory of
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Artin-Schreier extensions. Nevertheless, in some cases the Weil descent strategy
can be performed.

7.1. Example Seven. Let θ be the generator of F∗192 which satisfies θ2−θ+2 = 0
(we use Magma for computations and so will represent field elements in terms of
powers of the generator) and consider the genus two curve C : y2 = x5 + x+ θ.

Performing Weil descent as usual gives the two equations

w2
0 = x5 + x+ θ

w2
1 = x5 + x+ θ19.

Subtracting these two equations gives the conic w2
1 = w2

0 + θ150 whose solutions
are parameterised as w1 = θ75(s2 + 1)/(s2 − 1) and w0 = 2θ75s/(s2 − 1). It
therefore follows that the function field F = F192(x, s) contains the function field
F192(x,w0, w1). Indeed, s = (w0+w1+θ75)/(w0+w1−θ75) and so F = F192(x, s) ∼=
F192(x,w0, w1).

One can compute the equation

(10) C : x5(s4 − 2s2 + 1) + x(s4 − 2s2 + 1) + θ181s4 + θ24s2 + θ181 = 0

for the curve corresponding to the field F .
It remains to construct a model for C over F19. This is done by first calculating

the action of Gal(F192/F19) = 〈σ〉 on s by using the fact that σ : w0 7→ w1.
One gets σ(s) =

√
−1(s ±

√
−1)2/(s2 + 1) =

√
−1(s ±

√
−1)/(s ∓

√
−1) (the

choice of sign in the ± depends on the selection of
√
−1; a coherent choice is

σ(s) = (θ270s+ 1)/(s+ θ270)) and one can verify that σ2(s) = s.
It is necessary to find a function Y which is Galois invariant and is such that

F192(x, Y ) ∼= F192(x, s). This can be done by writing Y = (s + b)/(cs + d) with
unknowns b, c, d ∈ F192 and solving for Y σ = Y . One solution is

Y =
s+ θ333

θ233s+ 3
.

It is then clear that F192(x, Y ) ∼= F192(x, s). Substituting into equation (10) yields
the curve

(x5 + x+ 9)(Y 4 + 4Y 2 + 4) + Y 3 − 2Y = 0

over F19. Magma calculates that this curve has genus 8. The ‘ideal’ genus for a
curve arising from a degree two Weil descent of a genus two curve would be 4. It
is probably not significantly easier to solve the discrete logarithm problem on this
genus 8 curves than on the original genus two curve.

8. Conclusions

We have shown that the Weil descent strategy does extend to the higher dimen-
sional situation. For a large class of curves over certain finite fields we obtain a
reduction of the discrete logarithm problem to a computationally easier problem.
Nevertheless, there are many cases of curves and fields for which these techniques
do not seem to apply.
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