Notation

Basic mathematical notation

Ø	The empty set
#S	The number of elements in the finite set S
S-T	Set difference of sets S and T
$\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$	integers, rationals, reals and complex numbers
$\mathbb{N}, \mathbb{Z}_{>0}$	Natural numbers
$\mathbb{Z}/r\mathbb{Z}$	Integers modulo r
\mathbb{F}_q	Finite field of $q = p^m$ elements
$\mathbb{Z}_p^{-}, \mathbb{Q}_p$	p-adic ring, field, where p (sometimes also called l) is a prime.
$\langle g_1, \ldots, g_n \rangle$	Group generated by g_1, \ldots, g_n
(g_1,\ldots,g_n)	Ideal generated over a ring R by $g_1, \ldots, g_n \in R$
$\varphi(n)$	Euler phi function
$\zeta(n)$	Riemann zeta function
$\lambda(N)$	Carmichael lambda function
$a \mid b, a \nmid b$	b is/is not a multiple of a
q_n, r_n	Quotient and remainder in n -th step of Euclidean algorithm
s_n, t_n	Numbers arising in the extended Euclidean algorithm to compute $gcd(a, b)$,
	they satisfy $r_n = as_n + bt_n$
h_n/k_n	Convergents of a continued fraction expansion
$\log_2(x)$	Logarithm to base 2
$\log(x)$	Natural logarithm
[0, 1]	$\{x \in \mathbb{R} : 0 \le x \le 1\}$
\approx	Approximately equal (we do not give a precise definition), such as $\pi \approx 3.1415$
$(a_{l-1}\ldots a_1a_0)_2$	Binary representation of an integer a
$\underline{v}, \underline{w}$	Vectors
<u>0</u>	Zero vector
\underline{e}_i	<i>i</i> -th unit vector
I_n	$n \times n$ identity matrix
$\langle \underline{x}, \underline{x} \rangle$	Inner product
$\ \underline{x}\ $	Euclidean length of a vector (2 norm)
$\ \cdot\ _a$	ℓ_a -norm for $a \in \mathbb{N}$
$\operatorname{span}\{\underline{v}_1,\ldots,\underline{v}_n\}$	Span of a set of vectors
$\operatorname{rank}(A)$	Rank of a matrix A
$M_n(R)$	$n \times n$ matrices over the ring R
$\lfloor x \rfloor$	Round $x \in \mathbb{R}$ down to an integer
$\begin{bmatrix} x \end{bmatrix}$	Round $x \in \mathbb{R}$ up to an integer
$[x], \lfloor x ceil$	Closest integer to x, with $\lfloor 1/2 \rfloor = \lfloor 1/2 \rceil = 1$

Notation for polynomials and fields

	\mathbb{F}_q	F	Sinite field of $q = p^m$ elements
	F(x)	I	rreducible polynomial defining a finite field
	θ	C	Generator of a finite field
	$\operatorname{Tr}_{\mathbb{F}_{q^m}/\mathbb{F}_q}$	Г	race
	$N_{\mathbb{F}_{q^n}/\mathbb{F}_q}$ or N	Ν	Norm map with respect to $\mathbb{F}_{q^n}/\mathbb{F}_q$
	k		Ground field, always assumed to be perfect
	$\operatorname{char}(\Bbbk)$		The characteristic of \Bbbk (either 0 or a prime)
	k		An algebraic closure of \Bbbk
	k′		A field extension of k contained in \overline{k}
	$\operatorname{Gal}(k'/k)$		Galois group if k'/k is Galois
	trdeg		Transcendence degree
	F(x)		Polynomial of degree d
	F'(x)		The derivative of the polynoial $F(x)$
	. ,		
	$R(F,G), R_x(F($		Resultant of polynomials
	$R_1(x), R_i(x), T$		Polynomials arising in polynomial factorisation algorithms of Section 2.12
	$\deg(F(x)), \deg_x$		Degree of polynomial
	$\frac{\deg(f(\underline{x}))}{F}$		Cotal degree of polynomial
			Polynomial in $\mathbb{F}_q[x]$ of degree m defining $\mathbb{F}_{q^m} = \mathbb{F}_q[x]/(F(x))$
	\mathbb{Z}_F		Ring of integers of number field F
	$\operatorname{Cl}(\mathcal{O})$		Class group of order \mathcal{O}
	$h(\mathcal{O})$		Class number of order \mathcal{O}
		-	and complexity
	O(f)		ig O notation
	o(f)	Li	ttle o notation
	$\tilde{O}(f)$	Se	oft O notation
	$\Omega(f)$	Bi	ig Omega notation
	$\Theta(f)$	Bi	ig Theta notation
	\leq_R	Re	eduction
	len(a)	T	he bit-length of a
	$\operatorname{wt}(m)$	T	he Hamming weight of m (number of ones in binary expansion)
	M(n)	T	he cost of multiplication of two n -bit integers
	M(d,q) = M(d	$\log(dq))$ T	he cost of multiplying two degree d polynomials over \mathbb{F}_q
	$s \leftarrow S$	s	$\in S$ chosen according to an (implicit) distribution on S
	$L_N(a,c)$	Su	bexponential function
	O, A	O	racle
Not	ation for al	gebraic ge	eometry
	$G_a(\mathbb{k})$	Additive gro	$\sup_{k} (k, +)$
	$G_m(\mathbb{k})$		ve group $(\mathbb{k}^*, .)$
	mult	-	on map in an algebraic group
	inverse		in an algebraic group
	[g]		ivalence class of g under an automorphism
	\ddot{G}/ψ		/equivalence classes of G under the automorphism ψ
	$\mathbb{A}^{n}(\mathbb{k})$, points (x_1,\ldots,x_n)
	$\mathbb{P}^{n}(\mathbb{k})$	Projective s	pace, points $(x_0 : \dots x_n)$
	$(x_0:\cdots:x_n)$		is coordinate for point of \mathbb{P}^n
	≡		of $(n+1)$ -tuples to define projective space
	<u>x</u>		$(x_n) \in \mathbb{A}^n(\mathbb{k}) \text{ or } (x_0 : \dots : x_n) \in \mathbb{P}^n(\mathbb{k})$
	\overline{X}, Y	Algebraic se	
	X(k)	k-rational po	
	~ /	1	

16

V(I)	Zero set of the ideal I
(S)	Ideal over $\Bbbk[\underline{x}]$ generated by the set S
$I_{\Bbbk}(X), I(X)$	Ideal over \Bbbk corresponding to the algebraic set X over \Bbbk
rad(I)	Radical of the ideal I
$\Bbbk[X]$	Coordinate ring of algebraic set X
$\Bbbk(X)$ m $\Bbbk(C)$	Function field of X (resp. C)
F, K, L	Function field
U_i	Subset of \mathbb{P}^n comprising all points $(x_0 : \cdots : x_n)$ with $x_i \neq 0$
φ_i	Rational map $\varphi_i : \mathbb{A}^n \to \mathbb{P}^n$ with image U_i
φ	Rational map φ_n
φ_i^*	Homogenisation map from $k[y_1, \ldots, y_n]$ to $k[x_0, \ldots, x_n]$
φ_i^{-1}	Rational map $\mathbb{P}^n \to \mathbb{A}^n$
$ \begin{array}{c} \varphi_i^* \\ \varphi_i^{-1} \\ \varphi_i^{-1*} \\ \end{array} $	De-homogenisation $\mathbb{k}[x_0, \dots, x_n] \to \mathbb{k}[y_1, \dots, y_n]$
$X \cap \mathbb{A}^n$	Abbreviation for $\varphi_n^{-1}(X \cap U_n)$
$\frac{X}{\overline{f}} \cap \mathbb{A}^n$	Homogenisation of the polynomial f
$\frac{s}{I}$	Homogenisation of the ideal I
\overline{X}	Projective closure of algebraic set $X \subseteq \mathbb{A}^n$
$\mathcal{O}(X)$	Regular functions on variety X
$\dim(X)$	Dimension of the algebraic variety X
ϕ	Rational map or morphism of varieties
,	A prime ideal of a ring
$\overset{\mathfrak{p}}{S^{-1}R}$	The localitation of a ring with respect to a multiplicative set S
$R_{\mathfrak{p}}$	The localisation of a ring at the prime ideal p
$\mathcal{O}_{P,\Bbbk}^{r}(X), \mathcal{O}_{P}$	Local ring of X at P.
$\mathfrak{m}_{P,\Bbbk}(X),\mathfrak{m}_P$	Maximal ideal of $\mathcal{O}_{P,\Bbbk}(X)$
$J_{X,P}$	Jacobian matrix of $X = V(f_1, \dots, f_m) \subseteq \mathbb{A}^n$ at P
C	Curve
E	Elliptic curve
$C(\Bbbk), E(\Bbbk)$	The k-rational points of C (resp. E)
$\mathcal{O}_E, \mathcal{O}_C$	Point at infinity on a curve
$\iota(P)$	If $P = (x, y)$ then $\iota(P) = (x, -y - a_1x - a_3)$
$v_P(f)$	Valuation of function $f \in k(C)$ at point P
t_P	Uniformizer at P
l(x,y)	Line between points P_1 and P_2 on an elliptic curve
v(x)	Vertical line on an elliptic curve
$\operatorname{Hom}_{\Bbbk}(E_1, E_2), \operatorname{End}_{\Bbbk}(E)$	Homomorphisms/endos of elliptic curves
$T_l(E)$	Tate module of an elliptic curve
$x(P), x_P, y(P), y_P$	Coordinates of the point $P = (x_P, y_P) \in C(\overline{\Bbbk})$
π_q	q-power Frobenius map
P_0	A given k -rational point on a curve
$\Phi_n(x)$	<i>n</i> -th cyclotomic polynomial
$G_{q,n}$	Cyclotomic subgroup of $\mathbb{F}_{q^n}^*$ of order $\Phi_n(q)$
g	An element of $G_{q,n}$
θ	Generator over \mathbb{F}_q of a finite field \mathbb{F}_{q^2}
$\operatorname{Tr}_{\mathbb{F}_{q^n}/\mathbb{F}_q}$ or Tr	Trace map with respect to $\mathbb{F}_{q^n}/\mathbb{F}_q$
\mathbb{T}_n	Algebraic torus
comp	Torus compression function
decomp	Torus decompression function
*	Partial group operation for \mathbb{T}_2

V	Trues of a^n in LUC
$V_n \ U$	Trace of g^n in LUC Humanumfaces in the construction of \mathbb{T}
-	Hypersurface in the construction of \mathbb{T}_6
p_U	Rational parameterisation of the hypersurface U
$\chi_g(x)$	Characteristic polynomial over \mathbb{F}_{q^2} of element of \mathbb{F}_{q^6}
t_n	Trace of g^n in XTR
F(x), H(x)	Polynomials in $\mathbb{k}[x]$ used to define a curve
E(x,y)	Weierstrass equation $y^2 + H(x)y - F(x)$
a_1, a_2, a_3, a_4, a_6	Coefficients of Weierstrass equation
D	Divisor
$\operatorname{div}(f)$	Divisor of the function f
$\operatorname{Supp}(D)$	Support of a divisor
$\operatorname{Div}_{\Bbbk}(C)$	Divisors on C defined over \Bbbk
$\operatorname{Div}^0_{\Bbbk}(C)$	Degree zero divisors on C defined over \Bbbk
$\operatorname{Prin}_{\Bbbk}(C)$	Principal divisors on C
\overline{D}	Divisor class
$\operatorname{Pic}^0_{\Bbbk}(C)$	Degree zero divisor class group of curve C over \Bbbk
	Linear equivalence (i.e., equivalence of divisors)
$v' \mid v$	Extension of valuations
R_v	Valuation ring
\mathfrak{m}_v	Maximal ideal of the valuation
$\mathcal{L}_{\Bbbk}(D)$	Riemann-Roch space for divisor D
$\ell_{\mathbb{k}}(D)$	Dimension of Riemann-Roch space for D
$D \leq D'$	Ordering relation on divisors
DivEff	Set of all effective divisors
$\operatorname{Pic}^d_{\Bbbk}(X)$	Divisor class group (degree d divisor class group of X over the field k)
$\deg_x a(x)$	Degree in x of the polynomial $a(x)$
$\deg(\phi)$	Degree of the morphism ϕ
$\deg(D)$	Degree of the divisor D
ϕ^*	Pullback under a morphism
$\phi \ \phi_*$	Pushforward under a morphism
$g_{\partial E/\partial m}$	genus of curve C Standard partial differentiation of polynomials or rational functions
$\frac{\partial F}{\partial x}$	Standard partial differentiation of polynomials or rational functions D : for a function of C
hdx	Differential on C Set of differentials on C over \Bbbk
$\Omega_{\Bbbk}(C)$	Differential on C
ω	
ω_E	Invariant differential on elliptic curve E
$\operatorname{div}(\omega)$	Divisor of a differential on C
(C, P), (E, O)	A pointed curve, i.e., a curve over k together
	with a specified \mathbb{k} -rational point.
$ au_Q$	Translation map
$\begin{bmatrix} n \end{bmatrix}$	Multiplication by n map on an elliptic curve (or torus or Abelian variety)
E[n]	Points of order dividing n on an elliptic curve
Twist(E)	Set of classes of twists of E
$E^{(d)}$	Quadratic twist of E
$\operatorname{Hom}_{\Bbbk}(E_1, E_2)$	Group of isogenies from E_1 to E_2 over \Bbbk
$\operatorname{End}_{\Bbbk}(E)$	Ring of isogenies from E to itself over \Bbbk
$\ker(\phi)$	Kernel of an isogeny
t_{∞}	Uniformizer on elliptic curve at \mathcal{O}_E
P(T)	Characteristic polynomial of Frobenius

18

$\hat{\phi}$	Dual isogeny
$\deg_{s}(\phi)$	Separable degree
$\deg_i(\phi)$	Inseparable degree
$(Y:X_d:\cdots:X_0)$	Variables for projective non-singular equation of hyperelliptic curve
C^{\dagger}	Image of hyperelliptic curve C under map swapping ∞ and zero
ρ_P	Birational map from hyperelliptic curve taking P to infinity
(u(x),v(x))	Mumford representation for semi-reduced divisors
∞^+,∞^-	Points at infinity on a hyperelliptic curve
$\operatorname{monic}(u(x))$	Monic polynomial obtain by dividing by the leading coefficient
$\operatorname{div}(u(x), y - v(x))$	Greatest common divisor of $\operatorname{div}(u(x))$ and $\operatorname{div}(y - v(x))$
$u^\dagger, v^\dagger, v^\ddagger \ D^\dagger$	Polynomials arising in Cantor reduction and reduction at infinity
D^{\dagger}	Semi-reduced divisor arising from Cantor's reduction
D_{∞}	Effective Divisor on a hyperelliptic curve of degree g with support only at infinity
(u(x),v(x),n)	Divisor div $(u(x), y - v(x)) \cap \mathbb{A}^2 + n(\infty^+) + (g - \deg(u(x)) - n)(\infty^-)$
J_C	Jacobian variety of the curve C
Θ	Mumford theta divisor
L(t)	L-polynomial of the curve C over \mathbb{F}_q
$lpha_i$	Roots of $P(T)$ and reciprocal roots of $L(t)$ for curve C over \mathbb{F}_q
\mathbb{K}/\mathbb{k}	Fields in Weil descent attack

Notation for algorithms in algebraic groups

NAF	Non-adjacent form
w -NAF or NAF $_w$	Width w non-adjacent form
\mathcal{D}	Digit set for an expansion
digit	Function assigning to an integer and integer in \mathcal{D}
weight	Weight of the expansion
$\log_a(h)$	Discrete logarithm problem $(g \in G)$
r	Large prime, the order of $g \in G$
$(mods \ m)$	Modular reduction to signed residue
1	Coefficient -1 in a signed expansion
PH	Pohlig-Hellman algorithm
BSGS	Baby-step-giant-step algorithm
\mathcal{S}_{j}	Sets for representation problem and product DLP
L_j	Lists for generalised birthday algorithm
LSB_m	m least significant bits
MSB_m	m most significant bits, or bits specifying a decomposition of
	the domain into equal partitions
HNP	Hidden number problem

Notation in Chapter 14

(-	An alcohran	o group or	algebraic group	auotiont
17	יה בצבות הוצבות הו		מופכח מוכ פרסטס	UUUUUEIIU
				1

- g An element in an AG or AGQ G, usually of prime order r
- r The prime order of an element g
- h An element in $\langle g \rangle$
- a The discrete logarithm of h with respect to g
- \mathcal{S} A set
- N Size of the set S, or an integer to be factored
- $\pi(X)$ The number of primes $\leq X$

Pr Probability

 $\neg E \qquad \text{Complement of an event } E$

n_S Number of partitions in Pollard walk S Map from G to $\mathbb{Z}/n_S\mathbb{Z}$ $b(g)$ Binary representation of $g \in G$ X Random variable x_i Random walk sequence (a_i, b_i) Representation of walk element $x_i = g^{a_i} h^{b_i}$ (u_j, v_j) Powers of g and h in random walk steps g_j A jump in the random walk steps g_j A jump in the random walkwalkThe random walk function l_t Length of tail of Pollard rho walk l_h Length of cycle (or head) of Pollard rho walk ϵ A small positive real number \mathcal{D} Set of distinguished points n_D Number of bits used to define distinguishing property θ Probability that a random $g \in G$ is a distinguished point N_P Number of processors n Number of steps made by tame kangaroo $type$ Indicator 'tame' or 'wild' s Spacing between starting positions of kangaroos in the same herd N_C Size of generic equivalence class \overline{x} Equivalence class of x \hat{x} Equivalence class of x \hat{x} Equivalence class of x \hat{x} Equivalence server b Start of interval m Mean step size $f: S \rightarrow S$ Function in parallel collision search $f_i: S_i \rightarrow R$ Function in parallel collision search $f_i: S_i \rightarrow R$ Function in parallel meet-in-middle-attack $f(x)$ Function in parallel meet-in-middle-attack <th>l</th> <th>The number of elements sampled from \mathcal{S}</th>	l	The number of elements sampled from \mathcal{S}
$\begin{array}{lll} b(g) & \text{Binary representation of } g \in G \\ X & \text{Random variable} \\ x_i & \text{Random walk sequence} \\ (a_i, b_i) & \text{Representation of walk element } x_i = g^{a_i} h^{b_i} \\ (u_j, v_j) & \text{Powers of } g \text{ and } h \text{ in random walk steps} \\ g_j & \text{A jump in the random walk } \\ walk & \text{The random walk function} \\ l_t & \text{Length of tail of Pollard rho walk} \\ l_h & \text{Length of cycle (or head) of Pollard rho walk} \\ \epsilon & \text{A small positive real number} \\ \mathcal{D} & \text{Set of distinguished points} \\ n_D & \text{Number of bits used to define distinguishing property} \\ \theta & \text{Probability that a random } g \in G \text{ is a distinguished point} \\ N_P & \text{Number of processors} \\ n & \text{Number of steps made by tame kangaroo} \\ \textbf{type} & \text{Indicator 'tame' or 'wild'} \\ s & \text{Spacing between starting positions of kangaroos in the same herd} \\ N_C & \text{Size of generic equivalence class } f x \\ \hat{x} & \text{Equivalence class of } x \\ \hat{x} & \text{Equivalence class representative of class of } x \\ \text{Aut}(G) & \text{Automorphism group of an algebraic group } G \\ b & \text{Start of interval; usually set to 0} \\ w & \text{Length of interval} \\ m & \text{Mean step size} \\ f: S \to S & \text{Function in parallel collision search} \\ f_i: S_i \to \mathcal{R} & \text{Function in meet-in-the-middle-attack} \\ \rho: \mathcal{R} \to I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \\ \end{array}$	n_S	Number of partitions in Pollard walk
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S	Map from G to $\mathbb{Z}/n_S\mathbb{Z}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	b(g)	Binary representation of $g \in G$
$\begin{array}{lll} (a_i,b_i) & \text{Representation of walk element } x_i = g^{a_i}h^{b_i} \\ (u_j,v_j) & \text{Powers of } g \text{ and } h \text{ in random walk steps} \\ g_j & \text{A jump in the random walk} \\ \textbf{walk} & \text{The random walk function} \\ l_t & \text{Length of tail of Pollard rho walk} \\ l_h & \text{Length of cycle (or head) of Pollard rho walk} \\ \epsilon & \text{A small positive real number} \\ \mathcal{D} & \text{Set of distinguished points} \\ n_D & \text{Number of bits used to define distinguishing property} \\ \theta & \text{Probability that a random } g \in G \text{ is a distinguished point} \\ N_P & \text{Number of processors} \\ n & \text{Number of steps made by tame kangaroo} \\ \textbf{type} & \text{Indicator 'tame' or 'wild'} \\ s & \text{Spacing between starting positions of kangaroos in the same herd} \\ N_C & \text{Size of generic equivalence class} \\ \overline{x} & \text{Equivalence class of } x \\ \hat{x} & \text{Equivalence class representative of class of } x \\ \text{Aut}(G) & \text{Automorphism group of an algebraic group } G \\ b & \text{Start of interval; usually set to 0} \\ w & \text{Length of interval} \\ m & \text{Mean step size} \\ f: S \rightarrow S & \text{Function in parallel collision search} \\ f_i: S_i \rightarrow \mathcal{R} & \text{Function in meet-in-the-middle-attack} \\ I & \text{Set } \{0, 1, \dots, N-1\} \\ \sigma_i: I \rightarrow S_i & \text{Function in parallel meet-in-middle-attack} \\ \rho: \mathcal{R} \rightarrow I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \\ \end{array}$		Random variable
	x_i	Random walk sequence
	(a_i, b_i)	Representation of walk element $x_i = g^{a_i} h^{b_i}$
walkThe random walk function l_t Length of tail of Pollard rho walk l_h Length of cycle (or head) of Pollard rho walk ℓ A small positive real number \mathcal{D} Set of distinguished points n_D Number of bits used to define distinguishing property θ Probability that a random $g \in G$ is a distinguished point N_P Number of processors n Number of steps made by tame kangarootypeIndicator 'tame' or 'wild' s Spacing between starting positions of kangaroos in the same herd N_C Size of generic equivalence class \overline{x} Equivalence class of x \hat{x} Equivalence class representative of class of x $Aut(G)$ Automorphism group of an algebraic group G b Start of interval; usually set to 0 w Length of interval m Mean step size $f: S \rightarrow S$ Function in parallel collision search $f_i: S_i \rightarrow \mathcal{R}$ Function in meet-in-the-middle attack I Set $\{0, 1, \dots, N-1\}$ $\sigma_i: I \rightarrow S_i$ Functions in parallel meet-in-middle-attack $\rho: \mathcal{R} \rightarrow I \times 1, 2$ Function in parallel meet-in-middle-attack		Powers of g and h in random walk steps
$\begin{array}{lll} l_t & \mbox{Length of tail of Pollard rho walk} \\ l_h & \mbox{Length of cycle (or head) of Pollard rho walk} \\ \epsilon & \mbox{A small positive real number} \\ \mathcal{D} & \mbox{Set of distinguished points} \\ n_D & \mbox{Number of bits used to define distinguishing property} \\ \theta & \mbox{Probability that a random } g \in G \mbox{ is a distinguished point} \\ N_P & \mbox{Number of processors} \\ n & \mbox{Number of steps made by tame kangaroo} \\ \textbf{type} & \mbox{Indicator 'tame' or 'wild'} \\ s & \mbox{Spacing between starting positions of kangaroos in the same herd} \\ N_C & \mbox{Size of generic equivalence class} \\ \overline{x} & \mbox{Equivalence class of } x \\ \hat{x} & \mbox{Equivalence class representative of class of } x \\ Aut(G) & \mbox{Automorphism group of an algebraic group } G \\ b & \mbox{Start of interval; usually set to 0} \\ w & \mbox{Length of interval} \\ m & \mbox{Mean step size} \\ f: \mathcal{S} \rightarrow \mathcal{S} & \mbox{Function in parallel collision search} \\ f_i: \mathcal{S}_i \rightarrow \mathcal{R} & \mbox{Function in parallel meet-in-middle-attack} \\ I & \mbox{Set } \{0, 1, \dots, N-1\} \\ \sigma_i: I \rightarrow \mathcal{S}_i & \mbox{Function in parallel meet-in-middle-attack} \\ \end{array}$		A jump in the random walk
$\begin{array}{lll} l_h & \mbox{Length of cycle (or head) of Pollard rho walk}\\ \epsilon & \mbox{A small positive real number}\\ \mathcal{D} & \mbox{Set of distinguished points}\\ n_D & \mbox{Number of bits used to define distinguishing property}\\ \theta & \mbox{Probability that a random } g \in G \mbox{ is a distinguished point}\\ N_P & \mbox{Number of processors}\\ n & \mbox{Number of steps made by tame kangaroo}\\ \textbf{type} & \mbox{Indicator 'tame' or 'wild'}\\ s & \mbox{Spacing between starting positions of kangaroos in the same herd}\\ N_C & \mbox{Size of generic equivalence class}\\ \overline{x} & \mbox{Equivalence class of } x\\ \hat{x} & \mbox{Equivalence class representative of class of } x\\ Aut(G) & \mbox{Automorphism group of an algebraic group } G\\ b & \mbox{Start of interval} \\ m & \mbox{Mean step size}\\ f: \mathcal{S} \rightarrow \mathcal{S} & \mbox{Function in parallel collision search}\\ f_i: \mathcal{S}_i \rightarrow \mathcal{R} & \mbox{Function in parallel meet-in-middle-attack}\\ I & \mbox{Set } \{0, 1, \dots, N-1\}\\ \sigma_i: I \rightarrow \mathcal{S}_i & \mbox{Function in parallel meet-in-middle-attack}\\ \end{array}$	walk	The random walk function
$\begin{array}{lll} \epsilon & A \mbox{ small positive real number} \\ \mathcal{D} & Set of distinguished points \\ n_D & Number of bits used to define distinguishing property \\ \theta & Probability that a random g \in G is a distinguished point N_P & Number \mbox{ of processors } n & Number \mbox{ of steps made by tame kangaroo} \\ \mathbf{type} & Indicator 'tame' \mbox{ or 'wild'} \\ s & Spacing between starting positions \mbox{ of kangaroos in the same herd } \\ N_C & Size \mbox{ of generic equivalence class } \\ \overline{x} & Equivalence \mbox{ class of } x \\ \widehat{x} & Equivalence \mbox{ class representative of class of } x \\ Aut(G) & Automorphism \mbox{ group of an algebraic group } G \\ b & Start \mbox{ of interval} \\ m & Mean \mbox{ step size } \\ f: \mathcal{S} \to \mathcal{S} & Function \mbox{ in parallel collision search} \\ f_i: \mathcal{S}_i \to \mathcal{R} & Function \mbox{ in marallel meet-in-middle-attack} \\ I & Set \left\{0, 1, \dots, N-1\right\} \\ \sigma_i: I \to \mathcal{S}_i & Function \mbox{ in parallel meet-in-middle-attack} \\ \rho: \mathcal{R} \to I \times 1, 2 & Function \mbox{ in parallel meet-in-middle-attack} \\ \end{array}$	l_t	Length of tail of Pollard rho walk
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	l_h	Length of cycle (or head) of Pollard rho walk
n_D Number of bits used to define distinguishing property θ Probability that a random $g \in G$ is a distinguished point N_P Number of processors n Number of steps made by tame kangarootypeIndicator 'tame' or 'wild' s Spacing between starting positions of kangaroos in the same herd N_C Size of generic equivalence class \overline{x} Equivalence class of x \hat{x} Equivalence class representative of class of x Aut(G)Automorphism group of an algebraic group G b Start of interval; usually set to 0 w Length of interval m Mean step size $f: S \to S$ Function in parallel collision search $f_i: S_i \to \mathcal{R}$ Function in meet-in-the-middle-attack I Set $\{0, 1, \dots, N-1\}$ $\sigma_i: I \to S_i$ Function in parallel meet-in-middle-attack $\rho: \mathcal{R} \to I \times 1, 2$ Function in parallel meet-in-middle-attack	ϵ	A small positive real number
$\begin{array}{llllllllllllllllllllllllllllllllllll$	${\cal D}$	Set of distinguished points
$\begin{array}{lll} N_P & \text{Number of processors} \\ n & \text{Number of steps made by tame kangaroo} \\ \textbf{type} & \text{Indicator 'tame' or 'wild'} \\ s & \text{Spacing between starting positions of kangaroos in the same herd} \\ N_C & \text{Size of generic equivalence class} \\ \overline{x} & \text{Equivalence class of } x \\ \hat{x} & \text{Equivalence class representative of class of } x \\ \text{Aut}(G) & \text{Automorphism group of an algebraic group } G \\ b & \text{Start of interval; usually set to } 0 \\ w & \text{Length of interval} \\ m & \text{Mean step size} \\ f: S \rightarrow S & \text{Function in parallel collision search} \\ f_i: S_i \rightarrow \mathcal{R} & \text{Function in meet-in-the-middle attack} \\ I & \text{Set } \{0, 1, \dots, N-1\} \\ \sigma_i: I \rightarrow S_i & \text{Function in parallel meet-in-middle-attack} \\ \rho: \mathcal{R} \rightarrow I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \\ \end{array}$	n_D	Number of bits used to define distinguishing property
$\begin{array}{lll} n & \text{Number of steps made by tame kangaroo} \\ \end{type} & \text{Indicator 'tame' or 'wild'} \\ s & \text{Spacing between starting positions of kangaroos in the same herd} \\ \hline N_C & \text{Size of generic equivalence class} \\ \hline \overline{x} & \text{Equivalence class of } x \\ \hline \widehat{x} & \text{Equivalence class representative of class of } x \\ \hline \widehat{x} & \text{Equivalence class representative of class of } x \\ \text{Aut}(G) & \text{Automorphism group of an algebraic group } G \\ b & \text{Start of interval; usually set to 0} \\ w & \text{Length of interval} \\ m & \text{Mean step size} \\ f: \mathcal{S} \rightarrow \mathcal{S} & \text{Function in parallel collision search} \\ f_i: \mathcal{S}_i \rightarrow \mathcal{R} & \text{Function in meet-in-the-middle attack} \\ I & \text{Set } \{0, 1, \dots, N-1\} \\ \hline \sigma_i: I \rightarrow \mathcal{S}_i & \text{Functions in parallel meet-in-middle-attack} \\ \rho: \mathcal{R} \rightarrow I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \\ \end{array}$	θ	Probability that a random $g \in G$ is a distinguished point
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N_P	Number of processors
$\begin{array}{llllllllllllllllllllllllllllllllllll$	n	Number of steps made by tame kangaroo
$\begin{array}{lll} N_C & \text{Size of generic equivalence class} \\ \overline{x} & \text{Equivalence class of } x \\ \widehat{x} & \text{Equivalence class representative of class of } x \\ \text{Aut}(G) & \text{Automorphism group of an algebraic group } G \\ b & \text{Start of interval; usually set to } 0 \\ w & \text{Length of interval} \\ m & \text{Mean step size} \\ f: S \to S & \text{Function in parallel collision search} \\ f_i: S_i \to \mathcal{R} & \text{Function in meet-in-the-middle attack} \\ I & \text{Set } \{0, 1, \dots, N-1\} \\ \sigma_i: I \to S_i & \text{Functions in parallel meet-in-middle-attack} \\ \rho: \mathcal{R} \to I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \end{array}$	type	Indicator 'tame' or 'wild'
$\begin{array}{lll} \overline{x} & & \mbox{Equivalence class of } x \\ \widehat{x} & & \mbox{Equivalence class representative of class of } x \\ \mbox{Aut}(G) & & \mbox{Automorphism group of an algebraic group } G \\ \mbox{b} & & \mbox{Start of interval; usually set to } 0 \\ \mbox{w} & & \mbox{Length of interval} \\ \mbox{m} & & \mbox{Mean step size} \\ \mbox{$f: $\mathcal{S} \to \mathcal{S}$} & & \mbox{Function in parallel collision search} \\ \mbox{$f_i: $\mathcal{S}_i \to \mathcal{R}$} & & \mbox{Function in meet-in-the-middle attack} \\ \mbox{I} & & \mbox{Set } \{0, 1, \dots, N-1\} \\ \mbox{$\sigma_i: $I \to \mathcal{S}_i$} & & \mbox{Functions in parallel meet-in-middle-attack} \\ \mbox{$\rho: $\mathcal{R} \to I \times 1, 2$} & \mbox{Function in parallel meet-in-middle-attack} \\ \end{array}$	s	Spacing between starting positions of kangaroos in the same herd
$ \begin{array}{lll} \hat{x} & & \mbox{Equivalence class representative of class of } x \\ \mbox{Aut}(G) & & \mbox{Automorphism group of an algebraic group } G \\ \mbox{b} & & \mbox{Start of interval; usually set to } 0 \\ \mbox{w} & & \mbox{Length of interval} \\ \mbox{m} & & \mbox{Mean step size} \\ \mbox{f}: \mathcal{S} \rightarrow \mathcal{S} & & \mbox{Function in parallel collision search} \\ \mbox{f}_i: \mathcal{S}_i \rightarrow \mathcal{R} & & \mbox{Function in meet-in-the-middle attack} \\ \mbox{I} & & \mbox{Set } \{0, 1, \dots, N-1\} \\ \mbox{\sigma}_i: I \rightarrow \mathcal{S}_i & & \mbox{Functions in parallel meet-in-middle-attack} \\ \mbox{\rho}: \mathcal{R} \rightarrow I \times 1, 2 & \mbox{Function in parallel meet-in-middle-attack} \\ \end{array} $	N_C	Size of generic equivalence class
Aut(G)Automorphism group of an algebraic group GbStart of interval; usually set to 0wLength of intervalmMean step size $f: S \to S$ Function in parallel collision search $f_i: S_i \to \mathcal{R}$ Function in meet-in-the-middle attackISet $\{0, 1, \dots, N-1\}$ $\sigma_i: I \to S_i$ Functions in parallel meet-in-middle-attack $\rho: \mathcal{R} \to I \times 1, 2$ Function in parallel meet-in-middle-attack	\overline{x}	-
$ \begin{array}{ll} b & \text{Start of interval; usually set to 0} \\ w & \text{Length of interval} \\ m & \text{Mean step size} \\ f: \mathcal{S} \to \mathcal{S} & \text{Function in parallel collision search} \\ f_i: \mathcal{S}_i \to \mathcal{R} & \text{Function in meet-in-the-middle attack} \\ I & \text{Set } \{0, 1, \dots, N-1\} \\ \sigma_i: I \to \mathcal{S}_i & \text{Functions in parallel meet-in-middle-attack} \\ \rho: \mathcal{R} \to I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \\ \end{array} $		
$ \begin{array}{ll} w & \text{Length of interval} \\ m & \text{Mean step size} \\ f: \mathcal{S} \to \mathcal{S} & \text{Function in parallel collision search} \\ f_i: \mathcal{S}_i \to \mathcal{R} & \text{Function in meet-in-the-middle attack} \\ I & \text{Set } \{0, 1, \dots, N-1\} \\ \sigma_i: I \to \mathcal{S}_i & \text{Functions in parallel meet-in-middle-attack} \\ \rho: \mathcal{R} \to I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \\ \end{array} $	()	
$ \begin{array}{ll} m & \text{Mean step size} \\ f: \mathcal{S} \to \mathcal{S} & \text{Function in parallel collision search} \\ f_i: \mathcal{S}_i \to \mathcal{R} & \text{Function in meet-in-the-middle attack} \\ I & \text{Set } \{0, 1, \dots, N-1\} \\ \sigma_i: I \to \mathcal{S}_i & \text{Functions in parallel meet-in-middle-attack} \\ \rho: \mathcal{R} \to I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \\ \end{array} $	b	
$\begin{array}{ll} f: \mathcal{S} \to \mathcal{S} & \text{Function in parallel collision search} \\ f_i: \mathcal{S}_i \to \mathcal{R} & \text{Function in meet-in-the-middle attack} \\ I & \text{Set } \{0, 1, \dots, N-1\} \\ \sigma_i: I \to \mathcal{S}_i & \text{Functions in parallel meet-in-middle-attack} \\ \rho: \mathcal{R} \to I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \end{array}$	w	-
$ \begin{array}{ll} f_i: \mathcal{S}_i \to \mathcal{R} & \text{Function in meet-in-the-middle attack} \\ I & \text{Set } \{0, 1, \dots, N-1\} \\ \sigma_i: I \to \mathcal{S}_i & \text{Functions in parallel meet-in-middle-attack} \\ \rho: \mathcal{R} \to I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \end{array} $		
ISet $\{0, 1, \dots, N-1\}$ $\sigma_i: I \to S_i$ Functions in parallel meet-in-middle-attack $\rho: \mathcal{R} \to I \times 1, 2$ Function in parallel meet-in-middle-attack		
$ \begin{aligned} \sigma_i : I \to \mathcal{S}_i & \text{Functions in parallel meet-in-middle-attack} \\ \rho : \mathcal{R} \to I \times 1, 2 & \text{Function in parallel meet-in-middle-attack} \end{aligned} $	$f_i: \mathcal{S}_i \to \mathcal{R}$	
$\rho: \mathcal{R} \to I \times 1, 2$ Function in parallel meet-in-middle-attack	Ι	
f(x) Function in Pollard rho factoring		
	f(x)	Function in Pollard rho factoring

Notation in Chapter 15

$\Psi(X,Y)$	Number of Y -smooth integers less than X
$f(n) \sim g(n)$	If $\lim_{n \to \infty} f(n)/g(n) = 1$
ho(u)	Dickman-de Bruijn function
T_B	Expected number of trials until a random integer $1 \le x < N$ is B-smooth
$L_N(a,c)$	Subexponential function
${\mathcal B}$	Factor base
В	Bound on primes to define \mathcal{B}
s	Number of elements in factor base \mathcal{B}
I(n)	number of irreducible polynomials of degree n
N(n,b)	number of b -smooth polynomials of degree exactly equal to n
p(n,b)	probability that a uniformly chosen polynomial of degree at most n is b -smooth
$\operatorname{Summ}_n(x_1,\ldots,x_n)$	Summation polynomial

Notation for Part IV	
<u>b, v, w</u>	Row vectors (usually in \mathbb{R}^m)
<u>0</u>	Zero vector in \mathbb{R}^m
\underline{e}_i	<i>i</i> -th unit vector in \mathbb{R}^m
I_n	$n \times n$ identity matrix
$\langle \underline{x}, \underline{x} \rangle$	Inner product
	Euclidean length (ℓ_2 norm)
$\ \cdot\ _a$	ℓ_a -norm for $a \in \mathbb{N}$
$\operatorname{span}\{\underline{v}_1,\ldots,\underline{v}_n\}$	Span of a set of vectors over \mathbb{R}
$\operatorname{rank}(A)$	Rank of a matrix A
$\lfloor x \rceil$	Closest integer to x , $\lfloor 1/2 \rceil = 1$
\overline{B}	Basis matrix for a lattice
L	Lattice
\underline{b}_{i}^{*}	Gram-Schmidt vector arising from ordered basis $\{\underline{b}_1, \ldots, \underline{b}_n\}$
$\mu_{i,j}$	Gram-Schmidt coefficient $\langle \underline{b}_i, \underline{b}_j^* \rangle / \langle \underline{b}_j^*, \underline{b}_j^* \rangle$
B_i	$\ \underline{b}_i^*\ ^2$
λ_i	Successive minima of a lattice
$\det(L)$	Determinant of a lattice
γ_n	Hermite's constant
X	Bound on the size of the entries in the basis matrix L
$B_{(i)}$	$i \times m$ matrix formed by the first <i>i</i> rows of <i>B</i>
d_i	Determinant of matrix of $\langle \underline{b}_j, \underline{b}_k \rangle$ for $1 \leq j, k \leq i$
D	Product of d_i
$\mathcal{P}_{1/2}(B)$	Fundamental domain (parallelepiped) for lattice basis B
F(x), F(x,y)	Polynomial with "small" root
G(x), G(x,y)	Polynomial with "small" root in common with $F(x)$ (resp., $F(x, y)$)
X, Y	Bounds on size of root in Coppersmith's method
b_F	Coefficient vector of polynomial F
$R(F,G), R_x(F(x),G(x))$	Resultant of polynomials
W	Bound in Coppersmith's method
P, R	Constants in noisy Chinese remaindering
$\operatorname{amp}(x)$	The amplitude $gcd(P, x - R)$ in noisy Chinese remaindering
B, B'	Basis matrices for GGH encryption
I_n	$n \times n$ identity matrix
U	Invertible matrix disguising the private key in GGH
$\underline{m}, \underline{e}, \underline{c}$	Message (respectively, error vector, ciphertext) in McEliece or GGH
σ	Entry in error vector in GGH
M	Size of coefficients in message in GGH
<u>S</u>	GGH signature
a_1, \ldots, a_n	Subset sum weights
b_1, \ldots, b_n	Superincreasing sequence $The run is the run instance with r_{\rm eff} \in \{0, 1\}$
$s = \sum_{i=1}^{n} x_i a_i$	The sum in a subset sum instance, with $x_i \in \{0, 1\}$
$\frac{d}{d}$	Density of a subset sum instance P_{a} and P_{a}
π	Permutation of $\{1, \ldots, n\}$ used in the Merkle-Hellman cryptosystem
$\frac{\sigma}{M}$	Vector in Nguyen attack Modulus in Merkle-Hellman knapsack
W	Multiplier in Merkle-Hellman knapsack
U	$W^{-1} \pmod{M}$ in Merkle-Hellman
t	Number of iterations in iterated Merkle-Hellman knapsack
U	rumber of netations in netated metric-fremman knapsack

CONTENTS

Notation for cryptography

10		eryptography
	κ	Security parameter
	Μ	Message space
	PK	Public key space
	SK	Private key space
	С	Ciphertext space
	pk	Public key
	sk	Private key
	m	Message
	$c,(c_1,c_2)$	Ciphertext
	$s,(s_1,s_2)$	Signature
	Enc	Symmetric encryption
	Dec	Symmetric decryption
	g	Element of an algebraic group G
	\perp	Symbol for invalid ciphertext or algorithm failure
	H	Cryptographic hash function
	q_S	Number of signature queries in security proof
	$F(s_1)$	Function used in Elgamal and DSA signatures
	DLP	Discrete logarithm problem
	CDH	Computational Diffie-Hellman problem
	DDH	Decisional Diffie-Hellman problem
	kdf	Key derivation function
	Inverse-DH	Inverse Diffie-Hellman problem $(g, g^a) \mapsto g^{a^{-1}}$
	Static-DH	Static Diffie-Hellman problem
	Strong-DH	Strong Diffie-Hellman problem
	Square-DH	Square Diffie-Hellman problem
	Hash-DH	Hash Diffie-Hellman problem
	Adv	Advantage of an algorithm
	MAC	Message authentication code
	KEM	Key encapsulation mechanism
	DEM	Date encapsulation mechanism
	\mathcal{K}	Key space (for a KEM)
	$\mathcal{X}_{g_1,g_2,h}$	A set used in the security proof of the Cramer-Shoup encryption scheme
	id	Identity of a user
	S	The set of RSA moduli

22

CONTENTS

Notation used in Part VII

E/G	Quotient elliptic curve by subgroup G
$\Phi_d(x,y)$	Modular polynomial
$ ilde{\jmath}$	j-invariant of isogenous curve in Elkies method
$\mathfrak{a}, \mathfrak{b}, \mathfrak{l}$	$\mathcal{O} ext{-ideals}$
$X_{E,\mathbb{F}_q,S}$	Isogeny graph
$E[\mathfrak{l}]$	Kernel of isogeny corresponding to ideal \mathfrak{l}
$\delta_v(S)$	Vertex boundary of a set S in a graph
$\delta_e(S)$	Edge boundary of a set S in a graph
f(D)	Evaluation of function f at divisor D
e_n	Weil pairing
t_n	Tate-Lichtenbaum pairing
\hat{t}_n	Reduced Tate-Lichtenbaum pairing
k(q,n)	Embedding degree
G_1,G_2	Eigenspaces of Frobenius in $E[r]$
T	t-1, used in the ate pairing
$a_T(Q, P)$	Ate pairing