
Chapter 4

Preliminary Remarks on
Algebraic Groups

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

For efficient public key cryptography based on discrete logarithms one would like to
have groups for which computing gn is as fast as possible, the representation of group
elements is as small as possible, and for which the DLP (see Definition 2.1.1 or 13.0.1) is
(at least conjecturally) as hard as possible.

If g is a group element of order r then one needs at least log2(r) bits to represent
an arbitrary element of hgi. This optimal size can be achieved by using the exponent
representation, i.e., represent ga as a ∈ Z/rZ. However, the DLP is not hard when this
representation is used.

Ideally, for any cyclic group G of order r, one would like to be able to represent
arbitrary group elements (in a manner which does not then render the DLP trivial) using
roughly log2(r) bits. This can be done in some cases (e.g., elliptic curves over finite fields
with a prime number of points) but it is unlikely that it can always be done. Using
algebraic groups over finite fields is a good way to achieve these conflicting objectives.

4.1 Informal Definition of an Algebraic Group

The subject of algebraic groups is large and has an extensive literature. Instead of pre-
senting the full theory, in this book we present only the algebraic groups that are currently
believed to be useful in public key cryptography. Informally1, an algebraic group over
a field k is a group such that:

• Group elements are specified as n-tuples of elements in a field k;

1We refrain from giving a formal definition of algebraic groups; mainly as it requires defining products
of projective varieties.
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• The group operations (multiplication and inversion) can be performed using only
polynomial equations (or ratios of polynomials) defined over k. In other words, we
have polynomial or rational maps mult : k2n → kn and inverse : kn → kn. There
is not necessarily a single n-tuple of polynomial equations that defines mult for all
possible pairs of group elements.

An algebraic group quotient is the set of equivalence classes of an algebraic group
under some equivalence relation (see Section 4.3 for an example). Note that, in general,
an algebraic group quotient is not a group.

We stress that being an algebraic group is not a group-theoretic property; it is a
property of a particular description of the group. Perhaps it helps to give an example of
a group whose usual representation is not an algebraic group.

Example 4.1.1. Let n ∈ N and let Sn be the group of permutations on n symbols. Per-
mutations can be represented as an n-tuple of distinct integers from the set {1, 2, . . . , n}.
The composition (x1, . . . , xn) ◦ (y1, . . . , yn) of two permutations is (xy1 , xy2 , . . . , xyn).
Since xy1 is not a polynomial, the usual representation of Sn is not an algebraic group.
However, Sn can be represented as a subgroup of the matrix group GLn(k) (for any field
k), which is an algebraic group.

Our main interest is algebraic groups over finite fields Fq. For each example of an
algebraic group (or quotient) G we will explain how to achieve the following basic func-
tionalities:

• Efficient group operations in G (typically requiring O(log(q)2) bit operations);

• Compact representation of elements of G (typically O(log(q)) bits);

• Generating cryptographically suitable G in polynomial-time (i.e., O(log(q)c) for
some (small) c ∈ N);

• Generating random elements in G in polynomial-time;

• Hashing from {0, 1}l to G or from G to {0, 1}l in polynomial-time.

In order to be able to use an algebraic group (or quotient)G for cryptographic applications
we need some or all of these functionalities, as well as requiring the discrete logarithm
problem (and possibly other computational problems) to be hard.

We sometimes use the notation AG to mean “algebraic group in the context of this
book”; similarly AGQ means “algebraic group quotient in the context of this book”.
The aim of this part of the book is to describe the algebraic groups of relevance for
public key cryptography (namely, multiplicative groups, algebraic tori, elliptic curves and
divisor class groups). As is traditional, we will use multiplicative notation for the group
operation in multiplicative groups and tori, and additive notation for the group operation
on elliptic curves and divisor class groups of hyperelliptic curves. In Parts III and V,
when we discuss cryptographic applications, we will always use multiplicative notation
for algebraic groups.

The purpose of this chapter is to give the simplest examples of algebraic groups and
quotients. The later chapters introduce enough algebraic geometry to be able to define
the algebraic groups of interest in this book and prove some important facts about them.
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4.2 Examples of Algebraic Groups

The simplest examples of algebraic groups are the additive group Ga and multiplica-
tive group Gm of a field k. For Ga(k) the set of points is k and the group operation
is given by the polynomial mult(x, y) = x + y (for computing the group operation) and
inverse(x) = −x (for computing inverses). For Gm(k) the set of points is k∗ = k−{0} and
the group operation is given by the polynomial mult(x, y) = xy and the rational function
inverse(x) = 1/x (Example 5.1.5 shows how to express Gm(k) as an algebraic set).

The additive group is useless for cryptography since the discrete logarithm problem
is easy. The discrete logarithm problem is also easy for the multiplicative group over
certain fields (e.g., if g ∈ R∗ then the discrete logarithm problem in hgi ⊆ R∗ is easy due
to algorithms that compute approximations to the natural logarithm function). However,
Gm(Fq) is useful for cryptography and will be one of the main examples used in this book.

The other main examples of algebraic groups in public key cryptography are algebraic
tori (see Chapter 6), elliptic curves and divisor class groups of hyperelliptic curves.

4.3 Algebraic Group Quotients

Quotients of algebraic groups are used to reduce the storage and communication require-
ments of public key cryptosystems. Let G be a group with an automorphism ψ such
that ψn = 1 (where 1 : G → G is the identity map and ψn is the n-fold composition
ψ ◦ · · · ◦ ψ). We define ψ0 = 1. Define the orbit or equivalence class of g ∈ G under
ψ to be [g] = {ψi(g) : 0 ≤ i < n}. Define the quotient as the set of orbits under ψ. In
other words

G/ψ = {[g] : g ∈ G}.
We call G the covering group of a quotient G/ψ. In general, the group structure of
G does not induce a group structure on the quotient G/ψ. Nevertheless, we can define
exponentiation on the quotient by [g]n = [gn] for n ∈ Z. Since exponentiation is the
fundamental operation for many cryptographic applications it follows that quotients of
algebraic groups are sufficient for many cryptographic applications.

Lemma 4.3.1. Let n ∈ Z and [g] ∈ G/ψ, then [g]n is well-defined.

Proof: Since ψ is a group homomorphism we have ψi(g)n = ψi(gn) and so for each
g1 ∈ [g] we have gn1 ∈ [gn]. �

The advantage of algebraic group quotients G/ψ is that they can require less storage
than the original algebraic group G. We now give an example of this.

Example 4.3.2. Let p be an odd prime. Consider the subgroup G ⊂ F∗
p2 of order p+ 1.

Note that gcd(p − 1, p + 1) = 2 so G ∩ F∗
p = {1,−1}. If g ∈ G then we have gp+1 = 1,

which is equivalent to gp = g−1. Let ψ be the automorphism ψ(g) = gp. Then ψ2 = 1 in
Fp2 and the orbits [g] in G/ψ all have size 2 except for [1] and [−1].

The natural representation for elements of G ⊆ Fp2 is a pair of elements of Fp. How-
ever, since #(G/ψ) = 2 + (p− 1)/2 one might expect to be able to represent elements of
G/ψ using just one element of Fp.

Let g ∈ G. Then the elements of [g] = {g, gp} are the roots of the equation x2− tx+1
in Fp2 where t = g + gp ∈ Fp. Conversely, each t ∈ Fp such that the roots of x2 − tx+ 1
are Galois conjugates corresponds to a class [g] (the values t = ±2 correspond to [1] and
[−1]). Hence, one can represent an element of G/ψ by the trace t. We therefore require
half the storage compared with the standard representation of G ⊂ Fp2 .
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In Section 6.3.2 we show that, given the trace t of g, one can compute the trace tn of
gn efficiently using Lucas sequences (though there is a slight catch, namely that we have
to work with a pair (tn, tn−1) of traces).

Another important example of an algebraic group quotient is elliptic curve arithmetic
using x-coordinates only. This is the quotient of an elliptic curve by the equivalence
relation P ≡ −P .

4.4 Algebraic Groups over Rings

Algebraic geometry is traditionally studied over fields. However, several applications
(both algorithmic and cryptographic) will exploit algebraic groups or algebraic group
quotients over Z/NZ (we do not consider general rings).

Let N =
Qk

i=1 pi be square-free (the non-square-free case is often more subtle). By the
Chinese remainder theorem, Z/NZ is isomorphic as a ring to ⊕k

i=1Fpi (where ⊕ denotes
the direct sum of rings). Hence, if G is an algebraic group then it is natural to define

G(Z/NZ) =
kM

i=1

G(Fpi) (4.1)

(where ⊕ now denotes the direct sum of groups). A problem is that this representation
for G(Z/NZ) does not satisfy the natural generalisation to rings of our informal definition
of an algebraic group. For example, group elements are not n-tuples over the ring, but
over a collection of different fields. Also the value n is no longer bounded.

The challenge is to find a representation for G(Z/NZ) that uses n-tuples over Z/NZ
and satisfies the other properties of the informal definition. Example 4.4.1 shows that
this holds for the additive and multiplicative groups.

Example 4.4.1. Let N =
Q

i pi where the pi are distinct primes. Then, using the
definition in equation (4.1),

Ga(Z/NZ) ∼=
M

i

Ga(Fpi)
∼=

M

i

Fpi
∼= Z/NZ.

Similarly,

Gm(Z/NZ) ∼=
M

i

Gm(Fpi)
∼=

M

i

F∗
pi

∼= (Z/NZ)∗.

Hence, both groups can naturally be considered as algebraic groups over Z/NZ.

Note that Gm(Z/NZ) is not cyclic when N is square-free but not prime.
To deal with non-square-free N it is necessary to define G(Z/pnZ). The details of

this depend on the algebraic group. For Ga and Gm it is straightforward and we still
have Ga(Z/NZ) = Z/NZ and Gm(Z/NZ) = (Z/NZ)∗. For other groups it can be more
complicated.


