
Chapter 26

Pairings on Elliptic Curves

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter is a very brief summary of the mathematics behind pairings on elliptic
curves. Pairing-based cryptography was created by Sakai, Ohgishi and Kasahara [509] and
Joux [316]. Some applications of pairings in elliptic curve cryptography have already been
presented in the book (for example, the identity-based encryption scheme of Boneh and
Franklin in Section 23.3.2 and the Boneh-Boyen signature scheme in Section 22.2.3). We
present several other important applications of pairings, such as the Menezes-Okamoto-
Vanstone/Frey-Rück reduction of the discrete logarithm problem from elliptic curves to
finite fields.

Due to lack of space we do not give full details of the subject. Good general references
for pairings and pairing-based cryptography are Chapters IX and X of [65], Chapters 6,
16 and 24 of [16] and [320].

26.1 Weil Reciprocity

The following theorem is an important tool for studying pairings. Recall that a divisor
on a curve C over a field k is a finite sum D =

P
P∈C(k) nP (P ) (i.e., nP = 0 for all but

finitely many P ∈ C(k)). The support of a divisor D is the set of points Supp(D) =
{P ∈ C(k) : nP 6= 0}. To a function f on a curve one associates the divisor div(f) as in
Definition 7.7.2. If f is a function on a curve and D is a divisor such that the support of
D is distinct from the support of div(f) then f(D) is defined to be

Q
P∈C(k),nP 6=0 f(P )nP .

Exercise 26.1.1. Let D1 and D2 be divisors with disjoint support on a curve C. Suppose
D1 is principal. Show that f(D2) is well-defined, subject to div(f) = D1, if and only if
D2 has degree zero.

Theorem 26.1.2. (Weil reciprocity) Let C be a curve over a field k. Let f, g ∈ k(C)

573



574 CHAPTER 26. PAIRINGS ON ELLIPTIC CURVES

be functions such that Supp(div(f)) ∩ Supp(div(g)) = ∅. Then

f(div(g)) = g(div(f)).

Proof: (Sketch) One first shows that the result holds for functions on C = P1. Then take
any covering φ : C → P1 and apply the pullback. We refer to the appendix of Chapter IX
of [65] for details. A proof over C is given in the appendix to Section 18.1 of Lang [366].
�

Pages 24-26 of Charlap and Coley [126] present a generalised Weil reciprocity that
does not require the divisors to have disjoint support.

26.2 The Weil Pairing

The Weil pairing plays an important role in the study of elliptic curves over number fields,
but tends to be less important in cryptography. For completeness, we briefly sketch its
definition.

Let E be an elliptic curve over k and let n ∈ N be coprime to char(k). Let P,Q ∈ E[n].
Then there is a function f ∈ k(E) such that div(f) = n(Q)− n(OE). Let Q′ ∈ E(k) be
any point such that [n]Q′ = Q, and so [n2]Q′ = OE . Note that [n] is unramified and the
divisor D = [n]∗((Q)− (OE)) is equal to

X

R∈E[n]

(Q′ +R)− (R).

Since
P

R∈E[n] R = OE and [n2]Q′ = OE it follows from Theorem 7.9.9 that D is a

principal divisor. So there is a function g ∈ k(E) such that div(g) = D = [n]∗((Q) −
(OE)). Now, consider the function [n]∗f = f ◦ [n]. One has div([n]∗f) = [n]∗(div(f)) =
[n]∗(n(Q) − n(OE)) = nD. Hence the functions f ◦ [n] and gn have the same divisor.
Multiplying f by a suitable constant gives f ◦ [n] = gn. Now, for any point U ∈ E(k)
such that [n]U 6∈ E[n2] we have

g(U + P )n = f([n]U + [n]P ) = f([n]U) = g(U)n.

In other words, g(U + P )/g(U) is an n-th root of unity in k.

Lemma 26.2.1. Let the notation be as above. Then g(U + P )/g(U) is independent of
the choice of the point U ∈ E(k).

Proof: See Section 11.2 of Washington [626]. The proof is described as “slightly techni-
cal” and uses the Zariski topology. �

Definition 26.2.2. Let E be an elliptic curve over a field k and let n ∈ N be such that
gcd(n, char(k)) = 1. Define

µn = {z ∈ k
∗
: zn = 1}.

The Weil pairing is the function

en : E[n]× E[n] → µn

defined (using the notation above) as en(P,Q) = g(U +P )/g(U) for any point U ∈ E(k),
U 6∈ E[n2] and where div(g) = [n]∗((Q)− (OE)).

Theorem 26.2.3. The Weil pairing satisfies the following properties.
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1. (Bilinear) For P1, P2, Q ∈ E[n], en(P1+P2, Q) = en(P1, Q)en(P2, Q) and en(Q,P1+
P2) = en(Q,P1)en(Q,P2).

2. (Alternating) For P ∈ E[n], en(P, P ) = 1.

3. (Non-degenerate) If en(P,Q) = 1 for all Q ∈ E[n] then P = OE .

4. (Galois invariant) If E is defined over k and σ ∈ Gal(k/k) then en(σ(P ),σ(Q)) =
σ(en(P,Q)).

5. (Compatible) If P ∈ E[nm] and Q ∈ E[n] then

enm(P,Q) = en([m]P,Q).

Proof: See Theorem III.8.1 of Silverman [564] or Theorem 11.7 of Washington [626].
The non-degeneracy proof in [564] is very sketchy, but the treatment in [626] fills in the
missing details. The non-degeneracy also needs the fact that the genus of E is not zero,
so there is no function with divisor (P )− (OE) (see Corollary 8.6.5). �

Exercise 26.2.4. Show that any function e : E[n]× E[n] → µn that has the properties
of the Weil pairing as in Theorem 26.2.3 also has the following properties.

1. e(OE , P ) = e(P,OE) = 1 for all P ∈ E[n].

2. e(−P,Q) = e(P,Q)−1 for all P,Q ∈ E[n].

3. e(P,Q) = e(Q,P )−1 for all P,Q ∈ E[n].

4. If {P,Q} generate E[n] then the values of e on E[n]×E[n] are uniquely determined
by the single value e(P,Q).

Exercise 26.2.5. Let E be an elliptic curve over Fq and let n ∈ N. Prove that E[n] ⊆
E(Fq) implies n | (q − 1).

For elliptic curves over C the Weil pairing has a very simple interpretation. Recall
that an elliptic curve over C is isomorphic (as a manifold) to C/L, where L is a lattice of
rank 2, and that this isomorphism also preserves the group structure. Fix a pair {z1, z2}
of generators for L as a Z-module. The points of order n are 1

nL/L, so are identified with
{(az1 + bz2)/n : 0 ≤ a, b < n}. The function

en((az1 + bz2)/n, (cz1 + dz2)/n) = exp(2πi(ad− bc)/n)

is easily checked to be bilinear, non-degenerate and alternating. Hence, it is (a power of)
the Weil pairing. We refer to the appendix of Section 18.1 of Lang [366] for further details.
Connections with the intersection pairing are discussed in Section 12.2 of Husemoller [302]
and Edixhoven [189].

There is an alternative definition1 of the Weil pairing that is more useful for imple-
mentation, but for which it is harder to prove non-degeneracy. For P,Q ∈ E[n] let DP

and DQ be degree zero divisors such that DP ≡ (P ) − (OE), DQ ≡ (Q) − (OE) and
Supp(DP ) ∩ Supp(DQ) = ∅. Let fP , fQ ∈ k(E) be functions such that div(fP ) = nDP

and div(fQ) = nDQ. Then

en(P,Q) = fQ(DP )/fP (DQ). (26.1)

1The literature is inconsistent and some of the definitions (for example, Section 18.1 of Lang [366],
Exercise 3.16 of Silverman [564] and Section 3 of Miller [427]) are actually for en(Q,P ) = en(P,Q)−1.
For further discussion of this issue see Remark 11.3 and Section 11.6 of Washington [626]. Also see the
“Warning” at the end of Section 4 of Miller [429].
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The equivalence is shown in Theorem 4 of the extended and unpublished version of
Hess [282], and in Section 11.6.1 of Washington [626].

The Weil pairing can be generalised from E[n]×E[n] to ker(φ)×ker(φ̂) ⊆ E[n]× eE[n]

where φ : E → eE is an isogeny. For details see Exercise 3.15 of Silverman [564] or
Garefalakis [237]. For the Weil pairing on Jacobian varieties of curves of genus g > 1 we
refer to Section 20 of Mumford [444].

26.3 The Tate-Lichtenbaum Pairing

Tate defined a pairing for Abelian varieties over local fields and Lichtenbaum showed how
to compute it efficiently in the case of Jacobian varieties of curves. Frey and Rück [213]
showed how to compute it for elliptic curves over finite fields, and emphasised its cryp-
tographic relevance. This pairing is the basic building block of most pairing-based cryp-
tography.

Exercise 26.3.1. Let E be an elliptic curve over a finite field Fq and let n ∈ N be such
that gcd(n, q) = 1 and n | #E(Fq). Define

nE(Fq) = {[n]Q : Q ∈ E(Fq)}.

Show that nE(Fq) is a group. Show that E(Fq)[n] = {P ∈ E(Fq) : [n]P = OE},
E(Fq)/nE(Fq) = {P + nE(Fq) : P ∈ E(Fq)} and F∗

q/(F
∗
q)

n are finite groups of exponent
n.

Let notation be as in Exercise 26.3.1. Let P ∈ E(Fq)[n] and Q ∈ E(Fq). Then n(P )−
n(OE) is principal, so there is a function f ∈ Fq(E) such that div(f) = n(P ) − n(OE).
Let D be a divisor on E with support disjoint from Supp(div(f)) = {OE , P} but such
that D is equivalent to (Q) − (OE) (for example, D = (Q + R) − (R) for some point2

R ∈ E(Fq), R 6∈ {OE , P,−Q,P −Q}). We define the Tate-Lichtenbaum pairing to be

tn(P,Q) = f(D). (26.2)

We will explain below that

tn : E(Fq)[n]× E(Fq)/nE(Fq) → F∗
q/(F

∗
q)

n.

First we show that the pairing is well-defined. We sketch the proof, as it is a nice and
simple application of Weil reciprocity.

Lemma 26.3.2. Let the notation be as above. Let P ∈ E(Fq)[n] and let f ∈ Fq(E) be
such that div(f) = n(P ) − n(OE). Let D1, D2 be divisors on E defined over Fq with
support disjoint from {OE , P}.

1. Suppose D1 ≡ D2 ≡ (Q)− (OE) for some point Q ∈ E(Fq). Then f(D1)/f(D2) ∈
(F∗

q)
n.

2. Suppose D1 ≡ (Q1)− (OE) and D2 ≡ (Q2)− (OE) where Q1, Q2 ∈ E(Fq) are such
that Q1 6= Q2 and and Q1 −Q2 ∈ nE(Fq). Then f(D1)/f(D2) ∈ (F∗

q)
n.

2One can usually take R ∈ E(Fq), but see page 187 of [65] for an example that shows that this is not
always possible.
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Proof: The first statement is a special case of the second, but it is a convenient stepping-
stone for the proof. For the first statement, write D2 = D1+div(h) where h is a function
on E defined over Fq. Note that Supp(div(h)) ∩ {OE, P} = ∅. We have

f(D2) = f(D1 + div(h)) = f(D1)f(div(h)).

Now, applying Weil reciprocity gives f(div(h)) = h(div(f)) = h(n(P ) − n(OE)) =
(h(P )/h(OE))

n ∈ (F∗
q)

n.
For the second statement write Q1 − Q2 = [n]R for some R ∈ E(Fq). We may

assume that R 6= OE , since the first statement has already been proved. Then (Q1) −
(Q2) = n((R + S) − (S)) + div(h0) for some h0 ∈ Fq(E) and some S ∈ E(Fq) with
S 6∈ {OE,−R,P, P − R}.3 We also have D1 = (Q1)− (OE) + div(h1) and D2 = (Q2) −
(OE) + div(h2) for some h1, h2 ∈ Fq(E). Putting everything together

f(D2) = f(D1 − n((R + S)− (S)) + div(h2)− div(h1)− div(h0))

= f(D1)f((R + S)− (S))nf(div(h2/(h0h1))).

Since Supp(div(h2/(h0h1))) ⊆ Supp(D1)∪Supp(D2)∪{R+S, S} is disjoint from {OE , P} =
∅ the result follows from Weil reciprocity. �

Theorem 26.3.3. The Tate-Lichtenbaum pairing satisfies the following properties.

1. (Bilinear) For P1, P2 ∈ E(Fq)[n], and Q ∈ E(Fq), tn(P1+P2, Q) = tn(P1, Q)tn(P2, Q).
For Q ∈ E(Fq)[n] and P1, P2 ∈ E(Fq), tn(Q,P1 + P2) = tn(Q,P1)tn(Q,P2).

2. (Non-degenerate) Assume F∗
q contains a non-trivial n-th root of unity. Let P ∈

E(Fq)[n]. If tn(P,Q) = 1 for all Q ∈ E(Fq) then P = OE. Let Q ∈ E(Fq). If
tn(P,Q) = 1 for all P ∈ E(Fq)[n] then Q ∈ nE(Fq).

3. (Galois invariant) If E is defined over Fq and σ ∈ Gal(Fq/Fq) then tn(σ(P ),σ(Q)) =
σ(tn(P,Q)).

Proof: Bilinearity can be proved using ideas similar to those used to prove Lemma 26.3.2
(for all the details see Theorem IX.7 of [65]). Non-degeneracy in the case of finite fields
was shown by Frey and Rück [213], but simpler proofs can be found in Hess [282] and
Section 11.7 of Washington [626]. Galois invariance is straightforward (see Theorem IX.7
of [65]). �

26.3.1 Miller’s Algorithm

We now briefly explain how to compute the Tate-Lichtenbaum pairing (and hence the
Weil pairing via equation (26.1)). The algorithm first appears in Miller [427].

Definition 26.3.4. Let P ∈ E(k) and i ∈ N. A Miller function fi,P ∈ k(E) is
a function on E such that div(fi,P ) = i(P ) − ([i]P ) − (i − 1)(OE). Furthermore, we
assume that Miller functions are “normalised at infinity” in the sense that the power
series expansion at infinity with respect to the canonical uniformizer t∞ = x/y is 1.

Exercise 26.3.5. Show that f1,P = 1. Show that if fi,P and fj,P are Miller functions
then one can take

fi+j,P = fi,P fj,P l(x, y)/v(x, y)

where l(x, y) and v(x, y) are the lines arising in the elliptic curve addition of [i]P to
[j]P (and so div(l(x, y)) = ([i]P ) + ([j]P ) + (−[i + j]P ) − 3(OE) and div(v(x, y)) =
([i + j]P ) + (−[i+ j]P )− 2(OE)).

3Some tedious calculations are required to show that one can choose S ∈ E(Fq) rather than E(Fq) in
all cases, but the claim is easy when n is large.
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We can now give Miller’s algorithm to compute fn,P (D) for any divisor D (see Al-
gorithm 29). The basic idea is to compute the Miller function out of smaller Miller
functions using a “square-and-multiply” strategy. As usual, we write an integer n in bi-
nary as (1nm−1 . . . n1n0)2 where m = ⌊log2(n)⌋. Note that the lines l and v in lines 6
and/or 10 may be simplified if the operation is [2]T = OE or T + P = OE .

Algorithm 29 Miller’s Algorithm

Input: n = (1nm−1 . . . n1n0)2 ∈ N, P ∈ E(k), such that [n]P = OE , D ∈ Divk(E)
Output: fn,P (D)
1: f = 1
2: T = P
3: i = m− 1 = ⌊log2(n)⌋ − 1
4: while i ≥ 0 do
5: Calculate lines l and v for doubling T
6: f = f2 · l(D)/v(D)
7: T = [2]T
8: if ni = 1 then
9: Calculate lines l and v for addition of T and P

10: f = f · l(D)/v(D)
11: T = T + P
12: end if
13: i = i− 1
14: end while
15: return f

The main observation is that Miller’s algorithm takes O(log2(n)) iterations, each of
which comprises field operations in k if P and all points in the support of D lie in E(k).
There are a number of important techniques to speed up Miller’s algorithm in practice; we
mention some of them in the following sections and refer to Chapter IX of [65], Chapter XII
of [320] or Section 16.4 of [16] for further details.

Exercise 26.3.6. Give simplified versions of lines 6 and 10 of Algorithm 29 that apply
when [2]T = OE or T + P = OE .

26.3.2 The Reduced Tate-Lichtenbaum Pairing

Definition 26.3.7. Let n, q ∈ N be such that gcd(n, q) = 1. Define the embedding
degree k(q, n) ∈ N to be the smallest positive (non-zero) integer such that n | (qk(q,n)−1).

Let E be an elliptic curve over Fq and suppose n | #E(Fq) is such that gcd(n, q) = 1.
Let k = k(q, n) be the embedding degree. Then µn ⊆ F∗

qk (in some cases µn can lie

in a proper subfield of Fqk) and so the Tate-Lichtenbaum pairing maps into F∗
qk/(F

∗
qk)

n.
In practice it is inconvenient to have a pairing taking values in this quotient group, as
cryptographic protocols require well-defined values. To have a canonical representative
for each coset in F∗

qk/(F
∗
qk)

n it would be much more convenient to use µn. This is easily

achieved using the facts that if z ∈ F∗
qk then z(q

k−1)/n ∈ µn, and that the cosets z1(F∗
qk)

n

and z2(F∗
qk)

n are equal if and only if z
(qk−1)/n
1 = z

(qk−1)/n
2 . Also, exponentiation is a

group homomorphism from F∗
qk/(F

∗
qk)

n to µn.
For this reason, one usually considers the reduced Tate-Lichtenbaum pairing

t̂n(P,Q) = tn(P,Q)(q
k−1)/n,
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which maps E(Fq)[n]×E(Fq)/nE(Fq) to µn. The exponentiation to the power (qk − 1)/n
is called the final exponentiation.

Exercise 26.3.8. Let n | N | (qk − 1). Show that

tn(P,Q)(q
k−1)/n = tN (P,Q)(q

k−1)/N .

Exercise 26.3.9. Explain why working in a group whose order has low Hamming weight
leads to relatively fast pairings. Suppose n = E(Fq) has low Hamming weight but r |
n does not. Explain how to compute the reduced Tate-Lichtenbaum pairing t̂r(P,Q)
efficiently if n/r is small.

In the applications one usually chooses the elliptic curve E to satisfy the mild condi-
tions in Exercise 26.3.10. In these cases it follows from the Exercise that we can identify
E(Fqk)/rE(Fqk ) with E(Fqk)[r]. Hence, if the conditions hold, we may interpret the
reduced Tate-Lichtenbaum pairing as a map

t̂r : E[r] × E[r] → µr,

just as the Weil pairing is.

Exercise 26.3.10. Let E be an elliptic curve over Fq and let r be a prime such that
rk#E(Fq), gcd(r, q) = 1, E[r] ⊆ E(Fqk) and r2k#E(Fqk), where k = k(q, r) is the
embedding degree. Show that E[r] is set of representatives for E(Fqk )/rE(Fqk).

In most cryptographic situations one restricts to the case of points of prime order r.
Further, one can often insist that P ∈ E(Fq) and Q ∈ E(Fqk). An important observation

is that if k > 1 and z ∈ F∗
q then z(q

k−1)/r = 1. This allows us to omit some computations
in Miller’s algorithm. A further trick, due4 to Barreto, Kim, Lynn and Scott [29], is
given in Lemma 26.3.11 (a similar fact for the Weil pairing is given in Proposition 8 of
Miller [429]).

Lemma 26.3.11. Let E be an elliptic curve over Fq, P ∈ E(Fq) a point of prime order
r (where r > 4 and gcd(q, r) = 1), and Q ∈ E(Fqk)−E(Fq) where k > 1 is the embedding
degree. Then

t̂r(P,Q) = fr,P (Q)(q
k−1)/r.

Proof: A proof for general curves (and without any restriction on r) is given in Lemma 1
of Granger, Hess, Oyono, Thériault and Vercauteren [265]. We give a similar argument.

We have t̂r(P,Q) = fr,P ((Q+R)−(R))(q
k−1)/r for any pointR ∈ E(Fqk)−{OE, P,−Q,P−

Q}. Choose R ∈ E(Fq)− {OE, P}. Since fr,P (R) ∈ F∗
q and k > 1 it follows that

t̂r(P,Q) = fr,P (Q+R)(q
k−1)/r.

Now, it is not possible to take R = OE in the above argument. Instead we need to prove

that fr,P (Q+R)(q
k−1)/r = fr,P (Q)(q

k−1)/r directly. It suffices to prove that

fr,P ((Q+R)− (Q))(q
k−1)/r = 1.

To do this, note that (Q+ R)− (Q) ≡ (R)− (OE) ≡ ([2]R)− (R). Set, for example,
R = [2]P so that ([2]R) − (R) has support disjoint from {OE , P} (this is where the

4Though be warned that the “proof” in [29] is not rigorous.
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condition r > 4 is used). Then there is a function h ∈ Fqk(E) such that (Q+R)− (Q) =
([2]R)− (R) + div(h). We have

fr,P ((Q+R)− (Q)) = fr,p(([2]R)− (R) + div(h)) = fr,P (([2]R)− (R))h(div(fr,P )).

Finally, note that fr,P (([2]R) − (R)) ∈ F∗
q and that h(div(fr,P )) = (h(P )/h(OE))

r ∈
(F∗

qk)
r. The result follows. �

Exercise 26.3.12. Let the embedding degree k be even, r ∤ (qk/2 − 1), P ∈ E(Fq) and
Q = (xQ, yQ) ∈ E(Fqk) points of order r. Suppose xQ ∈ Fqk/2 (this is usually the case
for points of cryptographic interest). Show that all vertical line functions can be omitted
when computing the reduced Tate-Lichtenbam pairing.

26.3.3 Ate Pairing

Computing pairings on elliptic curves usually requires significantly more effort than ex-
ponentiation on an elliptic curve. There has been a concerted research effort to make
pairing computation more efficient, and a large number of techniques are known. Due
to lack of space we focus on one particular method known as “loop shortening”. This
idea originates in the work of Duursma and Lee [187] (for hyperelliptic curves) and was
further developed by Barreto, Galbraith, Ó hÉigeartaigh and Scott [28]. We present the
idea in the ate pairing formulation of Hess, Smart and Vercauteren [284]. Note that the
ate pairing is not a “new” pairing. Rather, it is a way to efficiently compute a power, of
a restriction to certain subgroups, of the Tate-Lichtenbaum pairing.

Let E be an elliptic curve over Fq and let r be a large prime such that r | #E(Fq) =
q + 1 − t and r | (qk − 1) for some relatively small integer k, but r ∤ (q − 1). It follows
that #(E[r]∩E(Fq)) = r. Since the Frobenius map is linear on the Fr-vector space E[r],
and its characteristic polynomial satisfies

x2 − tx+ q ≡ (x− 1)(x− q) (mod r),

it follows that πq has distinct eigenvalues 1 and q (mod r) and corresponding eigenspaces
(i.e., subgroups)

G1 = E[r] ∩ ker(πq − [1]) , G2 = E[r] ∩ ker(πq − [q]). (26.3)

Since, r | (qk−1) and q ≡ (t−1) (mod r) it follows that r | ((t−1)k−1). Let T = t−1
and N = gcd(T k−1, qk−1). Note that r | N . Define the ate pairing aT : G2×G1 → µr

by

aT (Q,P ) = fT,Q(P )(q
k−1)/N .

The point is that |t| ≤ 2
√
q and, typically, r ≈ q. Hence, computing the Miller

function fT,Q typically requires at most half the number of steps as required to compute
fr,P . On the downside, the coefficients of the function fT,Q lie in Fqk , rather than Fq as
before. Nevertheless, the ate pairing often leads to faster pairings if carefully implemented
(especially when twists are exploited).

Theorem 26.3.13. Let the notation be as above (in particular, T = t − 1 and N =

gcd(T k − 1, qk − 1)). Let L = (T k − 1)/N and c =
Pk−1

i=0 qiT k−1−i (mod r). Then

aT (Q,P )c = tr(Q,P )L(qk−1)/r.

Hence, aT is bilinear, and aT is non-degenerate if and only if r ∤ L.
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Proof: (Sketch) Consider tr(Q,P )(q
k−1)/r = fr,Q(P )(q

k−1)/r. Since r | N , Exercise 26.3.8
implies that this is equal to

fN,Q(P )(q
k−1)/N .

Indeed,

tr(Q,P )L(qk−1)/r = fLN,Q(P )(q
k−1)/N = fTk−1,Q(P )(q

k−1)/N .

Now, [T k − 1]Q = OE so one can take fTk,Q = fTk−1,Q. (To prove this note that
div(fTk,Q) = T k(Q)− ([T k]Q) − (T k − 1)(OE) = T k(Q)− (Q)− (T k − 1)(OE) = (T k −
1)(Q)− (T k − 1)(OE).) Hence, the L-th power of the reduced Tate-Lichtenbaum pairing

is fTk,Q(P )(q
k−1)/N . Now,

fTk,Q(P ) = fT,Q(P )T
k−1

fT,[T ]Q(P )T
k−2 · · · fT,[Tk−1]Q(P ), (26.4)

which follows by considering the divisors of the left- and right-hand sides. The final step,
and the only place we use πq(Q) = [q]Q = [T ]Q, is to note that

fT,[T ]Q(P ) = fT,πq(Q)(P ) = f q
T,Q(P ). (26.5)

where f q denotes raising all coefficients of the rational function f to the power q. This
follows because E and P are defined over Fq, so σ(fT,Q(P )) = fT,σ(Q)(P ) for all σ ∈
Gal(Fqk/Fq). One therefore computes fTk,Q(P ) = fT,Q(P )c, which completes the proof.
�

Exercise 26.3.14. Generalise Theorem 26.3.13 to the case where T ≡ qm (mod r) for
some m ∈ N. What is the corresponding value of c?

26.3.4 Optimal Pairings

Lee, Lee and Park [369], Hess [283] and Vercauteren [618] have used combinations of
pairings that have the potential for further loop shortening over that provided by the ate
pairing.

Ideally, one wants to compute a pairing as fM,Q(P ), with some final exponentation,
where M is as small as possible. Hess and Vercauteren conjecture that the smallest
possible value for log2(M), for points of prime order r in an elliptic curve E over Fq with
embedding degree k(q, r), is log2(r)/ϕ(k(q, r)). For such a pairing, Miller’s algorithm
would be sped up by a factor of approximately ϕ(k(q, r)) compared with the time required
when not using loop shortening. The method of Vercauteren actually gives a pairing as a
product of

Ql
i=0 fMi,Q(P )q

i

(together with some other terms) where all the integers Mi

are of the desired size; such a pairing is not automatically computed faster than the naive
method, but if the integers Mi all have a large common prefix in their binary expansions
then such a saving can be obtained. If a pairing can be computed with approximately
log2(r)/ϕ(k(q, r)) iterations in Miller’s algorithm then it is called an optimal pairing.

The basic principle of Vercauteren’s construction is to find a multiple ur, for some
u ∈ N, of the group order that can be written in the form

ur =

lX

i=0

Miq
i (26.6)

where the Mi ∈ Z are “small”. One can then show, just like with the ate pairing, that a
certain power of the Tate-Lichtenbaum pairing is

 
lY

i=0

fMi,Q(P )q
i

lY

i=1

gi(P )

!(qk−1)/r

, (26.7)
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where the functions gi take into account additions of certain elliptic curve points. Ver-
cauteren proves that if

ukqk−1 6≡ (qk−1)
r

 
lX

i=0

iMiq
i−1

!
(mod r)

then the pairing is non-degenerate. The value of equation (26.7) can be computed ef-
ficiently only if all fMi,Q(P ) can, in some sense, be computed simultaneously. This is
easiest when all but one of the Mi are small (i.e., in {−1, 0, 1}) or when the Mi have a
large common prefix of most significant bits (possibly in signed binary expansion).

Vercauteren [618] suggests finding solutions to equation (26.6) using lattices. More
precisely, given r and q one considers the lattice spanned by the rows of the following
matrix

B =




r 0 0 · · · 0
−q 1 0 · · · 0
−q2 0 1 · · · 0
...

...
...

. . .
...

−ql 0 0 · · · 1




. (26.8)

One sees that (u,M1,M2, . . . ,Ml)B = (M0,M1, . . . ,Ml) and so candidate values for
u,M0, . . . ,Ml can be found by finding short vectors in the lattice. A demonstration
of this method is given in Example 26.6.3.

Note that loop shortening methods should not be confused with the methods, starting
with Scott [534], that use an endomorphism on the curve to “recycle” some computations
in Miller’s algorithm. Such methods do not reduce the number of squarings in Miller’s
algorithm and, while valuable, do not give the same potential performance improvements
as methods that use loop shortening.

26.3.5 Pairing Lattices

Hess [283] developed a framework for analysing pairings that is closely related to the
framework in the previous section. We briefly sketch the ideas.

Definition 26.3.15. Let notation be as in Section 26.3.3, in particular q is a prime power,
r is a prime, q is a primitive k-th root of unity modulo r, and the groups G1 and G2 are
as in equation (26.3). Let s ≡ qm (mod r) for some m ∈ N. For any h(x) ∈ Z[x] write
h(x) =

Pd
i=0 hix

i. Let P ∈ G1, Q ∈ G2 and define fs,h(x),Q to be a function normalised
at infinity (in the sense of Definition 26.3.4) such that

div(fs,h(x),Q) =

dX

i=0

hi(([s
i]Q)− (OE)).

Define
as,h(x)(Q,P ) = fs,h(x),Q(P )(q

k−1)/r.

We stress here that h is a polynomial, not a rational function (as it was in previous
sections).

Since [s]Q = [qm]Q = πm
q (Q), a generalisation of equation (26.5) shows that fhi,[si]Q(P ) =

fhi,Q(P )q
mi

. It follows that one can compute fs,h(x),Q(P ) efficiently using Miller’s algo-
rithm in a similar way to computing the pairings in the previous section. The running
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time of Miller’s algorithm is proportional to
Pd

i=0 log2(max{1, |hi|}) in the worse case (it
performs better when the hi have a large common prefix in their binary expansion).

Hess [283] shows that, for certain choices of h(x), as,h(x) is a non-degenerate and
bilinear pairing. The goal is also to obtain good choices for h(x) so that the pairing
can be computed using a short loop. One of the major contributions of Hess [283] is to
prove lower bounds on the size of the coefficients of any polynomial h(x) that leads to a
non-degenerate, bilinear pairing. This supports the optimality conjecture mentioned in
the previous section.

Lemma 26.3.16. Let notation be as in Definition 26.3.15.

1. as,r(Q,P ) is the Tate pairing.

2. as,x−s(Q,P ) is a power of the ate pairing.

3. as,h(x)x(Q,P ) = as,h(x)(Q,P )s.

4. Let h(x), g(x) ∈ Z[x]. Then

as,h(x)+g(x)(Q,P ) = as,h(x)(Q,P )as,g(x)(Q,P ) and as,h(x)g(x)(Q,P ) = as,h(x)(Q,P )g(s).

Exercise 26.3.17.⋆ Prove Lemma 26.3.16.

Theorem 26.3.18. Let notation be as above. Let s ∈ N be such that s is a primitive
k-th root of unity modulo r2. Let h(x) ∈ Z[x] be such that h(s) ≡ 0 (mod r) but r2 ∤ h(s).
Then as,h(x) is a non-degenerate, bilinear pairing on G2 ×G1.

Proof: Since sk ≡ 1 (mod r) it follows that s ≡ qm (mod r) for some m ∈ N. Since
h(s) ≡ 0 (mod r) we can write

h(x) = g1(x)(x − s) + g2(x)r

for some g1(x), g2(x) ∈ Z[x]. It follows from Lemma 26.3.16 that, for some c ∈ N,

as,h(x)(Q,P ) = aT (Q,P )cg1(s)t̂r(Q,P )g2(s)

and so as,h(x) is a bilinear pairing on G2 ×G1.

Finally, we need to prove non-degeneracy. By assumption, r2 | (sk − 1) and so, in
the version of Theorem 26.3.13 of Exercise 26.3.14, r | L. It follows that aT (Q,P ) = 1.
Hence, as,h(x)(Q,P ) = t̂r(Q,P )g2(s). To complete the proof, note that g2(s) = h(s)/r,
and so as,h(x) is non-degenerate if and only if r2 ∤ h(s). �

Hess [283] explains that this construction is “complete” in the sense that every bilinear
map coming from functions in a natural class must correspond to some polynomial h(x).

Hess also proves that any polynomial h(x) =
Pd

i=0 hix
i ∈ Z[x] satisfying the required

conditions is such that
Pd

i=0 |hi| ≥ r1/ϕ(k). Polynomials h(x) that have one coefficient
of size r1/ϕ(k) and all other coefficients small satisfy the optimality conjecture. Good
choices for the polynomial h(x) are found by considering exactly the same lattice as in
equation (26.8) (though in [283] it is written with q replaced by s).

26.4 Reduction of ECDLP to Finite Fields

An early application of pairings in elliptic curve cryptography was to reduce the discrete
logarithm problem in E(Fq)[n], when gcd(n, q) = 1, to the discrete logarithm problem in
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the multiplicative group of a finite extension of Fq. Menezes, Okamoto and Vanstone [417]
used the Weil pairing to achieve this, while Frey and Rück [213] used the reduced Tate-
Lichtenbaum pairing. The case gcd(n, q) 6= 1 will be handled in Section 26.4.1.

The basic idea is as follows: Given an instance P , Q = [a]P of the discrete logarithm
problem in E(Fq)[n] and a non-degenerate bilinear pairing e, one finds a point R ∈ E(Fq)
such that z = e(P,R) 6= 1. It follows that e(Q,R) = za in µn ⊆ F∗

qk where k = k(q, n)
is the embedding degree. When q is a prime power that is not prime then there is the
possibility that µr lies in a proper subfield of Fqk , in which case re-define k to be the
smallest positive rational number such that Fqk is the smallest field of characteristic
char(Fq) containing µn.

The point is that if k is sufficiently small then index calculus algorithms in F∗
qk could

be faster than the baby-step-giant-step or Pollard rho algorithms in E(Fq)[n]. Hence,
one has reduced the discrete logarithm problem to a potentially easier problem. The
reduction of the DLP from E(Fq) to a subgroup of F∗

qk is called the MOV/FR attack.

Menezes, Okamoto and Vanstone [417] suggested to use the Weil pairing for the above
idea. In this case, the point R can, in principle, be defined over a large extension of
Fq. Frey and Rück explained that the Tate-Lichtenbaum pairing is a more natural choice,
since it is sufficient to take a suitable point R ∈ E(Fqk) where k = k(q, n) is the embedding
degree. Balasubramanian and Koblitz [26] showed that, in most cases, it is also sufficient
to work in E(Fqk) when using the Weil pairing.

Theorem 26.4.1. Let E be an elliptic curve over Fq and let r be a prime dividing
#E(Fq). Suppose that r ∤ (q− 1) and that gcd(r, q) = 1. Then E[r] ⊂ E(Fqk) if and only
if r divides (qk − 1).

Proof: See [26]. �

Balasubramanian and Koblitz also show that a “random” curve is expected to have
very large embedding degree. Hence, the MOV/FR attack is not a serious threat to the
ECDLP on randomly chosen elliptic curves. However, as noted by Menezes, Okamoto and
Vanstone, supersingular elliptic curves are always potentially vulnerable to the attack.

Theorem 26.4.2. Let E be a supersingular elliptic curve over Fq and suppose r | #E(Fq).
Then the embedding degree k(q, r) is such that k(q, r) ≤ 6.

Proof: See Corollary 9.11.9. �

26.4.1 Anomalous Curves

The discrete logarithm problem on elliptic curves over Fp with p points (such curves are
called anomalous elliptic curves) can be efficiently solved. This was first noticed by
Semaev [537] and generalised to higher genus curves by Rück [506]. We present their
method in this section. An alternative way to view the attack (using p-adic lifting rather
than differentials) was given by Satoh and Araki [512] and Smart [570].

The theoretical tool is an observation of Serre [541].

Lemma 26.4.3. Let P ∈ E(Fp) have order p. Let fP be a function in Fp(E) with
div(fP ) = p(P )− p(OE). Then the map

P 7→ dfP
fP

is a well-defined group homomorphism from E(Fp)[p] to ΩFp(E).
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Proof: First note that fP is defined up to a constant, and that d(cfP )/(cfP ) = dfP /fP .
Hence, the map is well-defined.

Now let Q = [a]P and let fP be as in the statement of the lemma. Then there is a
function g such that

div(g) = (Q)− a(P ) + (a− 1)(OE).

One has

div(gpfa
P ) = pdiv(g) + adiv(fP )

= p(Q)− ap(P ) + p(a− 1)(OE) + ap(P )− ap(OE)

= p(Q)− p(OE).

Hence, one can let fQ = gpfa
P . Now, using part 4 of Lemma 8.5.17,

dfQ
fQ

=
d(gpfa

P )

gpfa
P

=
gpdfa

P + fa
Pdg

p

gpfa
P

.

Part 6 of Lemma 8.5.17 gives dgp = pgp−1dg = 0 (since we are working in Fp) and
dfa

P = afa−1
P dfP . Hence,

dfQ
fQ

= a
dfP
fP

,

which proves the result. �

Exercise 26.4.4. Generalise Lemma 26.4.3 to arbitrary curves.

Lemma 26.4.3 therefore maps the DLP in E(Fp)[p] to a DLP in ΩFp(E). It remains
to solve the DLP there.

Lemma 26.4.5. Let the notation be as in Lemma 26.4.3. Let t be a uniformizer at OE.
Write fP = t−p + f1t

−(p−1) + f2t
−(p−2) + · · · . Then

dfP
fP

= (f1 + · · · )dt.

Proof: Clearly, f−1
P = tp − f1t

p+1 + · · · . From part 8 of Lemma 8.5.17 we have

dfP =

�
∂fP
∂t

�
dt = (−pt−p−1 − (p− 1)f1t

−p + · · · )dt.

Since we are working in Fp, we have dfP = (f1t
−p + · · · )dt. The result follows. �

Putting together Lemma 26.4.3 and Lemma 26.4.5: if Q = [a]P then dfP /fP =
(f1+ · · · )dt and dfQ/fQ = (af1+ · · · )dt. Hence, as long as one can compute the expansion
of dfP /fP with respect to t, then one can solve the DLP. Indeed, this is easy: use Miller’s
algorithm with power series expansions to compute the power series expansion of fP
and follow the above calculations. Rück [506] gives an elegant formulation (for general
curves) that computes only the desired coefficient f1; he calls it the “additive version of
the Tate-Lichtenbaum pairing”.

26.5 Computational Problems

26.5.1 Pairing Inversion

We briefly discuss a computational problem that is required to be hard for many crypto-
graphic applications of pairings.
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Definition 26.5.1. Let G1, G2, GT be groups of prime order r and let e : G1×G2 → GT

be a non-degenerate bilinear pairing. The pairing inversion problem is: Given Q ∈
G2, z ∈ GT to compute P ∈ G1 such that e(P,Q) = z.

The bilinear Diffie-Hellman problem was introduced in Definition 23.3.9. In additive
notation it is: Given P,Q, [a]Q, [b]Q to compute e(P,Q)ab.

Lemma 26.5.2. If one has an oracle for pairing inversion then one can solve BDH.

Proof: Given the BDH instance P,Q, [a]Q, [b]Q compute z1 = e(P, [a]Q) and call the
pairing inversion oracle on (Q, z1) to get P ′ such that e(P ′, Q) = z1. It follows that
P ′ = [a]P . One then computes e(P ′, [b]Q) = e(P,Q)ab as required. �

Further discussion of pairing inversion is given by Galbraith, Hess and Vercauteren [222].

Exercise 26.5.3. Show that if one can solve pairing inversion then one can solve the
Diffie-Hellman problem in G1.

Exercise 26.5.4. Show that if one has an oracle for pairing inversion then one can
perform passive selective forgery of signatures in the Boneh-Boyen scheme presented in
Figure 23.3.9.

Exercise 26.5.5. Show that if one has an oracle for pairing inversion then one can solve
the q-SDH problem of Definition 22.2.17.

26.5.2 Solving DDH using Pairings

Pairings can be used to solve the decision Diffie-Hellman (DDH) problem in some cases.
First, we consider a variant of DDH that can sometimes be solved using pairings.

Definition 26.5.6. Let E(Fq) be an elliptic curve and let P,Q ∈ E(Fq) have prime
order r. The co-DDH problem is: Given (P, [a]P,Q, [b]Q) to determine whether or not
a ≡ b (mod r).

Exercise 26.5.7. Show that co-DDH is equivalent to DDH if Q ∈ hP i.
Suppose now that E[r] ⊆ E(Fq), P 6= OE , and that Q 6∈ hP i. Then {P,Q} generates

E[r] as a group. By non-degeneracy of the Weil pairing, we have er(P,Q) 6= 1. It follows
that

er([a]P,Q) = er(P,Q)a and er(P, [b]Q) = er(P,Q)b.

Hence, the co-DDH problem can be efficiently solved using the Weil pairing.
The above approach cannot be used to solve DDH, since er(P, P ) = 1 by the alternat-

ing property of the Weil pairing. In some special cases, the reduced Tate-Lichtenbaum
pairing satisfies t̂r(P, P ) 6= 1 and so can be used to solve DDH in hP i. In general, however,
DDH cannot be solved by such simple methods.

When E is a supersingular elliptic curve and P 6= OE then, even if t̂r(P, P ) = 1,
there always exists an endomorphism ψ : E → E such that t̂r(P,ψ(P )) 6= 1. Such an
endomorphism is called a distortion map; see Section 26.6.1. It follows that DDH is
easy on supersingular elliptic curves.

26.6 Pairing-Friendly Elliptic Curves

The cryptographic protocols given in Sections 22.2.3 and 23.3.2 relied on “pairing groups”.
We now mention the properties needed to have a practical system, and give some popular
examples.
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For pairing-based cryptography it is desired to have elliptic curves E over Fq such
that:

1. there is a large prime r dividing #E(Fq), with gcd(r, q) = 1;

2. the DLP in E(Fq)[r] is hard;

3. the DLP in F∗
qk is hard, where k = k(q, r) is the embedding degree;

4. computation in E(Fq) and F∗
qk is efficient;

5. elements of E(Fq) and F∗
qk can be represented compactly.

Elliptic curves with these properties are called pairing-friendly curves. Note that the
conditions are incompatible: for the DLP in F∗

qk to be hard it is necessary that qk be large

(say, at least 3000 bits) to resist index calculus attacks like those in Chapter 15, whereas
to represent elements of F∗

qk compactly we would like qk to be small. Luckily, we can use
techniques such as those in Chapter 6 to represent field elements relatively compactly.

There is a large literature on pairing-friendly elliptic curves, culminating in the “tax-
onomy” by Freeman, Scott and Teske [210]. We give two examples below.

Example 26.6.1. For a = 0, 1 define

Ea : y2 + y = x3 + x+ a

over F2. Then Ea is supersingular and #Ea(F2l) = 2l ± 2(l+1)/2 + 1 when l is odd. Some
of these integers have large prime divisors, for example 2241 − 2121 + 1 is prime. The
embedding degree can be shown to be 4 in general; this follows since

(2l + 2(l+1)/2 + 1)(2l − 2(l+1)/2 + 1) = 22l + 1 | (24l − 1).

Example 26.6.2. (Barreto-Naehrig curves [30]) Consider the polynomials

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1 and t(x) = 6x2 + 1 (26.9)

in Z[x]. Note that t(x)2 − 4p(x) = −3(6x2 + 4x + 1)2, that r(x) = p(x) + 1 − t(x) is
irreducible over Q, and that r(x) | (p(x)12 − 1). Suppose x0 ∈ Z is such that p = p(x0) is
prime and r = r(x0) is prime (or is the product of a small integer with a large prime). Then
the embedding degree k(p, r) is a divisor of 12 (and is typically equal to 12). Furthermore,
one can easily construct an elliptic curve E/Fp such that #E(Fp) = r; one of the 6 twists
of y2 = x3 + 1 will suffice. Note that p ≡ 1 (mod 3) and E is an ordinary elliptic curve.

Example 26.6.3. The family of curve parameters in Example 26.6.2 has t ≈ √
p and

so the ate pairing is computed in about half the time of the reduced Tate-Lichtenbaum
pairing, as usual. We now demonstrate an optimal pairing with these parameters.

Substituting the polynomials r(x) and p(x) for the values r and q in the matrix
of equation (26.8) gives a lattice. Lattice reduction over Z[x] yields the short vector
(M0,M1,M2,M3) = (6x+2, 1,−1, 1). It is easy to verify that 6x+2+p(x)−p(x)2+p(x)3 ≡
0 (mod r(x)).

Now f1,Q = 1 and f−1,Q = vQ (and so both can be omitted in pairing computation,
by Exercise 26.3.12). The ate pairing can be computed as f6x+2,Q(P ) multiplied with
three straight line functions, and followed by the final exponentiation; see Section IV
of [618]. The point is that Miller’s algorithm now runs for approximately one quarter of
the iterations as when computing the Tate-Lichtenbaum pairing.



588 CHAPTER 26. PAIRINGS ON ELLIPTIC CURVES

26.6.1 Distortion Maps

As noted, when t̂r(P, P ) = 1 one can try to find an endomorphism ψ : E → E such that
t̂r(P,ψ(P )) 6= 1.

Definition 26.6.4. Let E be an elliptic curve over Fq, let r | #E(Fq) be prime, let
e : E[r] × E[r] → µr be a non-degenerate and bilinear pairing, and let P ∈ E(Fq)[r].
A distortion map with respect to E, r, e and P is an endomorphism ψ such that
e(P,ψ(P )) 6= 1.

Verheul (Theorem 5 of [620]) shows that if E is a supersingular elliptic curve then,
for any point P ∈ E(Fqk) − {OE}, a distortion map exists. In particular, when P ∈
E(Fq)[r] − {OE} and k > 1 then there is an endomorphism ψ (necessarily not defined
over Fq) such that t̂(P,ψ(P )) 6= 1. Since P is defined over the small field, we have
a compact representation for all elliptic curve points in the cryptosystem, as well as
efficiency gains in Miller’s algorithm. For this reason, pairings on supersingular curves
are often the fastest choice for certain applications.

Example 26.6.5. Consider again the elliptic curves from Example 26.6.1. An automor-
phism on Ea is ψ(x, y) = (x+ s2, y+ sx+ t) where s ∈ F22 and t ∈ F24 satisfy s2 = s+1
and t2 = t + s. One can represent F24m using the basis {1, s, t, st}. It is clear that if
P ∈ Ea(F2l) where l is odd then ψ(P ) ∈ Ea(F24l) and ψ(P ) 6∈ Ea(F22l), and so ψ is a
distortion map for P .

Exercise 26.6.6. Let E be an elliptic curve over Fq and let r | #E(Fq) be prime. Let
k = k(q, r) > 1 be the embedding degree. For any point P ∈ E(Fqk) define the trace map

Tr(P ) =
X

σ∈Gal(F
qk

/Fq)

σ(P ).

Show that Tr(P ) ∈ E(Fq). Now, suppose P ∈ E[r], P 6∈ E(Fq) and Tr(P ) 6= OE . Show
that {P,Tr(P )} generates E[r]. Deduce that the trace map is a distortion map with
respect to E, r, er and P .

Exercise 26.6.7. Let notation be as in Exercise 26.6.6. Show that if Q ∈ E[r]∩ker(πq−
[1]) then Tr(Q) = [k]Q. Show that if Q ∈ E[r] ∩ ker(πq − [q]) then Tr(Q) = OE .
Hence, deduce that the trace map is not a distortion map for the groups G1 or G2 of
equation (26.3).

26.6.2 Using Twists to Improve Pairing-Based Cryptography

There are significant advantages from using twists in pairing-based cryptography when
using ordinary elliptic curves. Suppose we are using the ate pairing or some other opti-
mal pairing and are working with the subgroups G1, G2 ⊂ E(Fqk), which are Frobenius

eigenspaces. Then G1 ⊂ E(Fq) and it can be shown that G2 ⊂ E′(Fk/d
q ) where E′ is a

twist of E and d = #Aut(E). For the elliptic curve in Example 26.6.2 one can represent
the p-eigenspace of Frobenius in E(Fp12) as a subgroup of E′(Fp2) for a suitable twist of
E (this is because #Aut(E) = 6). For details we refer to [30, 284].

There are at least two advantages to this method. First, elements in the group G2

of the pairing have a compressed representation. Second, the ate pairing computation is
made much more efficient by working with Miller functions on the twisted curve E′. We
do not present any further details.


