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The purpose of this chapter is to develop some basic theory of divisors and functions
on curves. We use this theory to prove that the set of points on an elliptic curve over a
field is a group. There exist more elementary proofs of this fact, but I feel the approach
via divisor class groups gives a deeper understanding of the subject.

We start by introducing the theory of singular points on varieties. Then we define
uniformizers and the valuation of a function at a point on a curve. When working over
a field k that is not algebraically closed it turns out to be necessary to consider not just
points on C defined over k but also those defined over k (alternatively, one can generalise
the notion of point to places of degree greater than one; see [589] for details). We then
discuss divisors, principal divisors and the divisor class group. The hardest result is that
the divisor of a function has degree zero; the proof for general curves is given in Chapter 8.
Finally, we discuss the “chord and tangent” group law on elliptic curves.

7.1 Non-Singular Varieties

The word “local” is used throughout analysis and topology to describe any property
that holds in a neighbourhood of a point. We now develop some tools to study “local”
properties of points of varieties. The algebraic concept of “localisation” is the main
technique used.

Definition 7.1.1. Let X be a variety over k. The local ring over k of X at a point
P ∈ X(k) is

OP,k(X) = {f ∈ k(X) : f is regular at P}.
Define

mP,k(X) = {f ∈ OP,k(X) : f(P ) = 0} ⊆ OP,k(X).
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When the variety X and field k are clear from the context we simply write OP and mP .

Lemma 7.1.2. Let the notation be as above. Then

1. OP,k(X) is a ring;

2. mP,k(X) is an OP,k(X)-ideal;

3. mP,k(X) is a maximal ideal;

4. OP,k(X) is a Noetherian local ring.

Proof: The first three parts are straightforward. The fourth part follows from the fact
that, if X is affine, OP,k(X) is the localisation of k[X ] (which is Noetherian) at the
maximal ideal m = {f ∈ k[X ] : f(P ) = 0}. Lemma A.9.5 shows that the localisation
of a Noetherian ring at a maximal ideal is Noetherian. Similarly, if X is projective then
OP,k(X) is isomorphic to a localisation of R = k[ϕ−1

i (X)] (again, Noetherian) where i is
such that P ∈ Ui. �

Note that, for an affine variety X ,

k ⊆ k[X ] ⊆ OP (X) ⊆ k(X).

Remark 7.1.3. We remark that OP,k(X) and mP,k(X) are defined in terms of k(X)
rather than any particular model for X . Hence, if φ : X → Y is a birational map over
k of varieties over k and φ is defined at P ∈ X(k) then OP,k(X) is isomorphic as a ring
to Oφ(P ),k(Y ) (precisely, if f ∈ Oφ(P ),k(Y ) then φ∗(f) = f ◦ φ ∈ OP,k(X)). Similarly,
mP,k(X) and mφ(P ),k(Y ) are isomorphic.

Let X be a projective variety, let P ∈ X(k), and let i such that P ∈ Ui. By Corol-
lary 5.4.9, k(X) ∼= k(ϕ−1

i (X)) and so OP,k(X) ∼= Oϕ−1
i (P ),k(ϕ

−1
i (X ∩ Ui)). It is therefore

sufficient to consider affine varieties when determining local properties of a variety.

Example 7.1.4. Let X ⊆ An be an affine variety and suppose P = (0, . . . , 0) ∈ X(k).
Then OP = OP,k(X) is the set of equivalence classes

{f1(x1, . . . , xn)/f2(x1, . . . , xn) : f1, f2 ∈ k[x1, . . . , xn], f2(0, . . . , 0) 6= 0}.

In other words, the ratios of polynomials such that the denominators always have non-
zero constant coefficient. Similarly, mP is the OP -ideal generated by x1, . . . , xn. Since
f1(x1, . . . , xn) can be written in the form f1 = c + h(x1, . . . , xn) where c ∈ k is the
constant coefficient and h(x1, . . . , xn) ∈ mP , it follows that OP /(x1, . . . , xn) ∼= k. Hence
mP is a maximal ideal.

Exercise 7.1.5. Let X ⊆ An be a variety over k and let P = (P1, . . . , Pn) ∈ X(k). Con-
sider the translation morphism φ : X → An given by φ(x1, . . . , xn) = (x1−P1, . . . , xn−
Pn). Show that φ(P ) = (0, . . . , 0) and that φ maps X to a variety Y that is isomorphic
to X . Show further that Oφ(P ),k(φ(X)) is isomorphic to OP,k(X) as a k-algebra.

We now introduce the notion of singular points and non-singular varieties. These
concepts are crucial in our discussion of curves: on a non-singular curve one can define
the order of a pole or zero of a function in a well-behaved way. Since singularity is a
local property of a point (i.e., it can be defined in terms of OP ) it is sufficient to restrict
attention to affine varieties. Before stating the definition we need a lemma.

Lemma 7.1.6. Let X ⊆ An be an affine variety over k and let P ∈ X(k). Then
the quotient ring OP,k(X)/mP,k(X) is isomorphic to k as a k-algebra. Furthermore the
quotient mP,k(X)/mP,k(X)2 of OP,k(X)-ideals is a k-vector space of dimension at most
n.
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Exercise 7.1.7. Prove Lemma 7.1.6.

As the following example shows, the dimension of the vector space mP,k(X)/mP,k(X)2

carries information about the local geometry of X at the point P .

Example 7.1.8. Let X = A2 and P = (0, 0) ∈ X(k). We have mP = (x, y), m2
P =

(x2, xy, y2) and so the k-vector space mP /m
2
P has dimension 2. Note thatX has dimension

2.
Let X = V (y2 − x) ⊆ A2, which has dimension 1. Let P = (0, 0) ∈ X(k). Then

mP = (x, y) and {x, y} span the k-vector space mP /m
2
P . Since x = y2 in k(X) it follows

that x ∈ m2
P and so x = 0 in mP /m

2
P . Hence mP /m

2
P is a one-dimensional vector space

over k with basis vector y.
Consider now X = V (y2 − x3) ⊆ A2, which has dimension 1. Let P = (0, 0). Again,

{x, y} spans mP /m
2
P over k. Unlike the previous example, there is no linear dependence

among the elements {x, y} (as there is no polynomial relation between x and y having a
non-zero linear component). Hence mP /m

2
P has basis {x, y} and has dimension 2.

Exercise 7.1.9. Let X = V (x4 + x + yx − y2) ⊆ A2 over k and let P = (0, 0). Find a
basis for the k-vector space mP,k(X)/mP,k(X)2. Repeat the exercise for X = V (x4+x3+
yx− y2).

Example 7.1.8 motivates the following definition. One important feature of this defi-
nition is that it is in terms of the local ring at a point P and so applies equally to affine
and projective varieties.

Definition 7.1.10. Let X be a variety (affine or projective) over k and let P ∈ X(k)
be point. Then P is non-singular if dimk mP,k(X)/mP,k(X)2 = dim(X) and is singular

otherwise.1 The variety X is non-singular or smooth if every point P ∈ X
�
k
�
is

non-singular.

Indeed, it follows from the arguments in this section that if P ∈ X(k) then P is
non-singular if and only if dimk mP,k(X)/mP,k(X)2 = dim(X). The condition of Defini-
tion 7.1.10 is inconvenient for practical computation. Hence, we now give an equivalent
condition (Corollary 7.1.13) for a point to be singular.

Suppose X ⊆ An is an affine variety and let P = (0, . . . , 0). The key idea for Theo-
rem 7.1.12 is to consider the map θ : k[x1, . . . , xn] → kn defined by

θ(f(x1, . . . , xn)) =

�
∂f

∂x1
(P ), . . . ,

∂f

∂xn
(P )

�
.

This is essentially the same map as used in the proof of Lemma 7.1.6, but there it was
defined on mP,k(X) ⊆ OP,k(X) whereas θ is defined on k[x1, . . . , xn]. Note that θ is
k-linear. Let m0(An) be the k[x1, . . . , xn]-ideal (x1, . . . , xn). Then θ(m0(An)) = kn,
ker(θ) = m0(An)2 and θ induces an isomorphism of k-vector spaces m0(An)/m0(An)2 ∼=
kn.

Lemma 7.1.11. Let X ⊆ An be an affine variety over k and let P ∈ X(k). Define2

m = {f ∈ k[X ] : f(P ) = 0}. Then k[X ]/m ∼= k and m/m2 ∼= mP,k(X)/mP,k(X)2 as
k-vector spaces.

1The dimension of the vector space mP,k(X)/mP,k(X)2 is always greater than or equal to dim(X), but
we don’t need this.

2We stress that m is different from the ideals mP,k(X) and m0(An) above. One has m ⊆ mP,k(X) and,
for P = (0, . . . , 0), m = m0(An)/Ik(X).
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Proof: We assume without loss of generality that P = (0, . . . , 0). Since k[X ] = k[x1, . . . , xn]/Ik(X)
it follows that m is the k[X ]-ideal (x1, . . . , xn). The first statement is then immediate.
For the second statement note that one has k[X ] ⊆ OP,k(X), m = mP,k(X) ∩ k[X ] and
mP,k(X) is the OP,k(X)-ideal generated by m. Similarly, m2 = mP,k(X)2 ∩ k[X ].

We now construct a ring isomorphism ω : OP,k(X)/mP,k(X)2 → k[X ]/m2. Every
f ∈ OP,k(X) has a representation f1/f2 where f1, f2 ∈ k[X ] and f2(P ) 6= 0. Write
f2 = a0+ f3+ f4 where a0 ∈ k, a0 6= 0, f3 ∈ m and f4 ∈ m2. Define g = a−1

0 −a−2
0 f3 6∈ m.

Then f2g − 1 ∈ m2 and so g is f−1
2 in k[X ]/m2. It follows that

f1/f2 ≡ f1g

in OP,k(X)/mP,k(X)2. Hence, if f = f1/f2 ∈ OP,k(X) with f1, f2 ∈ k[X ] then we define
ω(f) = f1g. One can verify that ω is a well-defined ring homomorphism, that ω is
surjective, and that ker(ω) = mP,k(X)2. Hence ω is an isomorphism of rings as claimed.

Finally, if f = f1/f2 ∈ mP,k(X) with f1, f2 ∈ k[X ] then f1 ∈ m and f2 ∈ k[X ] − m

and so ω(f) ∈ m. It follows that mP,k(X)/mP,k(X)2 ∼= m/m2. �

Theorem 7.1.12. Let X = V (f1, . . . , fm) ⊆ An be a variety defined over k and let
P ∈ X(k). Let d1 be the dimension of the k-vector space mP,k/m

2
P,k. Let d2 be the rank

of the Jacobian matrix

JX,P =

�
∂fi
∂xj

(P )

�

1≤i≤m
1≤j≤n

.

Then d1 + d2 = n.

Proof: By Exercise 7.1.5 we may assume without loss of generality that P = (0, . . . , 0).
Let the notation be as in Lemma 7.1.11. We have d1 = dimk(m/m2). Recall the map
θ : k[x1, . . . , xn] → kn from above, which gives an isomorphism from m0(An)/m0(An)2 to
kn.

Now, m is the image of m0(An) in k[X ] = k[x1, . . . , xn]/Ik(X). Similarly, m2 is the im-
age ofm0(An)2 in k[X ]. Hencem/m2 is isomorphic as a k-vector space tom0(An)/(m0(An)2, Ik(X)).
Similarly, the span of the rows of the matrix JX,P in kn is θ(Ik(X)), which is isomor-
phic as a k-vector space to (Ik(X),m0(An)2)/m0(An)2. One therefore has dimk(m/m2) +
rank(JX,P ) = n. �

Corollary 7.1.13. Let X = V (f1(x), . . . , fm(x)) ⊆ An be an affine variety over k of
dimension d. Let P ∈ X(k). Then P ∈ X(k) is a singular point of X if and only if
the Jacobian matrix JX,P has rank not equal to n− d. The point is non-singular if the
rank of JX,P is equal to n− d.

Corollary 7.1.14. Let X = V (f(x1, . . . , xn)) ⊆ An be irreducible and let P ∈ X(k).
Then P is singular if and only if

∂f

∂xj
(P ) = 0

for all 1 ≤ j ≤ n

Exercise 7.1.15. Prove Corollaries 7.1.13 and 7.1.14.

Exercise 7.1.16. Let k be a field such that char(k) 6= 2 and let F (x) ∈ k[x] be such that
gcd(F (x), F ′(x)) = 1. Show that

X : y2 = F (x)

is non-singular as an affine algebraic set. Now consider the projective closure X ⊆ P2.
Show that if deg(F (x)) ≥ 4 then there is a unique point in X−X and that it is a singular
point.
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Finally we can define what we mean by a curve.

Definition 7.1.17. A curve is a projective non-singular variety of dimension 1. A plane
curve is a curve that is given by an equation V (F (x, y, z)) ⊆ P2.

Remark 7.1.18. We stress that in this book a curve is always projective and non-
singular. Note that many authors (including Hartshorne [278] and Silverman [564]) allow
affine and/or singular dimension 1 varieties X to be curves. A fact that we won’t prove is
that every finitely generated, transcendence degree 1 extension K of an algebraic closed
field k is the function field k(C) of a curve (see Theorem I.6.9 of Hartshorne [278]; note
that working over k is essential as there are finitely generated, transcendence degree 1
extensions of k that are not k(C) for a curve C defined over k). It follows that every
irreducible algebraic set of dimension 1 over k is birational over k to a non-singular curve
(see Theorem 1.1 of Moreno [439] for the details). Hence, in practice one often writes
down an affine and/or singular equation X that is birational to the projective, non-
singular curve C one has in mind. In our notation, the commonly used phrase “singular
curve” is an oxymoron. Instead one can say “singular equation for a curve” or “singular
model for a curve”.

The following result is needed in a later proof.

Lemma 7.1.19. Let C be a curve over k. Let P,Q ∈ C(k). Then OP,k ⊆ OQ,k implies
P = Q.

Proof: By Exercise 5.2.23 we may assume that P,Q ∈ Un(k) ⊆ Pn(k) and applying
ϕ−1
n we have P,Q ∈ ϕ−1

n (C) ⊆ An(k). Let R = k[ϕ−1
n (C)] and define m = mP,k ∩ R =

{f ∈ R : f(P ) = 0} as in Lemma 7.1.11. By Lemma 7.1.11, R/m ∼= k and so m is a
maximal R-ideal. Finally, P ∈ V (m) since every polynomial in mP,k vanishes at P , and
by the Nullstellensatz V (m) = {P}.

If OP,k ⊆ OQ,k then the inclusion map gives rise to OP,k → OQ,k/mQ,k with kernel

OP,k ∩ mQ,k. In other words, OP,k/(OP,k ∩ mQ,k) injects into OQ,k/mQ,k
∼= k. Hence

OP,k ∩ mQ,k is a maximal ideal and so mP,k ⊆ mQ,k. Therefore m ⊆ n := mQ,k ∩R. But
m is maximal in R and 1 6∈ n so m = n. Since V (m) = {P} and V (n) = {Q} we have
P = Q.

The above proof was influenced by Lemma I.6.4 of Hartshorne [278], but it was pointed
out to me by Noel Robinson that there should be a simpler proof: If P 6= Q then one can
write down a function f such that f ∈ OP,k but f 6∈ OQ,k as follows: Letting, as above,
P = (a1, . . . , an) and Q = (b1, . . . , bn) in some affine patch, then P 6= Q implies ai 6= bi
for some index i. Then the function f = 1/(xi − bi) has a pole at Q but is regular at P .
�

7.2 Weierstrass Equations

Definition 7.2.1. Let a1, a2, a3, a4, a6 ∈ k. A Weierstrass equation is a projective
algebraic set E over k given by

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3. (7.1)

The affine Weierstrass equation is

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (7.2)
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Exercise 7.2.2. Let E be a Weierstrass equation as in Definition 7.2.1. Let ι(x : y :
z) = (x : −y − a1x − a3z : z). Show that if P ∈ E(k) then ι(P ) ∈ E(k) and that ι is an
isomorphism over k from E to itself.

Lemma 7.2.3. Let H(x), F (x) ∈ k[x], deg(F ) = 3, deg(H) ≤ 1. Then E(x, y) =
y2 +H(x)y − F (x) is irreducible over k.

Proof: A non-trivial factorisation of E(x, y) in k[x, y] must be of the form E(x, y) =
(y + M(x))(y + N(x)) for some M(x), N(x) ∈ k[x]. Then deg(M) + deg(N) = 3 and,
without loss of generality, deg(M) ≥ 2 and deg(N) ≤ 1. But then deg(M + N) ≥ 2,
which is incompatible with M +N = H . �

Theorem 5.3.10 therefore implies a Weierstrass equation describes a projective variety.
By Exercise 5.6.5, the variety has dimension 1. Not every Weierstrass equation gives a
curve, since some of them are singular. We now give conditions for when a Weierstrass
equation is non-singular.

Exercise 7.2.4. Show that a Weierstrass equation has a unique point with z = 0. Show
that this point is not a singular point.

Definition 7.2.5. Let E be a Weierstrass equation over k. The point (0 : 1 : 0) ∈ E(k)
is denoted by OE and is called the point at infinity.

Exercise 7.2.6. Show that if char(k) 6= 2, 3 then every Weierstrass equation over k is
isomorphic over k to a Weierstrass equation

y2z = x3 + a4xz
2 + a6z

3 (7.3)

for some a4, a6 ∈ k. This is called the short Weierstrass form. Show that this equation
is non-singular if and only if the discriminant 4a34 + 27a26 6= 0 in k.

Exercise 7.2.7. Show that if char(k) = 2 then every Weierstrass equation over k is
isomorphic over k to a Weierstrass equation

y2z + xyz = x3 + a2x
2z + a6z

3 or y2z + yz2 = x3 + a4xz
2 + a6z

3. (7.4)

The former is non-singular if a6 6= 0 and the latter is non-singular for all a4, a6 ∈ k.

Formulae to determine whether a general Weierstrass equation is singular are given in
Section III.1 of [564].

Definition 7.2.8. An elliptic curve is a curve given by a non-singular Weierstrass
equation.

The following easy result is useful for explicit calculations.

Lemma 7.2.9. Let E be an elliptic curve over k. Then every function f ∈ k(E) restricts
to a function on the affine Weierstrass equation of E that is equivalent to a function of
the form

a(x) + b(x)y

c(x)
(7.5)

where a(x), b(x), c(x) ∈ k[x]. Conversely, every such function on the affine curve corre-
sponds to a unique3 function on the projective curve.

3By unique we mean that there is only one function on the projective curve corresponding to a given
function on the affine curve. The actual polynomials a(x), b(x) and c(x) are, of course, not unique.
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Proof: Write U for the affine algebraic set obtained from E by setting z = 1. Note that
U
�
k
�
6= ∅. Corollary 5.4.9 shows that k(E) ∼= k(U) and so it is sufficient to consider

functions on U . Every such function can be written in the form of equation (7.5) since
any denominators can be cleared by multiplying through by appropriate polynomials (the
polynomial (a(x) + b(x)y)(a(x) + b(x)ι(y)) is a polynomial in x only) and yn for n > 1
can be replaced using the equation y2 = (x3+a2x

2+a4x+a6)−y(a1x+a3). Both claims
of the Lemma follow immediately. �

7.3 Uniformizers on Curves

Let C be a curve over k with function field k(C). It is necessary to formalise the notion
of multiplicity of a zero or pole of a function at a point. The basic definition will be that
f ∈ OP,k(C) has multiplicity m at P if f ∈ mm

P,k
and f 6∈ mm+1

P,k
. However, there are

a number of technicalities to be dealt with before we can be sure this definition makes
sense. We introduce uniformizers in this section as a step towards the rigorous treatment
of multiplicity of functions.

First we recall the definition of non-singular from Definition 7.1.10: Let C be a non-
singular curve over k and P ∈ C(k), then the quotient mP,k(C)/mP,k(C)2 (which is a
k-vector space by Lemma 7.1.6) has dimension one as a k-vector space.

Lemma 7.3.1. Let C be a curve (in particular, non-singular) over a field k and let
P ∈ C(k). Then the ideal mP,k(C) is principal as an OP,k(C)-ideal.

Proof: Write m for mP,k(C). Since C is non-singular, dimk mP,k(C)/mP,k(C)2 = 1. Let
x ∈ m be such that {m2+x} is a k-vector space basis for m/m2. Let n be the OP,k(C)-ideal
(x). Then n ⊆ m. For every y ∈ m we have y = f + ux where u ∈ k and f ∈ m2. Hence,
m = (n,m2). Let A be the OP,k(C)-module m/n. We want to prove that A = 0. This
follows by Nakayama’s Lemma (see Proposition 2.6 of [15]) but we give a direct proof.

First note that mA = m(m/n) = (m2, n)/n = A (the middle equality since y(n+ z) =
n+ yz for all y, z ∈ m). Suppose now that A 6= 0. Since OP,k(C) is Noetherian it follows
that m is finitely generated as an OP,k(C)-module and so A is finitely generated as an
OP,k(C)-module. Let {a1, . . . , ak} be a minimal set of generators for A. Since A = mA
we have

a1 =

kX

j=1

mjaj

for mj ∈ m. Hence,

a1(1−m1) =
kX

j=2

mjaj .

Note that 1−m1 6∈ m and so, since m is a maximal ideal, (1−m1) is a unit in OP,k(C).
Hence, a1 ∈ (a2, . . . , ak), which contradicts the minimality of the generating set. Hence
A = 0 and m = n = (x). �

Definition 7.3.2. Let C be a curve (in particular, non-singular) over k and P ∈ C(k).
A uniformizer (or uniformizing parameter) at P is an element tP ∈ OP,k(C) such
that mP,k(C) = (tP ) as an OP,k(C)-ideal.

One can choose tP to be any element of mP,k(C) − mP,k(C)2; in other words, the
uniformizer is not unique. If P is defined over k then one can take tP ∈ mP,k(C) −
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mP,k(C)2, i.e., take the uniformizer to be defined over k; this is typically what one does
in practice.

For our presentation it is necessary to know uniformizers on P1 and on a Weierstrass
equation. The next two examples determine such uniformizers.

Example 7.3.3. Let C = P1. For a point (a : 1) ∈ U1 ⊆ P1 one can work instead with
the point a on the affine curve A1 = ϕ−1

1 (U1). One has ma = (x− a) and so ta = (x− a)
is a uniformizer at a. In terms of the projective equation one has ta = (x− az)/z being a
uniformizer. For the point ∞ = (1 : 0) ∈ U0 ⊆ P1 one again works with the corresponding
point 0 ∈ ϕ−1

0 (U0). The uniformizer is ta = z which, projectively, is ta = z/x. A common
abuse of notation is to say that 1/x is a uniformizer at ∞ on A1 = ϕ−1

1 (U1).

Example 7.3.4. We determine uniformizers for the points on an elliptic curve. First
consider points (xP , yP ) on the affine equation

E(x, y) = y2 + a1xy + a3y −
�
x3 + a2x

2 + a4x+ a6
�
.

Without loss of generality we can translate the point to P0 = (0, 0), in which case write
a′1, . . . , a

′
6 for the coefficients of the translated equation E′(x, y) = 0 (i.e., E′(x, y) =

E(x+xP , y+ yP )). One can verify that a′6 = 0, a′3 = (∂E/∂y)(P ) and a′4 = (∂E/∂x)(P ).
Then mP0 = (x, y) and, since the curve is not singular, at least one of a′3 or a′4 is non-zero.

If a′3 = 0 then4

x(x2 + a′2x+ a′4 − a′1y) = y2.

Since (x2 + a′2x+ a′4 − a′1y)(P0) = a′4 6= 0 we have (x2 + a′2x+ a′4 − a′1y)
−1 ∈ OP0 and so

x = y2(a′4 + a′2x+ x2 − a′1y)
−1.

In other words, x ∈ (y2) ⊆ m2
P0

and y is a uniformizer at P0.
Similarly, if a′4 = 0 then y(a′3 + a′1x + y) = x2(x + a′2) and so y ∈ (x2) ⊆ m2

P0
and

x is a uniformizer at P0. If a′3, a
′
4 6= 0 then either x or y can be used as a uniformizer.

(Indeed, any linear combination ax + by except a′3y − a′4x can be used as a uniformizer;
geometrically, any line through P , except the line which is tangent to the curve at P , is
a uniformizer.)

Now consider the point at infinity OE = (x : y : z) = (0 : 1 : 0) on E. Taking y = 1
transforms the point to (0, 0) on the affine curve

z + a1xz + a3z
2 = x3 + a2x

2z + a4xz
2 + a6z

3. (7.6)

It follows that

z(1 + a1x+ a3z − a2x
2 − a4xz − a6z

2) = x3

and so z ∈ (x3) ⊆ m3
P and so x is a uniformizer (which corresponds to x/y in homogeneous

coordinates).
In practice it is not necessary to move P to (0, 0) and compute the a′i. We have shown

that if P = (xP , yP ) then tP = x − xP is a uniformizer unless P = OE , in which case
tP = x/y, or P = ι(P ),5 in which case tP = y − yP .

Lemma 7.3.5. Let C be a curve over k, let P ∈ C(k) and let tP be a uniformizer at P .
Let σ ∈ Gal(k/k). Then σ(tP ) is a uniformizer at σ(P ).

4We will see later that a′3 = 0 implies (0, 0) has order 2 (since −(x, y) = (x,−y − a′1x− a′3)).
5i.e., has order 2.
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Proof: Since σ(f)(σ(P )) = σ(f(P )) the map f 7→ σ(f) is an isomorphism of local rings
σ : OP,k(C) → Oσ(P ),k(C). It also follows that σ(mP ) = mσ(P ). Since mP = (tP ) one has

mσ(P ) = (σ(tP )), which completes the proof. �

We now give an application of uniformizers. It will be used in several later results.

Lemma 7.3.6. Let C be a non-singular curve over k and let φ : C → Y ⊆ Pn be a
rational map for any projective variety Y . Then φ is a morphism.

Exercise 7.3.7. Prove Lemma 7.3.6.

7.4 Valuation at a Point on a Curve

The aim of this section is to define the multiplicity of a zero or pole of a function on a
curve. For background on discrete valuation rings see Chapter 1 of Serre [542], Section
I.7 of Lang [365] or Sections XII.4 and XII.6 of Lang [367].

Definition 7.4.1. LetK be a field. A discrete valuation onK is a function v : K∗ → Z
such that:

1. for all f, g ∈ K∗, v(fg) = v(f) + v(g);

2. for all f, g ∈ K∗ such that f + g 6= 0, v(f + g) ≥ min{v(f), v(g)};
3. there is some f ∈ K∗ such that v(f) = 1 (equivalently, v is surjective to Z).

Lemma 7.4.2. Let K be a field and v a discrete valuation.

1. v(1) = 0.

2. If f ∈ K∗ then v(1/f) = −v(f).

3. Rv = {f ∈ K∗ : v(f) ≥ 0} ∪ {0} is a ring, called the valuation ring.

4. mv = {f ∈ K∗ : v(f) > 0} is a maximal ideal in Rv, called the maximal ideal of
the valuation.

5. If f ∈ K is such that f 6∈ Rv then 1/f ∈ mv.

6. Rv is a local ring.

Exercise 7.4.3. Prove Lemma 7.4.2.

Lemma 7.4.4. Let C be a curve over k and P ∈ C(k). For every non-zero function
f ∈ OP,k(C) there is some m ∈ N such that f 6∈ mm

P,k.

Proof: We drop the terms k and C in OP,k(C) and mP,k(C). If f 6∈ mP then m = 1
and we are done, so suppose f ∈ mP . Let tP be a uniformizer at P . Then f = tP f1
for some f1 ∈ OP . If f1 6∈ mP then f 6∈ m2

P and we are finished. If f1 ∈ mP then
f1 = tP f2 for some f2 ∈ OP . Continuing this way, if f ∈ mm

P for all m ∈ N one
obtains an infinite sequence of functions fi ∈ mP . Consider the chain of OP -ideals
(f1) ⊆ (f2) ⊆ · · · . We have (fi) 6= (fi+1) since fi = tP fi+1 and t−1

P 6∈ OP (if t−1
P (P ) ∈ k

then 1 = 1(P ) = (tP t
−1
P )(P ) = tP (P )t−1

P (P ) = 0, which is a contradiction). Since OP is
Noetherian (Lemma 7.1.2) the ascending chain of ideals is finite, hence f ∈ mm

P for some
m ∈ N. �

Definition 7.4.5. Let C be a curve over k and P ∈ C(k). Let mP = mP,k(C) be as
in Definition 7.1.1 and define m0

P = OP,k(C). Let f ∈ OP,k(C) be such that f 6= 0 and
define the order of f at P to be vP (f) = max{m ∈ Z≥0 : f ∈ mm

P }. If vP (f) = 1 then
f has a simple zero at P . (We exclude the constant function f = 0, though one could
define vP (0) = ∞.)
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We stress that vP (f) is well-defined. If f, h ∈ OP,k(C) and f ≡ h then f − h = 0 in
OP,k(C). Hence, if f ∈ mm

P then h ∈ mm
P (and vice versa).

Exercise 7.4.6. Show that vP (f) does not depend on the underlying field. In other
words, if k′ is an algebraic extension of k in k then vP (f) = max{m ∈ Z≥0 : f ∈
mP,k′(C)m}.

Lemma 7.4.7. Let C be a curve over k and P ∈ C(k). Let tP ∈ OP,k(C) be any
uniformizer at P . Let f ∈ OP,k(C) be such that f 6= 0. Then vP (f) = max{m ∈ Z≥0 :

f/tmP ∈ OP,k(C)} and f = t
vP (f)
P u for some u ∈ OP,k(C)∗.

Exercise 7.4.8. Prove Lemma 7.4.7.

Writing a function f as t
vP (f)
P u for some u ∈ OP,k(C)∗ is analogous to writing a

polynomial F (x) ∈ k[x] in the form F (x) = (x − a)mG(x) where G(x) ∈ k[x] satisfies
G(a) 6= 0. Hopefully the reader is convinced that this is a powerful tool. For example, it
enables a simple proof of Exercise 7.4.9. Further, one can represent a function f as a formal
power series

P∞
n=vP (f) ant

n
P where an ∈ k; see Exercises 2-30 to 2-32 of Fulton [216]. Such

expansions will used in Chapters 25 and 26 but we don’t develop the theory rigorously.

Exercise 7.4.9. Let C be a curve over k and P ∈ C(k). Let f, h ∈ OP,k(C) be such that
f, h 6= 0. Show that vP (fh) = vP (f) + vP (h).

Lemma 7.4.10. Let C be a curve over k, let P ∈ C(k) and let f ∈ k(C). Then f can
be written as f1/f2 where f1, f2 ∈ OP,k(C).

Proof: Without loss of generality C is affine. By definition, f = f1/f2 where f1, f2 ∈
k[C]. Since k[C] ⊂ k[C] ⊂ OP,k(C) the result follows. �

Definition 7.4.11. Let C be a curve over k and let f ∈ k(C). A point P ∈ C(k) is
called a pole of f if f 6∈ OP,k(C). If f = f1/f2 ∈ k(C) where f1, f2 ∈ OP,k(C) then define
vP (f) = vP (f1)− vP (f2).

Exercise 7.4.12. Show that if P ∈ C(k) is a pole of f ∈ k(C) then vP (f) < 0 and P is
a zero of 1/f .

Lemma 7.4.13. For every function f ∈ k(C) the order vP (f) of f at P is independent
of the choice of representative of f .

Proof: Suppose f1/f2 ≡ g1/g2 where f1, f2, g1, g2 ∈ OP . Then f1g2 − f2g1 ∈ Ik(C) and
so f1g2 = f2g1 in OP . Since vP is well-defined in OP we have vP (f1g2) = vP (f2g1).
Applying Exercise 7.4.9 gives vP (f1) + vP (g2) = vP (f2) + vP (g1). Re-arranging and
applying Definition 7.4.11 proves the result. �

We now give some properties of vP (f).

Lemma 7.4.14. Let P ∈ C(k). Then vP is a discrete valuation on k(C). Furthermore,
the following properties hold.

1. If f ∈ k
∗
then vP (f) = 0.

2. If c ∈ k and if vP (f) < 0 then vP (f + c) = vP (f).

3. If f1, f2 ∈ k(C)∗ are such that vP (f1) 6= vP (f2) then vP (f1+f2) = min{vP (f1), vP (f2)}.
4. Suppose C is defined over k and let P ∈ C(k). Let σ ∈ Gal(k/k). Then vP (f) =

vσ(P )(σ(f)).
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Proof: Let tP be a uniformizer at P . Then vP (tP ) = 1, which proves the third property
of Definition 7.4.1. The property vP (fg) = vP (f) + vP (g) follows by the same argument
as Exercise 7.4.9. Similarly, iff = tvPu1 and g = twPu2 with v ≤ w and g 6= −f then f+g =
tvP (u1 + tw−v

P u2) so vP (f + g) ≥ min{vP (f), vP (g)}. Hence vP satisfies Definition 7.4.1.
We turn to the rest of the proof. The third statement is just a refinement of the

above argument. Without loss of generality, vP (f1) < vP (f2). Then f1 = tvPu1 and
f2 = tv+m

P u2 for some u1, u2 ∈ O∗
P , v ∈ Z and m ∈ N. Then f1 + f2 = tvP (u1 + tmP u2) 6= 0

and u1 + tmP u2 ∈ O∗
P so vP (f1 + f2) = vP (f1).

The first statement follows since f(P ) 6= 0. Statement 2 is just a special case of
statement 3.

For the fourth statement, recall from Lemma 7.3.5 that one can take tσ(P ) = σ(tP ). If
f = tvPu where u(P ) 6= 0 then σ(f) = σ(tP )

vσ(u) and σ(u)(σ(P )) = σ(u(P )) 6= σ(0) = 0
(see Exercise 5.4.13). The result follows. �

Having shown that every vP is a discrete valuation on k(C) it is natural to ask whether
every discrete valuation on k(C) is vP for some point P ∈ C(k). To make this true over
fields that are not algebraically closed requires a more general notion of a point of C
defined over k. Instead of doing this, we continue to work with points over k and show in
Theorem 7.5.2 that every discrete valuation on k(C) is vP for some P ∈ C(k). But first
we give some examples.

Example 7.4.15. Let E : y2 = x(x − 1)(x + 1) over k and let P = (1, 0) ∈ E(k). We
determine vP (x), vP (x− 1), vP (y) and vP (x + y − 1).

First, x(P ) = 1 so vP (x) = 0. For the rest, since P = ι(P ) we take the uniformizer to
be tP = y. Hence vP (y) = 1. Since

x− 1 = y2/(x(x + 1))

and 1/(x(x+ 1)) ∈ OP we have vP (x− 1) = 2.
Finally, f(x, y) = x + y − 1 = y + (x − 1) so vP (f(x, y)) = min{vP (y), vP (x − 1)} =

min{1, 2} = 1. One can see this directly by writing f(x, y) = y(1 + y/x(x+ 1)).

Lemma 7.4.16. Let E be an elliptic curve. Then vOE (x) = −2 and vOE (y) = −3.

Proof: We consider the projective equation, so that the functions become x/z and y/z
then set y = 1 so that we are considering x/z and 1/z on

z + a1xz + a3z
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

As in Example 7.3.4 we have z ∈ (x3) and so vOE (x) = 1, vOE (z) = 3. This implies
vOE (1/z) = −3 and vOE (x/z) = −2 as claimed. �

7.5 Valuations and Points on Curves

Let C be a curve over k and P ∈ C(k). We have shown that vP (f) is a discrete valuation
on k(C). The aim of this section is to show (using the weak Nullstellensatz) that every
discrete valuation v on k(C) arises as vP for some point P ∈ C(k).

Lemma 7.5.1. Let C be a curve over k and let v be a discrete valuation on k(C). Write
Rv,mv for the corresponding valuation ring and maximal ideal (over k). Suppose C ⊂ Pn

with coordinates (x0 : · · · : xn). Then there exists some 0 ≤ i ≤ n such that k[ϕ−1
i (C)] is

a subring of Rv (where ϕ−1
i is as in Definition 5.2.24).
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Proof: First we prove there exists some 0 ≤ i ≤ n such that x0/xi, . . . , xn/xi ∈ Rv. To
do this define Si = {j : 0 ≤ j ≤ n, xi/xj ∈ Rv}. We claim that S0 ∩ · · · ∩ Sn 6= ∅ and
prove this by induction. First, note that i ∈ Si so S0 6= ∅. Suppose, that j ∈ S0∩ · · ·∩Sk

for k ≥ 0. If j ∈ Sk+1 then we are done. If j 6∈ Sk+1 then we have xk+1/xj 6∈ Rv and so
xj/xk+1 ∈ Rv. Since xi/xj ∈ Rv for 0 ≤ i ≤ k by the inductive hypothesis it follows that
(xi/xj)(xj/xk+1) = xi/xk+1 ∈ Rv for 0 ≤ i ≤ k + 1. It follows that S0 ∩ · · · ∩ Sk+1 6= ∅.

To prove the result, suppose i is such that x0/xi, . . . , xn/xi ∈ Rv Then k[ϕ−1
i (C)] =

k[x0/xi, . . . , xn/xi] is a subring of Rv. �

Theorem 7.5.2. Let C be a curve over k and let v be a discrete valuation on k(C). Then
v = vP for some P ∈ C(k).

Proof: (Sketch) Let Rv be the valuation ring of v and mv the maximal ideal. Let i be as
in Lemma 7.5.1 so that R = k[ϕ−1

i (C)] ⊆ Rv. Note that R is the affine coordinate ring
of an affine curve.

By Lemma A.9.2, m = R∩mv is a prime ideal in R. Furthermore, m 6= ∅ and m 6= R.
Since R has Krull dimension 1, m is a maximal ideal.

Theorem 5.1.20 (weak Nullstellensatz) shows that m is equal to mP ∩ k[ϕ−1
i (C)] for

some point P ∈ C(k). It follows that the restriction of v to k[ϕ−1
i (C)] is equal to vP .

Finally, since k(C) is the field of fractions of k[ϕ−1
i (C)] it follows that v = vP .

For full details see Corollary I.6.6 of Hartshorne [278] or Theorem VI.9.1 of Loren-
zini [394]. �

7.6 Divisors

A divisor is just a notation for a finite multi-set of points. As always, we work with points
over an algebraically closed field k.

Definition 7.6.1. Let C be a curve over k (necessarily non-singular and projective). A
divisor on C is a formal sum

D =
X

P∈C(k)

nP (P ) (7.7)

where nP ∈ Z and only finitely many nP 6= 0. The divisor with all nP = 0 is written
0. The support of the divisor D in equation (7.7) is Supp(D) = {P ∈ C(k) : nP 6= 0}.
Note that many authors use the notation |D| for the support of D. Denote by Divk(C)
the set of all divisors on C. Define −D =

P
P (−nP )(P ). If D′ =

P
P∈C(k) n

′
P (P ) then

define
D +D′ =

X

P∈C(k)

(nP + n′
P )(P ).

Write D ≥ D′ if nP ≥ n′
P for all P . So D ≥ 0 if nP ≥ 0 for all P , and such a divisor is

called effective.

Example 7.6.2. Let E : y2 = x3 + 2x− 3 over Q and let P = (2, 3), Q = (1, 0) ∈ E(Q).
Then

D = 5(P )− 7(Q)

is a divisor on E. The support of D is Supp(D) = {P,Q} and D is not effective.

Definition 7.6.3. The degree of a divisor D =
P

P nP (P ) is the integer

deg(D) =
X

P∈C(k)

nP .
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(We stress that this is a finite sum.) We write Div0
k
(C) = {D ∈ Divk(C) : deg(D) = 0}.

Lemma 7.6.4. Divk(C) is a group under addition, and Div0
k
(C) is a subgroup.

Exercise 7.6.5. Prove Lemma 7.6.4.

Definition 7.6.6. Let C be a curve over k and let D =
P

P∈C(k) nP (P ) be a divisor

on C. For σ ∈ Gal(k/k) define σ(D) =
P

P nP (σ(P )). Then D is defined over k if
σ(D) = D for all σ ∈ Gal(k/k). Write Divk(C) for the set of divisors on C that are
defined over k.

Since Gal(k/k) is an enormous and complicated object it is important to realise that
testing the field of definition of any specific divisor is a finite task. There is an extension
k′/k of finite degree containing the coordinates of all points in the support of D. Let k′′

be the Galois closure of k′. Since k′′ is normal over k, any σ ∈ Gal(k/k) is such that
σ(k′′) = k′′. Hence, it is sufficient to study the behaviour of D under σ ∈ Gal(k′′/k).

Example 7.6.7. Let C : x2 + y2 = 6 over Q and let P = (1 +
√
2, 1 −

√
2), Q =

(1−
√
2, 1 +

√
2) ∈ C(Q(

√
2)) ⊆ C(Q). Define

D = (P ) + (Q).

It is sufficient to consider σ(D) for σ ∈ Gal(Q(
√
2)/Q). The only non-trivial element is

σ(
√
2) = −

√
2 and one sees that σ(P ) = Q and σ(Q) = P . Hence σ(D) = D for all

σ ∈ Gal(Q(
√
2)/Q) and D is defined over Q. Note that C(Q) = ∅, so this example shows

it is possible to have Divk(C) 6= {0} even if C(k) = ∅.

7.7 Principal Divisors

This section contains an important and rather difficult result, namely that the number of
poles of a function on a curve (counted according to multiplicity) is finite and equal to the
number of zeros (counted according to multiplicity). The finiteness condition is essential
to be able to represent the poles and zeroes of a function as a divisor. The other condition
is required to show that the set of all divisors of functions is a subgroup of Div0k(C).

In this chapter, finite poles and finite zeroes is only proved for plane curves and
deg(div(f)) = 0 is proved only for elliptic curves. The general results are given in Sec-
tion 8.3 in the next Chapter.

Theorem 7.7.1. Let C be a curve over k and f ∈ k(C)∗. Then f has finitely many poles
and zeroes.

Proof: (Special case of plane curves.) Let C = V (F (x, y, z)) ⊆ P2 where F is irreducible.
If F (x, y, z) = z then the result follows from Exercise 5.2.35 (there are only finitely many
points at infinity). So we can restrict to the affine case C = V (F (x, y)).

Let f = f1(x, y)/f2(x, y) with f1, f2 ∈ k[x, y]. Then f is regular whenever f2(P ) 6= 0
so the poles of f are contained in C ∩ V (f2). Without loss of generality, f2(x, y) contains
monomials featuring x. The resultant Rx(f2(x, y), F (x, y)) is a polynomial in y with a
finite number of roots hence C ∩ V (f2) is finite.

To show there are finitely many zeroes write f = f1/f2. The zeroes of f are contained
in C ∩ (V (f1) ∪ V (f2)) and the argument above applies. �
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Definition 7.7.2. Let f ∈ k(C)∗ and define the divisor of a function (this is a divisor
by Theorem 7.7.1)

div(f) =
X

P∈C(k)

vP (f)(P ).

The divisor of a function is also called a principal divisor. Note that some authors
write div(f) as (f). Let

Prink(C) = {div(f) : f ∈ k(C)∗}.

Exercise 7.7.3. Show that the zero element of Divk(C) lies in Prink(C).

Lemma 7.7.4. Let C be a curve over k and let f, f ′ ∈ k(C)∗.

1. div(ff ′) = div(f) + div(f ′).

2. div(1/f) = −div(f).

3. div(f + f ′) ≥PP min{vP (f), vP (f ′)}(P ).

4. div(fn) = ndiv(f) for n ∈ Z.

5. Let f ∈ k(C) and let σ ∈ Gal(k/k). Then div(σ(f)) = σ(div(f)).

Exercise 7.7.5. Prove Lemma 7.7.4.

Lemma 7.7.6. With notation as above, Prink(C) is a subgroup of Divk(C) under addi-
tion.

Exercise 7.7.7. Prove Lemma 7.7.6.

Lemma 7.7.8. In P1(k) every degree 0 divisor is principal.

Proof: Let D =
Pn

i=1 ei(xi : zi) where
Pn

i=1 ei = 0. Define

f(x, z) =

nY

i=1

(xzi − zxi)
ei . (7.8)

Since
Pn

i=1 ei = 0 it follows that f(x, z) is a ratio of homogeneous polynomials of the
same degree and therefore a rational function on P1. Using the uniformizers on P1 from
Example 7.3.3 one can verify that vPi(f) = ei when Pi = (xi : zi) and hence that
D = div(f). �

Note that if D is defined over k then one can show that the function f(x, z) in equa-
tion (7.8) is defined over k.

Exercise 7.7.9. Prove that if f ∈ k(P1) then deg(div(f)) = 0.

Lemma 7.7.10. Let E : y2 + H(x)y = F (x) be a Weierstrass equation over k and let
P = (xi, yi) ∈ E(k) be a non-singular point. Then div(x− xi) = (P ) + (ι(P )) − 2(OE).

Proof: There are one or two points P ∈ E(k) with x-coordinate equal to xi, namely
P = (xi, yi) and ι(P ) = (xi,−yi − H(xi)) (and these are equal if and only if 2yi +
H(xi) = 0). By Example 7.3.4 one can take the uniformizer tP = tι(P ) = (x − xi)
unless (∂E/∂y)(P ) = 2yi + H(xi) = 0, in which case the uniformizer is tP = (y − yi).
In the former case we have vP (x − xi) = vι(P )(x − xi) = 1. In the latter case write
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F (x) = (x−xi)g(x)+F (xi) = (x−xi)g(x)+y2i +H(xi)yi and H(x) = (x−xi)a1+H(xi).
Note that a1yi − g(xi) = (∂E/∂x)(P ) 6= 0 and so g1(x) := 1/(a1y − g(x)) ∈ OP . Then

0 = y2 +H(x)y − F (x)

= (y − yi)
2 + 2yyi − y2i + (x− xi)a1y +H(xi)y − (x− xi)g(x) − y2i −H(xi)yi

= (y − yi)
2 + (x− xi)(a1y − g(x)) + (y − yi)(2yi +H(xi)).

Hence, x − xi = (y − yi)
2g1(x) and vP (x − xi) = 2. Finally, the function (x − xi)

corresponds to
x− xiz

z
=

x

z
− xi

on the projective curve E. Since vOE (x/z) = −2 it follows from part 2 of Lemma 7.4.14
that vOE (x − xi) = −2. Hence, if P = (xi, yi) then, in all cases, div(x − xi) = (P ) +
(ι(P )) − 2(OE) and deg(div(x − xi)) = 0. �

Exercise 7.7.9 and Lemma 7.7.10 determine the divisor of certain functions, and in
both cases they turns out to have degree zero. This is not a coincidence. Indeed, we now
state a fundamental6 result which motivates the definition of the divisor class group.

Theorem 7.7.11. Let C be a curve over k. Let f ∈ k(C)∗. Then deg(div(f)) = 0.

Theorem 7.7.11 is proved for general curves in Theorem 8.3.14. Exercise 7.7.9 already
proved it for P1. We prove Theorem 7.7.11 in the case of elliptic curves in this section
(essentially, using the same method as Charlap and Robbins [127]). First, we state and
prove a lemma.

Lemma 7.7.12. Let E : y2+H(x)y = F (x) be a Weierstrass equation over k. Recall the
morphism ι(x, y) = (x,−y−H(x)) from Exercise 7.2.2. For f ∈ k(E) define ι∗(f) = f ◦ι.
Let P ∈ E(k) be a non-singular point, Q = ι(P ) and let tQ be a uniformizer at Q. Then
ι∗tQ is a uniformizer at P and vQ(f) = vP (ι

∗(f)).

Proof: One can verify that ι∗ is a field automorphism of k(C). By definition, (ι∗f)(P ) =
f(ι(P )) = f(Q). and so ι∗ gives an isomorphism ι∗ : OQ → OP . The result follows. �

We can now give a proof of Theorem 7.7.11 for elliptic curves. In some sense, our proof
reduces the problem to a polynomial function on P1 (and the result for P1 is already known
by Exercise 7.7.9). The proof given in Theorem 8.3.14 essentially follows the same logic
of reducing to P1.
Proof: (Proof of Theorem 7.7.11 in the case of elliptic curves.) Write E(x, y) = y2 +
H(x)y − F (x).

First consider a polynomial a(x) ∈ k[x] of degree d as a function on the affine elliptic
curve y2 +H(x)y = F (x) (obtained by taking z = 1). The function has no poles on the
affine part E ∩A2. Write a(x) =

Qn
i=1(x−xi)

ei where all xi ∈ k are distinct, ei ∈ N, andPn
i=1 ei = d. It suffices to compute the divisor of (x− xi) and show that it has degree 0.

The result therefore follows from Lemma 7.7.10.
Now consider a function of the form a(x) + b(x)y on the affine curve E ∩ A2. By

Lemma 7.7.12 one has vP (a(x) + b(x)y) = vι(P )(a(x) + b(x)(−y − H(x))) for all points

6This innocent-looking fact is actually the hardest result in this chapter to prove. There are several
accessible proofs of the general result: Stichtenoth (Theorem I.4.11 of [589]; also see Moreno [439] Lemma
2.2) gives a proof based on “weak approximation” of valuations and this is probably the simplest proof for a
reader who has already got this far through the current book; Fulton [216] gives a proof for projective plane
curves based on Bézout’s theorem; Silverman [564], Shafarevich [543], Hartshorne [278] and Lorenzini [394]
all give proofs that boil down to ramification theory of f : C → P1, and this is the argument we will give
in the next chapter.
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P ∈ E(k). Hence, if div(a + by) =
P

P nP (P ) then div(a + b(−y −H)) =
P

P nP (ι(P ))
and deg(div(a+ by)) = deg(div(a+ b(−y −H))).

Since (a+ by)(a+ b(−y−H)) = a2+ ab(y− y−H)+ b2(−y2−Hy) = a2−Hab−Fb2

is independent of y it follows by the first part of the proof that the affine parts of the
divisors of the functions (a+ by) and a+ b(−y −H) have degree

max{2 deg(a), deg(H) + deg(a) + deg(b), 3 + 2 deg(b)}. (7.9)

One can check that the degree in equation (7.9) is 2 deg(a) when deg(a) ≥ deg(b)+ 2 and
is 3 + 2 deg(b) when deg(a) ≤ deg(b) + 1.

To study the behaviour at infinity consider (a(x, z)+b(x, z)y)/zd where d = max{deg(a), deg(b)+
1}. By the same argument as before one has vOE (a(x, z)/z

d) = −2 deg(a). Similarly,
vOE (b(x, z)y/z

d) = vOE (b(x, z)/z
d−1) + vOE (y/z) = −2 deg(b) − 3. It follows by part 3

of Lemma 7.4.14 that deg(div((a(x, z) + b(x, z)y)/zd)) = 0.
Finally, consider f(x, y, z) = f1(x, y, z)/f2(x, y, z) where f1 and f2 are homogeneous

of degree d. By the above, deg(div(f1(x, y, z)/z
d)) = deg(div(f2(x, y, z)/z

d)) = 0 and the
result follows. �

Corollary 7.7.13. Let C be a curve over k and let f ∈ k(C)∗. The following are
equivalent:

1. div(f) ≥ 0.

2. f ∈ k∗.

3. div(f) = 0.

Proof: Certainly statement 2 implies statement 3 and 3 implies 1. So it suffices to prove
1 implies 2. Let f ∈ k(C)∗ be such that div(f) ≥ 0. Then f is regular everywhere, so
choose some P0 ∈ C(k) and define h = f − f(P0) ∈ k(C). Then h(P0) = 0. If h = 0 then
f is the constant function f(P0) and, since f is defined over k, it follows that f ∈ k∗. To
complete the proof suppose that h 6= 0 in k(C). Since deg(div(h)) = 0 by Theorem 7.7.11
it follows that h must have at least one pole. But then f has a pole, which contradicts
div(f) ≥ 0. �

Corollary 7.7.14. Let C be a curve over k. Let f, h ∈ k(C)∗. Then div(f) = div(h) if
and only if f = ch for some c ∈ k∗.

Exercise 7.7.15. Prove Corollary 7.7.14.

7.8 Divisor Class Group

We have seen that Prink(C) = {div(f) : f ∈ k(C)∗} is a subgroup of Div0k(C). Hence,
since all the groups are Abelian, one can define the quotient group; we call this the divisor
class group. It is common to use the notation Pic for the divisor class group since the
divisor class group of a curve is isomorphic to the Picard group of a curve (even though
the Picard group is usually defined differently, in terms of line bundles).

Definition 7.8.1. The (degree zero) divisor class group of a curve C over k is
Pic0k(C) = Div0k(C)/Prink(C).

We call two divisors D1, D2 ∈ Div0k(C) linearly equivalent and write D1 ≡ D2

if D1 − D2 ∈ Prink(C). The equivalence class (called a divisor class) of a divisor
D ∈ Div0k(C) under linear equivalence is denoted D.

Example 7.8.2. By Lemma 7.7.8, Pic0k(P
1) = {0}.
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Theorem 7.8.3. Let C be a curve over k and let f ∈ k(C). If σ(f) = f for all σ ∈
Gal(k/k) then f ∈ k(C). If div(f) is defined over k then f = ch for some c ∈ k and
h ∈ k(C).

Proof: The first claim follows from Remark 5.4.14 (also see Remark 8.4.11 of Section 8.4).
For the second statement, let div(f) be defined over k. Then div(f) = σ(div(f)) =

div(σ(f)) where the second equality follows from part 4 of Lemma 7.4.14. Corollary 7.7.14

implies σ(f) = c(σ)f for some c(σ) ∈ k
∗
. The function c : Gal(k/k) → k

∗
is a 1-cocycle

(the fact that c(στ) = σ(c(τ))c(σ) is immediate, the fact that c : Gal(k/k) → k
∗
is

continuous also follows). Hence, Theorem A.7.2 (Hilbert 90) implies that c(σ) = σ(γ)/γ

for some γ ∈ k
∗
. In other words, taking h = f/γ ∈ k(C), we have

σ(h) = σ(f)/σ(γ) = f/γ = h.

By the first part of the theorem h ∈ k(C). �

Theorem 7.8.3 has the following important corollary, namely that Pic0k(C) is a sub-
group of Pic0k′(C) for every extension k′/k.

Corollary 7.8.4. Let C be a curve over k and let k′/k be an algebraic extension. Then
Pic0k(C) injects into Pic0k′(C).

Proof: Suppose a divisor class D ∈ Pic0k(C) becomes trivial in Pic0k′(C). Then there is
some divisor D on C defined over k such that D = div(f) for some f ∈ k′(C)∗. But
Theorem 7.8.3 implies D = div(h) for some h ∈ k(C) and so the divisor class is trivial in
Pic0k(C). �

Corollary 7.8.5. Let k be a finite field. Let C be a curve over k. Define

Pic0
k
(C)Gal(k/k) =

�
D ∈ Pic0

k
(C) : σ(D) = D for all σ ∈ Gal(k/k)

	
.

Then Pic0
k
(C)Gal(k/k) = Pic0k(C).

Proof: (Sketch) Let G = Gal(k/k). Theorem 7.8.3 already showed that Prink(C)G =
Prink(C) but we re-do the proof in a more explicitly cohomological way, as we need further
consequences of the argument.

Take Galois cohomology of the exact sequence

1 → k
∗ → k(C)∗ → Prink(C) → 0

to get

1 → k∗ → (k(C)∗)G → Prink(C)G → H1(G, k
∗
) → H1(G, k(C)∗) → H1(G,Prink(C)) → H2(G, k

∗
).

Since (k(C)∗)G = k(C) (Theorem 7.8.3) andH1(G, k
∗
) = 0 (Hilbert 90) we have Prink(C)G =

Prink(C). Further, H2(G, k
∗
) = 0 when k is finite (see Section X.7 of [542]) and

H1(G, k(C)∗) = 0 (see Silverman Exercise X.10). Hence, H1(G,Prink(C)) = 0.
Now, take Galois cohomology of the exact sequence

1 → Prink(C) → Div0
k
(C) → Pic0

k
(C) → 0

to get
Prink(C) → Div0

k
(C)G → Pic0

k
(C)G → H1(G,Prink(C)) = 0.

Now, Div0
k
(C)G = Div0k(C) by definition and so the result follows. �
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We minimise the use of the word Jacobian in this book, however we make a few
remarks here. We have associated to a curve C over a field k the divisor class group
Pic0k(C). This group can be considered as an algebraic group. To be precise, there is a
variety JC (called the Jacobian variety of C) that is an algebraic group (i.e., there is a
morphism7 + : JC × JC → JC) and such that, for any extension K/k, there is a bijective
map between Pic0K(C) and JC(K) that is a group homomorphism.

One can think of Pic0 as a functor that, given a curve C over k, associates with every
field extension k′/k a group Pic0k′(C). The Jacobian variety of the curve is a variety JC
over k whose k′-rational points JC(k′) are in one-to-one correspondence with the elements
of Pic0k′(C) for all k′/k. For most applications it is sufficient to work in the language of
divisor class groups rather than Jacobians (despite our remarks about algebraic groups
in Chapter 4).

7.9 Elliptic Curves

The goal of this section is to show that the ‘traditional’ chord-and-tangent rule for
elliptic curves does give a group operation. Our approach is to show that this operation
coincides with addition in the divisor class group of an elliptic curve. Hence, elliptic
curves are an algebraic group.

First we state the chord-and-tangent rule without justifying any of the claims or as-
sumptions made in the description. The results later in the section will justify these
claims (see Remark 7.9.4). For more details about the chord-and-tangent rule see Wash-
ington [626], Cassels [122], Reid [497] or Silverman and Tate [567].

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the affine part of an elliptic curve
E. Draw the line l(x, y) = 0 between P1 and P2 (if P1 6= P2 then this is called a chord; if
P1 = P2 then let the line be the tangent to the curve at P1). Denote by R the third point8

of intersection (counted according to multiplicities) of the line with the curve E. Now
draw the line v(x) = 0 between OE and R (if R = OE then this is the “line at infinity”
and if R is an affine point this is a vertical line so a function of x only). Denote by S the
third point of intersection of this line with the curve E. Then one defines P1 + P2 to be
S. Over the real numbers this operation is illustrated in Figure 7.1.

We now transform the above geometric description into algebra, and show that the
points R and S do exist. The first step is to write down the equation of the line between
P1 = (x1, y1) and P2 = (x2, y2). We state the equation of the line as a definition and then
show that it corresponds to a function with the correct divisor.

Definition 7.9.1. Let E(x, y) be a Weierstrass equation for an elliptic curve over k. Let
P1 = (x1, y1), P2 = (x2, y2) ∈ E(k) ∩ A2. If P1 = ι(P2) then the line between P1 and P2

is9 v(x) = x− x1.

If P1 6= ι(P2) then there are two subcases. If P1 = P2 then define λ = (3x2
1 + 2a2x1 +

a4)/(2y1+a1x1+a3) and if P1 6= P2 then define λ = (y2−y1)/(x2−x1). The line between
P1 and P2 is then

l(x, y) = y − λ(x − x1)− y1.

We stress that whenever we write l(x, y) then we are implicitly assuming that it is not
a vertical line v(x).

7To make this statement precise requires showing that JC × JC is a variety.
8Possibly this point is at infinity.
9This includes the case P1 = P2 = ι(P1).
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Figure 7.1: Chord and tangent rule for elliptic curve addition.
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Warning: Do not confuse the line v(x) with the valuation vP . The notation v(P ) means
the line evaluated at the point P . The notation vP (x) means the valuation of the function
x at the point P .

Exercise 7.9.2. Let the notation be as in Definition 7.9.1. Show that if P1 = ι(P2) then
v(P1) = v(P2) = 0 and if P1 6= ι(P2) then l(P1) = l(P2) = 0.

Lemma 7.9.3. Let P1 = (x1, y1) ∈ E(k) and let P2 = ι(P1). Let v(x) = (x − x1) as in
Definition 7.9.1. Then div(v(x)) = (P1) + (P2)− 2(OE).

Let P1 = (x1, y1), P2 = (x2, y2) ∈ E(k) be such that P1 6= ι(P2) and let l(x, y) =
y−λ(x−x1)−y1 be as in Definition 7.9.1. Then there exists x3 ∈ k such that E(x,λ(x−
x1) + y1) = −Q3

i=1(x − xi) and div(l(x, y)) = (P1) + (P2) + (R) − 3(OE) where R =
(x3,λ(x3 − x1) + y1).

Proof: The first part is just a restatement of Lemma 7.7.10.

For the second part, set G(x) = −E(x,λ(x − x1) + y1), which is a monic polynomial
over k of degree 3. Certainly x1 and x2 are roots of G(x) over k so if x1 6= x2 then
G(x) has a third root x3 over k. In the case x1 = x2 we have P1 = P2 6= ι(P2).
Make a linear change of variables so that (x1, y1) = (x2, y2) = 0. The curve equation is
E(x, y) = y2 + a1xy + a3y − (x3 + a2x

2 + a4x) and a3 6= 0 since (0, 0) 6= ι(0, 0). Now, by
definition, l(x, y) = a4x/a3 and one has

G(x) = E(x, a4x/a3) = (a4x/a3)
2 + a1x(a4x/a3) + a4x− (x3 + a2x

2 + a4x)

which is divisible by x2. Hence G(x) splits completely over k.
For the final part we consider l(x, y) as a function on the affine curve. By Lemma 7.4.14

and Lemma 7.4.16 we have vOE (l(x, y)) = min{vOE (y), vOE (x), vOE (1)} = −3. Since
deg(div(l(x, y))) = 0 there are three affine zeroes counted according to multiplicity.

Define l(x, y) = y+(a1x+ a3) + λ(x− x1) + y1. Note that l = −l ◦ ι so vP (l(x, y)) =
vι(P )(l(x, y)) (also see Lemma 7.7.12). One can check that

l(x, y)l(x, y) = −E(x,λ(x − x1) + y1) =

3Y

i=1

(x− xi) (7.10)
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where the first equality is equivalence modulo E(x, y), not equality of polynomials. Hence,
for any point P ∈ E(k),

vP (l(x, y)) + vP (l(x, y)) = vP

 
3Y

i=1

(x− xi)

!
.

Write Pi = (xi, yi), let ei be the multiplicity of xi in the right hand side of equation (7.10)
and recall that vPi(x − xi) = 1 if Pi 6= ι(Pi) and 2 otherwise. Also note that l(Pi) = 0
implies l(Pi) 6= 0 unless Pi = ι(Pi), in which case vPi(l(x, y)) = vPi(l(x, y)). It follows
that vPi(l(x, y)) = ei, which proves the result. �

Remark 7.9.4. It follows from the above results that it does make sense to speak of
the “third point of intersection” R of l(x, y) with E and to call l(x, y) a tangent line in
the case when P1 = P2. Hence, we have justified the assumptions made in the informal
description of the chord-and-tangent rule.

Exercise 7.9.5. Let E(x, y, z) be a Weierstrass equation for an elliptic curve. The line
z = 0 is called the line at infinity on E. Show that z = 0 only passes through (0, 0) on
the affine curve given by the equation E(x, 1, z) = 0.

Exercise 7.9.6. Prove that the following algebraic formulae for the chord-and-tangent
rule are correct. Let P1, P2 ∈ E(k), we want to compute S = P1 + P2. If P1 = OE then
S = P2 and if P2 = OE then S = P1. Hence we may now assume that P1 = (x1, y1) and
P2 = (x2, y2) are affine. If y2 = −y1 −H(x1) then S = OE . Otherwise, set λ to be as in
Definition 7.9.1 and compute x3 = λ2 + a1λ − a2 − x1 − x2 and y3 = −λ(xS − x1)− y1.
The sum is S = (x3, y3).

Before proving the main theorem, we state the following technical result, whose proof
is postponed to the next chapter (Corollary 8.6.5).

Theorem 7.9.7. Let P1, P2 ∈ E(k) be a points on an elliptic curve such that P1 6= P2.
Then (P1)− (P2) is not a principal divisor.

We now consider the divisor class group Pic0k(E). The following result is usually
obtained as a corollary to the Riemann-Roch theorem, but we give an ad-hoc proof for
elliptic curves. One can consider this result as the Abel-Jacobi map in the case of genus
1 curves.

Theorem 7.9.8. There is a one-to-one correspondence between E(k) and Pic0k(E), namely
P 7→ (P )− (OE).

Proof: We first show that the map is injective. Suppose (P1) − (OE) ≡ (P2) − (OE).
Then (P1)− (P2) is principal, and so Theorem 7.9.7 implies P1 = P2.

It remains to show that the map is surjective. Let D =
P

P nP (P ) be any effective
divisor on E. We prove that D is equivalent to a divisor of the form

(P ) + (deg(D)− 1)(OE). (7.11)

We will do this by replacing any term (P1) + (P2) by a term of the form (S) + (OE) for
some point S.

The key equations are (P ) + (ι(P )) = 2(OE) + div(v(x)) where v(x) is as in Defi-
nition 7.9.1, or, if P1 6= ι(P2), (P1) + (P2) = (S) + (OE) + div(l(x, y)/v(x)). The first
equation allows us to replace any pair (P ) + (ι(P )), including the case P = ι(P ), by
2(OE). The second equation allows us to replace any pair (P1) + (P2), where P1 6= ι(P2)
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(but including the case P1 = P2) with (S)+(OE). It is clear that any pair of affine points
is included in one of these two cases, and so repeating these operations a finite number
of times reduces any effective divisor to the form in equation (7.11).

Finally, let D be a degree zero divisor on E. Write D = D1 − D2 where D1 and
D2 are effective divisors of the same degree. By the above argument we can write D1 ≡
(S1) + (deg(D1)− 1)(OE) and D2 ≡ (S2) + (deg(D1)− 1)(OE). Hence D ≡ (S1)− (S2).
Finally, adding the divisor of the vertical line function through S2 and subtracting the
divisor of the line between S1 and ι(S2) givesD ≡ (S)−(OE) for some point S as required.
�

Since E(k) is in bijection with the group Pic0k(E) it follows that E(k) is a group, with
the group law coming from the divisor class group structure of E. It remains to show
that the group law is just the chord-and-tangent rule. In other words, this result shows
that the chord-and-tangent rule is associative. Note that many texts prove that both
E(k) and Pic0k(E) are groups and then prove that the map P 7→ (P ) − (OE) is a group
homomorphism; whereas we use this map to prove that E(k) is a group.

Theorem 7.9.9. Let E be an elliptic curve over a field k. The group law induced on
E(k) by pulling back the divisor class group operations via the bijection of Theorem 7.9.8
is the chord-and-tangent rule.

Proof: Let P1, P2 ∈ E(k). To add these points we map them to divisor classes (P1)−(OE)
and (P2) − (OE) in Pic0k(E). Their sum is (P1) + (P2)− 2(OE), which is reduced to the
form (S)− (OE) by applying the rules in the proof of Theorem 7.9.8. In other words, we
get (P1) + (P2) − 2(OE) = (S) − (OE) + div(f(x, y)) where f(x, y) = v(x) if P1 = ι(P2)
or f(x, y) = l(x, y)/v(x) in the general case, where l(x, y) and v(x) are the lines from
Definition 7.9.1. Since these are precisely the same lines as in the description of the
chord-and-tangent rule it follows that the point S is the same point as produced by the
chord-and-tangent rules. �

A succinct way to describe the elliptic curve addition law (since there is a single
point at infinity) is that three points sum to zero if they lie on a line. This is simply a
restatement of the fact that if P , Q and R line on the line l(x, y, z) = 0 then the divisor
(P ) + (Q) + (R)− 3(OE) is a principal divisor.

Exercise 7.9.10. One can choose any k-rational point P0 ∈ E(k) and define a group law
on E(k) such that P0 is the identity element. The sum of points P and Q is defined as
follows: let l be the line through P and Q (taking the tangent if P = Q, which uniquely
exists since E is non-singular). Then l hits E at a third point (counting multiplicities)
R. Draw a line v between P0 and R. This hits E at a third point (again counting with
multiplicities) S. Then P + Q is defined to be the point S. Show that this operation
satisfies the axioms of a group.


