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Rational Maps on Curves and
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The purpose of this chapter is to develop some tools in the theory of algebraic curves
that are needed for the applications (especially, hyperelliptic curve cryptography). The
technical machinery in this chapter is somewhat deeper than the previous one and readers
can skip this chapter if they wish.

The reader should note that the word “curve” in this chapter always refers to a non-
singular curve.

8.1 Rational Maps of Curves and the Degree

Lemma 8.1.1. Let C be a curve over k and f ∈ k(C). One can associate with f a rational
map φ : C → P1 over k by φ = (f : 1). (Indeed, this is a morphism by Lemma 7.3.6.)
Denote by ∞ the constant map ∞(P ) = (1 : 0). Then there is a one-to-one correspondence
between k(C) ∪ {∞} and the set of morphisms φ : C → P1.

Exercise 8.1.2. Prove Lemma 8.1.1.

Note that since k(C) ∪ {∞} is not a field, it does not make sense to interpret the set
of rational maps φ : C → P1 as a field.

Lemma 8.1.3. Let C1 and C2 be curves over k (in particular, non-singular and projec-
tive) and let φ : C1 → C2 be a non-constant rational map over k. Then φ is a dominant
morphism.

Proof: By Lemma 7.3.6, φ is a morphism. By Lemma 5.5.17 and Exercise 5.5.19 we
know that the Zariski closure Z of φ(C1) is an irreducible algebraic set. Suppose Z 6= C2.
We may intersect with an affine space so that Z∩An 6= ∅. It follows that Z∩An 6= C2∩An
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146 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

(otherwise their projective closures are equal and Z = C2). Hence Ik(C2) ( Ik(Z). By
Theorem 5.6.8 it follows that dim(Z) = 0 and so, by Exercise 5.6.6, Z = {P} for some
P ∈ C2(k). �

The notion of degree of a mapping is fundamental in algebra and topology; a degree
d map is “d-to-one on most points”.

Example 8.1.4. Let k be a field of characteristic not equal to 2. The morphism φ :
A1(k) → A1(k) given by φ(x) = x2 is clearly two-to-one away from the point x = 0. We
say that φ has degree 2.

Example 8.1.4 suggests several possible definitions for degree: the first in terms of the
number of pre-images of a general point in the image; the second in terms of the degrees
of the polynomials defining the map. A third definition is to recall the injective field
homorphism φ∗ : k(A1) → k(A1) . One sees that φ∗(k(A1)) = k(x2) ⊆ k(x) and that
[k(x) : k(x2)] = 2. This latter formulation turns out to be a suitable definition for degree.

Theorem 8.1.5. Let C1, C2 be curves over k. Let φ : C1 → C2 be a non-constant rational
map over k. Then k(C1) is a finite algebraic extension of φ∗(k(C2)).

Proof: By Lemma 8.1.3, φ is a dominant morphism and hence by Theorem 5.5.24,
φ∗ : k(C2) → k(C1) is an injective field homorphism. It follows that φ∗(k(C2)) is a
subfield of k(C1). Since φ∗(k(C2)) is isomorphic to k(C2) it has transcendence degree
1. Since k(C1) also has transcendence degree 1 it follows from Theorem A.6.5 that
k(C1)/φ

∗(k(C2)) is an algebraic extension. Finally, k(C1) is a finite algebraic extension
of φ∗(k(C2)) since k(C1) is finitely generated over k. �

Definition 8.1.6. Let φ : C1 → C2 be a non-constant rational map of curves over k.
The degree of φ is [k(C1) : φ

∗(k(C2))].
Let F be a field such that φ∗(k(C2)) ⊂ F ⊂ k(C1) and k(C1)/F is separable and

F/φ∗(k(C2)) is purely inseparable (recall the notion of separability from Section A.6).
The separable degree of φ is degs(φ) = [k(C1) : F ] and the inseparable degree of φ
is degi(φ) = [F : φ∗(k(C2))].

A non-constant rational map of curves is called separable (respectively, inseparable)
if its inseparable (resp., separable) degree is 1.

Example 8.1.7. Let k = Fp. The Frobenius map πp : A1(k) → A1(k) is given by
πp(x) = xp. Since k(A1) = k(x) and π∗

p(k(A
1)) = k(xp) it follows that k(x)/π∗

p(k(A
1)) =

k(x)/k(xp) is inseparable of degree p. Hence degs(πp) = 1 and deg(πp) = degi(πp) = p.
Note that πp is one-to-one on A1(Fp), not p-to-one.

Lemma 8.1.8. Let φ : A1 → A1 be a non-constant morphism over k given by φ(x) = a(x)
for some polynomial a(x) ∈ k[x]. Then deg(φ) = degx(a(x)).

Proof: Let θ = a(x). We have φ∗(k(A1)) = k(θ) ⊆ k(x) and we are required to determine
[k(x) : k(θ)]. We claim the minimal polynomial of x over k(θ) is given by

F (T ) = a(T )− θ.

First, it is clear that F (x) = 0. Second, it follows from Eisenstein’s criteria (see Propo-
sition III.1.14 of [589], Theorem IV.3.1 of [367] or Theorem III.6.15 of [301]), taking for
example the place (i.e., valuation) at infinity in k(θ), that F (T ) is irreducible. Since
degT (F (T )) = degx(a(x)) the result follows. �

Lemma 8.1.9. Let φ : A1 → A1 be a non-constant rational map over k given by φ(x) =
a(x)/b(x) where gcd(a(x), b(x)) = 1. Then deg(φ) = max{degx(a(x)), degx(b(x))}.
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Proof: Let θ = a(x)/b(x) so that φ∗(k(A1)) = k(θ) ⊆ k(x). Since k(θ) = k(1/θ) we
may assume degx(a(x)) ≥ degx(b(x)). If these degrees are equal then one can reduce
the degree of a(x) by using k(a(x)/b(x)) = k((a(x) − cb(x))/b(x)) for a suitable c ∈ k;
replacing θ by 1/θ again we may assume that degx(a(x)) > degx(b(x)). We may also
assume that a(x) and b(x) are monic.

We claim the minimal polynomial of x over k(θ) is given by

F (T ) = a(T )− θb(T ).

To see this, first note that F (x) = 0. Now, a(T )− θb(T ) is irreducible in k[θ, T ] since it
is linear in θ. The irreducibility of F (T ) in k(θ)[T ] then follows from the Gauss Lemma
(see, for example, Lemma III.6.13 of Hungerford [301]). �

Exercise 8.1.10. Let C1 : y2 = x3 and C2 : Y 2 = X over a field k of characteristic not
equal to 2 and consider the map φ : C1 → C2 such that φ(x, y) = (x, y/x). Show that
deg(φ) = 1.

Exercise 8.1.11. Let C1 : y2 = x6+2x2+1 and C2 : Y 2 = X3+2X+1 over a field k of
characteristic not equal to 2 and consider the map φ : C1 → C2 such that φ(x, y) = (x2, y).
Show that deg(φ) = 2.

Exercise 8.1.12. Let C1, C2 and C3 be curves over k and let ψ : C1 → C2 and φ : C2 →
C3 be morphisms over k. Show that deg(φ ◦ ψ) = deg(φ) deg(ψ).

Lemma 8.1.13. Let C1 and C2 be curves over k (in particular, smooth and projective).
Let φ : C1 → C2 be a birational map over k. Then φ has degree 1.

Proof: Write φ−1 for the rational map from C2 to C1 such that φ−1 ◦φ is the identity on
an open subset of C1. Then (φ−1 ◦φ)∗ is the identity map on k(C1) and it also factors as
φ∗ ◦ (φ−1)∗. Since 1 = [k(C1) : (φ

−1 ◦φ)∗k(C1)] = [k(C1) : φ
∗k(C2)][k(C2) : (φ

−1)∗k(C1)]
the result follows. �

For Lemma 8.1.15 (and Lemma 8.2.6) we need the following technical result. This is
a special case of weak approximation; see Stichtenoth [589] for a presentation that uses
similar techniques to obtain most of the results in this chapter.

Lemma 8.1.14. Let C be a curve over k and let Q,Q′ ∈ C(k) be distinct points. Then
there is a function f ∈ k(C) such that vQ(f) = 0 and vQ′(f) > 0.

Proof: By Lemma 7.1.19 we have OQ′,k 6⊆ OQ,k (and vice versa). Hence, there exists a
function u ∈ OQ,k − OQ′,k. Then vQ(u) ≥ 0 while vQ′ (u) < 0. If u(Q) = −1 then set

f = 1/(1 + u2) else set f = 1/(1 + u). Then vQ(f) = 0 and vQ′(f) > 0 as required. �

Lemma 8.1.15. Let C1 and C2 be curves over k (in particular, smooth and projective).
Let φ : C1 → C2 be a rational map over k of degree 1. Then φ is an isomorphism.

Proof: Since φ has degree 1 it follows that φ∗(k(C2)) = k(C1) and so k(C2) ∼= k(C1).
The inverse of φ∗ induces a rational map φ−1 : C2 → C1. Since C1 and C2 are non-
singular and projective it follows from Lemma 7.3.6 that φ : C1 → C2 and φ−1 : C2 → C1

are actually morphisms. It follows that φ−1 ◦ φ : C1 → C1 and φ ◦ φ−1 : C2 → C2 are
morphisms.

It remains to show that these maps are both the identity. Without loss of generality
we consider ψ = φ−1 ◦ φ. Suppose for contradiction that there are points P,Q ∈ C1(k)
such that ψ(P ) = Q 6= P . There exists a function f on C1 such that f(P ) = 0 and
f(Q) 6= 0 (see Lemma 8.1.14). But ψ∗ is the identity map on k(C1). Hence ψ∗(f) = f .
But ψ∗(f) = f ◦ ψ and so 0 = f(P ) = (f ◦ ψ)(P ) = f(Q) 6= 0, which is a contradiction.
�
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8.2 Extensions of Valuations

Let φ : C1 → C2 be a non-constant morphism of curves over k. Then F1 = k(C1) is a
finite extension of F2 = φ∗(k(C2)). We now study the preimages of points Q ∈ C2(k)
under φ and a notion of multiplicity of preimages of Q (namely, ramification indices).
The main result is Theorem 8.2.12.

There are several approaches to these results in the literature. One method, which
unifies algebraic number theory and the theory of curves, is to note that if U is an open
subset of C then k[U ] is a Dedekind domain. The splitting of the maximal idealmQ of k[U ]
(for Q ∈ U) in the integral closure of φ∗(k[U ]) in k(C1) yields the results. Details of this
approach are given in Section VII.5 of Lorenzini [394], Section I.4 of Serre [542] (especially
Propositions I.10 and I.11), Chapter 1 of Lang [365] and Chapter XII of Lang [367]. An
analogous ring-theoretic formulation is used in Proposition II.6.9 of Hartshorne [278].
A different method is to study extensions of valuations directly, for example see Section
III.1 of Stichtenoth [589]. Note that, since we consider points over k, the notion of residue
degree does not arise, which simplifies the presentation compared with many texts.

Definition 8.2.1. Let F2 be a field of transcendence degree 1 over k. Let F1/F2 be a
finite extension. Let v be a discrete valuation on F2. A valuation v′ on F1 is an extension
of v (or, v is the restriction of v′) if {f ∈ F2 : v(f) ≥ 0} = {f ∈ F2 : v′(f) ≥ 0}. We
write v′ | v if this is the case.

Note that if v′ is an extension of v as above then one does not necessarily have
v′(f) = v(f) for all f ∈ F2 (indeed, we will see later that v′(f) = ev(f) for some e ∈ N).

Lemma 8.2.2. Let F1/F2 be a finite extension and let v′ | v be valuations on F1 and
F2 respectively. Then Rv is a subring of Rv′ , Rv = Rv′ ∩ F2 and mv = mv′ ∩ F2. In
particular, for f ∈ F2, v(f) = 0 if and only if v′(f) = 0.

Exercise 8.2.3. Prove Lemma 8.2.2.

Theorem 8.2.4. Let F1/F2 be a finite extension of fields and let v be a valuation on F2.
Then there is at least one (and only finitely many) valuation v′ of F1 such that v′ | v.

Proof: See Theorem XII.4.1 and Corollary XII.4.9 of Lang [367] or Proposition III.1.7(b)
of Stichtenoth [589]. �

Let φ : C1 → C2 be a morphism of curves and let F2 = φ∗(k(C2)) and F1 = k(C1). We
now explain the relation between extensions of valuations from F2 to F1 and pre-images
of points under φ.

Lemma 8.2.5. Let φ : C1 → C2 be a non-constant morphism of curves over k (this is
short-hand for C1, C2 and φ all being defined over k). Let P ∈ C1(k) and Q ∈ C2(k).
Denote by v the valuation on φ∗(k(C2)) ⊆ k(C1) defined by v(φ∗(f)) = vQ(f) for f ∈
k(C2). If φ(P ) = Q then vP is an extension of v.

Proof: Let f ∈ k(C2). Since φ(P ) = Q we have φ∗(f) = f ◦ φ regular at P if and only if
f is regular at Q. Hence vP (φ

∗(f)) ≥ 0 if and only if vQ(f) ≥ 0. It follows that vP | v. �

Lemma 8.2.6. Let the notation be as in Lemma 8.2.5. In particular, P ∈ C1(k), Q ∈
C2(k), vP is the corresponding valuation on F1 = k(C1) and v is the valuation on φ∗(k(C2))
corresponding to vQ on k(C2). Then vP | v implies φ(P ) = Q.

Proof: Suppose φ(P ) = Q′ 6= Q. By Lemma 8.1.14 there is some f ∈ k(C2) such that
f(Q) 6= 0 and f(Q′) = 0. Then 0 = vQ(f) = v(φ∗(f)) = vP (φ

∗(f)) (the last equality
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by Lemma 8.2.2 and since vP | v). But φ∗(f)(P ) = f ◦ φ(P ) = f(Q′) = 0, which is a
contradiction. �

In other words, Lemmas 8.2.5 and 8.2.6 show that φ(P ) = Q if and only if the maximal
ideal mP in OP ⊆ k(C1) contains φ

∗(mQ) where mQ is the maximal ideal in OQ ⊆ k(C2).
This is the connection between the behaviour of points under morphisms and the splitting
of ideals in Dedekind domains.

We already know that a non-constant morphism of curves is dominant, but the next
result makes the even stronger statement that a morphism is surjective.

Theorem 8.2.7. Let C1 and C2 be curves over k (in particular, they are projective and
non-singular). Let φ : C1 → C2 be a non-constant morphism of curves over k. Then φ is
surjective from C1(k) to C2(k).

Proof: Let Q ∈ C2(k) and let v be the corresponding valuation on φ∗(k(C2)). By
Theorem 8.2.4 there is a valuation v′ on k(C1) that extends v. Theorem 7.5.2 shows that
v′ = vP for some P ∈ C1(k). Finally, Lemma 8.2.6 shows that φ(P ) = Q. �

Definition 8.2.8. Let C1 and C2 be curves over k and let φ : C1 → C2 be a non-constant
rational map over k. Let P ∈ C1(k). The ramification index of φ at P is

eφ(P ) = vP (φ
∗(tφ(P )))

where tφ(P ) is a uniformizer on C2 at φ(P ). If eφ(P ) = 1 for all P ∈ C1(k) then φ is
unramified.

We now show that this definition agrees with Definition III.1.5 of Stichtenoth [589].

Lemma 8.2.9. Let φ : C1 → C2 be a non-constant morphism of curves over k. Let
P ∈ C1(k), Q = φ(P ) ∈ C2(k) and f ∈ k(C2). Then

vP (φ
∗(f)) = eφ(P )vQ(f).

Proof: Let vQ(f) = n and write f = tnQh for some h ∈ k(C2) such that h(Q) 6= 0.
Then φ∗(f) = φ∗(tQ)nφ∗(h) and vP (φ

∗(h))) = 0. The result follows since vP (φ
∗(tQ)n) =

nvP (φ
∗(tQ)). �

Exercise 8.2.10. Let φ : C1 → C2 be a non-constant rational map of curves over k. Let
P ∈ C1(k), Q = φ(P ), and suppose eφ(P ) = 1. Show that t ∈ k(C2) is a uniformizer at
Q if and only if φ∗(t) is a uniformizer at P .

Exercise 8.2.11. Let φ : C1 → C2 be an isomorphism of curves over k. Show that φ is
unramified.

The following result is of fundamental importance.

Theorem 8.2.12. Let C1 and C2 be curves over k and let φ : C1 → C2 be a non-constant
rational map over k. Then for all Q ∈ C2(k) we have

X

P∈C1(k):φ(P )=Q

eφ(P ) = deg(φ).

Proof: As mentioned above, one can see this by noting that φ∗(OQ) and φ∗(k[U ]) (for
an open set U ⊆ C2 with Q ∈ U) are Dedekind domains and studying the splitting of
mQ in their integral closures in k(C1). For details see any of Proposition 1.10 and 1.11
of Serre [542], Corollary XII.6.3 of Lang [367], Proposition I.21 of Lang [365], Theorem
III.3.5 of Lorenzini [394], Proposition II.6.9 of Hartshorne [278], or Theorem III.1.11 of
Stichenoth [589]. �
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Corollary 8.2.13. If φ : C1 → C2 is a rational map of degree d and Q ∈ C2(k) then
there are at most d points P ∈ C1(k) such that φ(P ) = Q.

Furthermore, if φ is separable then there is an open subset U ⊆ C2 such that for all
Q ∈ U one has #φ−1(Q) = d.

Proof: The first statement is immediate. The second follows by choosing U to be the
complement of points corresponding to factors of the discriminant of k(C1)/φ

∗(k(C2));
see Proposition VII.5.7 of Lorenzini [394]. �

Example 8.2.14. Consider φ : A1 → A1 given by φ(x) = x2 as in Example 8.1.4. This
extends to the morphism φ : P1 → P1 given by φ((x : z)) = (x2/z2 : 1), which is regular
at ∞ = (1 : 0) via the equivalent formula (1 : z2/x2). One has φ−1((a : 1)) = {(√a :
1), (−√

a : 1)}, φ−1((0 : 1)) = {(0 : 1)} and φ−1((1 : 0)) = {(1 : 0)}. At a point
Q = (a : 1) with a 6= 0 one has uniformizer tQ = x/z − a and

φ∗(tQ) = x2/z2 − a = (x/z −√
a)(x/z +

√
a).

Writing P = (
√
a : 1) one has φ(P ) = Q and eφ(P ) = 1. However, one can verify that

eφ((0 : 1)) = eφ((1 : 0)) = 2.

Lemma 8.2.15. Let φ : C1 → C2 and ψ : C2 → C3 be non-constant morphisms of curves
over k. Let P ∈ C1(k). Then eψ◦φ(P ) = eφ(P )eψ(φ(P )).

Exercise 8.2.16. Prove Lemma 8.2.15.

Exercise 8.2.17. Let φ : C1 → C2 be defined over k. Let P ∈ C1(k) and let σ ∈
Gal(k/k). Show that eφ(σ(P )) = eφ(P ).

8.3 Maps on Divisor Classes

We can now define some important maps on divisors that will be used in several proofs
later. In particular, this will enable an elegant proof of Theorem 7.7.11 for general curves.

Definition 8.3.1. Let φ : C1 → C2 be a non-constant morphism over k. Define the
pullback

φ∗ : Divk(C2) → Divk(C1)

as follows. ForQ ∈ C2(k) define φ∗(Q) =
P

P∈φ−1(Q) eφ(P )(P ) and extend φ∗ to Divk(C2)
by linearity, i.e.,

φ∗


 X

Q∈C2(k)

nQ(Q)


 =

X

Q∈C2(k)

nQφ
∗(Q).

Note that, since Divk(C2) and Divk(C1) are not varieties, it does not make sense to
ask whether φ∗ is a rational map or morphism.

Example 8.3.2. Consider φ : A1 → A1 given by φ(x) = x2. Let D = (0) + (1) be a
divisor on A1. Then φ∗(D) = 2(0) + (1) + (−1).

Let φ : C1 → C2 be a non-constant morphism over k and let P ∈ C2(k). Then
the divisor φ∗(P ) is also called the conorm of P with respect to k(C1)/φ

∗(k(C2)) (see
Definition III.1.8 of Stichtenoth [589]).

Lemma 8.3.3. Let C be a curve over k and let f ∈ k(C)∗ be a non-constant rational
function. Define the rational map φ : C → P1 by φ = (f : 1) (in future we will write f
instead of φ). Then φ is a morphism and div(f) = φ∗((0 : 1)− (1 : 0)).
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Proof: That φ is a morphism follows from Lemma 7.3.6. Let P ∈ C(k) be such that
f(P ) = 0 (i.e., φ(P ) = (0 : 1)). We prove that vP (f) = eφ(P ). Recall that t = x/z is a
uniformizer at (0 : 1). By definition, eφ(P ) = vP (t ◦ φ). Now t ◦ φ = x(f : 1)/z(f : 1) =
f/1 = f . Hence, eφ(P ) = vP (f). One handles poles of f analogously using the formula
eφ(P ) = vP (1/f). �

There is a natural map φ∗ on divisors that is called the pushforward (it is called the
divisor-norm map in Section VII.7 of Lorenzini [394]).

Definition 8.3.4. Let φ : C1 → C2 be a non-constant morphism of curves. Define the
pushforward

φ∗ : Divk(C1) → Divk(C2)

by φ∗(P ) = φ(P ) and extend to the whole of Divk(C1) by linearity.

It remains to find a map from k(C1) to k(C2) that corresponds (in the sense of property
4 of Theorem 8.3.8) to the pushforward. This is achieved using the norm map with respect
to the extension k(C1)/φ

∗(k(C2)). As we will show in Lemma 8.3.13 this norm satisfies,
for f ∈ k(C1) and Q ∈ C2(k), Nk(C1)/φ∗(k(C2))(f)(Q) =

Q
φ(P )=Q f(P )eφ(P ).

Definition 8.3.5. Let C1, C2 be curves over k and let φ : C1 → C2 be a non-constant
rational map. Let Nk(C1)/φ∗k(C2) be the usual norm map in field theory (see Section A.6).
Define

φ∗ : k(C1) → k(C2)

by φ∗(f) = (φ∗)−1(Nk(C1)/φ∗(k(C2))(f)).

Note that the definition of φ∗(f) makes sense since Nk(C1)/φ∗k(C2)(f) ∈ φ∗(k(C2)) and
so is of the form h ◦ φ for some h ∈ k(C2). So φ∗(f) = h.

Example 8.3.6. Let C1 = C2 = A1 and φ : C1 → C2 be given by φ(x) = x2. Then
φ∗(k(C2)) = k(x2) and k(C1) = φ∗(k(C2))(x). Let f(x) = x2/(x− 1). Then

Nk(C1)/φ∗k(C2)(f) = f(x)f(−x) =
x2

(x− 1)

(−x)2

(−x− 1)
=

x4

−x2 + 1
,

which is h ◦ φ for h(X) = X2/(1−X). Hence φ∗(f(x)) = −f(x).

Exercise 8.3.7. Let C1 = V (y2 = x2 + 1) ⊆ A2, C2 = A1 and let φ : C1 → C2 be given
by φ(x, y) = x. Let f(x, y) = x/y. Show that

Nk(C1)/φ∗k(C2)(f) =
−x2

x2 + 1

and so φ∗(f) = h(X) where h(X) = −X2/(X2 + 1).

We now state the main properties of the pullback and pushforward.

Theorem 8.3.8. Let φ : C1 → C2 be a non-constant morphism of curves over k. Then

1. deg(φ∗(D)) = deg(φ) deg(D) for all D ∈ Div(C2).

2. φ∗(div(f)) = div(φ∗f) for all f ∈ k(C2)
∗.

3. deg(φ∗(D)) = deg(D) for all D ∈ Div(C1).

4. φ∗(div(f)) = div(φ∗(f)) for all f ∈ k(C1)
∗.

5. φ∗(φ∗(D)) = deg(φ)D for D ∈ Div(C2).
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6. If ψ : C2 → C3 is another non-constant rational map of curves over k then (ψ◦φ)∗ =
φ∗ ◦ ψ∗ and (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

Proof: (Sketch)

1. Follows from Theorem 8.2.12.

2. Follows from Lemma 8.2.9.

3. Follows directly from the definition.

4. First note that

φ∗(div(f)) =
X

P∈C1(k)

vP (f)(φ(P )) =
X

Q∈C2(k)


 X

P∈C1(k):φ(P )=Q

vP (f)


 (Q).

To complete the proof it suffices to show that
P

P∈C1(k):φ(P )=Q vP (f) = vQ(φ∗(f)).
This requires some theory that has not been presented in the book, so we sketch
the details here.

Write L = k(C1), K = φ∗(k(C2)) ⊆ L. Fix Q ∈ C2(k) and write v for the
valuation on K corresponding to vQ on k(C2). Write A = φ∗(OQ,k(C2)) ⊆ K,
which is a Dedekind domain, and let B be the integral closure of A in L. Write m

for the maximal ideal of A corresponding to mQ,k(C2). If P ∈ C1(k) is such that
φ(P ) = Q then m = mP,k(C1) ∩A. Suppose first that L/K is Galois. Then for any
B-ideal I one can define the norm NL/K(I) =

Q
σ∈Gal(L/K) σ(I). Lemma IV.6.4

of Lorenzini [394] implies that NL/K(mP,k(C1)) = m. When L/K is not Galois
then one can define NL/K by NL/K(mP,k(C1)) = m. Proposition IV.6.9 of [394]
shows (also see Proposition I.22 of [365] in the case when L/K is separable) that
NL/K((f)) = (NL/K(f)), where (f) denotes the principal B-ideal generated by f
and where NL/K(f) denotes the usual field-theoretic norm. Since

NL/K((f)) =
Y

mP⊇m

m
vP (f)
P and (NL/K(f)) = mv(NL/K(f))

(where the latter are A-ideals) the result follows.

5. Follows easily from Theorem 8.2.12.

6. The first statement follows from Lemma 8.2.15 and the second is straightforward
from the definition.

�

Exercise 8.3.9. Give all the details in the proof of Theorem 8.3.8.

Corollary 8.3.10. Let φ : C1 → C2 be a non-constant morphism of curves over k. Then
the induced maps φ∗ : Pic0k(C2) → Pic0k(C1) and φ∗ : Pic0k(C1) → Pic0k(C2) on divisor
class groups are well-defined group homomorphisms.

Proof: The maps φ∗ and φ∗ are well-defined on divisor classes by parts 2 and 4 of
Theorem 8.3.8. The homomorphic property follows from the linearity of the definitions.
�

Exercise 8.3.11. Show that if φ : C1 → C2 is an isomorphism of curves over k then
Pic0k(C1) ∼= Pic0k(C2) (isomorphic as groups). Give an example to show that the converse
is not true.
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A further corollary of this result is that a rational map φ : E1 → E2 between elliptic
curves such that φ(OE1) = OE2 is automatically a group homomorphism (see Theo-
rem 9.2.1).

Exercise 8.3.12. Let φ : P1 → P1 be defined by φ((x : z)) = (x2/z2 : 1). Let D = (−1 :
1) + (1 : 0)− (0 : 1). Compute φ∗(D), φ∗(D), φ∗φ∗(D) and φ∗φ∗(D).

We now make an observation that was mentioned when we defined φ∗ on k(C1).

Lemma 8.3.13. Let φ : C1 → C2 be a non-constant morphism of curves over k. Let
f ∈ k(C1)

∗ and Q ∈ C2(k). Suppose that vP (f) = 0 for all points P ∈ C1(k) such that
φ(P ) = Q. Then

Nk(C1)/φ∗(k(C2))(f)(Q) =
Y

P∈C1(k):φ(P )=Q

f(P )eφ(P ).

(Later in the book we will introduce the notation f(φ∗(Q)) for the right hand side.) An-
other formulation would be “f of conorm of Q equals norm of f at Q”.

Proof: (Sketch) This uses similar ideas to the proof of part 4 of Theorem 8.3.8. We work
over k.

As always, k(C1) is a finite extension of φ∗(k(C2)). Let A = φ∗(OQ(C2)) and let B be
the integral closure of A in k(C1). Then B is a Dedekind domain and the ideal φ∗(mQ)

splits as a product
Q

i m
eφ(Pi)
Pi

where Pi ∈ C1(k) are distinct points such that φ(Pi) = Q.

By assumption, f has no poles at Pi and so f ∈ B. Note that f(Pi) = ci ∈ k if and
only if f ≡ ci (mod mPi). Hence, the right hand side is

Y

i

f(Pi)
eφ(Pi) =

Y

i

c
eφ(Pi)
i =

Y

i

(f (mod mPi))
eφ(Pi).

It remains to prove that this is equal to the norm of f evaluated at Q and we sketch
this when the extension is Galois and cyclic (the general case is simple linear algebra).
The elements σ ∈ Gal(k(C1)/φ

∗(k(C2))) permute the mPi and the ramification indices
eφ(Pi) are all equal. Since ci ∈ k ⊂ φ∗(k(C2)) we have f ≡ ci (mod mPi) if and only if
σ(f) ≡ ci (mod σ(mPi)). Hence

Nk(C1)/φ∗(k(C2))(f) =
Y

σ∈Gal(k(C1)/φ∗(k(C2)))

σ(f) ≡
Y

i

c
eφ(Pi)
i (mod mP1)

and since Nk(C1)/φ∗(k(C2))(f) ∈ φ∗(k(C2)) this congruence holds modulo φ∗(mQ). The
result follows. �

We now give an important application of Theorem 8.3.8, already stated as Theo-
rem 7.7.11.

Theorem 8.3.14. Let C be a curve over k and let f ∈ k(C)∗. Then f has only finitely
many zeroes and poles (i.e., div(f) is a divisor) and deg(div(f)) = 0.

Proof: Let D = (0 : 1)− (1 : 0) on P1. Interpreting f as a rational map f : C → P1 as
in Lemma 8.1.1 we have div(f) = f∗(D) and, by part 1 of Theorem 8.3.8, deg(f∗(D)) =
deg(f) deg(D) = 0. One also deduces that f has, counting with multiplicity, deg(f) poles
and zeroes. �

Exercise 8.3.15. Let φ : C1 → C2 be a rational map over k. Show that if D ∈ Divk(C1)
(respectively, D ∈ Divk(C2)) then φ∗(D) (resp., φ∗(D)) is defined over k.
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8.4 Riemann-Roch Spaces

Definition 8.4.1. Let C be a curve over k and let D =
P

P nP (P ) be a divisor on C.
The Riemann-Roch space of D is

Lk(D) = {f ∈ k(C)∗ : vP (f) ≥ −nP for all P ∈ C(k)} ∪ {0}.

We denote Lk(D) by L(D).

Lemma 8.4.2. Let C be a curve over k and let D be a divisor on C. Then

1. Lk(D) is a k-vector space.

2. D ≤ D′ implies Lk(D) ⊆ Lk(D
′).

3. Lk(0) = k, Lk(D) = {0} if deg(D) < 0.

4. Let P0 ∈ C(k). Then dimk(Lk(D+P0)/Lk(D)) ≤ 1 and if D′ ≥ D then dimk(Lk(D
′)/Lk(D)) ≤

deg(D′)− deg(D).

5. Lk(D) is finite dimensional and if D = D+−D−, where D+, D− are effective, then
dimk Lk(D) ≤ deg(D+) + 1.

6. If D′ = D + div(f) for some f ∈ k(C)∗ then Lk(D) and Lk(D
′) are isomorphic as

k-vector spaces.

Proof: (Sketch)

1. Straightforward from the definition and part 3 of Lemma 7.4.14.

2. Write D =
P

P∈C(k) nP (P ) and D′ =
P

P n′
P (P ). Then D ≤ D′ implies nP ≤ n′

P .

If f ∈ Lk(D) then vP (f) ≥ −nP ≥ n′
P and so f ∈ Lk(D

′).

3. Clearly k ⊆ Lk(0). The converse follows from Corollary 7.7.13. The second state-
ment follows since deg(div(f)) = 0.

4. Write D =
P

P∈C(k) nP (P ). Note that Lk(D) is a k-vector subspace of Lk(D+P0).

Let t ∈ k(C)∗ be a function such that vP0 (f) = nP0 + 1 (e.g., take t to be a power
of a uniformizer at P0). If f ∈ Lk(D + P0) then ft ∈ OP,k(C). We therefore have
a k-linear map ψ : Lk(D + P0) → k given by ψ(f) = (ft)(P0). The kernel of ψ is
Lk(D) and the first part of the statement follows. The second statement follows by
induction.

5. First, note that Lk(D) ⊆ Lk(D+). We then compute dimk Lk(D+) = 1+dimk(Lk(D+)/Lk(0)).
By the previous part this is ≤ 1 + deg(D+)− deg(0) = 1 + deg(D+).

6. The linear map Lk(D) → Lk(D
′) is given by h 7→ h/f .

�

Exercise 8.4.3. Fill in the gaps in the proof of Lemma 8.4.2.

Exercise 8.4.4. Let D =
P

P∈C(k) nP (P ) be a divisor on C. Explain why {f ∈ k(C)∗ :

vP (f) = nP for all P ∈ C(k)} ∪ {0} is not usually a k-vector space.

Definition 8.4.5. Let C be a curve over k and let D be a divisor on C. Define

ℓk(D) = dimk Lk(D).

Write ℓ(D) = ℓk(D).
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Exercise 8.4.6. Show that ℓk(0) = 1 and, for f ∈ k(C), ℓk(div(f)) = 1.

Theorem 8.4.7. (Riemann’s theorem) Let C be a curve over k (in particular, non-
singular and projective) . Then there exists a unique minimal integer g such that, for all
divisors D on C over k

ℓk(D) ≥ deg(D) + 1− g.

Proof: See Proposition I.4.14 of Stichtenoth [589], Section 8.3 (page 196) of Fulton [216]
or Theorem 2.3 of Moreno [439]. �

Definition 8.4.8. The number g in Theorem 8.4.7 is called the genus of C.

Note that the genus is independent of the model of the curve C and so one can associate
the genus with the function field or birational equivalence class of the curve.

Exercise 8.4.9. Show that on P1 over k one has ℓk(D) = deg(D) + 1 for all divisors D
and so the genus of P1 is zero. Note that if D is defined over k then ℓk(D) = deg(D) + 1
too. (More results about genus zero are given in Section 8.6.)

Exercise 8.4.10. Let k be a field and let E : y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6 be

an elliptic curve over k. Determine the spaces Lk(nOE) and their dimensions ℓk(nOE)
for n = 0, 1, 2, 3, 4, 5, 6.

Remark 8.4.11. We give an alternative justification for Remark 5.4.14. Suppose f ∈
k(C) is such that σ(f) = f for all σ ∈ Gal(k/k). WriteD = div(f). Note that D is defined
over k. Then f ∈ Lk(D), which has dimension 1 by Exercise 8.4.6. Now, performing the
Brill-Noether proof of Riemann’s theorem (e.g., see Section 8.5 of Fulton [216]) one can
show that Lk(D) contains a function h ∈ k(C). It follows that div(h) = D and that
f = ch for some c ∈ k. Hence Theorem 7.8.3 is proved.

8.5 Derivations and Differentials

Differentials arise in differential geometry: a manifold is described by open patches home-
omorphic to Rn (or Cn for complex manifolds) with coordinate functions x1, . . . , xn and
the differentials dxi arise naturally. It turns out that differentials can be described in a
purely formal way (i.e., without reference to limits).

When working over general fields (such as finite fields) it no longer makes sense to
consider differentiation as a process defined by limits. But the formal description of
differentials makes sense and the concept turns out to be useful.

We first explain how to generalise partial differentiation to functions on curves. We can
then define differentials. Throughout this section, if F (x, y) is a polynomial or rational
function then ∂F/∂x denotes standard undergraduate partial differentiation.

Definition 8.5.1. Let C be a curve over k. A derivation on k(C) is a k-linear map
(treating k(C) as a k-vector space) δ : k(C) → k(C) such that δ(f1f2) = f1δ(f2)+f2δ(f1).

Lemma 8.5.2. Let δ : k(C) → k(C) be a derivation. Then

1. If c ∈ k then δ(c) = 0.

2. If x ∈ k(C) and n ∈ Z then δ(xn) = nxn−1δ(x).

3. If char(k) = p and x ∈ k(C) then δ(xp) = 0.

4. If h ∈ k(C) then δ′(f) = hδ(f) is a derivation.
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5. If x, y ∈ k(C) then δ(x/y) = (yδ(x)− xδ(y))/y2.

6. If x, y ∈ k(C) and F (u, v) ∈ k[u, v] is a polynomial then δ(F (x, y)) = (∂F/∂x)δ(x)+
(∂F/∂y)δ(y).

Exercise 8.5.3. Prove Lemma 8.5.2.

Definition 8.5.4. Let C be a curve over k. A function x ∈ k(C) is a separating
element (or separating variable) if k(C) is a finite separable extension of k(x).

Note that if x ∈ k(C) is such that x 6∈ k then k(C)/k(x) is finite; hence the non-trivial
condition is that k(C)/k(x) is separable.

Example 8.5.5. For P1(Fp), x is a separating element (since k(P1) = k(x)) and xp is not
a separating element (since k(P1)/k(xp) = k(x)/k(xp) is not separable). The mapping
δ(f) = ∂f/∂x is a derivation.

The following exercise shows that separating elements exist for elliptic and hyperel-
liptic curves. For general curves we need Lemma 8.5.7.

Exercise 8.5.6. Let k be any field and let C be a curve given by an equation of the
form y2 + H(x)y = F (x) with H(x), F (x) ∈ k[x]. Show that if either H(x) 6= 0 or if
char(k) 6= 2 then x is a separating element of k(C).

Lemma 8.5.7. Let C be a curve over k, where k is a perfect field. Then there exists a
separating element x ∈ k(C).

Proof: Let L = k(x1, . . . , xn) be any field extension of transcedence degree 1 of a
perfect field k. We show that L is a separable extension of k(x) for some x. First,
note that either {x1, . . . , xn} is algebraically dependent (and so there is a polynomial
F (x1, . . . , xn) = 0 of minimal degree, hence irreducible), or else L = k(x1) and we’re
done. In the former case, write F =

P
i fimi where fi ∈ k and mi are monomials in

x1, . . . , xn.
We claim that F is separable in at least one variable (i.e., ∂F/∂xi 6= 0). To show this,

suppose F is not separable in any variable. Then all monomials are p-powers, mi = np
i .

Since k is perfect f
1/p
i ∈ k. Hence F = (

P
i f

1/p
i ni)

p is not irreducible.
Re-order the variables so that F is separable in xn. Then k(x1, . . . , xn)/k(x1, . . . , xn−1)

is a separable extension. Applying the argument inductively to k(x1, . . . , xn−1) proves
the result. �

Lemma 8.5.8. Let C be a curve over k, let P ∈ C(k) and let tP be a uniformizer at P .
Then tp is a separating element of k(C).

Proof: Let p = char(k). Then vP (tP ) = 1 6≡ 0 (mod p) and so, by Proposition
III.9.2(a) of Stichtenoth [589], tP is a separating element. �

Suppose now that C is a curve over k and x is a separating element. We wish to
extend δ(f) = ∂f/∂x from k(x) to the whole of k(C). The natural approach is to use
property 6 of Lemma 8.5.2: If f ∈ k(C) then k(x, f)/k(x) is finite and separable; write
F (T ) for the minimal polynomial of f over k(x) in k(C); since the extension is separable
we have ∂F/∂T 6= 0; as a function on C we have F (x, f) = 0 and so

0 = δ(F (x, f)) =
∂F

∂x
δ(x) +

∂F

∂T
δ(f). (8.1)

This motivates the following definition.
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Definition 8.5.9. Let C be a curve over k and let x ∈ k(C) be a separating element.
Let y ∈ k(C). Let F (x, T ) be a rational function such that F (x, y) = 0. Define

∂y

∂x
= −(∂F/∂x)/(∂F/∂T )

evaluated at y.

Lemma 8.5.10. The value ∂y/∂x in Definition 8.5.9 is well-defined. More precisely, if F
and F ′ are rational functions such that F (x, y) = F ′(x, y) = 0 then (∂F/∂x)/(∂F/∂y) =
(∂F ′/∂x)/(∂F ′/∂y) and if z ≡ y in k(C) then ∂z/∂x ≡ ∂y/∂x.

Proof: The first claim follows from equation (8.1). For the second claim, if z = y in k(C)
then they satisfy the same minimal polynomial. �

It remains to show that this construction does give a derivation.

Lemma 8.5.11. Let C be a curve over k and x ∈ k(C) a separating element. The
function δ : k(C) → k(C) defined by δ(y) = ∂y/∂x as in Definition 8.5.9 is k-linear and
satisfies the product rule.

Furthermore, if f = H(y) ∈ k(C) is another function, where H(T ) ∈ k(x)[T ] is a
polynomial, then

δ(f) =
∂H

∂x
− (∂F/∂x)/(∂F/∂T )

∂H

∂T
(8.2)

evaluated at y, where F is as in Definition 8.5.9.

Proof: (Sketch; see Proposition IV.1.4 of Stichtenoth for details.)
Consider the two maps D1, D2 : k(x)[T ] → k(x)[T ] defined by

D1

 X

i

uiT
i

!
=
X

i

∂ui

∂x
T i , D2

 X

i

uiT
i

!
=
X

i

iuiT
i−1.

(So D1 corresponds to ∂/∂x while D2 will correspond to ∂/∂y.) One can verify that
D1 and D2 are k-linear maps. Furthermore, one can verify that if u, v ∈ k(x)[T ] then
D1(uv) = uD1(v) + vD1(u) and D2(uv) = uD2(v) + vD2(u).

We re-write equation (8.2) as

δ(f) = D1(H)−D1(F )/D2(F )D2(H) (8.3)

evaluated at y. One can show that δ is well-defined, in the sense that if H(T ) =
Q(T )F (T ) + R(T ) for Q,R ∈ k(x)[T ] then f = H(y) = R(y) and the value of δ(f)
is the same regardless of whether H or R is used to compute it.

Let y be such that k(C) = k(x)(y) and write F (T ) ∈ k(x)[T ] for the minimal polyno-
mial of y. For any f ∈ k(C) we have f = H(y) for some polynomial H(T ) ∈ k(x)[T ] and
so define δ(f) using equation (8.3). We show that δ is a derivation. The k-linearity of δ
is clear. To show that δ satisfies the product rule let g, h ∈ k(C) and write g = G(y) and
h = H(y) for G[T ], H [T ] ∈ k(x)[T ]. Then note that

δ(gh) = D1(GH)− D1(F )

D2(F )
D2(GH)

= GD1(H) +HD1(G)− D1(F )

D2(F )
(GD2(H) +HD2(G))

= G

�
D1(H)− D1(F )

D2(F )
D2(H)

�
+H

�
D1(G)− D1(F )

D2(F )
D2(G)

�

= gδ(h) + hδ(g).
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The equivalence of the two definitions (i.e., equations (8.2) and (8.3)) follows from the
uniqueness of derivations extending k(x) (Lemma IV.1.3 of Stichtenoth [589]). �

Example 8.5.12. Let C : y2 = x3 + x + 1 over Q. Note that x is a separating element.
To compute ∂y/∂x one uses the fact that F (x, y) = y2 − (x3 + x+1) = 0 in k(C) and so
∂y/∂x = (3x2 + 1)/(2y).

Consider the function f(x, y) = xy and let δ(f) = ∂f/∂x. Then δ(f) = xδ(y) + y =
x(3x2 + 1)/(2y) + y = (3x3 + x+ 2y2)/(2y) = (5x3 + 3x+ 2)/(2y).

Exercise 8.5.13. Let k(C) be as in Example 8.5.12. Show that δ(y/x) = (x3 − x −
2)/(2yx2).

Lemma 8.5.14. Let C be a curve over k and let x, y ∈ k(C) be separating elements.
Then the corresponding derivations on k(C) satisfy the chain rule, namely

∂f

∂y
=

∂f

∂x

∂x

∂y
.

In particular, if x, y ∈ k(C) are separating elements then ∂x/∂y = 1/(∂y/∂x) 6= 0.
Let t ∈ k(C). Then ∂t/∂x = 0 if and only if t is not a separating element.

Proof: See Lemma IV.1.6 of Stichtenoth [589]. �

Exercise 8.5.15. Let C = P1 over Fp with variable x and let δ(f) = ∂f/∂x. Show that
δ(xp) = 0.

Now we have defined ∂f/∂x for general f ∈ k(C) we can introduce the differentials
on a curve over a field. Our definition is purely formal and the symbol dx is not assumed
to have any intrinsic meaning. We essentially follow Section IV.1 of Stichtenoth [589]; for
a slightly different approach see Section 8.4 of Fulton [216].

Definition 8.5.16. Let C be a curve over k. The set of differentials Ωk(C) (some
authors write Ω1

k(C)) is the quotient of the free k(C)-module on symbols dx for x ∈ k(C)
under the relations

1. dx 6= 0 if x is a separating element,

2. If x is a separating element and h1, h2 ∈ k(C) then h1dx+ h2dx = (h1 + h2)dx.

3. If x is a separating element and y ∈ k(C) then dy = (∂y/∂x)dx,

In other words, differentials are equivalence classes of formal symbols

(
mX

i=1

hidxi : xi, hi ∈ k(C)

)

where one may assume the xi are all separating elements.

Lemma 8.5.17. Let C be a curve over k and x, y ∈ k(C) separating elements.

1. dx = 0 if x is not a separating element.

2. d(x+ y) = dx+ dy.

3. d(λx) = λdx and dλ = 0 for all λ ∈ k.

4. d(xy) = xdy + ydx.

5. If x is a separating element and y ∈ k(C) then dx+ dy = (1 + (∂y/∂x))dx.
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6. For n ∈ Z, d(xn) = nxn−1dx.

7. d(x/y) = (ydx− xdy)/y2

8. If f ∈ k(C) then d(f(x)) = (∂f/∂x)dx.

9. For i ∈ Z, d(f(x)yi) = (∂f/∂x)yidx+ f(x)iyi−1dy.

10. If F (x, y) is a rational function in x and y then dF (x, y) = (∂F/∂x)dx+(∂F/∂y)dy.

Exercise 8.5.18. Prove Lemma 8.5.17.

Exercise 8.5.19. Let C be a curve over k. Let x1, x2 ∈ k(C) be separating elements
and h1, h2 ∈ k(C). Show that h1dx1 is equivalent to h2dx2 if and only if

h2 = h1
∂x1

∂x2
.

Example 8.5.20. We determine Ωk(P1). Since k(P1) = k(x) the differentials are d(f(x)) =
(∂f/∂x)dx for f(x) ∈ k(x). Hence, they are a 1-dimensional vector space over k(C).

The following theorem, that all differentials on a curve are multiples of dx where x is
a separating element, is a direct consequence of the definition.

Theorem 8.5.21. Let C be a curve over k and let x be a separating element. Let
ω ∈ Ωk(C). Then ω = hdx for some h ∈ k(C).

Exercise 8.5.22. Prove Theorem 8.5.21.

This result shows that Ωk(C) is a k(C)-vector space of dimension 1 (we know that
Ωk(C) 6= {0} since dx 6= 0 if x is a separating element). Therefore, for any ω1,ω2 ∈ Ωk(C)
with ω2 6= 0 there is a unique function f ∈ k(C) such that ω1 = fω2. We define ω1/ω2 to
be f . (See Proposition II.4.3 of Silverman [564]).

We now define the divisor of a differential by using uniformizers. Recall from Lemma 8.5.8
that a uniformizer tP is a separating element and so dtP 6= 0.

Definition 8.5.23. Let C be a curve over k. Let ω ∈ Ωk(C), ω 6= 0 and let P ∈ C(k)
have uniformizer tP ∈ k(C). Then the order of ω at P is vP (ω) := vP (ω/dtP ). The
divisor of a differential is

div(ω) =
X

P∈C(k)

vP (ω)(P ).

Lemma 8.5.24. Let C be a curve over k and let ω be a differential on C. Then vP (ω) 6= 0
for only finitely many P ∈ C(k) and so div(ω) is a divisor.

Proof: See Proposition II.4.3(e) of Silverman [564]. �

Exercise 8.5.25. Show that vP (hdx) = vP (h) + vP (dx) and vP (df) = vP (∂f/∂tP ).

Lemma 8.5.26. The functions vP (ω) and div(ω) in Definition 8.5.23 are well-defined
(both with respect to the choice of representative for ω and choice of tP ).

Exercise 8.5.27. Prove Lemma 8.5.26.

Lemma 8.5.28. Let C be a curve over k and ω,ω′ ∈ Ωk(C). Then

1. deg(div(ω)) = deg(div(ω′)).



160 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

2. div(ω) is well-defined up to principal divisors (i.e., div(ω) = div(ω′) + div(f) for
some f ∈ k(C)∗).

Exercise 8.5.29. Prove Lemma 8.5.28.

Definition 8.5.30. Any divisor div(ω) is called a canonical divisor. The set {div(ω) :
ω ∈ Ωk(C)} is the canonical divisor class.

Example 8.5.31. We determine the canonical class of C = P1.
Let ω = dx. Since x is a uniformizer at the point 0 we have v0(ω) = v0(dx/dx) = 0.

More generally, for P ∈ k we have (x−P ) a uniformizer and vP (ω) = vP (dx/d(x−P )) =
vP (1) = 0. Finally, a uniformizer at ∞ is t = 1/x and dt = (−x−2)dx so v∞(ω) =
v∞(−x2) = −2. Hence div(ω) = −2∞ and the degree of div(ω) is -2.

Example 8.5.32. We determine the divisor of a differential on an elliptic curve E in
Weierstrass form. Rather than computing div(dx) it is easier to compute div(ω) for

ω =
dx

2y + a1x+ a3
.

Let P ∈ E(k). There are three cases, if P = OE then one can take uniformizer t = x/y, if
P = (xP , yP ) = ι(P ) then take uniformizer (y−yP ) (and note that vP (2y+a1x+a3) = 1
in this case) and otherwise take uniformizer (x−xP ) and note that vP (2y+a1x+a3) = 0.

We deal with the general case first. Since dx/d(x−xP ) = ∂x/∂(x−xP ) = 1 it follows
that vP (ω) = 0. For the case, P = OE write x = t−2f and y = t−3h for some functions
f, h ∈ k(E) regular at OE and with f(OE), h(OE) 6= 0. One can verify that

ω

dt
=

−2t−3f + t−2f ′

2t−3h+ a1t−2f + a3
=

−2f + tf ′

2h+ a1tf + a3t3

and so vOE (ω) = 0. Finally, when P = ι(P ) we must consider

dx

d(y − yP )
=

1

∂y/∂x
=

2y + a1x+ a3
3x2 + 2a2x+ a4

.

It follows that ω = (1/(3x2 + 2a2x + a4))d(y − yP ) and, since P is not a singular point,
3x2

P + 2a2xP + a4 6= 0 and so vP (ω) = 0.
In other words, we have shown that div(ω) = 0. One can verify that

div(dx) = (P1) + (P2) + (P3)− 3(OE)

where P1, P2, P3 are the three affine points of order 2 in E(k).

Exercise 8.5.33. Show that

dx

2y + a1x+ a3
=

dy

3x2 + 2a2x+ a4 − a1y

on an elliptic curve.

Definition 8.5.34. Let φ : C1 → C2 be a non-constant morphism of curves over k.
Define the function φ∗ : Ωk(C2) → Ωk(C1) by

φ∗(fdx) = φ∗(f)d(φ∗(x)).

Lemma 8.5.35. The function φ∗ of Definition 8.5.34 is k-linear and φ∗ is injective (=
non-zero) if and only if φ is separable.
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Proof: The linearity follows since dx is k-linear. The second part follows since if x is
separating for k(C2) and φ is separable then k(C1)/φ

∗k(C2) and φ∗k(C2)/k(φ∗(x)) are
separable. Hence, φ∗(x) is a separating element for k(C1) and dφ∗(x) 6= 0. The reverse
implication is also straightforward. �

Lemma 8.5.36. Let φ : C1 → C2 be an unramified morphism of curves over k and let
ω ∈ Ωk(C2). Then φ∗(div(ω)) = div(φ∗(ω)).

Proof: Let P ∈ C1(k) and Q = φ(P ). Let tQ be a uniformizer at Q. Since φ is unramified
it follows that tP = φ∗(tQ) is a uniformizer at P . Let f ∈ k(C2). It suffices to show that
vP (φ

∗(df)) = vQ(df).
Recall from Exercise 8.5.25 that vQ(df) = vQ(∂f/∂tQ). If F (x, y) is a rational function

such that F (tQ, f) = 0 then 0 = F (tQ, f)◦φ = F (tQ◦φ, f ◦φ) = F (tP ,φ
∗(f)) = 0. Hence,

by definition,

∂φ∗(f)/∂tP = −(∂F/∂x)/(∂F/∂y) = ∂f/∂tQ

and so vP (dφ
∗(f)) = vP (∂φ

∗(f)/∂tP ) = vQ(f). �

Corollary 8.5.37. Let φ : C1 → C2 be an isomorphism of curves over k and let ω ∈
Ωk(C2). Then deg(div(ω)) = deg(div(φ∗(ω))).

8.6 Genus Zero Curves

Theorem 8.6.1. Let C be a curve over k (i.e., projective non-singular). The following
are equivalent.

1. C is birationally equivalent over k to P1.

2. The divisor class group of C over k is trivial and #C(k) ≥ 2.

3. There is a point P ∈ C(k) with ℓk(P ) ≥ 2.

Proof: (1 ⇒ 2): Let C be birational to P1 over k. By Lemma 7.3.6 there is a
morphism from P1 to C and by Lemma 8.2.7 it is surjective. Since #P1(k) ≥ 2 it follows
that #C(k) ≥ 2. Also, since the divisor class group of P1 is trivial it follows from
Exercise 8.3.11 that Pic0k(C) = {0}.

(2 ⇒ 3): Let P,Q ∈ C(k) be distinct. Since (Q) − (P ) is principal there exists a
function h with div(h) = (Q) − (P ) and so ℓk(P ) is spanned by at least {1, h} (which is
a linearly independent set).

(3⇒ 1): Let P0 ∈ C(k) be such that ℓk(P0) ≥ 2. Then there is some function h ∈ k(C)
and a point P ∈ C(k) such that div(h) = (P ) − (P0). For any R ∈ C(k), R 6= P0, the
function h − h(R) has a simple pole at P0 and a simple zero at R. One can therefore
deduce that h gives an injective rational map h : C → P1. Unfortunately, it is not trivial
to write down the inverse rational map h′ : P1 → C, so to complete the proof we show
that k(C) ∼= k(P1).

Let f be any function on C. Then g = fhvP0 (f) has no zero or pole at P0. Write

g′ =
Y

R∈C(k)

(h− h(R))vR(g).

Then vR(g) = vR(g
′) and so div(g′) = div(g) and g′ = cg for some c ∈ k∗. In other words,

f is a rational function of h, and so f ∈ k(h). Since f was arbitrary, k(C) = k(h) and so,
by Theorem 5.5.28, C is birational to P1. �
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Definition 8.6.2. A curve satisfying any of the above equivalent conditions is called a
genus 0 curve.

Exercise 8.6.3. Write down a curve C over a field k such that the divisor class group
Pic0k(C) is trivial but C is not birationally equivalent over k to P1.

Theorem 8.6.4. An elliptic curve does not have genus 0.

Proof: We have seen in Examples 8.5.31 and 8.5.32 that the canonical divisor classes
on P1 and an elliptic curve have different degree. It follows that P1 is not isomorphic to an
elliptic curve. And since a birational map of smooth projective curves is an isomorphism
(Lemma 8.1.13 and Lemma 8.1.15) the result follows from Corollary 8.5.37.

There are a number of other proofs of this result: For example, Lemma 11.3 of Wash-
ington [626] gives an elementary one; it also follows from the general theorem that a
non-singular plane curve of degree d has genus d(d − 1)/2 or from the Hurwitz genus
formula (see below). �

Corollary 8.6.5. Let E be an elliptic curve and P1, P2 ∈ E(k). If P1 6= P2 then (P1)−
(P2) is not a principal divisor.

8.7 Riemann-Roch Theorem and Hurwitz Genus For-
mula

In this section we state, without proof, two very important results in algebraic geometry.
Neither will play a crucial role in this book.

Lemma 8.7.1. Let C be a curve over k of genus g and let ω ∈ Ωk(C). Then

1. deg(div(ω)) = 2g − 2.

2. ℓk(div(ω)) = g.

Proof: See Corollary I.5.16 of Stichtenoth [589] or Corollary 11.16 of Washington [626].
For non-singular plane curves see Sections 8.5 and 8.6 of Fulton [216]. �

Theorem 8.7.2. (Riemann-Roch) Let C be a non-singular projective curve over k of
genus g, ω ∈ Ωk(C) a differential and D a divisor. Then

ℓk(D) = deg(D) + 1− g + ℓk(div(ω)−D).

Proof: There are several proofs. Section 8.6 of Fulton [216] gives the Brill-Noether proof
for non-singular plane curves. Theorem I.5.15 of Stichtenoth [589] and Theorem 2.5 of
Moreno [439] give proofs using repartitions. �

Some standard applications of the Riemann-Roch theorem are to prove that every
genus 1 curve with a rational point is birational to an elliptic curve in Weierstrass form,
and to prove that every hyperelliptic curve of genus g is birational to an affine curve of
the form y2 +H(x)y = F (x) with deg(H(x)) ≤ g + 1 and deg(F (x)) ≤ 2g + 2.

Theorem 8.7.3. (Hurwitz genus formula) Let φ : C1 → C2 be a rational map of curves
over k. Let gi be the genus of Ci. Suppose that k is a field of characteristic zero or
characteristic coprime to all eφ(P ). Then

2g1 − 2 = deg(φ)(2g2 − 2) +
X

P∈C1(k)

(eφ(P )− 1).
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Proof: See Theorem III.4.12 and Corollary III.5.6 of Stichtenoth [589], Theorem II.5.9
of Silverman [564] or Exercise 8.36 of Fulton [216]. �

A variant of the above formula is known in the case where some of the eφ(P ) are
divisible by char(k).


