
Chapter 22

Digital Signatures Based on
Discrete Logarithms

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Public key signatures and their security notions were defined in Section 1.3.2. They
are arguably the most important topic in public key cryptography (for example, to provide
authentication of automatic software updates; see Section 1.1). This chapter gives some
digital signature schemes based on the discrete logarithm problem. The literature on this
topic is enormous and we only give a very brief summary of the area. RSA signatures are
discussed in Section 24.6.

22.1 Schnorr Signatures

We assume throughout this section that an algebraic group G and an element g ∈ G
of prime order r are known to all users. The values (G, g, r) are known as system
parameters. Let h = ga be a user’s public key. A digital signature, on a message m

with respect to a public key h, can be generated by a user who knows the private key
a. It should be hard to compute a signature for a given public key without knowing the
private key.

To explain the Schnorr signature scheme it is simpler to first discuss an identification
scheme.

22.1.1 The Schnorr Identification Scheme

Informally, a public key identification scheme is a protocol between a Prover and
a Verifier, where the Prover has a public key pk and private key sk, and the Verifier
has a copy of pk. The protocol has three communication stages: first the Prover sends a
commitment s0; then the Verifier sends a challenge s1; then the Prover sends a response s2.

477



478CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

The Verifier either accepts or rejects the proof. The protocol is supposed to convince the
Verifier that they are communicating with a user who knows the private key corresponding
to the Prover’s public key. In other words, the Verifier should be convinced that they are
communicating with the Prover.

For the Schnorr scheme [522, 523] the Prover has public key h = ga where g is an
element of an algebraic group of prime order r and 1 ≤ a < r is chosen uniformly at
random. The Prover chooses a random integer 0 ≤ k < r, computes s0 = gk and sends
s0 to the Verifier. The Verifier sends a “challenge” 1 ≤ s1 < r to the Prover. The Prover
returns s2 = k + as1 (mod r). The Verifier then checks whether

gs2 = s0h
s1 (22.1)

and accepts the proof if this is the case. In other words, the Prover has successfully
identified themself to the Verifier if the Verifier accepts the proof.

Exercise 22.1.1. Show that the Verifier in an execution of the Schnorr identification
scheme does accept the proof when the Prover follows the steps correctly.

Exercise 22.1.2. Let p = 311 and r = 31 | (p− 1). Let g = 169, which has order r. Let
a = 11 and h = ga ≡ 47 (mod p). Which of the following is a transcript (s0, s1, s2) of a
correctly performed execution of the Schnorr identification scheme?

(15, 10, 12), (15, 10, 27), (16, 10, 12), (15, 16, 0).

Security of the Private Key

Unlike public key encryption (at least, under passive attacks), with identification schemes
and digital signature schemes a user is always outputting the results of computations
involving their private key. Hence, it is necessary to ensure that we do not leak information
about the private key. An attack of this type on GGH signatures was given by Nguyen
and Regev; see Section 19.11. Hence, we now explain why executions of the Schnorr
identification protocol do not leak the private key.

A protocol (involving a secret) that does not leak any information about the secret
is known as “zero knowledge”. It is beyond the scope of this book to discuss this topic
in detail, but we make a few remarks in the setting of the Schnorr identification scheme.
First, consider a Verifier who really does choose s1 independently and uniformly at random
(rather than as a function of s0 and h). It is easy to see that anyone can produce triples
(s0, s1, s2) that satisfy equation (22.1), without knowing the private key (just choose s1
and s2 first and solve for s0). Hence, a protocol transcript (s0, s1, s2) itself carries no
information about a (this shows that the protocol is “honest verifier zero knowledge”).
However, this argument does not imply that the protocol leaks no information about the
secret to an adversary who chooses s1 carefully. We now argue that the protocol is secure
in this setting. The idea is to consider any pair (s1, s2). Then, for every 1 ≤ a < r,
there is some integer 0 ≤ k < r such that s2 ≡ k + as1 (mod r). Now, if k were known
to the verifier then they could solve for a. But, since the discrete logarithm problem is
hard, it is computationally infeasible to determine any significant information about the
distribution of k from s0. Hence s2 leaks essentially no information about a. Furthermore,
there are no choices for s1 that more readily allow the Verifier to determine a.

For security, k must be chosen uniformly at random; see Exercise 22.1.3 and Sec-
tion 22.3 for attacks if some information on k is known. We stress that such attacks are
much stronger than the analogous attacks for Elgamal encryption (see Exercise 20.4.1);
there the adversary only learns something about a single message, whereas here they learn
the private key!



22.1. SCHNORR SIGNATURES 479

Exercise 22.1.3. Suppose the random values k used by a prover are generated using the
linear congruential generator ki+1 = Aki + B (mod r) for some 1 ≤ A,B < r. Suppose
an adversary knows A and B and sees two protocol transcripts (s0, s1, s2) and (s′0, s

′
1, s

′
2)

generated using consecutive outputs ki and ki+1 of the generator. Show how the adversary
can determine the private key a.

A generalisation of Exercise 22.1.3, where the modulus for the linear congruential
generator is not r, is given by Bellare, Goldwasser and Micciancio [34].

Security Against Impersonation

Now we explain why the Verifier is convinced that the prover must know the private
key a. The main ideas will also be used in the security proof of Schnorr signatures, so
we go through the argument in some detail. First, we define an adversary against an
identification protocol.

Definition 22.1.4. An adversary against an identification protocol (with an honest
verifier) is a polynomial-time randomised algorithm A that takes as input a public key,
plays the role of the Prover in the protocol with an honest Verifier, and tries to make
the Verifier accept the proof. The adversary repeatedly and adaptively sends a value s0,
receives a challenge s1 and answers with s2 (indeed, the sessions of the protocol can be
interleaved). The adversary is successful if the Verifier accepts the proof with noticeable
probability (i.e., the probability, over all outputs s0 by A and all choices for s1, that the
adversary can successfully respond with s2 is at least one over a polynomial function of
the security parameter). The protocol is secure if there is no successful adversary.

An adversary is just an algorithm A so it is reasonable to assume that A can be run
in very controlled conditions. In particular, we will assume throughout this section that
A can be repeatedly run so that it always outputs the same first commitment s0 (think
of A as a computer programme that calls a function Random to obtain random bits and
then simply arrange that the function always returns the same values to A). This will
allow us to respond to the same commitment with various different challenges s1. Such
an attack is sometimes known as a rewinding attack (Pointcheval and Stern [483] call
it the oracle replay attack): If A outputs s0, receives a challenge s1, and answers with
s2 then re-running A on challenge s′1 is the same as “rewinding” the clock back to when
A had just output s0 and then giving it a different challenge s′1.

Theorem 22.1.5. The Schnorr identification scheme is secure against impersonation (in
the sense of Definition 22.1.4) if the discrete logarithm problem is hard.

We first prove the result for perfect adversaries (namely, those that impersonate the
user successfully every time the protocol is run). Later we discuss the result for more
general adversaries.
Proof: (In the case of a perfect adversary) We build an expected polynomial-time algo-
rithm (called the simulator) that solves a DLP instance (g, h) where g has prime order r
and h = ga where 0 ≤ a < r is chosen uniformly at random.

The simulator will play the role of the Verifier and will try to solve the DLP by
interacting with A. First, the simulator starts A by giving it h as the public key and
giving some choice for the function Random. The adversary outputs a value s0, receives a
response s1 (chosen uniformly at random) from the simulator, then outputs s2. Since A
is perfect we assume that (s0, s1, s2) satisfy the verification equation.

First note that if values s0 and s2 satisfy equation (22.1) then s0 lies in the group
generated by g and so is of the form s0 = gk for some 0 ≤ k < r. Furthermore, it then
follows that s2 ≡ k + as1 (mod r).



480CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

Now the simulator can re-run A on the same h and the same function Random (this
is the rewinding). It follows that A will output s0 again. The simulator then gives A a
challenge s′1 6= s1. Since A is perfect, it responds with s′2 satisfying equation (22.1).

We have s2 ≡ k + as1 (mod r) and s′2 ≡ k + as′1 (mod r). Hence the simulator can
compute a ≡ (s2− s′2)(s1− s′1)

−1 (mod r) and solve the DLP. In other words, if there is no
polynomial-time algorithm for the DLP then there can be no polynomial-time adversary
A against the protocol. �

The above proof gives the basic idea, but is not sufficient since we must consider ad-
versaries that succeed with rather small probability. There are various issues to deal with.
For example, A may not necessarily succeed on the first execution of the identification
protocol. Hence, one must consider many executions (si,0, si,1, si,2) for 1 ≤ i ≤ t and guess
the value i into which one introduces the challenge s′i,1. Also, A may only succeed for a
small proportion of the challenges s1 for a given s0 (it is necessary for the proof that A
can succeed on two different choices of s1 for the same value s0). This latter issue is not
a problem (since A succeeds with noticeable probability, it must succeed for a noticeable
proportion of values s1 for most values s0). The former issue is more subtle and is solved
using the forking lemma.

The forking lemma was introduced by Pointcheval and Stern [483]. A convenient
generalisation has been given by Bellare and Neven [36]. The forking lemma determines
the probability that a rewinding attack is successful. More precisely, consider an algorithm
A (the adversary against the signature scheme) that takes as input a Random function and
a list of responses s1 to its outputs s0. We will repeatedly choose a Random function and
run A twice, the first time with a set of values (s1,1, . . . , st,1) being the responses in
the protocol and the second time with a set (s1,1, . . . , sj−1,1, s

′
j,1, . . . , s

′
t,1) of responses

for some 1 ≤ j ≤ t. Note that A will output the same values si,0 in both runs when
1 ≤ i ≤ j. The forking lemma gives a lower bound on the probability that A succeeds in
the identification protocol in the j-th execution as desired. Lemma 1 of [36] states that
the success probability is at least p(p/t− 1/r) where p is the success probability of A, t
is the number of executions of the protocol in each game, and r is the size of the set of
possible responses. Hence, if p is noticeable, t is polynomial and 1/r is negligible then the
simulator solves the DLP with noticeable probability. We refer to [36, 483] and Section
10.4.1 of Vaudenay [616] for further details.

Exercise 22.1.6. Show that if the challenge values s1 chosen by a Verifier can be pre-
dicted (e.g., because the Verifier is using a weak pseudorandom number generator) then
a malicious player can impersonate an honest user in the Schnorr identification scheme.

Exercise 22.1.7. In the Schnorr identification scheme as presented above, the challenge
is a randomly chosen integer 1 ≤ s1 < r. Instead, for efficiency1 reasons, one could choose
1 ≤ s1 < 2l for some l such that l ≥ κ (where κ is the security parameter, but where 2l

is significantly smaller than r). Show that the proof of Theorem 22.1.5 still holds in this
setting.

Exercise 22.1.8. Explain why the Schnorr identification scheme cannot be implemented
in an algebraic group quotient.

22.1.2 Schnorr Signatures

We now present the Schnorr signature scheme [522, 523], which has very attractive
security and efficiency. The main idea is to make the identification protocol of the previous

1One could speed up signature verification using similar methods to Exercise 22.1.13.



22.1. SCHNORR SIGNATURES 481

section non-interactive by replacing the challenge s1 by a random integer that depends
on the message being signed. This idea is known as the Fiat-Shamir transform. By
Exercise 22.1.6 it is important that s1 cannot be predicted and so it is also necessary to
make it depend on s0.

More precisely, one sets s1 = H(mks0) where H is a cryptographic hash function from
{0, 1}∗ to {0, 1}l for some parameter l and where m and s0 are interpreted as binary
strings (and where k denotes concatenation of binary strings as usual).

One would therefore obtain the following signature scheme, which we call naive
Schnorr signatures: To sign a message m choose a random 0 ≤ k < r, compute
s0 = gk, s1 = H(mks0) and s2 = k+ as1 (mod r), and send the signature (s0, s2) together
with m. A verifier, given m, (s0, s2) and the public key h, would compute s1 = H(mks0)
and accept the signature if

gs2 = s0h
s1 . (22.2)

Schnorr makes the further observation that instead of sending (s0, s2) one could send
(s1, s2). This has major implications for the size of signatures. For example, g may be
an element of order r in F∗

p (for example, with r ≈ 2256 and p ≈ 23072). In this case,

s0 = gk requires 3072 bits, s2 requires 256 bits, and s1 may require as little as 128 bits. In
other words, signatures would have 3072 + 256 = 3328 bits in the naive scheme, whereas
Schnorr signatures only require 128 + 256 = 384 bits.

We present the precise Schnorr signature scheme in Figure 22.1.

KeyGen: This is the same as classic textbook Elgamal encryption. It outputs an
algebraic group, an element g of prime order r, a public key h = ga and a private key
1 ≤ a < r where a is uniformly chosen.

Sign(g, a,m): Choose uniformly at random 0 ≤ k < r, compute s0 = gk, s1 = H(mks0)
and s2 = k + as1 (mod r), where the binary string s1 is interpreted as an integer in the
usual way. The signature is (s1, s2).

Verify(g, h,m, (s1, s2)): Ensure that h is a valid public key for the user in question then
test whether

s1 = H(mkgs2h−s1).

Figure 22.1: Schnorr Signature Scheme.

Example 22.1.9. Let p = 311 and r = 31 | (p− 1). Let g = 169 which has order r. Let
a = 11 and h = ga ≡ 47 (mod p).

To sign a message m (a binary string) let k = 20 and s0 = gk ≡ 225 (mod p). The
binary expansion of s0 is (11100001)2. We must now compute s1 = H(mk11100001).
Since we don’t want to get into the details of H , let’s just suppose that the output length
of H is 4 and that s1 is the binary string 1001. Then s1 corresponds to the integer
9. Finally, we compute s2 = k + as1 ≡ 20 + 11 · 9 ≡ 26 (mod r). The signature is
(s1, s2) = (9 = (1001)2, 26). To verify the signature one computes

gs2h−s1 = 1692647−9 ≡ 225 (mod p)

and checks that s1 = H(mk11100001).

Exercise 22.1.10. Show that the Verify algorithm does succeed when given a pair (s1, s2)
output by the Sign algorithm.



482CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

22.1.3 Security of Schnorr Signatures

The security of Schnorr signatures essentially follows from the same ideas as used in
Theorem 22.1.5. In particular, the security depends on the discrete logarithm problem
(rather than CDH or DDH as is the case for Elgamal encryption). However, since the
challenge is now a function of the messagem and s0, the exact argument of Theorem 22.1.5
cannot be used directly.

One approach is to replace the hash function by a random oracle H (see Section 3.7).
The simulator can then control the values of H and the proof of Theorem 22.1.5 can be
adapted to work in this setting. A careful analysis of Schnorr signatures in the random
oracle model, using this approach and the forking lemma, was given by Pointcheval and
Stern [483]. We refer to Theorem 14 of their paper for a precise result in the case where
the output of H is (Z/rZ)∗. A proof is also given in Section 10.4.2 of Vaudenay [616].
An analysis of the case where the hash function H maps to {0, 1}l where l < log2(r) is
given by Neven, Smart and Warinschi [453].

There is no known proof of the security of Schnorr signatures in the standard model
(even under very strong assumptions about the hash function). Paillier and Vergnaud [476]
give evidence that one cannot give a reduction, in the standard model, from signature
forgery for Schnorr signatures (with H mapping to Z/rZ) to DLP. More precisely, they
show that if there is a reduction of a certain type (which they call an algebraic reduction)
in the standard model from signature forgery for Schnorr signatures to DLP, then there
is an algorithm for the “one-more DLP”. We refer to [476] for the details.

We now discuss some specific ways to attack the scheme:

1. Given a signature (s1, s2) on message m, if one can find a message m′ such that
H(mkgs2h−s1) = H(m′kgs2h−s1), then one has a signature also for the message m′.
This fact can be used to obtain an existential forgery under a chosen-message attack.

While one expects to be able to find hash collisions after roughly 2l/2 computations
of H (see Section 3.2), what is needed here is not a general hash collision. Instead,
we need a collision of the form H(mkR) = H(m′kR) where R = gs2h−s1 is not known
until a signature (s1, s2) on m has been obtained. Hence, the adversary must first
output a message m, then get the signature (s1, s2) on m, then find m′ such that
H(mkR) = H(m′kR). This is called the random-prefix second-preimage problem
in Definition 4.1 of [453]. When R is sufficiently large it seems that solving this
problem is expected to require around 2l computations of H .

2. There is a passive existential forgery attack on Schnorr signatures if one can compute
pre-images of H of a certain form. Precisely, choose any (s1, s2) (for example, if the
output of H is highly non-uniform then choose s1 to be a “very likely” output of
H), compute R = gs2h−s1 , then find a bitstring m such that H(mkR) = s1. This
attack is prevented if the hash function is hard to invert.

Hence, given a security parameter κ (so that breaking the scheme is required to take
more than 2κ bit operations) one can implement the Schnorr signature scheme with
r ≈ 22κ and l = κ. For example, taking κ = 128, 2255 < r < 2256 and l = 128 gives
signatures of 384 bits.

Exercise 22.1.11.⋆ Fix g ∈ G of order r and m ∈ {0, 1}∗. Can a pair (s1, s2) be a
Schnorr signature on the same message m for two different public keys? Are there any
security implications of this fact?



22.2. OTHER PUBLIC KEY SIGNATURE SCHEMES 483

22.1.4 Efficiency Considerations for Schnorr Signatures

The Sign algorithm performs one exponentiation, one hash function evaluation, and one
computation modulo r. The Verify algorithm performs a multi-exponentiation gs2h−s1

where 0 ≤ s2 < r and 1 ≤ s1 < 2l and one hash function evaluation. Hence, signing is
faster than verifying.

There are a number of different avenues to speed up signature verification, depending
on whether g is fixed for all users, whether one is always verifying signatures with respect
to the same public key h or whether h varies, etc. We give a typical optimisation in
Example 22.1.13. More dramatic efficiency improvements are provided by online/offline
signatures (see Section 22.4), server-aided signature verification etc.

Exercise 22.1.12. Show how to modify the Schnorr signature scheme (with no loss of
security) so that the verification equation becomes

s1 = H(mkgs2hs1).

Example 22.1.13. Suppose a server must verify many Schnorr signatures (using the
variant of Exercise 22.1.12), always for the same value of g but for varying values of h.
Suppose that 2l−1 <

√
r < 2l (where l is typically also the output length of the hash

function). One strategy to speed up signature verification is for the server to precompute

and store the group element g1 = g2
l

.
Given a signature (s1, s2) with 0 ≤ s1 < 2l and 0 ≤ s2 < r one can write s2 = s2,0+2ls2,1

with 0 ≤ s2,0, s2,1 < 2l. The computation of gs2hs1 is performed as the 3-dimensional
multi-exponentiation (see Section 11.2)

gs2,0g
s2,1

1 hs1 .

The cost is roughly l squarings and 3l/2 multiplications (the number of multiplications
can be easily reduced using window methods, signed representations etc).

Schnorr [523] presents methods to produce the group elements gk without having
to perform a full exponentiation for each signature (the paper [523] is particularly con-
cerned with making signatures efficient for smartcards). Schnorr’s specific proposals were
cryptanalysed by de Rooij [168].

22.2 Other Public Key Signature Schemes

The Schnorr signature scheme is probably the best public key signature scheme for practi-
cal applications.2 A number of similar schemes have been discovered, the most well-known
of which are Elgamal and DSA signatures. We discuss these schemes very briefly in this
section.

22.2.1 Elgamal Signatures in Prime Order Subgroups

Elgamal [192] proposed the first efficient digital signature based on the discrete logarithm
problem. We present the scheme for historical reasons, and because it gives rise to some
nice exercises in cryptanalysis. For further details see Section 11.5.2 of [418] or Section
7.3 of [592].

2However, Schnorr signatures are not very widely used in practice. The reason for their lack of use
may be the fact that they were patented by Schnorr.



484CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

Assume that g is an element of prime3 order r in an algebraic group G. In this section
we always think of G as being the “full” algebraic group (such as F∗

q or E(Fq)) and assume
that testing membership g ∈ G is easy. The public key of user A is h = ga and the private
key is a, where 1 ≤ a < r is chosen uniformly at random.

The Elgamal scheme requires a function F : G → Z/rZ. The only property required
of this function is that the output distribution of F restricted to hgi should be close to
uniform (in particular, F is not required to be hard to invert). In the case where G = F∗

p

it is usual to define F : {0, 1, . . . , p − 1} → {0, 1, . . . , r − 1} by F (n) = n (mod r). If G
is the set of points on an elliptic curve over a finite field then one could define F (x, y)
by interpreting x (or x and y) as binary strings, letting n be the integer whose binary
expansion is x (or xky), and then computing n (mod r).

To sign a message m with hash H(m) ∈ Z/rZ one chooses a random integer 1 ≤ k < r,
computes s1 = gk, computes s2 = k−1(H(m) − aF (s1)) (mod r), and returns (s1, s2). To
verify the signature (s1, s2) on message m one checks whether s1 ∈ hgi, 0 ≤ s2 < r, and

hF (s1)ss21 = gH(m)

in G. Elgamal signatures are the same size as naive Schnorr signatures.
A striking feature of the scheme is the way that s1 appears both as a group element

and as an exponent (this is why we need the function F ). In retrospect, this is a poor
design choice for both efficiency and security. The following exercises explore these issues
in further detail. Pointcheval and Stern give a variant of Elgamal signatures (the trick is
to replace H(m) by H(mks1)) and prove the security in Sections 3.3.2 and 3.3.3 of [483].

Exercise 22.2.1. Show that the Verify algorithm succeeds if the Sign algorithm is run
correctly.

Exercise 22.2.2. Show that one can verify Elgamal signatures by computing a single 3-
dimensional multi-exponentiation. Show that the check s1 ∈ hgi can therefore be omitted
if gcd(s2,#G) = 1. Hence, show that the time to verify an Elgamal signature when F
and H map to Z/rZ is around twice the time of the method in Example 22.1.13 to verify
a Schnorr signature. Explain why choosing F and H to map to l-bit integers where l ≈
log2(r)/2 does not lead to a verification algorithm as fast as the one in Example 22.1.13.

Exercise 22.2.3. (Elgamal [192]) Suppose the hash function H is deleted in Elgamal
signatures (i.e., we are signing messages m ∈ Z/rZ). Give a passive existential forgery in
this case. (i.e., the attack only requires the public key).

Exercise 22.2.4.⋆ Consider the Elgamal signature scheme in F∗
p with the function

F (n) = n (mod r). Suppose the function F (n) computes n (mod r) for all n ∈ N (not
just 0 ≤ n < p) and that the check s1 ∈ hgi does not include any check on the size of the
integer s1 (for example, it could simply be the check that sr1 ≡ 1 (mod p) or the implicit
check of Exercise 22.2.2). Give a passive selective forgery attack.

Exercise 22.2.5. Consider the following variant of Elgamal signatures in a group hgi
of order r: The signature on a message m for public key h is a pair (s1, s2) such that
0 ≤ s1, s2 < r, and

hs1gH(m) = gs2 .

Show how to determine the private key of a user given a valid signature.

3The original Elgamal signature scheme specifies that g is a primitive root in F∗

p, but for compatibility
with all other cryptographic protocols in this book we have converted it to work with group elements of
prime order in any algebraic group.



22.2. OTHER PUBLIC KEY SIGNATURE SCHEMES 485

Exercise 22.2.6.⋆ (Bleichenbacher [66]) Consider the Elgamal encryption scheme in F∗
p

with the function F (n) = n (mod r). Suppose the checks s1 ∈ hgi and 0 ≤ s2 < r are not
performed by the Verify algorithm. Show how an adversary who has maliciously chosen
the system parameter g can produce selective forgeries for any public key under a passive
attack.

Exercise 22.2.7. (Vaudenay [615]) Let H be a hash function with l-bit output. Show
how to efficiently compute an l-bit prime r, and messages m1,m2 such that H(m1) ≡
H(m2) (mod r). Hence, show that if one can arrange for an algebraic group with subgroup
of order r to be used as the system parameters for a signature scheme then one can obtain
a signature on m1 for any public key h by obtaining from user A a signature on m2.

A convenient feature of Elgamal signatures is that one can verify a batch of signatures
faster than individually verifying each of them. Some details are given in Exercise 22.2.8.
Early work on this problem was done by Naccache, M’Räıhi, Vaudenay and Raphaeli [449]
(in the context of DSA) and Yen and Laih [637]. Further discussion of the problem is
given by Bellare, Garay and Rabin [33].

Exercise 22.2.8. Let (s1,i, s2,i) be purported signatures on messages mi with respect to
public keys hi for 1 ≤ i ≤ t. A verifier can choose random integers 1 ≤ wi < r and verify
all signatures together by testing whether s1,i ∈ hgi and 0 ≤ s2,i < r for all i and the
single equation

 
tY

i=1

h
wiF (s1,i)
i

! 
tY

i=1

s
wis2,i

1,i

!
= g

�t
i=1 wiH(mi). (22.3)

Show that if all the signatures (s1,i, s2,i) are valid then the batch is declared valid. Show
that if there is at least one invalid signature in the batch then the probability the batch
is declared valid is at most 1/(r− 1). Show how to determine, with high probability, the
invalid signatures using a binary search.

If one uses the methods of Exercise 22.2.2 then verifying the t signatures separately
requires t three-dimensional multi-exponentiations. One can break equation (22.3) into
about 2t/3 three-dimensional multi-exponentiations. So, for groups where testing s1,i ∈
hgi is easy (e.g., elliptic curves of prime order), the batch is asymptotically verified in
about 2/3 the time of verifying the signatures individually. Show how to speed up ver-
ification of a batch of signatures further if the public keys hi are all equal. How much
faster is this than verifying the signatures individually?

Yen and Laih [637] consider batch verification of naive Schnorr signatures as mentioned
in Section 22.1.2. Given t signatures (s0,i, s2,i) on messages mi and for keys hi, Yen and
Laih choose 1 ≤ wi < 2l (for a suitable small value of l; they suggest l = 15) and verify
the batch by testing s0,i ∈ hgi, 0 ≤ s2,i < r and

g
�t

i=1 wis2 =

tY

i=1

swi

0,i

tY

i=1

h
wiH(miks0,i)
i .

Give the verification algorithm when the public keys are all equal. Show that the cost is
roughly l/(3 log2(r)) times the cost of verifying t Elgamal signatures individually.

Explain why it seems impossible to verify batches of Schnorr signatures faster than
verifying each individually.



486CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

22.2.2 DSA

A slight variant of the Elgamal signature scheme was standardised by NIST4 as a digital
signature standard. This is often called DSA.5 In the case where the group G is an
elliptic curve then the scheme is often called ECDSA.

In brief, the scheme has the usual public key h = ga where g is an element of prime
order r in an algebraic group G and 1 ≤ a < r is chosen uniformly at random. As with
Elgamal signatures, a function F : G → Z/rZ is required. To sign a message with hash
value H(m) one chooses a random 1 ≤ k < r and computes s1 = F (gk). If s1 = 0
then repeat6 for a different value of k. Then compute s2 = k−1(H(m) + as1) (mod r)
and, if s2 = 0 then repeat for a different value of k. The signature on message m is
(s1, s2). To verify the signature one first checks that 1 ≤ s1, s2 < r, then computes
u1 = H(m)s−1

2 (mod r), u2 = s1s
−1
2 (mod r), then determines whether or not

s1 = F (gu1hu2). (22.4)

Note that a DSA signature is a pair of integers modulo r so is shorter in general
than an Elgamal signature but longer in general than a Schnorr signature. Verification is
performed using multi-exponentiation.

Exercise 22.2.9. Show that Verify succeeds on values output by Sign.

Exercise 22.2.10. The case s1 = 0 is prohibited in DSA signatures. Show that if this
check was omitted and if an adversary could find an integer k such that F (gk) = 0
then the adversary could forge DSA signatures for any message. Hence show that, as in
Exercise 22.2.6, an adversary who maliciously chooses the system parameters could forge
signatures for any message and any public key.

Exercise 22.2.11. The case s2 = 0 is prohibited in DSA signatures since the Verify
algorithm fails when s2 is not invertible. Show that if a signer outputs a signature (s1, s2)
produced by the Sign algorithm but with s2 = 0 then an adversary would be able to
determine the private key a.

We saw in Exercise 22.2.2 that verifying Elgamal signatures is slow compared with
verifying Schnorr signatures using the method in Example 22.1.13. Exercise 22.2.12 shows
a variant of DSA (analogous to naive Schnorr signatures) that allows signature verification
closer in speed to Schnorr signatures.

Exercise 22.2.12. (Antipa, Brown, Gallant, Lambert, Struik and Vanstone [11]) Con-
sider the following variant of the DSA signature scheme: To sign m choose 1 ≤ k < r
randomly, compute s0 = gk, s2 = k−1(H(m) + aF (s0)) (mod r) and return (s0, s2). To
verify (m, s0, s2) one computes u1 = H(m)s−1

2 (mod r), u2 = F (s0)s
−1
2 (mod r) as in

standard DSA and checks whether

s0 = gu1hu2 . (22.5)

Show that one can also verify the signature by checking, for any 1 ≤ v < r, whether

sv0 = gu1vhu2v. (22.6)

Show that one can efficiently compute an integer 1 ≤ v < r such that the equation (22.6)
can be verified more quickly than equation (22.5).

4NIST stands for “National Institute of Standards and Technology” and is an agency that develops
technology standards for the USA.

5DSA stands for “digital signature algorithm”.
6The events s1 = 0 and s2 = 0 occur with negligible probability and so do not effect the performance

of the signing algorithm.



22.2. OTHER PUBLIC KEY SIGNATURE SCHEMES 487

There is no proof of security for DSA signatures in the standard or random oracle
model. A proof of security in the random oracle model of a slightly modified version
of DSA (the change is to replace H(m) with H(mks1)) was given by Pointcheval and
Vaudenay [484, 105] (also see Section 10.4.2 of [616]). A proof of security for DSA in the
generic group model7 was given by Brown; see Chapter II of [65].

Exercise 22.2.13. Consider a digital signature scheme where a signature on message m
with respect to public key h is an integer 0 ≤ s < r such that

s = H(mkhs).

What is the problem with this signature scheme?

22.2.3 Signatures Secure in the Standard Model

None of the signature schemes considered so far has a proof of security in the standard
model. Indeed, as mentioned, Paillier and Vergnaud [476] give evidence that Schnorr sig-
natures cannot be proven secure in the standard model. In this section we briefly mention
a signature scheme due to Boneh and Boyen [76, 77] that is secure in the standard model.
However, the security relies on a very different computational assumption than DLP and
the scheme needs groups with an extra feature (namely, a pairing; see Definition 22.2.14).
We present a simple version of their scheme that is unforgeable under a weak chosen-
message attack if the q-strong Diffie-Hellman problem holds (these notions are defined
below).

We briefly introduce pairing groups (more details are given in Chapter 26). We use
multiplicative notation for pairing groups, despite the fact that G1 and G2 are typically
subgroups of elliptic curves over finite fields and hence are usually written additively.

Definition 22.2.14. (Pairing groups) Let G1, G2, GT be cyclic groups of prime order
r. A pairing is a map e : G1 ×G2 → GT such that

1. e is non-degenerate and bilinear, i.e., g1 ∈ G1 − {1} and g2 ∈ G2 − {1} implies
e(g1, g2) 6= 1 and e(ga1 , g

b
2) = e(g1, g2)

ab for a, b ∈ Z,

2. there is a polynomial-time algorithm to compute e(g1, g2).

For the Boneh-Boyen scheme we also need there to be an efficiently computable injective
group homomorphism ψ : G2 → G1 (for example, a distortion map; see Section 26.6.1).

We will assume that elements in G1 have a compact representation (i.e., requiring not
much more than log2(r) bits) whereas elements of G2 do not necessarily have a compact
representation. The signature is an element of G1 and hence is very short. Figure 22.2
gives the (weakly secure) Boneh-Boyen Signature Scheme.

Exercise 22.2.15. Show that if the Verify algorithm for weakly secure Boneh-Boyen

signatures accepts (m, s) then s = g
(m+a)−1 (mod r)
1 .

The Boneh-Boyen scheme is unforgeable under a weak chosen-message attack if the
q-strong Diffie-Hellman problem holds. We define these terms now.

Definition 22.2.16. A weak chosen-message attack (called a generic chosen-
message attack by Goldwasser, Micali and Rivest [258]) on a signature scheme is an

7The generic group model assumes that any algorithm to attack the scheme is a generic algorithm for
the group G. This seems to be a reasonable assumption when using elliptic curves.



488CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

KeyGen: Choose g2 ∈ G2 − {1} uniformly at random and set g1 = ψ(g2). Let z =
e(g1, g2). Choose 1 ≤ a < r and set u = ga2 . The public key is pk = (g1, g2, u, z) and the
private key is a.

Sign(m, a): We assume that m ∈ Z/rZ. If a + m ≡ 0 (mod r) then return ⊥, else

compute s = g
(a+m)−1 (mod r)
1 and return s.

Verify(m, s, pk): Check that s ∈ G1 and then check that

e(s, ugm2 ) = z.

Figure 22.2: Weakly Secure Boneh-Boyen Signature Scheme.

adversary A that outputs a list m1, . . . ,mt of messages, receives a public key and signa-
tures s1, . . . , st on these messages, and then must output a message m and a signature s.
The adversary wins if Verify(m, s, pk) = “valid” and if m 6∈ {m1, . . . ,mt}.

Hence, a weak chosen message attack is closer to a known message attack than a
chosen message attack.

Definition 22.2.17. Let q ∈ N (not necessarily prime). Let G1, G2, GT be pairing groups
as in Definition 22.2.14. Let g1 ∈ G1 − {1} and g2 ∈ G2 − {1}. The q-strong Diffie-

Hellman problem (q-SDH) is, given (g1, g2, g
a
2 , g

a2

2 , . . . , ga
q

2 ), where 1 ≤ a < r is chosen
uniformly at random, to output a pair

�
m, g

(m+a)−1 (mod r)
1

�

where 0 ≤ m < r.

This problem may look rather strange at first sight since the value q can vary. The
problem is mainly of interest when q is polynomial in the security parameter (otherwise,
reading the problem description is not polynomial-time). Problems (or assumptions)
like this are sometimes called parameterised since there is a parameter (in this case q)
that determines the size for a problem instance. Such problems are increasingly used
in cryptography, though many researchers would prefer to have systems whose security
relies on more familiar assumptions.

There is evidence that the computational problem is hard. Theorem 5.1 of Boneh
and Boyen [76] shows that a generic algorithm for q-SDH needs to make Ω(

p
r/q) group

operations to have a good chance of success. The algorithms of Section 21.5 can be used
to solve q-SDH. In particular, if q | (r − 1) (and assuming q <

√
r) then Theorem 21.5.1

gives an algorithm to compute a with complexity O(
p

r/q) group operations, which meets
the lower bound for generic algorithms.

Exercise 22.2.18. Show that one can use ψ and e to verify that the input to an instance
of the q-SDH is correctly formed. Similarly, show how to use e to verify that a solution
to a q-SDH instance is correct.

Theorem 22.2.19. If the q-SDH problem is hard then the weak Boneh-Boyen signature
scheme is secure under a weak chosen message attack, where the adversary requests at
most q − 1 signatures.

Proof: (Sketch) Let (g1, g2, g
a
2 , g

a2

2 , . . . , ga
q

2 ) be a q-SDH instance and let A be an adver-
sary against the scheme. Suppose A outputs messages m1, . . . ,mt with t < q.



22.3. LATTICE ATTACKS ON SIGNATURES 489

Without loss of generality, t = q − 1 (since one can just add dummy messages). The

idea of the proof is to choose a public key so that one knows g
(mi+a)−1

1 for all 1 ≤ i ≤ t.
The natural way to do this would be to set

g′1 = g
�t

i=1(mi+a)
1

but the problem is that we don’t know a. The trick is to note that F (a) =
Qt

i=1(mi+a) =Pt
i=0 Fia

i is a polynomial in a with explicitly computable coefficients in Z/rZ. One can

therefore compute g′2 = g
F (a)
2 , g′1 = ψ(g′2) and h = g

aF (a)
2 using, for example,

g′2 =
tY

i=0

�
ga

i�Fi
.

Similarly, one can compute signatures for all the messages mi. Hence, the simulator
provides to A the public key (g′1, g

′
2, h, z

′ = e(g′1, g
′
2)) and all t signatures.

Eventually, A outputs a forgery (m, s) such that m 6= mi for 1 ≤ i ≤ t. If t < q − 1
and q is polynomial in the security parameter then m is one of the dummy messages with
negligible probability (q − 1− t)/r. One has

s = g
′(m+a)−1 (mod r)
1 = g

F (a)(m+a)−1 (mod r)
1 .

The final trick is to note that the polynomial F (a) can be written as G(a)(a + m) + c
for some explicitly computable values G(a) ∈ (Z/rZ)[a] and c ∈ (Z/rZ)∗. Hence, the
rational function F (a)/(a+m) can be written as

F (a)

a+m
= G(a) +

c

a+m
.

One can therefore deduce g
(a+m)−1 (mod r)
1 as required. �

A fully secure signature scheme is given in [76] and it requires an extra element in the
public key and an extra element (in Z/rZ) in the signature. The security proof is rather
more complicated, but the essential idea is the same.

Jao and Yoshida [313] showed the converse result, namely that if one can solve q-SDH
then one can forge signatures for the Boneh-Boyen scheme.

22.3 Lattice Attacks on Signatures

As mentioned earlier, there is a possibility that signatures could leak information about
the private key. Indeed, Nguyen and Regev [457] give such an attack on lattice-based
signatures.

The aim of this section is to present an attack due to Howgrave-Grahamand Smart [299].
They determine the private key when given some signatures and given some bits of the
random values k (for example, due to a side-channel attack or a weak pseudorandom
number generator). The analysis of their attack was improved by Nguyen and Shparlin-
ski [459, 460] (also see Chapter 16 of [558]).

The attack works for any signature scheme where one can obtain from a valid signa-
ture a linear equation modulo r with two unknowns, namely the private key a and the
randomness k. We now clarify that this attack applies to the s2 value for the Schnorr,
Elgamal and DSA signature schemes:

Schnorr: s2 ≡ k + as1 (mod r) where s1, s2 are known.



490CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

Elgamal: ks2 ≡ H(m)− aF (s1) (mod r) where H(m), F (s1) and s2 are known.

DSA: ks2 ≡ H(m) + as1 (mod r) where H(m), s1 and s2 are known.

Suppose we are given a message m and a valid signature (s1, s2) and also the l most
or least significant bits of the random value k used by the Sign algorithm to generate s1.
Writing these known bits as k0 we have, in the case of least significant bits, k = k0 + 2lz
where 0 ≤ z < r/2l. Indeed, one gets a better result by writing

k = k0 + 2l⌊r/2l+1⌋+ 2lz (22.7)

with −r/2l+1 ≤ z ≤ r/2l+1. Then one can re-write any of the above linear equations in
the form

z ≡ ta− u (mod r)

for some t, u ∈ Z that are known. In other words, we know

�
t, u = MSBl(at (mod r))

�
, (22.8)

which is an instance of the hidden number problem (see Section 21.7.1).
If the values t in equation (22.8) are uniformly distributed in Z/rZ then Corol-

lary 21.7.10 directly implies that if r > 232 and if we can determine l ≥ ⌈
p
log2(r)⌉ +

⌈log2(log2(r))⌉ consecutive bits of the randomness k then one can determine the private
key a in polynomial-time given n = 2⌈

p
log2(r)⌉ message-signature pairs. As noted in

[459], in the practical attack the values t arising are not uniformly distributed. We refer
to [459, 460] for the full details. In practice, the attack works well for current values for
r when l = 4, see Section 4.2 of [459].

Exercise 22.3.1. Show how to obtain an analogue of equation (22.7) when the l most
significant bits are known.

Bleichenbacher has described a similar attack on a specific implementation of DSA
that used a biased random generator for the values k.

22.4 Other Signature Functionalities

There are many topics that are beyond the scope of this book. We briefly mention some
of them now.

• One time signatures. These are fundamental in provable security and are used as
a tool in many theoretical public key schemes. However, since these are usually
realised without using the number theoretic structures presented in this book we do
not give the details. Instead, we refer the reader to Section 11.6 of [418], Section 12.5
of [334] and Section 7.5.1 of [592].

• Online/offline signatures. The goal here is to design public key signature schemes
that possibly perform some (slow) precomputations when they are “offline” but
that generate a signature on a given message m extremely quickly. The typical
application is smart cards or other tokens that may have extremely constrained
computing power.

The first to suggest a solution to this problem seems to have been Schnorr in his
paper [522] on efficient signatures for smart cards. The Schnorr signature scheme



22.4. OTHER SIGNATURE FUNCTIONALITIES 491

already has this functionality: if s0 = gk is precomputed during the idle time
of the device, then generating a signature on message m only requires computing
s1 = H(mks0) and s2 = k + as1 (mod r). The computation of s1 and s2 is relatively
fast since no group operations are performed.

A simple idea due to Girault [254] (proposed for groups of unknown order, typically
(Z/NZ)∗) is to make Schnorr signatures even faster by omitting the modular re-
duction in the computation of s2. In other words, k, a, s1 are all treated as integers
and s2 is computed as the integer k + as1. To maintain security it is necessary to
take k to be bigger than 2lr (i.e., bigger than any possible value for the integer as1).
This idea was fully analysed (and generalised to groups of known order) by Girault,
Poupard and Stern [255].

• Threshold signatures. The idea is to have a signature that can only be generated
by a collection of users. There is a large literature on this problem and we do not
attempt a full treatment of the subject here.

A trivial example is when two users hold additive shares a1, a2 of a private key (in
other words, h = ga1+a2 = ga1ga2 is the public key). A Schnorr signature on message
m can be computed as follows: User i ∈ {1, 2} chooses a random integer 0 ≤ ki < r,
computes gki , and sends it to the other. Both users can compute s0 = gk1gk2 . User
i ∈ {1, 2} can then compute s1 = H(mks0) and s2,i = ki + ais1 (mod r). The
signature is (s0, s2,1 + s2,2 (mod r)).

• Signatures with message recovery. Usually a signature and a message are sent
together. Signatures with message recovery allow some (or all) of the message
to be incorporated in the signature. The whole message is recovered as part of
the signature verification process. We refer to Section 11.5.4 of [418] for Elgamal
signatures with message recovery.

• Undeniable signatures. These are public key signatures that can only be verified by
interacting with the signer (or with some other designated verifier). A better name
would perhaps be “invisible signatures” or “unverifiable signatures”. We refer to
Section 7.6 of [592].

• Identity-Based Signatures. Identity-based cryptography is a concept introduced by
Shamir. The main feature is that a user’s public key is defined to be a function
of their “identity” (for example, their email address) together with some master
public key. Each user obtains their private key from a Key Generation Center that
possesses the master secret. One application of identity-based cryptography is to
simplify public-key infrastructures.

An identity-based signature is a public-key signature scheme for which it is not
necessary to verify a public key certificate on the signer’s key before verifying the
signature (though note that it may still be necessary to verify a certificate for the
master key of the system). There are many proposals in the literature, but we do
not discuss them in this section. One example is given in Section 24.6.3).


