Chapter 8

Rational Maps on Curves and Divisors

This is a chapter from version 2.0 of the book "Mathematics of Public Key Cryptography" by Steven Galbraith, available from http://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.
The purpose of this chapter is to develop some tools in the theory of algebraic curves that are needed for the applications (especially, hyperelliptic curve cryptography). The technical machinery in this chapter is somewhat deeper than the previous one and readers can skip this chapter if they wish.

The reader should note that the word "curve" in this chapter always refers to a nonsingular curve.

8.1 Rational Maps of Curves and the Degree

Lemma 8.1.1. Let C be a curve over \mathbb{k} and $f \in \mathbb{k}(C)$. One can associate with f a rational map $\phi: C \rightarrow \mathbb{P}^{1}$ over \mathbb{k} by $\phi=(f: 1)$. (Indeed, this is a morphism by Lemma 7.3.6.) Denote by ∞ the constant map $\infty(P)=(1: 0)$. Then there is a one-to-one correspondence between $\mathbb{k}(C) \cup\{\infty\}$ and the set of morphisms $\phi: C \rightarrow \mathbb{P}^{1}$.

Exercise 8.1.2. Prove Lemma 8.1.1.
Note that since $\mathbb{k}(C) \cup\{\infty\}$ is not a field, it does not make sense to interpret the set of rational maps $\phi: C \rightarrow \mathbb{P}^{1}$ as a field.

Lemma 8.1.3. Let C_{1} and C_{2} be curves over \mathbb{k} (in particular, non-singular and projective) and let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant rational map over \mathbb{k}. Then ϕ is a dominant morphism.

Proof: By Lemma 7.3.6, ϕ is a morphism. By Lemma 5.5.17 and Exercise 5.5.19 we know that the Zariski closure Z of $\phi\left(C_{1}\right)$ is an irreducible algebraic set. Suppose $Z \neq C_{2}$. We may intersect with an affine space so that $Z \cap \mathbb{A}^{n} \neq \varnothing$. It follows that $Z \cap \mathbb{A}^{n} \neq C_{2} \cap \mathbb{A}^{n}$
(otherwise their projective closures are equal and $Z=C_{2}$). Hence $I_{\overline{\mathrm{k}}}\left(C_{2}\right) \subsetneq I_{\overline{\mathrm{k}}}(Z)$. By Theorem 5.6.8 it follows that $\operatorname{dim}(Z)=0$ and so, by Exercise 5.6.6, $Z=\{P\}$ for some $P \in C_{2}(\overline{\mathbb{k}})$.

The notion of degree of a mapping is fundamental in algebra and topology; a degree d map is " d-to-one on most points".

Example 8.1.4. Let \mathbb{k} be a field of characteristic not equal to 2 . The morphism ϕ : $\mathbb{A}^{1}(\mathbb{k}) \rightarrow \mathbb{A}^{1}(\mathbb{k})$ given by $\phi(x)=x^{2}$ is clearly two-to-one away from the point $x=0$. We say that ϕ has degree 2 .

Example 8.1.4 suggests several possible definitions for degree: the first in terms of the number of pre-images of a general point in the image; the second in terms of the degrees of the polynomials defining the map. A third definition is to recall the injective field homorphism $\phi^{*}: \mathbb{k}\left(\mathbb{A}^{1}\right) \rightarrow \mathbb{k}\left(\mathbb{A}^{1}\right)$. One sees that $\phi^{*}\left(\mathbb{k}\left(\mathbb{A}^{1}\right)\right)=\mathbb{k}\left(x^{2}\right) \subseteq \mathbb{k}(x)$ and that $\left[\mathbb{k}(x): \mathbb{k}\left(x^{2}\right)\right]=2$. This latter formulation turns out to be a suitable definition for degree.

Theorem 8.1.5. Let C_{1}, C_{2} be curves over \mathfrak{k}. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant rational map over \mathbb{k}. Then $\mathbb{k}\left(C_{1}\right)$ is a finite algebraic extension of $\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$.
Proof: By Lemma 8.1.3, ϕ is a dominant morphism and hence by Theorem 5.5.24, $\phi^{*}: \mathbb{k}\left(C_{2}\right) \rightarrow \mathbb{k}\left(C_{1}\right)$ is an injective field homorphism. It follows that $\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$ is a subfield of $\mathbb{k}\left(C_{1}\right)$. Since $\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$ is isomorphic to $\mathbb{k}\left(C_{2}\right)$ it has transcendence degree 1. Since $\mathbb{k}\left(C_{1}\right)$ also has transcendence degree 1 it follows from Theorem A.6.5 that $\mathbb{k}\left(C_{1}\right) / \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$ is an algebraic extension. Finally, $\mathbb{k}\left(C_{1}\right)$ is a finite algebraic extension of $\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$ since $\mathbb{k}\left(C_{1}\right)$ is finitely generated over \mathbb{k}.
Definition 8.1.6. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant rational map of curves over \mathbb{k}. The degree of ϕ is $\left[\mathbb{k}\left(C_{1}\right): \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)\right]$.

Let F be a field such that $\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right) \subset F \subset \mathbb{k}\left(C_{1}\right)$ and $\mathbb{k}\left(C_{1}\right) / F$ is separable and $F / \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$ is purely inseparable (recall the notion of separability from Section A.6). The separable degree of ϕ is $\operatorname{deg}_{s}(\phi)=\left[\mathbb{k}\left(C_{1}\right): F\right]$ and the inseparable degree of ϕ is $\operatorname{deg}_{i}(\phi)=\left[F: \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)\right]$.

A non-constant rational map of curves is called separable (respectively, inseparable) if its inseparable (resp., separable) degree is 1 .

Example 8.1.7. Let $\mathbb{k}=\mathbb{F}_{p}$. The Frobenius map $\pi_{p}: \mathbb{A}^{1}(\overline{\mathbb{k}}) \rightarrow \mathbb{A}^{1}(\overline{\mathbb{k}})$ is given by $\pi_{p}(x)=x^{p}$. Since $\mathbb{k}\left(\mathbb{A}^{1}\right)=\mathbb{k}(x)$ and $\pi_{p}^{*}\left(\mathbb{k}\left(\mathbb{A}^{1}\right)\right)=\mathbb{k}\left(x^{p}\right)$ it follows that $\mathbb{k}(x) / \pi_{p}^{*}\left(\mathbb{k}\left(\mathbb{A}^{1}\right)\right)=$ $\mathbb{k}(x) / \mathbb{k}\left(x^{p}\right)$ is inseparable of degree p. Hence $\operatorname{deg}_{s}\left(\pi_{p}\right)=1$ and $\operatorname{deg}\left(\pi_{p}\right)=\operatorname{deg}_{i}\left(\pi_{p}\right)=p$. Note that π_{p} is one-to-one on $\mathbb{A}^{1}\left(\overline{\mathbb{F}}_{p}\right)$, not p-to-one.
Lemma 8.1.8. Let $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ be a non-constant morphism over \mathbb{k} given by $\phi(x)=a(x)$ for some polynomial $a(x) \in \mathbb{k}[x]$. Then $\operatorname{deg}(\phi)=\operatorname{deg}_{x}(a(x))$.

Proof: Let $\theta=a(x)$. We have $\phi^{*}\left(\mathbb{k}\left(\mathbb{A}^{1}\right)\right)=\mathbb{k}(\theta) \subseteq \mathbb{k}(x)$ and we are required to determine $[\mathbb{k}(x): \mathbb{k}(\theta)]$. We claim the minimal polynomial of x over $\mathbb{k}(\theta)$ is given by

$$
F(T)=a(T)-\theta
$$

First, it is clear that $F(x)=0$. Second, it follows from Eisenstein's criteria (see Proposition III.1.14 of [589], Theorem IV.3.1 of [367] or Theorem III.6.15 of [301]), taking for example the place (i.e., valuation) at infinity in $\mathbb{k}(\theta)$, that $F(T)$ is irreducible. Since $\operatorname{deg}_{T}(F(T))=\operatorname{deg}_{x}(a(x))$ the result follows.
Lemma 8.1.9. Let $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ be a non-constant rational map over \mathbb{k} given by $\phi(x)=$ $a(x) / b(x)$ where $\operatorname{gcd}(a(x), b(x))=1$. Then $\operatorname{deg}(\phi)=\max \left\{\operatorname{deg}_{x}(a(x)), \operatorname{deg}_{x}(b(x))\right\}$.

Proof: Let $\theta=a(x) / b(x)$ so that $\phi^{*}\left(\mathbb{k}\left(\mathbb{A}^{1}\right)\right)=\mathbb{k}(\theta) \subseteq \mathbb{k}(x)$. Since $\mathbb{k}(\theta)=\mathbb{k}(1 / \theta)$ we may assume $\operatorname{deg}_{x}(a(x)) \geq \operatorname{deg}_{x}(b(x))$. If these degrees are equal then one can reduce the degree of $a(x)$ by using $\mathbb{k}(a(x) / b(x))=\mathbb{k}((a(x)-c b(x)) / b(x))$ for a suitable $c \in \mathbb{k}$; replacing θ by $1 / \theta$ again we may assume that $\operatorname{deg}_{x}(a(x))>\operatorname{deg}_{x}(b(x))$. We may also assume that $a(x)$ and $b(x)$ are monic.

We claim the minimal polynomial of x over $\mathbb{k}(\theta)$ is given by

$$
F(T)=a(T)-\theta b(T)
$$

To see this, first note that $F(x)=0$. Now, $a(T)-\theta b(T)$ is irreducible in $\mathbb{k}[\theta, T]$ since it is linear in θ. The irreducibility of $F(T)$ in $\mathbb{k}(\theta)[T]$ then follows from the Gauss Lemma (see, for example, Lemma III.6.13 of Hungerford [301]).
Exercise 8.1.10. Let $C_{1}: y^{2}=x^{3}$ and $C_{2}: Y^{2}=X$ over a field \mathbb{k} of characteristic not equal to 2 and consider the map $\phi: C_{1} \rightarrow C_{2}$ such that $\phi(x, y)=(x, y / x)$. Show that $\operatorname{deg}(\phi)=1$.
Exercise 8.1.11. Let $C_{1}: y^{2}=x^{6}+2 x^{2}+1$ and $C_{2}: Y^{2}=X^{3}+2 X+1$ over a field \mathbb{k} of characteristic not equal to 2 and consider the map $\phi: C_{1} \rightarrow C_{2}$ such that $\phi(x, y)=\left(x^{2}, y\right)$. Show that $\operatorname{deg}(\phi)=2$.

Exercise 8.1.12. Let C_{1}, C_{2} and C_{3} be curves over \mathbb{k} and let $\psi: C_{1} \rightarrow C_{2}$ and $\phi: C_{2} \rightarrow$ C_{3} be morphisms over \mathbb{k}. Show that $\operatorname{deg}(\phi \circ \psi)=\operatorname{deg}(\phi) \operatorname{deg}(\psi)$.
Lemma 8.1.13. Let C_{1} and C_{2} be curves over \mathbb{k} (in particular, smooth and projective). Let $\phi: C_{1} \rightarrow C_{2}$ be a birational map over \mathbb{k}. Then ϕ has degree 1 .

Proof: Write ϕ^{-1} for the rational map from C_{2} to C_{1} such that $\phi^{-1} \circ \phi$ is the identity on an open subset of C_{1}. Then $\left(\phi^{-1} \circ \phi\right)^{*}$ is the identity map on $\mathbb{k}\left(C_{1}\right)$ and it also factors as $\phi^{*} \circ\left(\phi^{-1}\right)^{*}$. Since $1=\left[\mathbb{k}\left(C_{1}\right):\left(\phi^{-1} \circ \phi\right)^{*} \mathbb{k}\left(C_{1}\right)\right]=\left[\mathbb{k}\left(C_{1}\right): \phi^{*} \mathbb{k}\left(C_{2}\right)\right]\left[\mathbb{k}\left(C_{2}\right):\left(\phi^{-1}\right)^{*} \mathbb{k}\left(C_{1}\right)\right]$ the result follows.

For Lemma 8.1.15 (and Lemma 8.2.6) we need the following technical result. This is a special case of weak approximation; see Stichtenoth [589] for a presentation that uses similar techniques to obtain most of the results in this chapter.
Lemma 8.1.14. Let C be a curve over \mathbb{k} and let $Q, Q^{\prime} \in C(\overline{\mathbb{k}})$ be distinct points. Then there is a function $f \in \mathbb{\mathbb { k }}(C)$ such that $v_{Q}(f)=0$ and $v_{Q^{\prime}}(f)>0$.
Proof: By Lemma 7.1 .19 we have $\mathcal{O}_{Q^{\prime}, \overline{\mathbb{k}}} \nsubseteq \mathcal{O}_{Q, \overline{\mathbb{k}}}$ (and vice versa). Hence, there exists a function $u \in \mathcal{O}_{Q, \overline{\mathbb{k}}}-\mathcal{O}_{Q^{\prime}, \overline{\mathbb{k}}}$. Then $v_{Q}(u) \geq 0$ while $v_{Q^{\prime}}(u)<0$. If $u(Q)=-1$ then set $f=1 /\left(1+u^{2}\right)$ else set $f=1 /(1+u)$. Then $v_{Q}(f)=0$ and $v_{Q^{\prime}}(f)>0$ as required.
Lemma 8.1.15. Let C_{1} and C_{2} be curves over \mathbb{k} (in particular, smooth and projective). Let $\phi: C_{1} \rightarrow C_{2}$ be a rational map over \mathbb{k} of degree 1. Then ϕ is an isomorphism.
Proof: \quad Since ϕ has degree 1 it follows that $\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)=\mathbb{k}\left(C_{1}\right)$ and so $\mathbb{k}\left(C_{2}\right) \cong \mathbb{k}\left(C_{1}\right)$. The inverse of ϕ^{*} induces a rational map $\phi^{-1}: C_{2} \rightarrow C_{1}$. Since C_{1} and C_{2} are nonsingular and projective it follows from Lemma 7.3.6 that $\phi: C_{1} \rightarrow C_{2}$ and $\phi^{-1}: C_{2} \rightarrow C_{1}$ are actually morphisms. It follows that $\phi^{-1} \circ \phi: C_{1} \rightarrow C_{1}$ and $\phi \circ \phi^{-1}: C_{2} \rightarrow C_{2}$ are morphisms.

It remains to show that these maps are both the identity. Without loss of generality we consider $\psi=\phi^{-1} \circ \phi$. Suppose for contradiction that there are points $P, Q \in C_{1}(\overline{\mathbb{k}})$ such that $\psi(P)=Q \neq P$. There exists a function f on C_{1} such that $f(P)=0$ and $f(Q) \neq 0$ (see Lemma 8.1.14). But ψ^{*} is the identity map on $\mathbb{k}\left(C_{1}\right)$. Hence $\psi^{*}(f)=f$. But $\psi^{*}(f)=f \circ \psi$ and so $0=f(P)=(f \circ \psi)(P)=f(Q) \neq 0$, which is a contradiction.

8.2 Extensions of Valuations

Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of curves over \mathbb{k}. Then $F_{1}=\mathbb{k}\left(C_{1}\right)$ is a finite extension of $F_{2}=\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$. We now study the preimages of points $Q \in C_{2}(\overline{\mathbb{k}})$ under ϕ and a notion of multiplicity of preimages of Q (namely, ramification indices). The main result is Theorem 8.2.12.

There are several approaches to these results in the literature. One method, which unifies algebraic number theory and the theory of curves, is to note that if U is an open subset of C then $\mathbb{k}[U]$ is a Dedekind domain. The splitting of the maximal ideal \mathfrak{m}_{Q} of $\mathbb{k}[U]$ (for $Q \in U$) in the integral closure of $\phi^{*}(\mathbb{k}[U])$ in $\mathbb{k}\left(C_{1}\right)$ yields the results. Details of this approach are given in Section VII. 5 of Lorenzini [394], Section I. 4 of Serre [542] (especially Propositions I. 10 and I.11), Chapter 1 of Lang [365] and Chapter XII of Lang [367]. An analogous ring-theoretic formulation is used in Proposition II.6.9 of Hartshorne [278]. A different method is to study extensions of valuations directly, for example see Section III. 1 of Stichtenoth [589]. Note that, since we consider points over $\overline{\mathbb{k}}$, the notion of residue degree does not arise, which simplifies the presentation compared with many texts.

Definition 8.2.1. Let F_{2} be a field of transcendence degree 1 over $\overline{\mathbb{k}}$. Let F_{1} / F_{2} be a finite extension. Let v be a discrete valuation on F_{2}. A valuation v^{\prime} on F_{1} is an extension of v (or, v is the restriction of v^{\prime}) if $\left\{f \in F_{2}: v(f) \geq 0\right\}=\left\{f \in F_{2}: v^{\prime}(f) \geq 0\right\}$. We write $v^{\prime} \mid v$ if this is the case.

Note that if v^{\prime} is an extension of v as above then one does not necessarily have $v^{\prime}(f)=v(f)$ for all $f \in F_{2}$ (indeed, we will see later that $v^{\prime}(f)=e v(f)$ for some $e \in \mathbb{N}$).

Lemma 8.2.2. Let F_{1} / F_{2} be a finite extension and let $v^{\prime} \mid v$ be valuations on F_{1} and F_{2} respectively. Then R_{v} is a subring of $R_{v^{\prime}}, R_{v}=R_{v^{\prime}} \cap F_{2}$ and $\mathfrak{m}_{v}=\mathfrak{m}_{v^{\prime}} \cap F_{2}$. In particular, for $f \in F_{2}, v(f)=0$ if and only if $v^{\prime}(f)=0$.

Exercise 8.2.3. Prove Lemma 8.2.2.
Theorem 8.2.4. Let F_{1} / F_{2} be a finite extension of fields and let v be a valuation on F_{2}. Then there is at least one (and only finitely many) valuation v^{\prime} of F_{1} such that $v^{\prime} \mid v$.

Proof: See Theorem XII.4.1 and Corollary XII.4.9 of Lang [367] or Proposition III.1.7(b) of Stichtenoth [589].

Let $\phi: C_{1} \rightarrow C_{2}$ be a morphism of curves and let $F_{2}=\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$ and $F_{1}=\mathbb{k}\left(C_{1}\right)$. We now explain the relation between extensions of valuations from F_{2} to F_{1} and pre-images of points under ϕ.

Lemma 8.2.5. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of curves over \mathbb{k} (this is short-hand for C_{1}, C_{2} and ϕ all being defined over $\left.\mathbb{k}\right)$. Let $P \in C_{1}(\overline{\mathbb{k}})$ and $Q \in C_{2}(\overline{\mathbb{k}})$. Denote by v the valuation on $\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right) \subseteq \mathbb{k}\left(C_{1}\right)$ defined by $v\left(\phi^{*}(f)\right)=v_{Q}(f)$ for $f \in$ $\mathbb{k}\left(C_{2}\right)$. If $\phi(P)=Q$ then v_{P} is an extension of v.

Proof: Let $f \in \mathbb{k}\left(C_{2}\right)$. Since $\phi(P)=Q$ we have $\phi^{*}(f)=f \circ \phi$ regular at P if and only if f is regular at Q. Hence $v_{P}\left(\phi^{*}(f)\right) \geq 0$ if and only if $v_{Q}(f) \geq 0$. It follows that $v_{P} \mid v$.
Lemma 8.2.6. Let the notation be as in Lemma 8.2.5. In particular, $P \in C_{1}(\overline{\mathbb{k}}), Q \in$ $C_{2}(\overline{\mathbb{k}}), v_{P}$ is the corresponding valuation on $F_{1}=\overline{\mathbb{k}}\left(C_{1}\right)$ and v is the valuation on $\phi^{*}\left(\overline{\mathbb{k}}\left(C_{2}\right)\right)$ corresponding to v_{Q} on $\overline{\mathbb{k}}\left(C_{2}\right)$. Then $v_{P} \mid v$ implies $\phi(P)=Q$.

Proof: Suppose $\phi(P)=Q^{\prime} \neq Q$. By Lemma 8.1.14 there is some $f \in \overline{\mathbb{k}}\left(C_{2}\right)$ such that $f(Q) \neq 0$ and $f\left(Q^{\prime}\right)=0$. Then $0=v_{Q}(f)=v\left(\phi^{*}(f)\right)=v_{P}\left(\phi^{*}(f)\right)$ (the last equality
by Lemma 8.2.2 and since $\left.v_{P} \mid v\right)$. But $\phi^{*}(f)(P)=f \circ \phi(P)=f\left(Q^{\prime}\right)=0$, which is a contradiction.

In other words, Lemmas 8.2 .5 and 8.2 .6 show that $\phi(P)=Q$ if and only if the maximal ideal \mathfrak{m}_{P} in $\mathcal{O}_{P} \subseteq \mathbb{k}\left(C_{1}\right)$ contains $\phi^{*}\left(\mathfrak{m}_{Q}\right)$ where \mathfrak{m}_{Q} is the maximal ideal in $\mathcal{O}_{Q} \subseteq \mathbb{k}\left(C_{2}\right)$. This is the connection between the behaviour of points under morphisms and the splitting of ideals in Dedekind domains.

We already know that a non-constant morphism of curves is dominant, but the next result makes the even stronger statement that a morphism is surjective.

Theorem 8.2.7. Let C_{1} and C_{2} be curves over \mathbb{k} (in particular, they are projective and non-singular). Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of curves over \mathbb{k}. Then ϕ is surjective from $C_{1}(\overline{\mathbb{k}})$ to $C_{2}(\overline{\mathbb{k}})$.

Proof: Let $Q \in C_{2}(\overline{\mathbb{k}})$ and let v be the corresponding valuation on $\phi^{*}\left(\overline{\mathbb{k}}\left(C_{2}\right)\right)$. By Theorem 8.2.4 there is a valuation v^{\prime} on $\overline{\mathbb{k}}\left(C_{1}\right)$ that extends v. Theorem 7.5.2 shows that $v^{\prime}=v_{P}$ for some $P \in C_{1}(\overline{\mathbb{k}})$. Finally, Lemma 8.2 .6 shows that $\phi(P)=Q$.

Definition 8.2.8. Let C_{1} and C_{2} be curves over \mathbb{k} and let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant rational map over \mathbb{k}. Let $P \in C_{1}(\overline{\mathbb{k}})$. The ramification index of ϕ at P is

$$
e_{\phi}(P)=v_{P}\left(\phi^{*}\left(t_{\phi(P)}\right)\right)
$$

where $t_{\phi(P)}$ is a uniformizer on C_{2} at $\phi(P)$. If $e_{\phi}(P)=1$ for all $P \in C_{1}(\overline{\mathbb{k}})$ then ϕ is unramified.

We now show that this definition agrees with Definition III.1.5 of Stichtenoth [589].
Lemma 8.2.9. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of curves over \mathbb{k}. Let $P \in C_{1}(\overline{\mathbb{k}}), Q=\phi(P) \in C_{2}(\overline{\mathbb{k}})$ and $f \in \overline{\mathbb{k}}\left(C_{2}\right)$. Then

$$
v_{P}\left(\phi^{*}(f)\right)=e_{\phi}(P) v_{Q}(f) .
$$

Proof: Let $v_{Q}(f)=n$ and write $f=t_{Q}^{n} h$ for some $h \in \mathbb{\mathbb { k }}\left(C_{2}\right)$ such that $h(Q) \neq 0$. Then $\phi^{*}(f)=\phi^{*}\left(t_{Q}\right)^{n} \phi^{*}(h)$ and $\left.v_{P}\left(\phi^{*}(h)\right)\right)=0$. The result follows since $v_{P}\left(\phi^{*}\left(t_{Q}\right)^{n}\right)=$ $n v_{P}\left(\phi^{*}\left(t_{Q}\right)\right)$.
Exercise 8.2.10. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant rational map of curves over \mathbb{k}. Let $P \in C_{1}(\overline{\mathbb{k}}), Q=\phi(P)$, and suppose $e_{\phi}(P)=1$. Show that $t \in \overline{\mathbb{k}}\left(C_{2}\right)$ is a uniformizer at Q if and only if $\phi^{*}(t)$ is a uniformizer at P.

Exercise 8.2.11. Let $\phi: C_{1} \rightarrow C_{2}$ be an isomorphism of curves over \mathbb{k}. Show that ϕ is unramified.

The following result is of fundamental importance.
Theorem 8.2.12. Let C_{1} and C_{2} be curves over \mathbb{k} and let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant rational map over \mathfrak{k}. Then for all $Q \in C_{2}(\overline{\mathbb{k}})$ we have

$$
\sum_{P \in C_{1}(\overline{\mathbb{k}}): \phi(P)=Q} e_{\phi}(P)=\operatorname{deg}(\phi) .
$$

Proof: As mentioned above, one can see this by noting that $\phi^{*}\left(\mathcal{O}_{Q}\right)$ and $\phi^{*}(\mathbb{k}[U])$ (for an open set $U \subseteq C_{2}$ with $Q \in U$) are Dedekind domains and studying the splitting of \mathfrak{m}_{Q} in their integral closures in $\mathbb{k}\left(C_{1}\right)$. For details see any of Proposition 1.10 and 1.11 of Serre [542], Corollary XII.6.3 of Lang [367], Proposition I. 21 of Lang [365], Theorem III.3.5 of Lorenzini [394], Proposition II.6.9 of Hartshorne [278], or Theorem III.1.11 of Stichenoth [589].

Corollary 8.2.13. If $\phi: C_{1} \rightarrow C_{2}$ is a rational map of degree d and $Q \in C_{2}(\overline{\mathbb{k}})$ then there are at most d points $P \in C_{1}(\overline{\mathbb{k}})$ such that $\phi(P)=Q$.

Furthermore, if ϕ is separable then there is an open subset $U \subseteq C_{2}$ such that for all $Q \in U$ one has $\# \phi^{-1}(Q)=d$.
Proof: The first statement is immediate. The second follows by choosing U to be the complement of points corresponding to factors of the discriminant of $\mathbb{k}\left(C_{1}\right) / \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$; see Proposition VII.5.7 of Lorenzini [394].
Example 8.2.14. Consider $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ given by $\phi(x)=x^{2}$ as in Example 8.1.4. This extends to the morphism $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ given by $\phi((x: z))=\left(x^{2} / z^{2}: 1\right)$, which is regular at $\infty=(1: 0)$ via the equivalent formula $\left(1: z^{2} / x^{2}\right)$. One has $\phi^{-1}((a: 1))=\{(\sqrt{a}:$ $1),(-\sqrt{a}: 1)\}, \phi^{-1}((0: 1))=\{(0: 1)\}$ and $\phi^{-1}((1: 0))=\{(1: 0)\}$. At a point $Q=(a: 1)$ with $a \neq 0$ one has uniformizer $t_{Q}=x / z-a$ and

$$
\phi^{*}\left(t_{Q}\right)=x^{2} / z^{2}-a=(x / z-\sqrt{a})(x / z+\sqrt{a})
$$

Writing $P=(\sqrt{a}: 1)$ one has $\phi(P)=Q$ and $e_{\phi}(P)=1$. However, one can verify that $e_{\phi}((0: 1))=e_{\phi}((1: 0))=2$.
Lemma 8.2.15. Let $\phi: C_{1} \rightarrow C_{2}$ and $\psi: C_{2} \rightarrow C_{3}$ be non-constant morphisms of curves over \mathbb{k}. Let $P \in C_{1}(\overline{\mathbb{k}})$. Then $e_{\psi \circ \phi}(P)=e_{\phi}(P) e_{\psi}(\phi(P))$.
Exercise 8.2.16. Prove Lemma 8.2.15.
Exercise 8.2.17. Let $\phi: C_{1} \rightarrow C_{2}$ be defined over \mathbb{k}. Let $P \in C_{1}(\overline{\mathbb{k}})$ and let $\sigma \in$ $\operatorname{Gal}(\overline{\mathbb{k}} / \mathbb{k})$. Show that $e_{\phi}(\sigma(P))=e_{\phi}(P)$.

8.3 Maps on Divisor Classes

We can now define some important maps on divisors that will be used in several proofs later. In particular, this will enable an elegant proof of Theorem 7.7.11 for general curves.
Definition 8.3.1. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism over \mathbb{k}. Define the pullback

$$
\phi^{*}: \operatorname{Div}_{\overline{\mathbf{k}}}\left(C_{2}\right) \rightarrow \operatorname{Div}_{\overline{\mathbf{k}}}\left(C_{1}\right)
$$

as follows. For $Q \in C_{2}(\overline{\mathbb{k}})$ define $\phi^{*}(Q)=\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P)(P)$ and extend ϕ^{*} to $\operatorname{Div}_{\overline{\mathbb{k}}}\left(C_{2}\right)$ by linearity, i.e.,

$$
\phi^{*}\left(\sum_{Q \in C_{2}(\overline{\mathbb{k}})} n_{Q}(Q)\right)=\sum_{Q \in C_{2}(\overline{\mathbb{k}})} n_{Q} \phi^{*}(Q) .
$$

Note that, since $\operatorname{Div}_{\overline{\mathbb{k}}}\left(C_{2}\right)$ and $\operatorname{Div}_{\overline{\mathbb{k}}}\left(C_{1}\right)$ are not varieties, it does not make sense to ask whether ϕ^{*} is a rational map or morphism.
Example 8.3.2. Consider $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ given by $\phi(x)=x^{2}$. Let $D=(0)+(1)$ be a divisor on \mathbb{A}^{1}. Then $\phi^{*}(D)=2(0)+(1)+(-1)$.

Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism over \mathbb{k} and let $P \in C_{2}(\overline{\mathbb{k}})$. Then the divisor $\phi^{*}(P)$ is also called the conorm of P with respect to $\mathbb{k}\left(C_{1}\right) / \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$ (see Definition III.1.8 of Stichtenoth [589]).
Lemma 8.3.3. Let C be a curve over \mathbb{k} and let $f \in \mathbb{k}(C)^{*}$ be a non-constant rational function. Define the rational map $\phi: C \rightarrow \mathbb{P}^{1}$ by $\phi=(f: 1)$ (in future we will write f instead of $\phi)$. Then ϕ is a morphism and $\operatorname{div}(f)=\phi^{*}((0: 1)-(1: 0))$.

Proof: That ϕ is a morphism follows from Lemma 7.3.6. Let $P \in C(\overline{\mathbb{k}})$ be such that $f(P)=0$ (i.e., $\phi(P)=(0: 1)$). We prove that $v_{P}(f)=e_{\phi}(P)$. Recall that $t=x / z$ is a uniformizer at $(0: 1)$. By definition, $e_{\phi}(P)=v_{P}(t \circ \phi)$. Now $t \circ \phi=x(f: 1) / z(f: 1)=$ $f / 1=f$. Hence, $e_{\phi}(P)=v_{P}(f)$. One handles poles of f analogously using the formula $e_{\phi}(P)=v_{P}(1 / f)$.

There is a natural map ϕ_{*} on divisors that is called the pushforward (it is called the divisor-norm map in Section VII. 7 of Lorenzini [394]).

Definition 8.3.4. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of curves. Define the pushforward

$$
\phi_{*}: \operatorname{Div}_{\overline{\mathbb{k}}}\left(C_{1}\right) \rightarrow \operatorname{Div}_{\overline{\mathbb{k}}}\left(C_{2}\right)
$$

by $\phi_{*}(P)=\phi(P)$ and extend to the whole of $\operatorname{Div}_{\overline{\mathrm{k}}}\left(C_{1}\right)$ by linearity.
It remains to find a map from $\mathbb{k}\left(C_{1}\right)$ to $\mathbb{k}\left(C_{2}\right)$ that corresponds (in the sense of property 4 of Theorem 8.3.8) to the pushforward. This is achieved using the norm map with respect to the extension $\mathbb{k}\left(C_{1}\right) / \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$. As we will show in Lemma 8.3.13 this norm satisfies, for $f \in \mathbb{k}\left(C_{1}\right)$ and $Q \in C_{2}(\overline{\mathbb{k}}), \mathrm{N}_{\mathfrak{k}\left(C_{1}\right) / \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)}(f)(Q)=\prod_{\phi(P)=Q} f(P)^{e_{\phi}(P)}$.

Definition 8.3.5. Let C_{1}, C_{2} be curves over \mathbb{k} and let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant rational map. Let $N_{\mathrm{k}\left(C_{1}\right) / \phi^{*} \mathrm{k}\left(C_{2}\right)}$ be the usual norm map in field theory (see Section A.6). Define

$$
\phi_{*}: \mathbb{k}\left(C_{1}\right) \rightarrow \mathbb{k}\left(C_{2}\right)
$$

by $\phi_{*}(f)=\left(\phi^{*}\right)^{-1}\left(\mathrm{~N}_{\mathbb{k}\left(C_{1}\right) / \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)}(f)\right)$.
Note that the definition of $\phi_{*}(f)$ makes sense since $\mathrm{N}_{\mathbb{k}\left(C_{1}\right) / \phi^{*} \mathbb{k}\left(C_{2}\right)}(f) \in \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$ and so is of the form $h \circ \phi$ for some $h \in \mathbb{k}\left(C_{2}\right)$. So $\phi_{*}(f)=h$.

Example 8.3.6. Let $C_{1}=C_{2}=\mathbb{A}^{1}$ and $\phi: C_{1} \rightarrow C_{2}$ be given by $\phi(x)=x^{2}$. Then $\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)=\mathbb{k}\left(x^{2}\right)$ and $\mathbb{k}\left(C_{1}\right)=\phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)(x)$. Let $f(x)=x^{2} /(x-1)$. Then

$$
\mathrm{N}_{\mathbb{k}\left(C_{1}\right) / \phi^{*} \mathbb{k}\left(C_{2}\right)}(f)=f(x) f(-x)=\frac{x^{2}}{(x-1)} \frac{(-x)^{2}}{(-x-1)}=\frac{x^{4}}{-x^{2}+1}
$$

which is $h \circ \phi$ for $h(X)=X^{2} /(1-X)$. Hence $\phi_{*}(f(x))=-f(x)$.
Exercise 8.3.7. Let $C_{1}=V\left(y^{2}=x^{2}+1\right) \subseteq \mathbb{A}^{2}, C_{2}=\mathbb{A}^{1}$ and let $\phi: C_{1} \rightarrow C_{2}$ be given by $\phi(x, y)=x$. Let $f(x, y)=x / y$. Show that

$$
\mathrm{N}_{\mathbb{k}\left(C_{1}\right) / \phi^{*}\left(C_{2}\right)}(f)=\frac{-x^{2}}{x^{2}+1}
$$

and so $\phi_{*}(f)=h(X)$ where $h(X)=-X^{2} /\left(X^{2}+1\right)$.
We now state the main properties of the pullback and pushforward.
Theorem 8.3.8. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of curves over \mathbb{k}. Then

1. $\operatorname{deg}\left(\phi^{*}(D)\right)=\operatorname{deg}(\phi) \operatorname{deg}(D)$ for all $D \in \operatorname{Div}\left(C_{2}\right)$.
2. $\phi^{*}(\operatorname{div}(f))=\operatorname{div}\left(\phi^{*} f\right)$ for all $f \in \mathbb{k}\left(C_{2}\right)^{*}$.
3. $\operatorname{deg}\left(\phi_{*}(D)\right)=\operatorname{deg}(D)$ for all $D \in \operatorname{Div}\left(C_{1}\right)$.
4. $\phi_{*}(\operatorname{div}(f))=\operatorname{div}\left(\phi_{*}(f)\right)$ for all $f \in \mathbb{k}\left(C_{1}\right)^{*}$.
5. $\phi_{*}\left(\phi^{*}(D)\right)=\operatorname{deg}(\phi) D$ for $D \in \operatorname{Div}\left(C_{2}\right)$.
6. If $\psi: C_{2} \rightarrow C_{3}$ is another non-constant rational map of curves over \mathbb{k} then $(\psi \circ \phi)^{*}=$ $\phi^{*} \circ \psi^{*}$ and $(\psi \circ \phi)_{*}=\psi_{*} \circ \phi_{*}$.

Proof: (Sketch)

1. Follows from Theorem 8.2.12.
2. Follows from Lemma 8.2.9.
3. Follows directly from the definition.
4. First note that

$$
\phi_{*}(\operatorname{div}(f))=\sum_{P \in C_{1}(\overline{\mathbb{k}})} v_{P}(f)(\phi(P))=\sum_{Q \in C_{2}(\overline{\mathbb{k}})}\left(\sum_{P \in C_{1}(\overline{\mathbb{k}}): \phi(P)=Q} v_{P}(f)\right)(Q) .
$$

To complete the proof it suffices to show that $\sum_{P \in C_{1}(\overline{\mathbb{k}}): \phi(P)=Q} v_{P}(f)=v_{Q}\left(\phi_{*}(f)\right)$. This requires some theory that has not been presented in the book, so we sketch the details here.
Write $L=\overline{\mathbb{k}}\left(C_{1}\right), K=\phi^{*}\left(\overline{\mathbb{k}}\left(C_{2}\right)\right) \subseteq L$. Fix $Q \in C_{2}(\overline{\mathbb{k}})$ and write v for the valuation on K corresponding to v_{Q} on $\overline{\mathbb{k}}\left(C_{2}\right)$. Write $A=\phi^{*}\left(\mathcal{O}_{Q, \overline{\mathfrak{k}}}\left(C_{2}\right)\right) \subseteq K$, which is a Dedekind domain, and let B be the integral closure of A in L. Write \mathfrak{m} for the maximal ideal of A corresponding to $\mathfrak{m}_{Q, \overline{\mathbb{k}}}\left(C_{2}\right)$. If $P \in C_{1}(\overline{\mathbb{k}})$ is such that $\phi(P)=Q$ then $\mathfrak{m}=\mathfrak{m}_{P, \overline{\mathfrak{k}}}\left(C_{1}\right) \cap A$. Suppose first that L / K is Galois. Then for any B-ideal I one can define the norm $\mathrm{N}_{L / K}(I)=\prod_{\sigma \in \operatorname{Gal}(L / K)} \sigma(I)$. Lemma IV.6.4 of Lorenzini [394] implies that $\mathrm{N}_{L / K}\left(\mathfrak{m}_{P, \overline{\mathbb{k}}}\left(C_{1}\right)\right)=\mathfrak{m}$. When L / K is not Galois then one can define $\mathrm{N}_{L / K}$ by $\mathrm{N}_{L / K}\left(\mathfrak{m}_{P, \overline{\mathbb{k}}}\left(C_{1}\right)\right)=\mathfrak{m}$. Proposition IV.6.9 of [394] shows (also see Proposition I. 22 of [365] in the case when L / K is separable) that $\mathrm{N}_{L / K}((f))=\left(\mathrm{N}_{L / K}(f)\right)$, where (f) denotes the principal B-ideal generated by f and where $\mathrm{N}_{L / K}(f)$ denotes the usual field-theoretic norm. Since

$$
\mathrm{N}_{L / K}((f))=\prod_{\mathfrak{m}_{P} \supseteq \mathfrak{m}} \mathfrak{m}_{P}^{v_{P}(f)} \quad \text { and } \quad\left(\mathrm{N}_{L / K}(f)\right)=\mathfrak{m}^{v\left(\mathrm{~N}_{L / K}(f)\right)}
$$

(where the latter are A-ideals) the result follows.
5. Follows easily from Theorem 8.2.12.
6. The first statement follows from Lemma 8.2.15 and the second is straightforward from the definition.

Exercise 8.3.9. Give all the details in the proof of Theorem 8.3.8.
Corollary 8.3.10. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of curves over \mathbb{k}. Then the induced maps $\phi^{*}: \operatorname{Pic}_{\mathfrak{k}}^{0}\left(C_{2}\right) \rightarrow \operatorname{Pic}_{\mathfrak{k}}^{0}\left(C_{1}\right)$ and $\phi_{*}: \operatorname{Pic}_{\mathfrak{k}}^{0}\left(C_{1}\right) \rightarrow \operatorname{Pic}_{\mathfrak{k}}^{0}\left(C_{2}\right)$ on divisor class groups are well-defined group homomorphisms.

Proof: The maps ϕ^{*} and ϕ_{*} are well-defined on divisor classes by parts 2 and 4 of Theorem 8.3.8. The homomorphic property follows from the linearity of the definitions.

Exercise 8.3.11. Show that if $\phi: C_{1} \rightarrow C_{2}$ is an isomorphism of curves over \mathbb{k} then $\operatorname{Pic}_{\mathrm{k}}^{0}\left(C_{1}\right) \cong \operatorname{Pic}_{k}^{0}\left(C_{2}\right)$ (isomorphic as groups). Give an example to show that the converse is not true.

A further corollary of this result is that a rational map $\phi: E_{1} \rightarrow E_{2}$ between elliptic curves such that $\phi\left(\mathcal{O}_{E_{1}}\right)=\mathcal{O}_{E_{2}}$ is automatically a group homomorphism (see Theorem 9.2.1).
Exercise 8.3.12. Let $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be defined by $\phi((x: z))=\left(x^{2} / z^{2}: 1\right)$. Let $D=(-1$: $1)+(1: 0)-(0: 1)$. Compute $\phi_{*}(D), \phi^{*}(D), \phi_{*} \phi^{*}(D)$ and $\phi^{*} \phi_{*}(D)$.

We now make an observation that was mentioned when we defined ϕ_{*} on $\mathbb{k}\left(C_{1}\right)$.
Lemma 8.3.13. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of curves over \mathbb{k}. Let $f \in \mathbb{k}\left(C_{1}\right)^{*}$ and $Q \in C_{2}(\overline{\mathbb{k}})$. Suppose that $v_{P}(f)=0$ for all points $P \in C_{1}(\overline{\mathbb{k}})$ such that $\phi(P)=Q$. Then

$$
\mathrm{N}_{\mathbb{k}\left(C_{1}\right) / \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)}(f)(Q)=\prod_{P \in C_{1}(\overline{\mathbb{k}}): \phi(P)=Q} f(P)^{e_{\phi}(P)} .
$$

(Later in the book we will introduce the notation $f\left(\phi^{*}(Q)\right)$ for the right hand side.) Another formulation would be " f of conorm of Q equals norm of f at Q ".

Proof: (Sketch) This uses similar ideas to the proof of part 4 of Theorem 8.3.8. We work over $\overline{\mathbb{k}}$.

As always, $\overline{\mathbb{k}}\left(C_{1}\right)$ is a finite extension of $\phi^{*}\left(\overline{\mathbb{k}}\left(C_{2}\right)\right)$. Let $A=\phi^{*}\left(\mathcal{O}_{Q}\left(C_{2}\right)\right)$ and let B be the integral closure of A in $\mathbb{k}\left(C_{1}\right)$. Then B is a Dedekind domain and the ideal $\phi^{*}\left(\mathfrak{m}_{Q}\right)$ splits as a product $\prod_{i} \mathfrak{m}_{P_{i}}^{e_{\phi}\left(P_{i}\right)}$ where $P_{i} \in C_{1}(\overline{\mathbb{k}})$ are distinct points such that $\phi\left(P_{i}\right)=Q$.

By assumption, f has no poles at P_{i} and so $f \in B$. Note that $f\left(P_{i}\right)=c_{i} \in \overline{\mathbb{k}}$ if and only if $f \equiv c_{i}\left(\bmod \mathfrak{m}_{P_{i}}\right)$. Hence, the right hand side is

$$
\prod_{i} f\left(P_{i}\right)^{e_{\phi}\left(P_{i}\right)}=\prod_{i} c_{i}^{e_{\phi}\left(P_{i}\right)}=\prod_{i}\left(f\left(\bmod \mathfrak{m}_{P_{i}}\right)\right)^{e_{\phi}\left(P_{i}\right)} .
$$

It remains to prove that this is equal to the norm of f evaluated at Q and we sketch this when the extension is Galois and cyclic (the general case is simple linear algebra). The elements $\sigma \in \operatorname{Gal}\left(\overline{\mathbb{k}}\left(C_{1}\right) / \phi^{*}\left(\overline{\mathbb{k}}\left(C_{2}\right)\right)\right)$ permute the $\mathfrak{m}_{P_{i}}$ and the ramification indices $e_{\phi}\left(P_{i}\right)$ are all equal. Since $c_{i} \in \mathbb{\mathbb { k }} \subset \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$ we have $f \equiv c_{i}\left(\bmod \mathfrak{m}_{P_{i}}\right)$ if and only if $\sigma(f) \equiv c_{i}\left(\bmod \sigma\left(\mathfrak{m}_{P_{i}}\right)\right)$. Hence

$$
\mathrm{N}_{\mathbb{k}\left(C_{1}\right) / \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)}(f)=\prod_{\sigma \in \operatorname{Gal}\left(\overline{\mathbb{k}}\left(C_{1}\right) / \phi^{*}\left(\overline{\mathbb{k}}\left(C_{2}\right)\right)\right)} \sigma(f) \equiv \prod_{i} c_{i}^{e_{\phi}\left(P_{i}\right)}\left(\bmod \mathfrak{m}_{P_{1}}\right)
$$

and since $\mathrm{N}_{\mathbb{k}\left(C_{1}\right) / \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)}(f) \in \phi^{*}\left(\mathbb{k}\left(C_{2}\right)\right)$ this congruence holds modulo $\phi^{*}\left(\mathfrak{m}_{Q}\right)$. The result follows.

We now give an important application of Theorem 8.3.8, already stated as Theorem 7.7.11.

Theorem 8.3.14. Let C be a curve over \mathbb{k} and let $f \in \mathbb{k}(C)^{*}$. Then f has only finitely many zeroes and poles (i.e., $\operatorname{div}(f)$ is a divisor) and $\operatorname{deg}(\operatorname{div}(f))=0$.

Proof: Let $D=(0: 1)-(1: 0)$ on \mathbb{P}^{1}. Interpreting f as a rational map $f: C \rightarrow \mathbb{P}^{1}$ as in Lemma 8.1.1 we have $\operatorname{div}(f)=f^{*}(D)$ and, by part 1 of Theorem 8.3.8, $\operatorname{deg}\left(f^{*}(D)\right)=$ $\operatorname{deg}(f) \operatorname{deg}(D)=0$. One also deduces that f has, counting with multiplicity, $\operatorname{deg}(f)$ poles and zeroes.

Exercise 8.3.15. Let $\phi: C_{1} \rightarrow C_{2}$ be a rational map over \mathbb{k}. Show that if $D \in \operatorname{Div}_{\mathrm{k}}\left(C_{1}\right)$ $\left(\right.$ respectively, $\left.D \in \operatorname{Div}_{\mathbb{k}}\left(C_{2}\right)\right)$ then $\phi_{*}(D)\left(\right.$ resp., $\left.\phi^{*}(D)\right)$ is defined over \mathbb{k}.

8.4 Riemann-Roch Spaces

Definition 8.4.1. Let C be a curve over \mathbb{k} and let $D=\sum_{P} n_{P}(P)$ be a divisor on C. The Riemann-Roch space of D is

$$
\mathcal{L}_{\mathbb{k}}(D)=\left\{f \in \mathbb{k}(C)^{*}: v_{P}(f) \geq-n_{P} \text { for all } P \in C(\overline{\mathbb{k}})\right\} \cup\{0\}
$$

We denote $\mathcal{L}_{\overline{\mathbb{k}}}(D)$ by $\mathcal{L}(D)$.
Lemma 8.4.2. Let C be a curve over \mathbb{k} and let D be a divisor on C. Then

1. $\mathcal{L}_{\mathbb{k}}(D)$ is a \mathbb{k}-vector space.
2. $D \leq D^{\prime}$ implies $\mathcal{L}_{\mathfrak{k}}(D) \subseteq \mathcal{L}_{\mathfrak{k}}\left(D^{\prime}\right)$.
3. $\mathcal{L}_{\mathrm{k}}(0)=\mathbb{k}, \mathcal{L}_{\mathrm{k}}(D)=\{0\}$ if $\operatorname{deg}(D)<0$.
4. Let $P_{0} \in C(\overline{\mathbb{k}})$. Then $\operatorname{dim}_{\mathbb{k}}\left(\mathcal{L}_{\mathbb{k}}\left(D+P_{0}\right) / \mathcal{L}_{\mathfrak{k}}(D)\right) \leq 1$ and if $D^{\prime} \geq D$ then $\operatorname{dim}_{\mathfrak{k}}\left(\mathcal{L}_{\mathbb{k}}\left(D^{\prime}\right) / \mathcal{L}_{\mathbb{k}}(D)\right) \leq$ $\operatorname{deg}\left(D^{\prime}\right)-\operatorname{deg}(D)$.
5. $\mathcal{L}_{\mathfrak{k}}(D)$ is finite dimensional and if $D=D_{+}-D_{-}$, where D_{+}, D_{-}are effective, then $\operatorname{dim}_{\mathfrak{k}} \mathcal{L}_{\mathfrak{k}}(D) \leq \operatorname{deg}\left(D_{+}\right)+1$.
6. If $D^{\prime}=D+\operatorname{div}(f)$ for some $f \in \mathbb{k}(C)^{*}$ then $\mathcal{L}_{\mathfrak{k}}(D)$ and $\mathcal{L}_{\mathfrak{k}}\left(D^{\prime}\right)$ are isomorphic as \mathbb{k}-vector spaces.

Proof: (Sketch)

1. Straightforward from the definition and part 3 of Lemma 7.4.14.
2. Write $D=\sum_{P \in C(\overline{\mathbb{k}})} n_{P}(P)$ and $D^{\prime}=\sum_{P} n_{P}^{\prime}(P)$. Then $D \leq D^{\prime}$ implies $n_{P} \leq n_{P}^{\prime}$. If $f \in \mathcal{L}_{\mathrm{k}}(D)$ then $v_{P}(f) \geq-n_{P} \geq n_{P}^{\prime}$ and so $f \in \mathcal{L}_{\mathfrak{k}}\left(D^{\prime}\right)$.
3. Clearly $\mathbb{k} \subseteq \mathcal{L}_{\mathbb{k}}(0)$. The converse follows from Corollary 7.7.13. The second statement follows since $\operatorname{deg}(\operatorname{div}(f))=0$.
4. Write $D=\sum_{P \in C(\overline{\mathbb{k}})} n_{P}(P)$. Note that $\mathcal{L}_{\mathbb{k}}(D)$ is a \mathbb{k}-vector subspace of $\mathcal{L}_{\mathbb{k}}\left(D+P_{0}\right)$. Let $t \in \mathbb{k}(C)^{*}$ be a function such that $v_{P_{0}}(f)=n_{P_{0}}+1$ (e.g., take t to be a power of a uniformizer at P_{0}). If $f \in \mathcal{L}_{\mathbb{k}}\left(D+P_{0}\right)$ then $f t \in \mathcal{O}_{P, \mathfrak{k}}(C)$. We therefore have a \mathbb{k}-linear map $\psi: \mathcal{L}_{\mathbb{k}}\left(D+P_{0}\right) \rightarrow \mathbb{k}$ given by $\psi(f)=(f t)\left(P_{0}\right)$. The kernel of ψ is $\mathcal{L}_{\mathrm{k}}(D)$ and the first part of the statement follows. The second statement follows by induction.
5. First, note that $\mathcal{L}_{\mathbb{k}}(D) \subseteq \mathcal{L}_{\mathbb{k}}\left(D_{+}\right)$. We then compute $\operatorname{dim}_{\mathbb{k}} \mathcal{L}_{\mathbb{k}}\left(D_{+}\right)=1+\operatorname{dim}_{\mathbb{k}}\left(\mathcal{L}_{\mathbb{k}}\left(D_{+}\right) / \mathcal{L}_{\mathbb{k}}(0)\right)$. By the previous part this is $\leq 1+\operatorname{deg}\left(D_{+}\right)-\operatorname{deg}(0)=1+\operatorname{deg}\left(D_{+}\right)$.
6. The linear map $\mathcal{L}_{\mathbb{k}}(D) \rightarrow \mathcal{L}_{\mathbb{k}}\left(D^{\prime}\right)$ is given by $h \mapsto h / f$.

Exercise 8.4.3. Fill in the gaps in the proof of Lemma 8.4.2.
Exercise 8.4.4. Let $D=\sum_{P \in C(\overline{\mathbb{k}})} n_{P}(P)$ be a divisor on C. Explain why $\left\{f \in \mathbb{k}(C)^{*}\right.$: $v_{P}(f)=n_{P}$ for all $\left.P \in C(\overline{\mathbb{k}})\right\} \cup\{0\}$ is not usually a \mathbb{k}-vector space.
Definition 8.4.5. Let C be a curve over \mathbb{k} and let D be a divisor on C. Define

$$
\ell_{\mathfrak{k}}(D)=\operatorname{dim}_{\mathbb{k}} \mathcal{L}_{\mathbb{k}}(D)
$$

Write $\ell(D)=\ell_{\overline{\mathbb{k}}}(D)$.

Exercise 8.4.6. Show that $\ell_{\mathfrak{k}}(0)=1$ and, for $f \in \mathbb{k}(C), \ell_{\mathbb{k}}(\operatorname{div}(f))=1$.
Theorem 8.4.7. (Riemann's theorem) Let C be a curve over \mathbb{k} (in particular, nonsingular and projective). Then there exists a unique minimal integer g such that, for all divisors D on C over $\overline{\mathbb{k}}$

$$
\ell_{\overline{\mathrm{k}}}(D) \geq \operatorname{deg}(D)+1-g
$$

Proof: See Proposition I.4.14 of Stichtenoth [589], Section 8.3 (page 196) of Fulton [216] or Theorem 2.3 of Moreno [439].

Definition 8.4.8. The number g in Theorem 8.4.7 is called the genus of C.
Note that the genus is independent of the model of the curve C and so one can associate the genus with the function field or birational equivalence class of the curve.

Exercise 8.4.9. Show that on \mathbb{P}^{1} over \mathbb{k} one has $\ell_{\overline{\mathfrak{k}}}(D)=\operatorname{deg}(D)+1$ for all divisors D and so the genus of \mathbb{P}^{1} is zero. Note that if D is defined over \mathbb{k} then $\ell_{\mathfrak{k}}(D)=\operatorname{deg}(D)+1$ too. (More results about genus zero are given in Section 8.6.)

Exercise 8.4.10. Let \mathbb{k} be a field and let $E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ be an elliptic curve over \mathbb{k}. Determine the spaces $\mathcal{L}_{\mathbb{k}}\left(n \mathcal{O}_{E}\right)$ and their dimensions $\ell_{\mathbb{k}}\left(n \mathcal{O}_{E}\right)$ for $n=0,1,2,3,4,5,6$.

Remark 8.4.11. We give an alternative justification for Remark 5.4.14. Suppose $f \in$ $\overline{\mathbb{k}}(C)$ is such that $\sigma(f)=f$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{k}} / \mathbb{k})$. Write $D=\operatorname{div}(f)$. Note that D is defined over \mathbb{k}. Then $f \in \mathcal{L}_{\overline{\mathbb{k}}}(D)$, which has dimension 1 by Exercise 8.4.6. Now, performing the Brill-Noether proof of Riemann's theorem (e.g., see Section 8.5 of Fulton [216]) one can show that $\mathcal{L}_{\mathbb{k}}(D)$ contains a function $h \in \mathbb{k}(C)$. It follows that $\operatorname{div}(h)=D$ and that $f=c h$ for some $c \in \mathbb{k}$. Hence Theorem 7.8.3 is proved.

8.5 Derivations and Differentials

Differentials arise in differential geometry: a manifold is described by open patches homeomorphic to \mathbb{R}^{n} (or \mathbb{C}^{n} for complex manifolds) with coordinate functions x_{1}, \ldots, x_{n} and the differentials $d x_{i}$ arise naturally. It turns out that differentials can be described in a purely formal way (i.e., without reference to limits).

When working over general fields (such as finite fields) it no longer makes sense to consider differentiation as a process defined by limits. But the formal description of differentials makes sense and the concept turns out to be useful.

We first explain how to generalise partial differentiation to functions on curves. We can then define differentials. Throughout this section, if $F(x, y)$ is a polynomial or rational function then $\partial F / \partial x$ denotes standard undergraduate partial differentiation.

Definition 8.5.1. Let C be a curve over \mathbb{k}. A derivation on $\mathbb{k}(C)$ is a \mathbb{k}-linear map (treating $\mathbb{k}(C)$ as a \mathbb{k}-vector space) $\delta: \mathbb{k}(C) \rightarrow \mathbb{k}(C)$ such that $\delta\left(f_{1} f_{2}\right)=f_{1} \delta\left(f_{2}\right)+f_{2} \delta\left(f_{1}\right)$.

Lemma 8.5.2. Let $\delta: \mathbb{k}(C) \rightarrow \mathbb{k}(C)$ be a derivation. Then

1. If $c \in \mathbb{k}$ then $\delta(c)=0$.
2. If $x \in \mathbb{k}(C)$ and $n \in \mathbb{Z}$ then $\delta\left(x^{n}\right)=n x^{n-1} \delta(x)$.
3. If $\operatorname{char}(\mathbb{k})=p$ and $x \in \mathbb{k}(C)$ then $\delta\left(x^{p}\right)=0$.
4. If $h \in \mathbb{k}(C)$ then $\delta^{\prime}(f)=h \delta(f)$ is a derivation.
5. If $x, y \in \mathbb{k}(C)$ then $\delta(x / y)=(y \delta(x)-x \delta(y)) / y^{2}$.
6. If $x, y \in \mathbb{k}(C)$ and $F(u, v) \in \mathbb{k}[u, v]$ is a polynomial then $\delta(F(x, y))=(\partial F / \partial x) \delta(x)+$ $(\partial F / \partial y) \delta(y)$.

Exercise 8.5.3. Prove Lemma 8.5.2.
Definition 8.5.4. Let C be a curve over \mathbb{k}. A function $x \in \mathbb{k}(C)$ is a separating element (or separating variable) if $\mathbb{k}(C)$ is a finite separable extension of $\mathbb{k}(x)$.

Note that if $x \in \mathbb{k}(C)$ is such that $x \notin \overline{\mathbb{k}}$ then $\mathbb{k}(C) / \mathbb{k}(x)$ is finite; hence the non-trivial condition is that $\mathbb{k}(C) / \mathbb{k}(x)$ is separable.

Example 8.5.5. For $\mathbb{P}^{1}\left(\mathbb{F}_{p}\right), x$ is a separating element (since $\left.\mathbb{k}\left(\mathbb{P}^{1}\right)=\mathbb{k}(x)\right)$ and x^{p} is not a separating element (since $\mathbb{k}\left(\mathbb{P}^{1}\right) / \mathbb{k}\left(x^{p}\right)=\mathbb{k}(x) / \mathbb{k}\left(x^{p}\right)$ is not separable). The mapping $\delta(f)=\partial f / \partial x$ is a derivation.

The following exercise shows that separating elements exist for elliptic and hyperelliptic curves. For general curves we need Lemma 8.5.7.

Exercise 8.5.6. Let \mathbb{k} be any field and let C be a curve given by an equation of the form $y^{2}+H(x) y=F(x)$ with $H(x), F(x) \in \mathbb{k}[x]$. Show that if either $H(x) \neq 0$ or if $\operatorname{char}(\mathbb{k}) \neq 2$ then x is a separating element of $\mathbb{k}(C)$.

Lemma 8.5.7. Let C be a curve over \mathbb{k}, where \mathbb{k} is a perfect field. Then there exists a separating element $x \in \mathbb{k}(C)$.

Proof: Let $L=\mathbb{k}\left(x_{1}, \ldots, x_{n}\right)$ be any field extension of transcedence degree 1 of a perfect field \mathbb{k}. We show that L is a separable extension of $\mathbb{k}(x)$ for some x. First, note that either $\left\{x_{1}, \ldots, x_{n}\right\}$ is algebraically dependent (and so there is a polynomial $F\left(x_{1}, \ldots, x_{n}\right)=0$ of minimal degree, hence irreducible), or else $L=\mathbb{k}\left(x_{1}\right)$ and we're done. In the former case, write $F=\sum_{i} f_{i} m_{i}$ where $f_{i} \in \mathbb{k}$ and m_{i} are monomials in x_{1}, \ldots, x_{n}.

We claim that F is separable in at least one variable (i.e., $\partial F / \partial x_{i} \neq 0$). To show this, suppose F is not separable in any variable. Then all monomials are p-powers, $m_{i}=n_{i}^{p}$. Since \mathbb{k} is perfect $f_{i}^{1 / p} \in \mathbb{k}$. Hence $F=\left(\sum_{i} f_{i}^{1 / p} n_{i}\right)^{p}$ is not irreducible.

Re-order the variables so that F is separable in x_{n}. Then $\mathbb{k}\left(x_{1}, \ldots, x_{n}\right) / \mathbb{k}\left(x_{1}, \ldots, x_{n-1}\right)$ is a separable extension. Applying the argument inductively to $\mathbb{k}\left(x_{1}, \ldots, x_{n-1}\right)$ proves the result.

Lemma 8.5.8. Let C be a curve over \mathbb{k}, let $P \in C(\mathbb{k})$ and let t_{P} be a uniformizer at P. Then t_{p} is a separating element of $\mathbb{k}(C)$.

Proof: Let $p=\operatorname{char}(\mathbb{k})$. Then $v_{P}\left(t_{P}\right)=1 \not \equiv 0(\bmod p)$ and so, by Proposition III.9.2(a) of Stichtenoth [589], t_{P} is a separating element.

Suppose now that C is a curve over \mathbb{k} and x is a separating element. We wish to extend $\delta(f)=\partial f / \partial x$ from $\mathbb{k}(x)$ to the whole of $\mathbb{k}(C)$. The natural approach is to use property 6 of Lemma 8.5.2: If $f \in \mathbb{k}(C)$ then $\mathbb{k}(x, f) / \mathbb{k}(x)$ is finite and separable; write $F(T)$ for the minimal polynomial of f over $\mathbb{k}(x)$ in $\mathbb{k}(C)$; since the extension is separable we have $\partial F / \partial T \neq 0$; as a function on C we have $F(x, f)=0$ and so

$$
\begin{equation*}
0=\delta(F(x, f))=\frac{\partial F}{\partial x} \delta(x)+\frac{\partial F}{\partial T} \delta(f) \tag{8.1}
\end{equation*}
$$

This motivates the following definition.

Definition 8.5.9. Let C be a curve over \mathbb{k} and let $x \in \mathbb{k}(C)$ be a separating element. Let $y \in \mathbb{k}(C)$. Let $F(x, T)$ be a rational function such that $F(x, y)=0$. Define

$$
\frac{\partial y}{\partial x}=-(\partial F / \partial x) /(\partial F / \partial T)
$$

evaluated at y.
Lemma 8.5.10. The value $\partial y / \partial x$ in Definition 8.5.9 is well-defined. More precisely, if F and F^{\prime} are rational functions such that $F(x, y)=F^{\prime}(x, y)=0$ then $(\partial F / \partial x) /(\partial F / \partial y)=$ $\left(\partial F^{\prime} / \partial x\right) /\left(\partial F^{\prime} / \partial y\right)$ and if $z \equiv y$ in $\mathbb{k}(C)$ then $\partial z / \partial x \equiv \partial y / \partial x$.

Proof: The first claim follows from equation (8.1). For the second claim, if $z=y$ in $\mathbb{k}(C)$ then they satisfy the same minimal polynomial.

It remains to show that this construction does give a derivation.
Lemma 8.5.11. Let C be a curve over \mathbb{k} and $x \in \mathbb{k}(C)$ a separating element. The function $\delta: \mathbb{k}(C) \rightarrow \mathbb{k}(C)$ defined by $\delta(y)=\partial y / \partial x$ as in Definition 8.5.9 is \mathbb{k}-linear and satisfies the product rule.

Furthermore, if $f=H(y) \in \mathbb{k}(C)$ is another function, where $H(T) \in \mathbb{k}(x)[T]$ is a polynomial, then

$$
\begin{equation*}
\delta(f)=\frac{\partial H}{\partial x}-(\partial F / \partial x) /(\partial F / \partial T) \frac{\partial H}{\partial T} \tag{8.2}
\end{equation*}
$$

evaluated at y, where F is as in Definition 8.5.9.
Proof: (Sketch; see Proposition IV.1.4 of Stichtenoth for details.)
Consider the two maps $D_{1}, D_{2}: \mathbb{k}(x)[T] \rightarrow \mathbb{k}(x)[T]$ defined by

$$
D_{1}\left(\sum_{i} u_{i} T^{i}\right)=\sum_{i} \frac{\partial u_{i}}{\partial x} T^{i}, \quad D_{2}\left(\sum_{i} u_{i} T^{i}\right)=\sum_{i} i u_{i} T^{i-1}
$$

(So D_{1} corresponds to $\partial / \partial x$ while D_{2} will correspond to $\partial / \partial y$.) One can verify that D_{1} and D_{2} are \mathbb{k}-linear maps. Furthermore, one can verify that if $u, v \in \mathbb{k}(x)[T]$ then $D_{1}(u v)=u D_{1}(v)+v D_{1}(u)$ and $D_{2}(u v)=u D_{2}(v)+v D_{2}(u)$.

We re-write equation (8.2) as

$$
\begin{equation*}
\delta(f)=D_{1}(H)-D_{1}(F) / D_{2}(F) D_{2}(H) \tag{8.3}
\end{equation*}
$$

evaluated at y. One can show that δ is well-defined, in the sense that if $H(T)=$ $Q(T) F(T)+R(T)$ for $Q, R \in \mathbb{k}(x)[T]$ then $f=H(y)=R(y)$ and the value of $\delta(f)$ is the same regardless of whether H or R is used to compute it.

Let y be such that $\mathbb{k}(C)=\mathbb{k}(x)(y)$ and write $F(T) \in \mathbb{k}(x)[T]$ for the minimal polynomial of y. For any $f \in \mathbb{k}(C)$ we have $f=H(y)$ for some polynomial $H(T) \in \mathbb{k}(x)[T]$ and so define $\delta(f)$ using equation (8.3). We show that δ is a derivation. The \mathbb{k}-linearity of δ is clear. To show that δ satisfies the product rule let $g, h \in \mathbb{k}(C)$ and write $g=G(y)$ and $h=H(y)$ for $G[T], H[T] \in \mathbb{k}(x)[T]$. Then note that

$$
\begin{aligned}
\delta(g h) & =D_{1}(G H)-\frac{D_{1}(F)}{D_{2}(F)} D_{2}(G H) \\
& =G D_{1}(H)+H D_{1}(G)-\frac{D_{1}(F)}{D_{2}(F)}\left(G D_{2}(H)+H D_{2}(G)\right) \\
& =G\left(D_{1}(H)-\frac{D_{1}(F)}{D_{2}(F)} D_{2}(H)\right)+H\left(D_{1}(G)-\frac{D_{1}(F)}{D_{2}(F)} D_{2}(G)\right) \\
& =g \delta(h)+h \delta(g)
\end{aligned}
$$

The equivalence of the two definitions (i.e., equations (8.2) and (8.3)) follows from the uniqueness of derivations extending $\mathbb{k}(x)$ (Lemma IV.1.3 of Stichtenoth [589]).
Example 8.5.12. Let $C: y^{2}=x^{3}+x+1$ over \mathbb{Q}. Note that x is a separating element. To compute $\partial y / \partial x$ one uses the fact that $F(x, y)=y^{2}-\left(x^{3}+x+1\right)=0$ in $\mathbb{k}(C)$ and so $\partial y / \partial x=\left(3 x^{2}+1\right) /(2 y)$.

Consider the function $f(x, y)=x y$ and let $\delta(f)=\partial f / \partial x$. Then $\delta(f)=x \delta(y)+y=$ $x\left(3 x^{2}+1\right) /(2 y)+y=\left(3 x^{3}+x+2 y^{2}\right) /(2 y)=\left(5 x^{3}+3 x+2\right) /(2 y)$.

Exercise 8.5.13. Let $\mathbb{k}(C)$ be as in Example 8.5.12. Show that $\delta(y / x)=\left(x^{3}-x-\right.$ 2)/($2 y x^{2}$).

Lemma 8.5.14. Let C be a curve over \mathbb{k} and let $x, y \in \mathbb{k}(C)$ be separating elements. Then the corresponding derivations on $\mathbb{k}(C)$ satisfy the chain rule, namely

$$
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial y}
$$

In particular, if $x, y \in \mathbb{k}(C)$ are separating elements then $\partial x / \partial y=1 /(\partial y / \partial x) \neq 0$.
Let $t \in \mathbb{k}(C)$. Then $\partial t / \partial x=0$ if and only if t is not a separating element.
Proof: See Lemma IV.1. 6 of Stichtenoth [589].
Exercise 8.5.15. Let $C=\mathbb{P}^{1}$ over \mathbb{F}_{p} with variable x and let $\delta(f)=\partial f / \partial x$. Show that $\delta\left(x^{p}\right)=0$.

Now we have defined $\partial f / \partial x$ for general $f \in \mathbb{k}(C)$ we can introduce the differentials on a curve over a field. Our definition is purely formal and the symbol $d x$ is not assumed to have any intrinsic meaning. We essentially follow Section IV. 1 of Stichtenoth [589]; for a slightly different approach see Section 8.4 of Fulton [216].

Definition 8.5.16. Let C be a curve over \mathbb{k}. The set of differentials $\Omega_{\mathbb{k}}(C)$ (some authors write $\left.\Omega_{\mathbb{k}}^{1}(C)\right)$ is the quotient of the free $\mathbb{k}(C)$-module on symbols $d x$ for $x \in \mathbb{k}(C)$ under the relations

1. $d x \neq 0$ if x is a separating element,
2. If x is a separating element and $h_{1}, h_{2} \in \mathbb{k}(C)$ then $h_{1} d x+h_{2} d x=\left(h_{1}+h_{2}\right) d x$.
3. If x is a separating element and $y \in \mathbb{k}(C)$ then $d y=(\partial y / \partial x) d x$,

In other words, differentials are equivalence classes of formal symbols

$$
\left\{\sum_{i=1}^{m} h_{i} d x_{i}: x_{i}, h_{i} \in \mathbb{k}(C)\right\}
$$

where one may assume the x_{i} are all separating elements.
Lemma 8.5.17. Let C be a curve over \mathbb{k} and $x, y \in \mathbb{k}(C)$ separating elements.

1. $d x=0$ if x is not a separating element.
2. $d(x+y)=d x+d y$.
3. $d(\lambda x)=\lambda d x$ and $d \lambda=0$ for all $\lambda \in \mathbb{k}$.
4. $d(x y)=x d y+y d x$.
5. If x is a separating element and $y \in \mathbb{k}(C)$ then $d x+d y=(1+(\partial y / \partial x)) d x$.
6. For $n \in \mathbb{Z}, d\left(x^{n}\right)=n x^{n-1} d x$.
7. $d(x / y)=(y d x-x d y) / y^{2}$
8. If $f \in \mathbb{k}(C)$ then $d(f(x))=(\partial f / \partial x) d x$.
9. For $i \in \mathbb{Z}, d\left(f(x) y^{i}\right)=(\partial f / \partial x) y^{i} d x+f(x) i y^{i-1} d y$.
10. If $F(x, y)$ is a rational function in x and y then $d F(x, y)=(\partial F / \partial x) d x+(\partial F / \partial y) d y$.

Exercise 8.5.18. Prove Lemma 8.5.17.
Exercise 8.5.19. Let C be a curve over \mathbb{k}. Let $x_{1}, x_{2} \in \mathbb{k}(C)$ be separating elements and $h_{1}, h_{2} \in \mathbb{k}(C)$. Show that $h_{1} d x_{1}$ is equivalent to $h_{2} d x_{2}$ if and only if

$$
h_{2}=h_{1} \frac{\partial x_{1}}{\partial x_{2}} .
$$

Example 8.5.20. We determine $\Omega_{\mathbb{k}}\left(\mathbb{P}^{1}\right)$. Since $\mathbb{k}\left(\mathbb{P}^{1}\right)=\mathbb{k}(x)$ the differentials are $d(f(x))=$ $(\partial f / \partial x) d x$ for $f(x) \in \mathbb{k}(x)$. Hence, they are a 1 -dimensional vector space over $\mathbb{k}(C)$.

The following theorem, that all differentials on a curve are multiples of $d x$ where x is a separating element, is a direct consequence of the definition.

Theorem 8.5.21. Let C be a curve over \mathbb{k} and let x be a separating element. Let $\omega \in \Omega_{\mathbb{k}}(C)$. Then $\omega=h d x$ for some $h \in \mathbb{k}(C)$.

Exercise 8.5.22. Prove Theorem 8.5.21.
This result shows that $\Omega_{\mathbb{k}}(C)$ is a $\mathbb{k}(C)$-vector space of dimension 1 (we know that $\Omega_{\mathbb{k}}(C) \neq\{0\}$ since $d x \neq 0$ if x is a separating element). Therefore, for any $\omega_{1}, \omega_{2} \in \Omega_{\mathbb{k}}(C)$ with $\omega_{2} \neq 0$ there is a unique function $f \in \mathbb{k}(C)$ such that $\omega_{1}=f \omega_{2}$. We define ω_{1} / ω_{2} to be f. (See Proposition II.4.3 of Silverman [564]).

We now define the divisor of a differential by using uniformizers. Recall from Lemma 8.5.8 that a uniformizer t_{P} is a separating element and so $d t_{P} \neq 0$.

Definition 8.5.23. Let C be a curve over \mathbb{k}. Let $\omega \in \Omega_{\mathbb{k}}(C), \omega \neq 0$ and let $P \in C(\overline{\mathbb{k}})$ have uniformizer $t_{P} \in \overline{\mathbb{k}}(C)$. Then the order of ω at P is $v_{P}(\omega):=v_{P}\left(\omega / d t_{P}\right)$. The divisor of a differential is

$$
\operatorname{div}(\omega)=\sum_{P \in C(\overline{\mathbb{k}})} v_{P}(\omega)(P)
$$

Lemma 8.5.24. Let C be a curve over \mathbb{k} and let ω be a differential on C. Then $v_{P}(\omega) \neq 0$ for only finitely many $P \in C(\overline{\mathbb{k}})$ and so $\operatorname{div}(\omega)$ is a divisor.

Proof: See Proposition II.4.3(e) of Silverman [564].
Exercise 8.5.25. Show that $v_{P}(h d x)=v_{P}(h)+v_{P}(d x)$ and $v_{P}(d f)=v_{P}\left(\partial f / \partial t_{P}\right)$.
Lemma 8.5.26. The functions $v_{P}(\omega)$ and $\operatorname{div}(\omega)$ in Definition 8.5.23 are well-defined (both with respect to the choice of representative for ω and choice of t_{P}).

Exercise 8.5.27. Prove Lemma 8.5.26.
Lemma 8.5.28. Let C be a curve over \mathbb{k} and $\omega, \omega^{\prime} \in \Omega_{\mathbb{k}}(C)$. Then

1. $\operatorname{deg}(\operatorname{div}(\omega))=\operatorname{deg}\left(\operatorname{div}\left(\omega^{\prime}\right)\right)$.
2. $\operatorname{div}(\omega)$ is well-defined up to principal divisors (i.e., $\operatorname{div}(\omega)=\operatorname{div}\left(\omega^{\prime}\right)+\operatorname{div}(f)$ for some $\left.f \in \mathbb{k}(C)^{*}\right)$.
Exercise 8.5.29. Prove Lemma 8.5.28.
Definition 8.5.30. Any divisor $\operatorname{div}(\omega)$ is called a canonical divisor. The set $\{\operatorname{div}(\omega)$: $\left.\omega \in \Omega_{\mathbb{k}}(C)\right\}$ is the canonical divisor class.

Example 8.5.31. We determine the canonical class of $C=\mathbb{P}^{1}$.
Let $\omega=d x$. Since x is a uniformizer at the point 0 we have $v_{0}(\omega)=v_{0}(d x / d x)=0$. More generally, for $P \in \mathbb{k}$ we have $(x-P)$ a uniformizer and $v_{P}(\omega)=v_{P}(d x / d(x-P))=$ $v_{P}(1)=0$. Finally, a uniformizer at ∞ is $t=1 / x$ and $d t=\left(-x^{-2}\right) d x$ so $v_{\infty}(\omega)=$ $v_{\infty}\left(-x^{2}\right)=-2$. Hence $\operatorname{div}(\omega)=-2 \infty$ and the degree of $\operatorname{div}(\omega)$ is -2 .
Example 8.5.32. We determine the divisor of a differential on an elliptic curve E in Weierstrass form. Rather than computing $\operatorname{div}(d x)$ it is easier to compute $\operatorname{div}(\omega)$ for

$$
\omega=\frac{d x}{2 y+a_{1} x+a_{3}} .
$$

Let $P \in E(\overline{\mathbb{k}})$. There are three cases, if $P=\mathcal{O}_{E}$ then one can take uniformizer $t=x / y$, if $P=\left(x_{P}, y_{P}\right)=\iota(P)$ then take uniformizer $\left(y-y_{P}\right)$ (and note that $v_{P}\left(2 y+a_{1} x+a_{3}\right)=1$ in this case) and otherwise take uniformizer $\left(x-x_{P}\right)$ and note that $v_{P}\left(2 y+a_{1} x+a_{3}\right)=0$.

We deal with the general case first. Since $d x / d\left(x-x_{P}\right)=\partial x / \partial\left(x-x_{P}\right)=1$ it follows that $v_{P}(\omega)=0$. For the case, $P=\mathcal{O}_{E}$ write $x=t^{-2} f$ and $y=t^{-3} h$ for some functions $f, h \in \mathbb{k}(E)$ regular at \mathcal{O}_{E} and with $f\left(\mathcal{O}_{E}\right), h\left(\mathcal{O}_{E}\right) \neq 0$. One can verify that

$$
\frac{\omega}{d t}=\frac{-2 t^{-3} f+t^{-2} f^{\prime}}{2 t^{-3} h+a_{1} t^{-2} f+a_{3}}=\frac{-2 f+t f^{\prime}}{2 h+a_{1} t f+a_{3} t^{3}}
$$

and so $v_{\mathcal{O}_{E}}(\omega)=0$. Finally, when $P=\iota(P)$ we must consider

$$
\frac{d x}{d\left(y-y_{P}\right)}=\frac{1}{\partial y / \partial x}=\frac{2 y+a_{1} x+a_{3}}{3 x^{2}+2 a_{2} x+a_{4}}
$$

It follows that $\omega=\left(1 /\left(3 x^{2}+2 a_{2} x+a_{4}\right)\right) d\left(y-y_{P}\right)$ and, since P is not a singular point, $3 x_{P}^{2}+2 a_{2} x_{P}+a_{4} \neq 0$ and so $v_{P}(\omega)=0$.

In other words, we have shown that $\operatorname{div}(\omega)=0$. One can verify that

$$
\operatorname{div}(d x)=\left(P_{1}\right)+\left(P_{2}\right)+\left(P_{3}\right)-3\left(\mathcal{O}_{E}\right)
$$

where P_{1}, P_{2}, P_{3} are the three affine points of order 2 in $E(\overline{\mathbb{k}})$.
Exercise 8.5.33. Show that

$$
\frac{d x}{2 y+a_{1} x+a_{3}}=\frac{d y}{3 x^{2}+2 a_{2} x+a_{4}-a_{1} y}
$$

on an elliptic curve.
Definition 8.5.34. Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of curves over \mathbb{k}. Define the function $\phi^{*}: \Omega_{\mathbb{k}}\left(C_{2}\right) \rightarrow \Omega_{\mathbb{k}}\left(C_{1}\right)$ by

$$
\phi^{*}(f d x)=\phi^{*}(f) d\left(\phi^{*}(x)\right)
$$

Lemma 8.5.35. The function ϕ^{*} of Definition 8.5 .34 is \mathbb{k}-linear and ϕ^{*} is injective $(=$ non-zero) if and only if ϕ is separable.

Proof: The linearity follows since $d x$ is \mathbb{k}-linear. The second part follows since if x is separating for $\mathbb{k}\left(C_{2}\right)$ and ϕ is separable then $\mathbb{k}\left(C_{1}\right) / \phi^{*} \mathbb{k}\left(C_{2}\right)$ and $\phi^{*} \mathbb{k}\left(C_{2}\right) / \mathbb{k}\left(\phi^{*}(x)\right)$ are separable. Hence, $\phi^{*}(x)$ is a separating element for $\mathbb{k}\left(C_{1}\right)$ and $d \phi^{*}(x) \neq 0$. The reverse implication is also straightforward.

Lemma 8.5.36. Let $\phi: C_{1} \rightarrow C_{2}$ be an unramified morphism of curves over \mathbb{k} and let $\omega \in \Omega_{\mathbb{k}}\left(C_{2}\right)$. Then $\phi^{*}(\operatorname{div}(\omega))=\operatorname{div}\left(\phi^{*}(\omega)\right)$.

Proof: Let $P \in C_{1}(\overline{\mathbb{k}})$ and $Q=\phi(P)$. Let t_{Q} be a uniformizer at Q. Since ϕ is unramified it follows that $t_{P}=\phi^{*}\left(t_{Q}\right)$ is a uniformizer at P. Let $f \in \mathbb{k}\left(C_{2}\right)$. It suffices to show that $v_{P}\left(\phi^{*}(d f)\right)=v_{Q}(d f)$.

Recall from Exercise 8.5.25 that $v_{Q}(d f)=v_{Q}\left(\partial f / \partial t_{Q}\right)$. If $F(x, y)$ is a rational function such that $F\left(t_{Q}, f\right)=0$ then $0=F\left(t_{Q}, f\right) \circ \phi=F\left(t_{Q} \circ \phi, f \circ \phi\right)=F\left(t_{P}, \phi^{*}(f)\right)=0$. Hence, by definition,

$$
\partial \phi^{*}(f) / \partial t_{P}=-(\partial F / \partial x) /(\partial F / \partial y)=\partial f / \partial t_{Q}
$$

and so $v_{P}\left(d \phi^{*}(f)\right)=v_{P}\left(\partial \phi^{*}(f) / \partial t_{P}\right)=v_{Q}(f)$.
Corollary 8.5.37. Let $\phi: C_{1} \rightarrow C_{2}$ be an isomorphism of curves over \mathbb{k} and let $\omega \in$ $\Omega_{\mathbb{k}}\left(C_{2}\right)$. Then $\operatorname{deg}(\operatorname{div}(\omega))=\operatorname{deg}\left(\operatorname{div}\left(\phi^{*}(\omega)\right)\right)$.

8.6 Genus Zero Curves

Theorem 8.6.1. Let C be a curve over \mathbb{k} (i.e., projective non-singular). The following are equivalent.

1. C is birationally equivalent over \mathbb{k} to \mathbb{P}^{1}.
2. The divisor class group of C over \mathbb{k} is trivial and $\# C(\mathbb{k}) \geq 2$.
3. There is a point $P \in C(\mathbb{k})$ with $\ell_{\mathfrak{k}}(P) \geq 2$.

Proof: $\quad(1 \Rightarrow 2)$: Let C be birational to \mathbb{P}^{1} over \mathbb{k}. By Lemma 7.3 .6 there is a morphism from \mathbb{P}^{1} to C and by Lemma 8.2 .7 it is surjective. Since $\# \mathbb{P}^{1}(\mathbb{k}) \geq 2$ it follows that $\# C(\mathbb{k}) \geq 2$. Also, since the divisor class group of \mathbb{P}^{1} is trivial it follows from Exercise 8.3.11 that $\operatorname{Pic}_{\mathrm{k}}^{0}(C)=\{0\}$.
$(2 \Rightarrow 3)$: Let $P, Q \in C(\mathbb{k})$ be distinct. Since $(Q)-(P)$ is principal there exists a function h with $\operatorname{div}(h)=(Q)-(P)$ and so $\ell_{\mathrm{k}}(P)$ is spanned by at least $\{1, h\}$ (which is a linearly independent set).
$(3 \Rightarrow 1)$: Let $P_{0} \in C(\mathbb{k})$ be such that $\ell_{\mathbb{k}}\left(P_{0}\right) \geq 2$. Then there is some function $h \in \mathbb{k}(C)$ and a point $P \in C(\mathbb{k})$ such that $\operatorname{div}(h)=(P)-\left(P_{0}\right)$. For any $R \in C(\mathbb{k}), R \neq P_{0}$, the function $h-h(R)$ has a simple pole at P_{0} and a simple zero at R. One can therefore deduce that h gives an injective rational map $h: C \rightarrow \mathbb{P}^{1}$. Unfortunately, it is not trivial to write down the inverse rational map $h^{\prime}: \mathbb{P}^{1} \rightarrow C$, so to complete the proof we show that $\mathbb{k}(C) \cong \mathbb{k}\left(\mathbb{P}^{1}\right)$.

Let f be any function on C. Then $g=f h^{v_{P_{0}}(f)}$ has no zero or pole at P_{0}. Write

$$
g^{\prime}=\prod_{R \in C(\mathbb{k})}(h-h(R))^{v_{R}(g)} .
$$

Then $v_{R}(g)=v_{R}\left(g^{\prime}\right)$ and so $\operatorname{div}\left(g^{\prime}\right)=\operatorname{div}(g)$ and $g^{\prime}=c g$ for some $c \in \mathbb{k}^{*}$. In other words, f is a rational function of h, and so $f \in \mathbb{k}(h)$. Since f was arbitrary, $\mathbb{k}(C)=\mathbb{k}(h)$ and so, by Theorem $5.5 .28, C$ is birational to \mathbb{P}^{1}.

Definition 8.6.2. A curve satisfying any of the above equivalent conditions is called a genus 0 curve.

Exercise 8.6.3. Write down a curve C over a field \mathbb{k} such that the divisor class group $\operatorname{Pic}_{\mathbb{k}}^{0}(C)$ is trivial but C is not birationally equivalent over \mathbb{k} to \mathbb{P}^{1}.

Theorem 8.6.4. An elliptic curve does not have genus 0 .
Proof: We have seen in Examples 8.5.31 and 8.5.32 that the canonical divisor classes on \mathbb{P}^{1} and an elliptic curve have different degree. It follows that \mathbb{P}^{1} is not isomorphic to an elliptic curve. And since a birational map of smooth projective curves is an isomorphism (Lemma 8.1.13 and Lemma 8.1.15) the result follows from Corollary 8.5.37.

There are a number of other proofs of this result: For example, Lemma 11.3 of Washington [626] gives an elementary one; it also follows from the general theorem that a non-singular plane curve of degree d has genus $d(d-1) / 2$ or from the Hurwitz genus formula (see below).

Corollary 8.6.5. Let E be an elliptic curve and $P_{1}, P_{2} \in E(\mathbb{k})$. If $P_{1} \neq P_{2}$ then $\left(P_{1}\right)-$ $\left(P_{2}\right)$ is not a principal divisor.

8.7 Riemann-Roch Theorem and Hurwitz Genus Formula

In this section we state, without proof, two very important results in algebraic geometry. Neither will play a crucial role in this book.

Lemma 8.7.1. Let C be a curve over \mathbb{k} of genus g and let $\omega \in \Omega_{\mathbb{k}}(C)$. Then

1. $\operatorname{deg}(\operatorname{div}(\omega))=2 g-2$.
2. $\ell_{\mathrm{k}}(\operatorname{div}(\omega))=g$.

Proof: See Corollary I.5.16 of Stichtenoth [589] or Corollary 11.16 of Washington [626]. For non-singular plane curves see Sections 8.5 and 8.6 of Fulton [216].

Theorem 8.7.2. (Riemann-Roch) Let C be a non-singular projective curve over \mathbb{k} of genus $g, \omega \in \Omega_{\mathbb{k}}(C)$ a differential and D a divisor. Then

$$
\ell_{\mathfrak{k}}(D)=\operatorname{deg}(D)+1-g+\ell_{\mathfrak{k}}(\operatorname{div}(\omega)-D)
$$

Proof: There are several proofs. Section 8.6 of Fulton [216] gives the Brill-Noether proof for non-singular plane curves. Theorem I.5.15 of Stichtenoth [589] and Theorem 2.5 of Moreno [439] give proofs using repartitions.

Some standard applications of the Riemann-Roch theorem are to prove that every genus 1 curve with a rational point is birational to an elliptic curve in Weierstrass form, and to prove that every hyperelliptic curve of genus g is birational to an affine curve of the form $y^{2}+H(x) y=F(x)$ with $\operatorname{deg}(H(x)) \leq g+1$ and $\operatorname{deg}(F(x)) \leq 2 g+2$.

Theorem 8.7.3. (Hurwitz genus formula) Let $\phi: C_{1} \rightarrow C_{2}$ be a rational map of curves over \mathfrak{k}. Let g_{i} be the genus of C_{i}. Suppose that \mathbb{k} is a field of characteristic zero or characteristic coprime to all $e_{\phi}(P)$. Then

$$
2 g_{1}-2=\operatorname{deg}(\phi)\left(2 g_{2}-2\right)+\sum_{P \in C_{1}(\overline{\mathbb{k}})}\left(e_{\phi}(P)-1\right)
$$

Proof: See Theorem III.4.12 and Corollary III.5.6 of Stichtenoth [589], Theorem II.5.9 of Silverman [564] or Exercise 8.36 of Fulton [216].

A variant of the above formula is known in the case where some of the $e_{\phi}(P)$ are divisible by char (\mathbb{k}).

