
Chapter 2

Basic Algorithmic Number
Theory

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

The aim of this chapter is to give a brief summary of some fundamental algorithms
for arithmetic in finite fields. The intention is not to provide an implementation guide;
instead, we sketch some important concepts and state some complexity results that will
be used later in the book. We do not give a consistent level of detail for all algorithms;
instead we only give full details for algorithms that will play a significant role in later
chapters of the book.

More details of these subjects can be found in Crandall and Pomerance [162], Shoup
[556], Buhler and Stevenhagen [113], Brent and Zimmermann [100], Knuth [343], von zur
Gathen and Gerhard [238], Bach and Shallit [22] and the handbooks [16, 418].

The chapter begins with some remarks about computational problems, algorithms
and complexity theory. We then present methods for fast integer and modular arith-
metic. Next we present some fundamental algorithms in computational number theory
such as Euclid’s algorithm, computing Legendre symbols, and taking square roots mod-
ulo p. Finally, we discuss polynomial arithmetic, constructing finite fields, and some
computational problems in finite fields.

2.1 Algorithms and Complexity

We assume the reader is already familiar with computers, computation and algorithms.
General references for this section are Chapter 1 of Cormen, Leiserson, Rivest and Stein [146],
Davis and Weyuker [167], Hopcroft and Ullman [293], Section 3.1 of Shoup [556], Sipser
[568] and Talbot and Welsh [600].

Rather than using a fully abstract model of computation, such as Turing machines,
we consider all algorithms as running on a digital computer with a typical instruction set,

37

38 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

an infinite number of bits of memory and constant-time memory access. This is similar
to the random access machine (or register machine) model; see Section 3.6 of [22], [139],
Section 2.2 of [146], Section 7.6 of [293] or Section 3.2 of [556]. We think of an algorithm
as a sequence of bit operations, though it is more realistic to consider word operations.

A computational problem is specified by an input (of a certain form) and an output
(satisfying certain properties relative to the input). An instance of a computational
problem is a specific input. The input size of an instance of a computational problem
is the number of bits required to represent the instance. The output size of an instance
of a computational problem is the number of bits necessary to represent the output. A
decision problem is a computational problem where the output is either “yes” or “no”.
As an example, we give one of the most important definitions in the book.

Definition 2.1.1. Let G be a group written in multiplicative notation. The discrete
logarithm problem (DLP) is: Given g, h ∈ G to find a, if it exists, such that h = ga.

In Definition 2.1.1 the input is a description of the group G together with the group
elements g and h and the output is a or the failure symbol ⊥ (to indicate that h 6∈ hgi).
Typically G is an algebraic group over a finite field and the order of g is assumed to be
known. We stress that an instance of the DLP, according to Definition 2.1.1, includes
the specification of G, g and h; so one must understand that they are all allowed to vary
(note that, in many cryptographic applications one considers the group G and element
g as being fixed; we discuss this in Exercise 21.1.2). As explained in Section 2.1.2, a
computational problem should be defined with respect to an instance generator; in the
absence of any further information it is usual to assume that the instances are chosen
uniformly from the space of all possible inputs of a given size. In particular, for the
DLP it is usual to denote the order of g by r and to assume that h = ga where a is
chosen uniformly in Z/rZ. The output is the integer a (e.g., written in binary). The
input size depends on the specific group G and the method used to represent it. If h can
take all values in hgi then one needs at least log2(r) bits to specify h from among the r
possibilities. Hence, the input size is at least log2(r) bits. Similarly, if the output a is
uniformly distributed in Z/rZ then the output size is at least log2(r) bits.

An algorithm to solve a computational problem is called deterministic if it does not
make use of any randomness. We will study the asymptotic complexity of deterministic
algorithms by counting the number of bit operations performed by the algorithm expressed
as a function of the input size. Upper bounds on the complexity are presented using “big
O” notation. When giving complexity estimates using big O notation we implicitly assume
that there is a countably infinite number of possible inputs to the algorithm.

Definition 2.1.2. Let f, g : N → R>0. Write f = O(g) if there are c ∈ R>0 and N ∈ N
such that

f(n) ≤ cg(n)

for all n ≥ N .
Similarly, if f(n1, . . . , nm) and g(n1, . . . , nm) are functions from Nm to R>0 then we

write f = O(g) if there are c ∈ R>0 and N1, . . . , Nm ∈ N such that f(n1, . . . , nm) ≤
cg(n1, . . . , nm) for all (n1, . . . , nm) ∈ Nm with ni ≥ Ni for all 1 ≤ i ≤ m.

Example 2.1.3. 3n2+2n+1 = O(n2), n+sin(n) = O(n), n100+2n = O(2n), log10(n) =
O(log(n)).

Exercise 2.1.4. Show that if f(n) = O(log(n)a) and g(n) = O(log(n)b) then (f+g)(n) =
f(n) + g(n) = O(log(n)max{a,b}) and (fg)(n) = f(n)g(n) = O(log(n)a+b). Show that
O(nc) = O(2c log(n)).

2.1. ALGORITHMS AND COMPLEXITY 39

We also present the “little o”, “soft O”, “big Omega” and “big Theta” notation .
These will only ever be used in this book for functions of a single argument.

Definition 2.1.5. Let f, g : N → R>0. Write f(n) = o(g(n)) if

lim
n→∞

f(n)/g(n) = 0.

Write f(n) = Õ(g(n)) if there is some m ∈ N such that f(n) = O(g(n) log(g(n))m).
Write f(n) = Ω(g(n)) if g(n) = O(f(n)). Write f(n) = Θ(g(n)) if f(n) = O(g(n)) and
g(n) = O(f(n)).

Exercise 2.1.6. Show that if g(n) = O(n) and f(n) = Õ(g(n)) then there is some m ∈ N
such that f(n) = O(n log(n)m).

Definition 2.1.7. (Worst-case asymptotic complexity.) Let A be a deterministic algo-
rithm and let t(n) be a bound on the running time of A on every problem of input size n
bits.

• A is polynomial-time if there is an integer k ∈ N such that t(n) = O(nk).

• A is superpolynomial-time if t(n) = Ω(nc) for all c ∈ R>1.

• A is exponential-time if there is a constant c2 > 1 such that t(n) = O(cn2).

• A is subexponential-time if t(n) = O(cn) for all c ∈ R>1.

Exercise 2.1.8. Show that na log(log(n)) and na log(n), for some a ∈ R>0, are functions
that are Ω(nc) and O(cn) for all c ∈ R>1.

For more information about computational complexity, including the definitions of
complexity classes such as P and NP, see Chapters 2 to 4 of [600], Chapter 13 of [293],
Chapter 15 of [167], Chapter 7 of [568] or Chapter 34 of [146]. Definition 2.1.7 is for
uniform complexity, as a single algorithm A solves all problem instances. One can also
consider non-uniform complexity, where one has an algorithm A and, for each n ∈ N,
polynomially sized auxiliary input h(n) (the hint) such that if x is an n-bit instance of the
computational problem then A(x, h(n)) solves the instance. An alternative definition is a
sequence An of algorithms, one for each input size n ∈ N, and such that the description
of the algorithm is polynomially bounded. We stress that the hint is not required to be
efficiently computable. We refer to Section 4.6 of Talbot and Welsh [600] for details.

Complexity theory is an excellent tool for comparing algorithms, but one should always
be aware that the results can be misleading. For example, it can happen that there are
several algorithms to solve a computational problem and that the one with the best
complexity is slower than the others for the specific problem instance one is interested in
(for example, see Remark 2.2.5).

2.1.1 Randomised Algorithms

All our algorithms may be randomised, in the sense that they have access to a random
number generator. A deterministic algorithm should terminate after a finite number of
steps but a randomised algorithm can run forever if an infinite sequence of “unlucky” ran-
dom choices is made.1 Also, a randomised algorithm may output an incorrect answer for

1In algorithmic number theory it is traditional to allow algorithms that do not necessarily terminate,
whereas in cryptography it is traditional to consider algorithms whose running time is bounded (typically
by a polynomial in the input size). Indeed, in security reductions it is crucial that an adversary (i.e.,
randomised algorithm) always terminates. Hence, some of the definitions in this section (e.g., Las Vegas
algorithms) mainly arise in the algorithmic number theory literature.

40 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

some choices of randomness. A Las Vegas algorithm is a randomised algorithm which,
if it terminates2, outputs a correct solution to the problem. A randomised algorithm for a
decision problem is a Monte Carlo algorithm if it always terminates and if the output
is “yes” then it is correct and if the output is “no” then it is correct with “noticeable”
probability (see the next section for a formal definition of noticeable success probability).

An example of a Las Vegas algorithm is choosing a random quadratic non-residue
modulo p by choosing random integers modulo p and computing the Legendre symbol
(see Exercise 2.4.6 in Section 2.4); the algorithm could be extremely unlucky forever. Of
course, there is a deterministic algorithm for this problem, but its complexity is worse than
the randomised algorithm. An example of a Monte Carlo algorithm is testing primality
of an integer N using the Miller-Rabin test (see Section 12.1.2). Many of the algorithms
in the book are randomised Monte Carlo or Las Vegas algorithms. We will often omit the
words “Las Vegas” or “Monte Carlo”.

Deterministic algorithms have a well-defined running time on any given problem in-
stance. For a randomised algorithm the running time for a fixed instance of the problem
is not necessarily well-defined. Instead, one considers the expected value of the running
time over all choices of the randomness. We usually consider worst-case complexity.
For a randomised algorithm, the worst-case complexity for input size n is the maximum,
over all problem instances of size n, of the expected running time of the algorithm. As
always, when considering asymptotic complexity it is necessary that the computational
problem have a countably infinite number of problem instances.

A randomised algorithm is expected polynomial-time if the worst-case over all
problem instances of size n bits of the expected value of the running time is O(nc) for some
c ∈ R>0. (An expected polynomial-time algorithm can run longer than polynomial-time if
it makes many “unlucky” choices.) A randomised algorithm is expected exponential-
time (respectively, expected subexponential-time) if there exists c ∈ R>1 (respec-
tively, for all c ∈ R>1) such that the expected value of the running time on problem
instances of size n bits is O(cn).

One can also consider average-case complexity, which is the average, over all prob-
lem instances of size n, of the expected running time of the algorithm. Equivalently, the
average-case complexity is the expected number of bit operations of the algorithm where
the expectation is taken over all problem instances of size n as well as all choices of the
randomness. For more details see Section 4.2 of Talbot and Welsh [600].

2.1.2 Success Probability of a Randomised Algorithm

Throughout the book we give very simple definitions (like Definition 2.1.1) for compu-
tational problems. However, it is more subtle to define what it means for a randomised
algorithm A to solve a computational problem. A perfect algorithm is one whose out-
put is always correct (i.e., it always succeeds). We also consider algorithms that give the
correct answer only for some subset of the problem instances, or for all instances but only
with a certain probability.

The issue of whether an algorithm is successful is handled somewhat differently by
the two communities whose work is surveyed in this book. In the computational number
theory community, algorithms are expected to solve all problem instances with probability
of success close to 1. In the cryptography community it is usual to consider algorithms that
only solve some noticeable (see Definition 2.1.10) proportion of problem instances, and
even then only with some noticeable probability. The motivation for the latter community

2An alternative definition is that a Las Vegas algorithm has finite expected running time, and outputs
either a correct result or the failure symbol ⊥.

2.1. ALGORITHMS AND COMPLEXITY 41

is that an algorithm to break a cryptosystem is considered devastating even if only a
relatively small proportion of ciphertexts are vulnerable to the attack. Two examples of
attacks that only apply to a small proportion of ciphertexts are the attack by Boneh,
Joux and Nguyen on textbook Elgamal (see Exercise 20.4.9) and the Desmedt-Odlyzko
signature forgery method (see Section 24.4.3).

We give general definitions for the success probability of an algorithm in this section,
but rarely use the formalism in our later discussion. Instead, for most of the book, we focus
on the case of algorithms that always succeed (or, at least, that succeed with probability
extremely close to 1). This choice allows shorter and simpler proofs of many facts. In
any case, for most computational problems the success probability can be increased by
running the algorithm repeatedly, see Section 2.1.4.

The success of an algorithm to solve a computational problem is defined with respect
to an instance generator, which is a randomised algorithm that takes as input κ ∈ N
(often κ is called the security parameter), runs in polynomial-time in the output size,
and outputs an instance of the computational problem (or fails to generate an instance
with some negligible probability). The output is usually assumed to be Θ(κ) bits,3 so
“polynomial-time” in the previous sentence means O(κm) bit operations for some m ∈ N.
We give an example of an instance generator for the DLP in Example 2.1.9.

Let A be a randomised algorithm that takes an input κ ∈ N. Write Sκ for the set of
possible outputs of A(κ). The output distribution of A on input κ is the distribution
on Sκ such that Pr(x) for x ∈ Sκ is the probability, over the random choices made by A,
that the output of A(κ) is x.

Example 2.1.9. Let a security parameter κ ∈ N be given. First, generate a random
prime number r such that 22κ < r < 22κ+1 (by choosing uniformly at random (2κ+1)-bit
integers and testing each for primality). Next, try consecutive small4 integers k until
p = kr + 1 is prime. Then, choose a random integer 1 < u < p and set g = u(p−1)/r and
repeat if g = 1. It follows that g is a generator of a cyclic subgroup of G = F∗

p of order
r. Finally, choose uniformly at random an integer 0 < a < r and set h = ga. Output
(p, r, g, h), which can be achieved using 3⌈log2(p)⌉+ ⌈log2(r)⌉ bits.

One sees that there are finitely many problem instances for a given value of the security
parameter κ, but infinitely many instances in total. The output distribution has r uniform
among (2κ+1)-bit primes, p is not at all random (it is essentially determined by r), while
the pair (g, h) is uniformly distributed in the set of pairs of elements of order r in F∗

p, but
not necessarily well-distributed in (F∗

p)
2.

When considering an algorithm A to solve a computational problem we assume that
A has been customised for a particular instance generator. Hence, a problem might be
easy with respect to some instance generators and hard for others. Thus it makes no
sense to claim that “DLP is a hard problem”; instead, one should conjecture that DLP
is hard for certain instance generators.

We now define what is meant by the word negligible.

Definition 2.1.10. A function ǫ : N → R>0 is negligible if for every polynomial p(x) ∈
R[x] there is some K ∈ N such that for all κ > K with p(κ) 6= 0 we have ǫ(κ) < 1/|p(κ)|.

A function ǫ : N → R>0 is noticeable if there exists a polynomial p(x) ∈ R[x] and an
integer K such that ǫ(κ) > 1/|p(κ)| for all κ > K with p(κ) 6= 0.

3For problems related to RSA or factoring, we may either take κ to be the bit-length of the modulus,
or assume the output is O(κ3) bits.

4In practice, to ensure the discrete logarithm problem can’t be solved in 2κ bit operations using index
calculus algorithms, one would choose k large enough that Lp(1/3, 1.5) > 2kappa.

42 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Let [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. A function p : N → [0, 1] is overwhelming if
1− p(κ) is negligible.

Note that noticeable is not the logical negation of negligible. There are functions that
are neither negligible nor noticeable.

Example 2.1.11. The function ǫ(κ) = 1/2κ is negligible.

Exercise 2.1.12. Let f1(κ) and f2(κ) be negligible functions. Prove that f1 + f2 is a
negligible function and that p(κ)f1(κ) is a negligible function for any polynomial p(x) ∈
R[x] such that p(x) > 0 for all sufficiently large x.

Definition 2.1.13. Let A be a randomised algorithm to solve instances of a computa-
tional problem generated by a specific instance generator. The success probability of
the algorithm A is the function f : N → [0, 1] such that, for κ ∈ N, f(κ) is the probability
that A outputs the correct answer, where the probability is taken over the randomness
used by A and according to the output distribution of the instance generator on input κ.
An algorithm A with respect to an instance generator succeeds if its success probability
is a noticeable function.

Note that the success probability is taken over both the random choices made by A
and the distribution of problem instances. In particular, an algorithm that succeeds does
not necessarily solve a specific problem instance even when run repeatedly with different
random choices.

Example 2.1.14. Consider an algorithm A for the DLP with respect to the instance
generator of Example 2.1.9. Suppose A simply outputs an integer a chosen uniformly
at random in the range 0 < a < r. Since r > 22κ the probability that A is correct is
1/(r − 1) ≤ 1/22κ. For any polynomial p(x) there are X, c ∈ R>0 and n ∈ N such that
|p(x)| ≤ cxn for x ≥ X . Similarly, there is some K ≥ X such that cKn ≤ 22K . Hence,
the success probability of A is negligible.

Certain decision problems (for example, decision Diffie-Hellman) require an algorithm
to behave differently when given inputs drawn from different distributions on the same
underlying set. In this case, the success probability is not the right concept and one
instead uses the advantage. We refer to Definition 20.2.4 for an example.

Chapter 7 of Shoup [556] gives further discussion of randomised algorithms and success
probabilities.

2.1.3 Reductions

An oracle for a computational problem takes one unit of running time, independent of
the size of the instance, and returns an output. An oracle that always outputs a correct
answer is called a perfect oracle. One can consider oracles that only output a correct
answer with a certain noticeable probability (or advantage). For simplicity we usually
assume that oracles are perfect and leave the details in the general case as an exercise for
the reader. We sometimes use the word reliable for an oracle whose success probability
is overwhelming (i.e., success probability 1 − ǫ where ǫ is negligible) and unreliable for
an oracle whose success probability is small (but still noticeable).

Note that the behaviour of an oracle is only defined if its input is a valid instance of the
computational problem it solves. Similarly, the oracle performs with the stated success
probability only if it is given problem instances drawn with the correct distribution from
the set of all problem instances.

2.1. ALGORITHMS AND COMPLEXITY 43

Definition 2.1.15. A reduction from problem A to problem B is a randomised algo-
rithm to solve problem A (running in expected polynomial-time and having noticeable
success probability) by making queries to an oracle (which succeeds with noticeable prob-
ability) to solve problem B.

If there is a reduction from problem A to problem B then we write5

A ≤R B.

Theorem 2.1.16. Let A and B be computational problems such that A ≤R B. If there
is a polynomial-time randomised algorithm to solve B then there is a polynomial-time
randomised algorithm to solve A.

A reduction between problems A and B therefore explains that “if you can solve B
then you can solve A”. This means that solving A has been “reduced” to solving problem
B and we can infer that problem B is “at least as hard as” problem A or that problem A
is “no harder than” problem B.

Since oracle queries take one unit of running time and reductions are polynomial-time
algorithms, a reduction makes only polynomially many oracle queries.

Definition 2.1.17. If there is a reduction from A to B and a reduction from B to A then
we say that problems A and B are equivalent and write A ≡R B.

Some authors use the phrases polynomial-time reduction and polynomial-time
equivalent in place of reduction and equivalence. However, these terms have a technical
meaning in complexity theory that is different from reduction (see Section 34.3 of [146]).
Definition 2.1.15 is closer to the notion of Turing reduction, except that we allow ran-
domised algorithms whereas a Turing reduction is a deterministic algorithm. We abuse
terminology and define the terms subexponential-time reduction and exponential-
time reduction by relaxing the condition in Definition 2.1.15 that the algorithm be
polynomial-time (these terms are used in Section 21.4.3).

2.1.4 Random Self-Reducibility

There are two different ways that an algorithm or oracle can be unreliable: First, it may
be randomised and only output the correct answer with some probability; such a situation
is relatively easy to deal with by repeatedly running the algorithm/oracle on the same
input. The second situation, which is more difficult to handle, is when there is a subset
of problem instances for which the algorithm or oracle extremely rarely or never outputs
the correct solution; for this situation random self-reducibility is essential. We give a
definition only for the special case of computational problems in groups.

Definition 2.1.18. Let P be a computational problem for which every instance of the
problem is an n1-tuple of elements of some cyclic group G of order r and such that the
solution is an n2-tuple of elements of G together with an n3-tuple of elements of Z/rZ
(where n2 or n3 may be zero).

The computational problem P is random self-reducible if there is a polynomial-
time algorithm that transforms an instance of the problem (with elements in a group G)
into a uniformly random instance of the problem (with elements in the same group G)
such that the solution to the original problem can be obtained in polynomial-time from
the solution to the new instance.

5The subscript R denotes the word “reduction” and should also remind the reader that our reductions
are randomised algorithms.

44 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

We stress that a random self-reduction of a computational problem in a group G gives
instances of the same computational problem in the same group. In general there is no
way to use information about instances of a computational problem in a group G′ to solve
computational problems in G if G′ 6= G (unless perhaps G′ is a subgroup of G or vice
versa).

Lemma 2.1.19. Let G be a group and let g ∈ G have prime order r. Then the DLP in
hgi is random self-reducible.

Proof: First, note that the DLP fits the framework of computational problems in Defi-
nition 2.1.18. Denote by X the set (hgi− {1})×hgi. Let (g, h) ∈ X be an instance of the
DLP.

Choose 1 ≤ x < r and 0 ≤ y < r uniformly at random and consider the pair
(gx, hxgxy) ∈ X . Every pair (g1, g2) ∈ X arises in this way for exactly one pair (x, y).
Hence we have produced a DLP instance uniformly at random.

If a is the solution to the new DLP instance, i.e., hxgxy = (gx)a then the solution to
the original instance is

a− y (mod r).

This completes the proof. �

A useful feature of random self-reducible problems is that if A is an algorithm that
solves an instance of the problem in a group G with probability (or advantage) ǫ then
one can obtain an algorithm A′ that repeatedly calls A and solves any instance in G
of the problem with overwhelming probability. This is called amplifying the success
probability (or advantage). An algorithm to transform an unreliable oracle into a reliable
one is sometimes called a self-corrector.

Lemma 2.1.20. Let g have prime order r and let G = hgi. Let A be an algorithm that
solves the DLP in G with probability at least ǫ > 0. Let ǫ′ > 0 and define n = ⌈log(1/ǫ′)/ǫ⌉
(where log denotes the natural logarithm). Then there is an algorithm A′ that solves the
DLP in G with probability at least 1 − ǫ′. The running time of A′ is O(n log(r)) group
operations plus n times the running time of A.

Proof: Run A on n random self-reduced versions of the original DLP. One convenient
feature of the DLP is that one can check whether a solution is correct (this takes O(log(r))
group operations for each guess for the DLP).

The probability that all n trials are incorrect is at most (1 − ǫ)n < (e−ǫ)log(1/ǫ
′)/ǫ =

elog(ǫ
′) = ǫ′. Hence A′ outputs the correct answer with probability at least 1− ǫ′. �

2.2 Integer Operations

We now begin our survey of efficient computer arithmetic. General references for this
topic are Section 9.1 of Crandall and Pomerance [162], Section 3.3 of Shoup [556], Section
4.3.1 of Knuth [343], Chapter 1 of Brent-Zimmermann [100] and von zur Gathen and
Gerhard [238].

Integers are represented as a sequence of binary words. Operations like add or multiply
may correspond to many bit or word operations. The length of an unsigned integer a
represented in binary is

len(a) =

�
⌊log2(a)⌋+ 1 if a 6= 0,
1 if a = 0.

For a signed integer we define len(a) = len(|a|) + 1.

2.2. INTEGER OPERATIONS 45

The complexity of algorithms manipulating integers depends on the length of the
integers, hence one should express the complexity in terms of the function len. However,
it is traditional to just use log2 or the natural logarithm log.

Exercise 2.2.1. Show that, for a ∈ N, len(a) = O(log(a)) and log(a) = O(len(a)).

Lemma 2.2.2. Let a, b ∈ Z be represented as a sequence of binary words.

1. It requires O(log(a)) bit operations to write a out in binary.

2. One can compute a± b in O(max{log(a), log(b)}) bit operations.
3. One can compute ab in O(log(a) log(b)) bit operations.

4. Suppose |a| > |b|. One can compute q and r such that a = bq+ r and 0 ≤ r < |b| in
O(log(b) log(q)) = O(log(b)(log(a)− log(b) + 1)) bit operations.

Proof: Only the final statement is non-trivial. The school method of long division
computes q and r simultaneously and requires O(log(q) log(a)) bit operations. It is more
efficient to compute q first by considering only the most significant log2(q) bits of a, and
then to compute r as a−bq. For more details see Section 4.3.1 of [343], Section 2.4 of [238]
or Section 3.3.4 of [556]. �

2.2.1 Faster Integer Multiplication

An important discovery is that it is possible to multiply integers more quickly than the
“school method”. General references for this subject include Section 9.5 of [162], Section
4.3.3 of [343], Section 3.5 of [556] and Section 1.3 of [100].

Karatsuba multiplication is based on the observation that one can compute (a0 +
2na1)(b0 + 2nb1), where a0, a1, b0 and b1 are n-bit integers, in three multiplications of
n-bit integers rather than four.

Exercise 2.2.3. Prove that the complexity of Karatsuba multiplication of n bit integers
is O(nlog2(3)) = O(n1.585) bit operations.
[Hint: Assume n is a power of 2.]

Toom-Cook multiplication is a generalisation of Karatsuba. Fix a value k and
suppose a = a0+a12

n+a22
2n+ · · · ak2kn and similarly for b. One can think of a and b as

being polynomials in x of degree k evaluated at 2n and we want to compute the product
c = ab, which is a polynomial of degree 2k in x evaluated at x = 2n. The idea is to
compute the coefficients of the polynomial c using polynomial interpolation and therefore
to recover c. The arithmetic is fast if the polynomials are evaluated at small integer
values. Hence, we compute c(1) = a(1)b(1), c(−1) = a(−1)b(−1), c(2) = a(2)b(2) etc.
The complexity of Toom-Cook multiplication for n-bit integers is O(nlogk+1(2k+1)) (e.g.,
when k = 3 the complexity is O(n1.465)). For more details see Section 9.5.1 of [162].

Exercise 2.2.4.⋆ Give an algorithm for Toom-Cook multiplication with k = 3.

Schönhage-Strassen multiplication multiplies n-bit integers in nearly linear time,
namely O(n log(n) log(log(n))) bit operations, using the fast Fourier transform (FFT).
The Fürer algorithm is slightly better. These algorithms are not currently used in the
implementation of RSA or discrete logarithm cryptosystems so we do not describe them in
this book. We refer to Sections 9.5.2 to 9.5.7 of Crandall and Pomerance [162], Chapter
8 of von zur Gathen and Gerhard [238], Chapter 2 of Brent and Zimmermann [100],
Turk [611] and Chapter 4 of Borodin and Munro [88] for details.

46 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Another alternative is residue number arithmetic which is based on the Chinese re-
mainder theorem. It reduces large integer operations to modular computations for some
set of moduli. This idea may be useful if one can exploit parallel computation (though for
any given application there may be more effective uses for parallelism). These methods
are not used frequently for cryptography so interested readers are referred to Section II.1.2
of [64], Section 14.5.1 of [418], Remark 10.53(ii) of [16], and Section 4.3.2 of [343].

Remark 2.2.5. In practice, the “school” method is fastest for small numbers. The
crossover point (i.e., when Karatsuba becomes faster than the school method) depends
on the word size of the processor and many other issues, but seems to be for numbers of
around 300-1000 bits (i.e., 90-300 digits) for most computing platforms. For a popular 32
bit processor Zimmermann [642] reports reports that Karatsuba beats the school method
for integers of 20 words (640 bits) and Toom-Cook with k = 3 beats Karatsuba at 77
words (2464 bits). Bentahar [43] reports crossovers of 23 words (i.e., about 700 bits)
and 133 words (approximately 4200 bits) respectively. The crossover point for the FFT
methods is much larger. Hence, for elliptic curve cryptography at current security levels
the “school” method is usually used, while for RSA cryptography the Karatsuba method
is usually used.

Definition 2.2.6. Denote by M(n) the number of bit operations to perform a multipli-
cation of n bit integers.

For the remainder of the book we assume that M(n) = c1n
2 for some constant c1

when talking about elliptic curve arithmetic, and that M(n) = c2n
1.585 for some constant

c2 when talking about RSA .

Applications of Newton’s Method

Recall that if F : R → R is differentiable and if x0 is an approximation to a zero of F (x)
then one can efficiently get a very close approximation to the zero by running Newton’s
iteration

xn+1 = xn − F (xn)/F
′(xn).

Newton’s method has quadratic convergence, in general, so the precision of the approxi-
mation roughly doubles at each iteration.

Integer Division

There are a number of fast algorithms to compute ⌊a/b⌋ for a, b ∈ N. This operation has
important applications to efficient modular arithmetic (see Section 2.5). Section 10.5 of
[16] gives an excellent survey.

We now present an application of Newton’s method to this problem. The idea is to
to compute a good rational approximation to 1/a by finding a root of F (x) = x−1 − a.

Exercise 2.2.7. Show that the Newton iteration for F (x) = x−1−a is xn+1 = 2xn−ax2
n.

First we recall that a real number α can be represented by a rational approximation
b/2e where b, e ∈ Z. A key feature of this representation (based on the fact that division
by powers of 2 is easy) is that if we know that |α− b/2e| < 1/2k (i.e., the result is correct
to precision k) then we can renormalise the representation by replacing the approximation
b/2e by ⌊b/2e−k⌉/2k.

Suppose 2m ≤ a < 2m+1. Then we take x0 = b0/2
e0 = 1/2m as the first approximation

to 1/a. In other words, b0 = 1 and e0 = m. The Newton iteration in this case is

2.3. EUCLID’S ALGORITHM 47

en+1 = 2en and bn+1 = bn(2
en+1 − abn) which requires two integer multiplications.

To prevent exponential growth of the numbers bn one can renormalise the representation
according to the expected precision of that step. One can show that the total complexity of
getting an approximation to 1/a of precisionm is O(M(m)) bit operations. For details see
Section 3.5 of [556] (especially Exercise 3.35), Chapter 9 of [238] or, for a slightly different
formulation, Section 9.2.2 of [162]. Applications of this idea to modular arithmetic will
be given in Section 2.5.

Integer Approximations to Real Roots of Polynomials

Let F (x) ∈ Z[x]. Approximations to roots of F (x) in R can be computed using Newton’s
method. As a special case, integer square roots of m-bit numbers can be computed in
time proportional to the cost of a multiplication of two m-bit numbers. Similarly, other
roots (such as cube roots) can be computed in polynomial-time.

Exercise 2.2.8. Show that the Newton iteration for computing a square root of a is
xn+1 = (xn + a/xn)/2. Hence, write down an algorithm to compute an integer approxi-
mation to the square root of a.

Exercise 2.2.8 can be used to test whether an integer a is a square. An alternative
is to compute the Legendre symbol (ap) for some random small primes p. For details see
Exercise 2.4.9.

Exercise 2.2.9. Show that if N = pe where p is prime and e ≥ 1 then one can factor N
in polynomial-time.

2.3 Euclid’s Algorithm

For a, b ∈ N, Euclid’s algorithm computes d = gcd(a, b). A simple way to express Euclid’s
algorithm is by the recursive formula

gcd(a, b) =

�
gcd(a, 0) = a
gcd(b, a (mod b)) if b 6= 0.

The traditional approach is to work with positive integers a and b throughout the al-
gorithm and to choose a (mod b) to be in the set {0, 1, . . . , b − 1}. In practice, the
algorithm can be used with a, b ∈ Z and it runs faster if we choose remainders in the
range {−⌈|b|/2⌉+1, . . . ,−1, 0, 1, . . . , ⌈|b|/2⌉}. However, for some applications (especially,
those related to Diophantine approximation) the version with positive remainders is the
desired choice.

In practice we often want to compute integers (s, t) such that d = as + bt, in which
case we use the extended Euclidean algorithm. This is presented in Algorithm 1, where
the integers ri, si, ti always satisfy ri = sia+ tib.

Theorem 2.3.1. The complexity of Euclid’s algorithm is O(log(a) log(b)) bit operations.

Proof: Each iteration of Euclid’s algorithm involves computing the quotient and remain-
der of division of ri−2 by ri−1 where we may assume |ri−2| > |ri−1| (except maybe for
i = 1). By Lemma 2.2.2 this requires ≤ c log(ri−1)(log(ri−2)−log(ri−1)+1) bit operations
for some constant c ∈ R>0. Hence the total running time is at most

c
X

i≥1

log(ri−1)(log(ri−2)− log(ri−1) + 1).

48 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Algorithm 1 Extended Euclidean algorithm

Input: a, b ∈ Z
Output: d = gcd(a, b) and s, t ∈ Z such that d = sa+ tb
1: r−1 = a, s−1 = 1, t−1 = 0
2: r0 = b, s0 = 0, t0 = 1
3: i = 0
4: while (ri 6= 0) do
5: i = i+ 1
6: find qi, ri ∈ Z such that −|ri−1|/2 < ri ≤ |ri−1|/2 and ri−2 = qiri−1 + ri
7: si = si−2 − qisi−1

8: ti = ti−2 − qiti−1

9: end while
10: return ri−1, si−1, ti−1

Re-arranging terms gives

c log(r−1) log(r0) + c
X

i≥1

log(ri−1)(1 + log(ri)− log(ri−1)).

Now, 2|ri| ≤ |ri−1| so 1 + log(ri) ≤ log(ri−1) hence all the terms in the above sum are
≤ 0. It follows that the algorithm performs O(log(a) log(b)) bit operations. �

Exercise 2.3.2. Show that the complexity of Algorithm 1 is still O(log(a) log(b)) bit
operations even when the remainders in line 6 are chosen in the range 0 ≤ ri < ri−1.

A more convenient method for fast computer implementation is the binary Euclidean
algorithm (originally due to Stein). This uses bit operations such as division by 2 rather
than taking general quotients; see Section 4.5.2 of [343], Section 4.7 of [22], Chapter 3
of [238], Section 9.4.1 of [162] or Section 14.4.3 of [418].

There are subquadratic versions of Euclid’s algorithm. One can compute the extended
gcd of two n-bit integers in O(M(n) log(n)) bit operations. We refer to Section 9.4 of [162],
[583] or Section 11.1 of [238].

The rest of the section gives some results about Diophantine approximation that are
used later (for example, in the Wiener attack on RSA, see Section 24.5.1). We assume
that a, b > 0 and that the extended Euclidean algorithm with positive remainders is used
to generate the sequence of values (ri, si, ti).

The integers si and ti arising from the extended Euclidean algorithm are equal, up to
sign, to the convergents of the continued fraction expansion of a/b. To be precise, if the
convergents of a/b are denoted hi/ki for i = 0, 1, . . . then, for i ≥ 1, si = (−1)i−1ki−1

and ti = (−1)ihi−1. Therefore, the values (si, ti) satisfy various equations, summarised
below, that will be used later in the book. We refer to Chapter 10 of [276] or Chapter 7
of [468] for details on continued fractions.

Lemma 2.3.3. Let a, b ∈ N and let ri, si, ti ∈ Z be the triples generated by running
Algorithm 1 in the case of positive remainders 0 ≤ ri < ri−1.

1. For i ≥ 1, |si| < |si+1| and |ti| < |ti+1|.
2. If a, b > 0 then ti > 0 when i ≥ 1 is even and ti < 0 when i is odd (and vice versa

for si).

3. ti+1si − tisi+1 = (−1)i+1.

2.3. EUCLID’S ALGORITHM 49

4. risi−1 − ri−1si = (−1)ib and riti−1 − ri−1ti = (−1)i−1a. In other words, ri|si−1|+
ri−1|si| = b and ri|ti−1|+ ri−1|ti| = a.

5. |a/b+ ti/si| ≤ 1/|sisi+1|.
6. |risi| < |risi+1| ≤ |b| and |riti| < |riti+1| ≤ |a|.
7. If s, t ∈ Z are such that |a/b+ t/s| < 1/(2s2) then (s, t) is (up to sign) one of the

pairs (si, ti) computed by Euclid’s algorithm.

8. If r, s, t ∈ Z satisfy r = as+ bt and |rs| < |b|/2 then (r, s, t) is (up to sign) one of
the triples (ri, si, ti) computed by Euclid’s algorithm.

Proof: Statements 1, 2 and 3 are proved using the relation si = (−1)i−1ki−1 and ti =
(−1)ihi−1 where hi/ki are the continued fraction convergents to a/b. From Chapter 10
of [276] and Chapter 7 of [468] one knows that hm = qm+1hm−1 + hm−2 and km =
qm+1km−1 + km−2 where qm+1 is the quotient in iteration m + 1 of Euclid’s algorithm.
The first statement follows immediately and the third statement follows from the fact
that hmkm−1 − hm−1km = (−1)m−1. The second statement follows since a, b > 0 implies
hi, ki > 0.

Statement 4 can be proved by induction, using the fact that ri+1si− risi+1 = (ri−1 −
qiri)si−ri(si−1−qisi) = −(risi−1−ri−1si). Statement 5 is the standard result (equation
(10.7.7) of [276], Theorem 7.11 of [468]) that the convergents of a/b satisfy |a/b−hm/km| <
1/|kmkm+1|. Statement 6 follows directly from statements 2 and 4. For example, a =
ri(−1)i−1ti−1 + ri−1(−1)iti and both terms on the right hand side are positive.

Statement 7 is also a standard result in Diophantine approximation; see Theorem 184
of [276] or Theorem 7.14 of [468].

Finally, to prove statement 8, suppose r, s, t ∈ Z are such that r = as + bt and
|rs| < |b|/2. Then

|a/b+ t/s| = |(as+ bt)/bs| = |r|/|bs| = |rs|/|bs2| < 1/(2s2).

The result follows from statement 7. �

Example 2.3.4. The first few terms of Euclid’s algorithm on a = 513 and b = 311 give

i ri qi si ti |risi| |riti|
-1 513 – 1 0 513 0
0 311 – 0 1 0 311
1 202 1 1 –1 202 202
2 109 1 –1 2 109 218
3 93 1 2 –3 186 279
4 16 1 –3 5 48 80
5 13 5 17 -28 221 364

One can verify that |risi| ≤ |b| and |riti| ≤ |a|. Indeed, |risi+1| ≤ |b| and |riti+1| ≤ |a|
as stated in part 6 of Lemma 2.3.3.

Diophantine approximation is the study of approximating real numbers by rationals.
Statement 7 in Lemma 2.3.3 is a special case of one of the famous results; namely that
the “best” rational approximations to real numbers are given by the convergents in their
continued fraction expansion. Lemma 2.3.5 shows how the result can be relaxed slightly,
giving “less good” rational approximations in terms of convergents to continued fractions.

Lemma 2.3.5. Let α ∈ R, c ∈ R>0 and let s, t ∈ N be such that |α− t/s| < c/s2. Then
(t, s) = (uhn+1 ± vhn, ukn+1 ± vkn) for some n, u, v ∈ Z≥0 such that uv < 2c.

50 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Proof: See Theorem 1 and Remark 2 of Dujella [184]. �

We now remark that continued fractions allow one to compute solutions to Pell’s
equation.

Theorem 2.3.6. Let d ∈ N be square-free. Then the continued fraction expansion of
√
d

is periodic; denote by r the period. Let hn/kn be the convergents in the continued fraction
expansion of

√
d. Then h2

nr−1− dk2nr−1 = (−1)nr for n ∈ N. Furthermore, every solution
of the equation x2 − dy2 = ±1 arises in this way.

Proof: See Corollary 7.23 of [468]. �

2.4 Computing Legendre and Jacobi Symbols

The Legendre symbol tells us when an integer is a square modulo p. It is a non-trivial
group homomorphism from (Z/pZ)∗ to the multiplicative group {−1, 1}.

Definition 2.4.1. Let p be an odd prime and a ∈ Z. The Legendre symbol (ap) is

�
a

p

�
=

1 if x2 ≡ a (mod p) has a solution.
0 if p | a
−1 otherwise

If p is prime and a ∈ Z satisfies (ap) = 1 then a is a quadratic residue, while if (ap) = −1
then a is a quadratic non-residue.

Let n =
Q

i p
ei
i be odd. The Jacobi symbol is

�a
n

�
=
Y

i

�
a

pi

�ei

.

A further generalisation is the Kronecker symbol (an) which allows n to be even.
This is defined in equation (25.4), which is the only place in the book that it is used.

Exercise 2.4.2. Show that if p is an odd prime then (ap) = 1 for exactly half the integers
1 ≤ a ≤ p− 1.

Theorem 2.4.3. Let n ∈ N be odd and a ∈ Z. The Legendre and Jacobi symbols satisfy
the following properties.

• (an) = (a (mod n)
n) and (1

n) = 1.

• (Euler’s criterion) If n is prime then (an) = a(n−1)/2 (mod n).

• (Multiplicative) (abn) = (an)(
b
n) for all a, b ∈ Z.

• (−1
n) = (−1)(n−1)/2. In other words

�−1

n

�
=

�
1 if n ≡ 1 (mod 4),
−1 otherwise

• (2n) = (−1)(n
2−1)/8. In other words

�
2

n

�
=

�
1 if n ≡ 1, 7 (mod 8),
−1 otherwise

2.4. COMPUTING LEGENDRE AND JACOBI SYMBOLS 51

• (Quadratic reciprocity) Let n and m be odd integers with gcd(m,n) = 1. Then

� n

m

�
= (−1)(m−1)(n−1)/4

�m
n

�
.

In other words, (n
m) = (mn) unless m ≡ n ≡ 3 (mod 4).

Proof: See Section II.2 of [348], Sections 3.1, 3.2 and 3.3 of [468] or Chapter 6 of [276].
�

An important fact is that it is not necessary to factor integers to compute the Jacobi
symbol.

Exercise 2.4.4. Write down an algorithm to compute Legendre and Jacobi symbols
using quadratic reciprocity.

Exercise 2.4.5. Prove that the complexity of computing (mn) is O(log(m) log(n)) bit
operations.

Exercise 2.4.6. Give a randomised algorithm to compute a quadratic non-residue mod-
ulo p. What is the expected complexity of this algorithm?

Exercise 2.4.7. Several applications require knowing a quadratic non-residue modulo a
prime p. Prove that the values a in the following table satisfy (ap) = −1.

p a
p ≡ 3 (mod 4) −1
p ≡ 1 (mod 4), p ≡ 2 (mod 3) 3
p ≡ 1 (mod 4), p 6≡ 1 (mod 8)

√
−1

p ≡ 1 (mod 8), p 6≡ 1 (mod 16) (1 +
√
−1)/

√
2

Remark 2.4.8. The problem of computing quadratic non-residues has several algo-
rithmic implications. One conjectures that the least quadratic non-residue modulo p
is O(log(p) log(log(p))). Burgess proved that the least quadratic non-residue modulo p is
at most p1/(4

√
e)+o(1) ≈ p0.151633+o(1) while Ankeny showed, assuming the extended Rie-

mann hypothesis, that it is O(log(p)2). We refer to Section 8.5 of Bach and Shallit [22]
for details and references. It follows that one can compute a quadratic non-residue in
O(log(p)4) bit operations assuming the extended Riemann hypothesis.

Exercise 2.4.9. Give a Las Vegas algorithm to test whether a ∈ N is a square by
computing (ap) for some random small primes p. What is the complexity of this algorithm?

Exercise 2.4.10. Let p be prime. In Section 2.8 we give algorithms to compute modular
exponentiation quickly. Compare the cost of computing (ap) using quadratic reciprocity
versus using Euler’s criterion.

Remark 2.4.11. An interesting computational problem (considered, for example, by
Damg̊ard [164]) is: given a prime p an integer k and the sequence (ap), (

a+1
p), . . . , (a+k−1

p)

to output (a+k
p). A potentially harder problem is to determine a given the sequence

of values. It is known that if k is a little larger than log2(p) then a is usually uniquely
determined modulo p and so both problems make sense. No efficient algorithms are known
to solve either of these problems. One can also consider the natural analogue for Jacobi
symbols. We refer to [164] for further details. This is also discussed as Conjecture 2.1 of
Boneh and Lipton [83]. The pseudorandomness of the sequence is discussed by Mauduit
and Sárközy [401] and Sárközy and Stewart [510].

52 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Finally, we remark that one can compute the Legendre or Jacobi symbol of n-bit
integers in O(M(n) log(n)) operations using an analogue of fast algorithms for computing
gcds. We refer to Exercise 5.52 (also see pages 343-344) of Bach and Shallit [22] or Brent
and Zimmermann [101] for the details.

2.5 Modular Arithmetic

In cryptography, modular arithmetic (i.e., arithmetic modulo n ∈ N) is a fundamental
building block. We represent elements of Z/nZ as integers from the set {0, 1, . . . , n− 1}.
We first summarise the complexity of standard “school” methods for modular arithmetic.

Lemma 2.5.1. Let a, b ∈ Z/nZ.

1. Computing a± b (mod n) can be done in O(log(n)) bit operations.

2. Computing ab (mod n) can be done in O(log(n)2) bit operations.

3. Computing a−1 (mod n) can be done in O(log(n)2) bit operations.

4. For a ∈ Z computing a (mod n) can be done in O(log(n)(log(a) − log(n) + 1)) bit
operations.

Montgomery Multiplication

This method6 is useful when one needs to perform an operation such as am (mod n)
when n is odd. It is based on the fact that arithmetic modulo 2s is easier than arithmetic
modulo n. Let R = 2s > n (where s is typically a multiple of the word size).

Definition 2.5.2. Let n ∈ N be odd and R = 2s > n. The Montgomery representa-
tion of a ∈ (Z/nZ) is a = aR (mod n) such that 0 ≤ a < n.

To transform a into Montgomery representation requires a standard modular multi-
plication. However, Lemma 2.5.3 shows that transforming back from Montgomery repre-
sentation to standard representation may be performed more efficiently.

Lemma 2.5.3. (Montgomery reduction) Let n ∈ N be odd and R = 2s > n. Let n′ =
−n−1 (mod R) be such that 1 ≤ n′ < R. Let a be an element of (Z/nZ) in Montgomery
representation. Let u = an′ (mod R). Then w = (a + un)/R lies in Z and satisfies
w ≡ aR−1 (mod n).

Proof: Write w′ = a + un. Clearly w′ ≡ 0 (mod R) so w ∈ Z. Further, 0 ≤ w′ ≤
(n− 1)+ (R− 1)n = Rn− 1 and so w < n. Finally, it is clear that w ≡ aR−1 (mod n). �

The reason why this is efficient is that division by R is easy. The computation of n′

is also easier than a general modular inversion (see Algorithm II.5 of [64]) and, in many
applications, it can be precomputed.

We now sketch the Montgomery multiplication algorithm. If a and b are in Mont-
gomery representation then we want to compute the Montgomery representation of ab,
which is abR−1 (mod n). Compute x = ab ∈ Z so that 0 ≤ x < n2 < nR, then compute
u = xn′ (mod R) and w′ = x+ nu ∈ Z. As in Lemma 2.5.3 we have w′ ≡ 0 (mod R) and
can compute w = w′/R. It follows that w ≡ abR−1 (mod n) and 0 ≤ w < 2n so ab is
either w or w − n.

Lemma 2.5.4. The complexity of Montgomery multiplication modulo n is O(M(log(n)))
bit operations.

6Credited to Montgomery [435], but apparently a similar idea was used by Hensel.

2.6. CHINESE REMAINDER THEOREM 53

For further details see Section 9.2.1 of [162], Section II.1.4 of [64], Section 11.1.2.b
of [16] or Section 2.2.4 of [274].

Faster Modular Reduction

Using Newton’s method to compute ⌊a/n⌋ one can compute a (mod n) using only multi-
plication of integers. If a = O(n2) then the complexity is O(M(log(n))). The basic idea
is to use Newton’s method to compute a rational approximation to 1/a of the form b/2e

(see Section 2.2.1) and then compute q = ⌊n/a⌋ = ⌊nb/2e⌋ and thus r = a − nq is the
remainder. See Exercises 3.35, 3.36 of [556] and Section 9.1 of [238] for details. For large
a the cost of computing a (mod n) remains O(log(a) log(n)) as before. This idea gives
rise to Barret reduction; see Section 9.2.2 of [162], Section 2.3.1 of [100], Section 14.3.3
of [418], Section II.1.3 of [64], or Section 10.4.1 of [16].

Special Moduli

For cryptography based on discrete logarithms, especially elliptic curve cryptography,
it is recommended to use primes of a special form to speed up arithmetic modulo p.
Commonly used primes are of the form p = 2k − c for some small c ∈ N or the NIST
primes p = 2nkw ± 2nk−1w ± · · · ± 2n1w ± 1 where w = 16, 32 or 64. In these cases it
is possible to compute reduction modulo p much more quickly than for general p. See
Section 2.2.6 of [274], Section 14.3.4 of [418] or Section 10.4.3 of [16] for examples and
details.

Modular Inversion

Suppose that a, n ∈ N are such that gcd(a, n) = 1. One can compute a−1 (mod n) using
the extended Euclidean algorithm: computing integers s, t ∈ Z such that as+nt = 1 gives
a−1 ≡ s (mod n). Hence, if 0 < a < n then one can compute a−1 (mod n) in O(log(n)2)
bit operations, or faster using subquadratic versions of the extended Euclidean algorithm.

In practice, modular inversion is significantly slower than modular multiplication. For
example, when implementing elliptic curve cryptography it is usual to assume that the
cost of an inversion in Fp is between 8 and 50 times slower than the cost of a multiplication
in Fp (the actual figure depends on the platform and algorithms used).

Simultaneous Modular Inversion

One can compute a−1
1 (mod n), . . . , a−1

m (mod n) with a single inversion modulo n and
a number of multiplications modulo n using a trick due to Montgomery. Namely, one
computes b = a1 · · · am (mod n), computes b−1 (mod n), and then recovers the individual
a−1
i .

Exercise 2.5.5. Give pseudocode for simultaneous modular inversion and show that it
requires one inversion and 3(m− 1) modular multiplications.

2.6 Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT), so-called because it was first discovered by
the Chinese mathematician Sunzi, states that if gcd(m1,m2) = 1 then there is a unique

54 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

solution 0 ≤ x < m1m2 to x ≡ ci (mod mi) for i = 1, 2. Computing x can be done in
polynomial-time in various ways. One method is to use the formula

x = c1 + (c2 − c1)(m
−1
1 (mod m2))m1.

This is a special case of Garner’s algorithm (see Section 14.5.2 of [418] or Section 10.6.4
of [16]).

Exercise 2.6.1. Suppose m1 < m2 and 0 ≤ ci < mi. What is the input size of the
instance of the CRT? What is the complexity of computing the solution?

Exercise 2.6.2. Let n > 2 and suppose coprime integers 2 ≤ m1 < · · · < mn and
integers c1, . . . , cn such that 0 ≤ ci < mi for 1 ≤ i ≤ n are given. Let N =

Qn
i=1 mi. For

1 ≤ i ≤ n define Ni = N/mi and ui = N−1
i (mod mi). Show that

x =

nX

i=1

ciuiNi (2.1)

satisfies x ≡ ci (mod mi) for all 1 ≤ i ≤ n.

Show that one can compute the integer x in equation (2.1) in O(n2 log(mn)
2) bit

operations.

Exercise 2.6.3. Show that a special case of Exercise 2.6.2 (which is recommended when
many computations are required for the same pair of moduli) is to pre-compute the
integers A = u1N1 and B = u2N2 so that x = c1A+ c2B (mod N).

Algorithm 10.22 of [238] gives an asymptotically fast CRT algorithm.

Exercise 2.6.4 gives a variant of the Chinese remainder theorem, which seems to orig-
inate in work of Montgomery and Silverman, called the explicit Chinese remainder
theorem. This variant is useful when one wants to compute the large integer x modulo a
smaller integer p and one wants to minimise the overall storage. For a more careful com-
plexity analysis see Section 6 of Sutherland [597]; for small p he shows that the explicit
CRT can be computed in O(nM(log(p)) +M(log(N) + n log(n))) bit operations.

Exercise 2.6.4. Let the notation be as in Exercise 2.6.2 and let p be coprime to N .
The goal is to compute x (mod p) where x is an integer such that x ≡ ci (mod mi) for
1 ≤ i ≤ n and |x| < N/2.

Let z =
Pn

i=1 ciui/mi ∈ Q. Show that 2z 6∈ Z and that 0 ≤ z < nmn. Show that the
solution x to the congruences satisfying |x| < N/2 is equal to Nz −N⌊z⌉.

Hence, show that

x ≡
nX

i=1

(ciui(Ni (mod p)) (mod p))− (N (mod p))(⌊z⌉ (mod p)) (mod p). (2.2)

Show that one can therefore compute x using equation (2.2) and representing z as a
floating point number in a way that does not require knowing more than one of the values
ci at a time. Show that one can precompute N (mod p) and Ni (mod p) for 1 ≤ i ≤ n
in O(n(log(mn) log(p) + M(log(p))) bit operations. Hence show that the complexity of
solving the explicit CRT is (assuming the floating point operations can be ignored) at
most O(n(log(mn) log(p) +M(log(p)))) bit operations.

2.7. LINEAR ALGEBRA 55

2.7 Linear Algebra

Let A be an n× n matrix over a field k. One can perform Gaussian elimination to solve
the linear system Ax = b (or determine there are no solutions), to compute det(A), or to
compute A−1 in O(n3) field operations. When working over R a number of issues arise
due to rounding errors, but no such problems arise when working over finite fields. We
refer to Section 3.3 of Joux [317] for details.

A matrix is called sparse if almost all entries of each row are zero. To make this precise
one usually considers the asymptotic complexity of an algorithm on m × n matrices, as
m and/or n tends to infinity, and where the number of non-zero entries in each row is
bounded by O(log(n)) or O(log(m)).

One can compute the kernel (i.e., a vector x such that Ax = 0) of an n × n sparse
matrix A over a field in O(n2) field operations using the algorithms of Wiedemann [629]
or Lanczos [363]. We refer to Section 3.4 of [317] or Section 12.4 of [238] for details.

Hermite Normal Form

When working over a ring the Hermite normal form (HNF) is an important tool for
solving or simplifying systems of equations. Some properties of the Hermite normal form
are mentioned in Section A.11.

Algorithms to compute the HNF of a matrix are given in Section 2.4.2 of Cohen [136],
Hafner and McCurley [273], Section 3.3.3 of Joux [317], Algorithm 16.26 of von zur
Gathen and Gerhard [238], Section 5.3 of Schrijver [531], Kannan and Bachem [331],
Storjohann and Labahn [593], and Micciancio and Warinschi [425]. Naive algorithms to
compute the HNF suffer from coefficient explosion, so computing the HNF efficiently in
practice, and determining the complexity of the algorithm, is non-trivial. One solution is
to work modulo the determinant (or a sub-determinant) of the matrix A (see Section 2.4.2
of [136], [273] or [593] for further details). Let A = (Ai,j) be an n×m matrix over Z and
define kAk∞ = maxi,j{|Ai,j |}. The complexity of the HNF algorithm of Storjohann and
Labahn on A (using naive integer and matrix multiplication) is O(nm4 log(kAk∞)2) bit
operations.

One can also use lattice reduction to compute the HNF of a matrix. For details see
page 74 of [531], Havas, Majewski and Matthews [280], or van der Kallen [328].

2.8 Modular Exponentiation

Exponentiation modulo n can be performed in polynomial-time by the “square-and-
multiply” method.7 This method is presented in Algorithm 2; it is called a “left-to-right”
algorithm as it processes the bits of the exponent m starting with the most significant
bits. Algorithm 2 can be applied in any group, in which case the complexity is O(log(m))
times the complexity of the group operation. In this section we give some basic techniques
to speed-up the algorithm; further tricks are described in Chapter 11.

Lemma 2.8.1. The complexity of Algorithm 2 using naive modular arithmetic is O(log(m) log(n)2)
bit operations.

Exercise 2.8.2. Prove Lemma 2.8.1.

Lemma 2.8.3. If Montgomery multiplication (see Section 2.5) is used then the complexity
of Algorithm 2.5 is O(log(n)2 + log(m)M(log(n))).

7This algorithm already appears in the chandah-sūtra by Pingala.

56 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Algorithm 2 Square-and-multiply algorithm for modular exponentiation

Input: g, n,m ∈ N
Output: b ≡ gm (mod n)
1: i = ⌊log2(m)⌋ − 1
2: Write m in binary as (1mi . . .m1m0)2
3: b = g
4: while (i ≥ 0) do
5: b = b2 (mod n)
6: if mi = 1 then
7: b = bg (mod n)
8: end if
9: i = i− 1

10: end while
11: return b

Proof: Convert g to Montgomery representation g in O(log(n)2) bit operations. Algo-
rithm 2 then proceeds using Montgomery multiplication in lines 5 and 7, which requires
O(log(m)M(log(n))) bit operations. Finally Montgomery reduction is used to convert
the output to standard form. �

The algorithm using Montgomery multiplication is usually better than the naive ver-
sion, especially when fast multiplication is available. An application of the above algo-
rithm, where Karatsuba multiplication would be appropriate, is RSA decryption (either
the standard method, or using the CRT). Since log(m) = Ω(log(n)) in this case, decryp-
tion requires O(log(n)2.585) bit operations.

Corollary 2.8.4. One can compute the Legendre symbol (ap) using Euler’s criterion in

O(log(p)M(log(p))) bit operations.

When storage for precomputed group elements is available there are many ways to
speed up exponentiation. These methods are particularly appropriate when many expo-
nentiations of a fixed element g are required. The methods fall naturally into two types:
those that reduce the number of squarings in Algorithm 2 and those that reduce the
number of multiplications. An extreme example of the first type is to precompute and
store ui = g2

i

(mod n) for 2 ≤ i ≤ log(n). Given 2l ≤ m < 2l+1 with binary expansion

(1ml−1 . . .m1m0)2 one computes
Ql

i=0:mi=1 ui (mod n). Obviously this method is not
more efficient than Algorithm 2 if g varies. An example of the second type is sliding
window methods that we now briefly describe. Note that there is a simpler but less
efficient “non-sliding” window method, also called the 2k-ary method, which can be found
in many books. Sliding window methods can be useful even in the case where g varies
(e.g., Algorithm 3 below).

Given a window length w one precomputes ui = gi (mod n) for all odd integers
1 ≤ i < 2w. Then one runs a variant of Algorithm 2 where w (or more) squarings
are performed followed by one multiplication corresponding to a w-bit sub-string of the
binary expansion ofm that corresponds to an odd integer. One subtlety is that algorithms
based on the “square-and-multiply” idea and which use pre-computation must parse the
exponent starting with the most significant bits (i.e., from left to right) whereas to work
out sliding windows one needs to parse the exponent from the least significant bits (i.e.,
right to left).

Example 2.8.5. Let w = 2 so that one precomputes u1 = g and u3 = g3. Suppose m
has binary expansion (10011011)2. By parsing the binary expansion starting with the

2.8. MODULAR EXPONENTIATION 57

least significant bits one obtains the representation 10003003 (we stress that this is still
a representation in base 2). One then performs the usual square-and-multiply algorithm
by parsing the exponent from left to right; the steps of the sliding window algorithm are
(omitting the (mod n) notation)

b = u1, b = b2; b = b2, b = b2, b = b2, b = bu3, b = b2, b = b2, b = b2, b = bu3.

Exercise 2.8.6. Write pseudocode for the sliding window method. Show that the pre-
computation stage requires one squaring and 2w−1 − 1 multiplications.

Exercise 2.8.7. Show that the expected number of squarings between each multiply
in the sliding window algorithm is w + 1. Hence show that (ignoring the precomputa-
tion) exponentiation using sliding windows requires log(m) squarings and, on average,
log(m)/(w + 1) multiplications.

Exercise 2.8.8. Consider running the sliding window method in a group, with varying g
and m (so the powers of g must be computed for every exponentiation) but with unlimited
storage. For a given bound on len(m) one can compute the value for w that minimises
the total cost. Verify that the choices in the following table are optimal.

len(m) 80 160 300 800 2000
w 3 4 5 6 7

Exercise 2.8.9. Algorithm 2 processes the bits of the exponent m from left to right.
Give pseudocode for a modular exponentiation algorithm that processes the bits of the
exponent m from right to left.

[Hint: Have two variables in the main loop; one that stores g2
i

in the i-th iteration, and

the other that stores the value g
�i

j=0 aj2
j

.]

Exercise 2.8.10. Write pseudocode for a right to left sliding window algorithm for com-
puting gm (mod n), extending Exercise 2.8.9. Explain why this variant is not appropriate
when using precomputation (hence, it is not so effective when computing gm (mod n) for
many random m but when g is fixed).

One can also consider the opposite scenario where one is computing gm (mod n) for a
fixed value m and varying g. Again, with some precomputation, and if there is sufficient
storage available, one can get an improvement over the naive algorithm. The idea is
to determine an efficient addition chain for m. This is a sequence of squarings and
multiplications, depending on m, that minimises the number of group operations. More
precisely, an addition chain of length l for m is a sequence m1,m2, . . . ,ml of integers
such that m1 = 1, ml = m and, for each 2 ≤ i ≤ l we have mi = mj + mk for some
1 ≤ j ≤ k < i. One computes each of the intermediate values gmi for 2 ≤ i ≤ l with
one group operation. Note that all these intermediate values are stored. The algorithm
requires l group operations and l group elements of storage.

It is conjectured by Stolarsky that every integer m has an addition chain of length
log2(m) + log2(wt(m)) where wt(m) is the Hamming weight of m (i.e., the number of
ones in the binary expansion of m). There is a vast literature on addition chains, we refer
to Section C6 of [272], Section 4.6.3 of [343] and Section 9.2 of [16] for discussion and
references.

Exercise 2.8.11. Prove that an addition chain has length at least log2(m).

58 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

2.9 Square Roots Modulo p

There are a number of situations in this book that require computing square roots modulo
a prime. Let p be an odd prime and let a ∈ N. We have already shown that Legendre
symbols can be computed in polynomial-time. Hence, the decision problem “Is a a square
modulo p?” is soluble in polynomial-time. But this fact does not imply that the compu-
tational problem “Find a square root of a modulo p” is easy.

We present two methods in this section. The Tonelli-Shanks algorithm [549] is the best
method in practice. The Cipolla algorithm actually has better asymptotic complexity,
but is usually slower than Tonelli-Shanks.

Recall that half the integers 1 ≤ a < p are squares modulo p and, when a is square,
there are two solutions ±x to the equation x2 ≡ a (mod p).

Lemma 2.9.1. Let p ≡ 3 (mod 4) be prime and a ∈ N. If (ap) = 1 then x =

a(p+1)/4 (mod p) satisfies x2 ≡ a (mod p).

This result can be verified directly by computing x2, but we give a more group-
theoretic proof that helps to motivate the general algorithm.
Proof: Since p ≡ 3 (mod 4) it follows that q = (p− 1)/2 is odd. The assumption (ap) = 1

implies that aq = a(p−1)/2 ≡ 1 (mod p) and so the order of a is odd. Therefore a square
root of a is given by

x = a2
−1 (mod q) (mod p).

Now, 2−1 (mod q) is just (q + 1)/2 = (p+ 1)/4. �

Lemma 2.9.2. Let p be a prime and suppose that a is a square modulo p. Write p− 1 =
2eq where q is odd. Let w = a(q+1)/2 (mod p). Then w2 ≡ ab (mod p) where b has order
dividing 2e−1.

Proof: We have
w2 ≡ aq+1 ≡ aaq (mod p)

so b ≡ aq (mod p). Now a has order dividing (p − 1)/2 = 2e−1q so b has order dividing
2e−1. �

The value w is like a “first approximation” to the square root of a modulo p. To
complete the computation it is therefore sufficient to compute a square root of b.

Lemma 2.9.3. Suppose 1 < n < p is such that (np) = −1. Then y ≡ nq (mod p) has
order 2e.

Proof: The order of y is a divisor of 2e. The fact n(p−1)/2 ≡ −1 (mod p) implies that y

satisfies y2
e−1 ≡ −1 (mod p). Hence the order of y is equal to 2e. �

Since Z∗
p is a cyclic group, it follows that y generates the full subgroup of elements of

order dividing 2e. Hence, b = yi (mod p) for some 1 ≤ i ≤ 2e. Furthermore, since the
order of b divides 2e−1 it follows that i is even.

Writing i = 2j and x = w/yj (mod p) then

x2 ≡ w2/y2j ≡ ab/b ≡ a (mod p).

Hence, if one can compute i then one can compute the square root of a.
If e is small then the value i can be found by a brute-force search. A more advanced

method is to use the Pohlig-Hellman method to solve the discrete logarithm of b to the
base y (see Section 13.2 for an explanation of these terms). This idea leads to the Tonelli-
Shanks algorithm for computing square roots modulo p (see Section 1.3.3 of [64] or Section
1.5 of [136]).

2.9. SQUARE ROOTS MODULO P 59

Algorithm 3 Tonelli-Shanks algorithm

Input: a, p such that (ap) = 1

Output: x such that x2 ≡ a (mod p)
1: Write p− 1 = 2eq where q is odd
2: Choose random integers 1 < n < p until (np) = −1

3: Set y = nq (mod p)
4: Set w = a(q+1)/2 (mod p) and b = aq (mod p)
5: Compute an integer j such that b ≡ y2j (mod p)
6: return w/yj (mod p)

Exercise 2.9.4. Compute
√
3 modulo 61 using the Tonelli-Shanks algorithm.

Lemma 2.9.5. The Tonelli-Shanks method is a Las Vegas algorithm with expected run-
ning time O(log(p)2M(log(p))) bit operations.

Proof: The first step of the algorithm is the requirement to find an integer n such that
(np) = −1. This is Exercise 2.4.6 and it is the only part of the algorithm that is randomised
and Las Vegas. The expected number of trials is 2. Since one can compute the Legendre
symbol in O(log(p)2) bit operations, this gives O(log(p)2) expected bit operations, which
is less than O(log(p)M(log(p))).

The remaining parts of the algorithm amount to exponentiation modulo p, requiring
O(log(p)M(log(p))) bit operations, and the computation of the index j. Naively, this
could require as many as p − 1 operations, but using the Pohlig-Hellman method (see
Exercise 13.2.6 in Section 13.2) brings the complexity of this stage to O(log(p)2M(log(p)))
bit operations. �

As we will see in Exercise 2.12.6, the worst-case complexity O(log(p)2M(log(p))) of the
Tonelli-Shanks algorithm is actually worse than the cost of factoring quadratic polynomi-
als using general polynomial-factorisation algorithms. But, in most practical situations,
the Tonelli-Shanks algorithm is faster than using polynomial factorisation.

Exercise 2.9.6. If one precomputes y for a given prime p then the square root algorithm
becomes deterministic. Show that the complexity remains the same.

Exercise 2.9.7. Show, using Remark 2.4.8, that under the extended Riemann hypothesis
one can compute square roots modulo p in deterministic O(log(p)4) bit operations.

Exercise 2.9.8. Let r ∈ N. Generalise the Tonelli-Shanks algorithm so that it computes
r-th roots in Fp (the only non-trivial case being when p ≡ 1 (mod r)).

Exercise 2.9.9. (Atkin) Let p ≡ 5 (mod 8) be prime and a ∈ Z such that (ap) = 1. Let

z = (2a)(p−5)/8 (mod p) and i = 2az2 (mod p). Show that i2 = −1 (mod p) and that
w = az(i− 1) satisfies w2 ≡ a (mod p).

If p − 1 is highly divisible by 2 then an algorithm due to Cipolla, sketched in Exer-
cise 2.9.10 below, is more suitable (see Section 7.2 of [22] or Section 3.5 of [418]). See
Bernstein [44] for further discussion. There is a completely different algorithm due to
Schoof that is deterministic and has polynomial-time complexity for fixed a as p tends to
infinity.

Exercise 2.9.10. (Cipolla) Let p be prime and a ∈ Z. Show that if t ∈ Z is such that

(t
2−4a
p) = −1 then x(p+1)/2 in Fp[x]/(x

2 − tx+ a) is a square root of a modulo p. Hence
write down an algorithm to compute square roots modulo p and show that it has expected
running time O(log(p)M(log(p))) bit operations.

60 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

We remark that, in some applications, one wants to compute a Legendre symbol to test
whether an element is a square and, if so, compute the square root. If one computes the
Legendre symbol using Euler’s criterion as a(p−1)/2 (mod p) then one will have already
computed aq (mod p) and so this value can be recycled. This is not usually faster
than using quadratic reciprocity for large p, but it is relevant for applications such as
Lemma 21.4.9.

A related topic is, given a prime p and an integer d > 0, to find integer solutions
(x, y), if they exist, to the equation x2 + dy2 = p. The Cornacchia algorithm achieves
this. The algorithm is given in Section 2.3.4 of Crandall and Pomerance [162], and a
proof of correctness is given in Section 4 of Schoof [530] or Morain and Nicolas [437].
In brief, the algorithm computes p/2 < x0 < p such that x2

0 ≡ −d (mod p), then
runs the Euclidean algorithm on 2p and x0 stopping at the first remainder r <

√
p,

then computes s =
p
(p− r2)/d if this is an integer. The output is (x, y) = (r, s).

The complexity is dominated by computing the square root modulo p, and so is an
expected O(log(p)2M(log(p))) bit operations. A closely related algorithm finds solutions
to x2 + dy2 = 4p.

2.10 Polynomial Arithmetic

Let R be a commutative ring. A polynomial in R[x] of degree d is represented8 as a
(d+1)-tuple over R. A polynomial of degree d over Fq therefore requires (d+1)⌈log2(q)⌉
bits for its representation. An algorithm on polynomials will be polynomial-time if the
number of bit operations is bounded above by a polynomial in d log(q).

Arithmetic on polynomials is analogous to integer arithmetic (indeed, it is simpler as
there are no carries to deal with). We refer to Chapter 2 of [238], Chapter 18 of [556],
Section 4.6 of [343] or Section 9.6 of [162] for details.

Lemma 2.10.1. Let R be a commutative ring and F1(x), F2(x) ∈ R[x].

1. One can compute F1(x) + F2(x) in O(max{deg(F1), deg(F2)}) additions in R.

2. One can compute F1(x)F2(x) in O(deg(F1) deg(F2)) additions and multiplications
in R.

3. If R is a field one can compute the quotient and remainder of division of F1(x) by
F2(x) in O(deg(F2)(deg(F1)− deg(F2) + 1)) operations (i.e., additions, multiplica-
tions and inversions) in R.

4. If R is a field one can compute F (x) = gcd(F1(x), F2(x)) and polynomials s(x), t(x) ∈
R[x] such that F (x) = s(x)F1(x) + t(x)F2(x), using the extended Euclidean algo-
rithm in O(deg(F1) deg(F2)) operations in R.

Exercise 2.10.2. Prove Lemma 2.10.1.

Exercise 2.10.3.⋆ Describe the Karatsuba and 3-Toom-Cook algorithms for multipli-
cation of polynomials of degree d in Fq[x]. Show that these algorithms have complexity
O(d1.585) and O(d1.404) multiplications in Fq.

Asymptotically fast multiplication of polynomials, analogous to the algorithms men-
tioned in Section 2.2, are given in Chapter 8 of [238] or Section 18.6 of [556]. Multipli-
cation of polynomials in k[x] of degree bounded by d can be done in O(M(d)) multipli-
cations in k. The methods mentioned in Section 2.5 for efficiently computing remainders

8We restrict attention in this and the following section to univariate polynomials. There are alternative
representations for sparse and/or multivariate polynomials, but we do not consider this issue further.

2.11. ARITHMETIC IN FINITE FIELDS 61

F (x) (mod G(x)) in k[x] can also be used with polynomials; see Section 9.6.2 of [162]
or Section 11.1 of [238] for details. Fast variants of algorithms for the extended Eu-
clidean algorithm for polynomials in k[x] of degree bounded by d require O(M(d) log(d))
multiplications in k and O(d) inversions in k (Corollary 11.6 of [238]).

Kronecker substitution is a general technique which transforms polynomial multi-
plication into integer multiplication. It allows multiplication of two degree d polynomials
in Fq[x] (where q is prime) in O(M(d(log(q)+log(d)))) = O(M(d log(dq))) bit operations;
see Section 1.3 of [100], Section 8.4 of [238] or Section 18.6 of [556]. Kronecker substitu-
tion can be generalised to bivariate polynomials and hence to polynomials over Fq where
q is a prime power. We write M(d, q) = M(d log(dq)) for the number of bit operations to
multiply two degree d polynomials over Fq.

Exercise 2.10.4. Show that Montgomery reduction and multiplication can be imple-
mented for arithmetic modulo a polynomial F (x) ∈ Fq[x] of degree d.

Exercise 2.10.5. One can evaluate a polynomial F (x) ∈ R[x] at a value a ∈ R efficiently

using Horner’s rule. More precisely, if F (x) =
Pd

i=0 Fix
i then one computes F (a) as

(· · · ((Fda)a + Fd−1)a + · · · + F1)a + F0. Write pseudocode for Horner’s rule and show
that the method requires d additions and d multiplications if deg(F (x)) = d.

2.11 Arithmetic in Finite Fields

Efficient algorithms for arithmetic modulo p have been presented, but we now consider
arithmetic in finite fields Fpm when m > 1. We assume Fpm is represented using either a
polynomial basis (i.e., as Fp[x]/(F (x))) or a normal basis. Our main focus is when either
p is large and m is small, or vice versa. Optimal asymptotic complexities for the case
when both p and m grow large require some care.

Exercise 2.11.1. Show that addition and subtraction of elements in Fpm requires O(m)
additions in Fp. Show that multiplication in Fpm , represented by a polynomial basis
and using naive methods, requires O(m2) multiplications modulo p and O(m) reductions
modulo p.

If p is constant and m grows then multiplication in Fpm requires O(m2) bit operations
or, using fast polynomial arithmetic, O(M(m)) bit operations. If m is fixed and p goes
to infinity then the complexity is O(M(log(p))) bit operations.

Inversion of elements in Fpm = Fp[x]/(F (x)) can be done using the extended Euclidean
algorithm in O(m2) operations in Fp. If p is fixed and m grows then one can invert
elements in Fpm in O(M(m) log(m)) bit operations.

Alternatively, for any vector space basis {θ1, . . . , θm} for Fqm over Fq there is an m×m
matrix M over Fq such that the product ab for a, b ∈ Fqm is given by

(a1, . . . , am)M(b1, . . . , bm)t =

mX

i=1

mX

j=1

Mi,jaibj

where (a1, . . . , am) and (b1, . . . , bm) are the coefficient vectors for the representation of a
and b with respect to the basis.

In particular, if Fqm is represented by a normal basis {θ, θq, . . . , θqm−1} then multipli-
cation of elements in normal basis representation is given by

m−1X

i=0

aiθ
qi

!

m−1X

j=0

bjθ
qj

 =

m−1X

i=0

m−1X

j=0

aibjθ
qi+qj

62 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

so it is necessary to precompute the representation of each term Mi,j = θq
i+qj over

the normal basis. Multiplication in Fpm using a normal basis representation is typically
slower than multiplication with a polynomial basis; indeed, the complexity can be as bad
as O(m3) operations in Fp. An optimal normal basis is a normal basis for which the
number of non-zero coefficients in the product is minimal (see Section II.2.2 of [64] for
the case of F2m). Much work has been done on speeding up multiplication with optimal
normal bases; for example see Bernstein and Lange [54] for discussion and references.

Raising an element of Fqm to the q-th power is always fast since it is a linear operation.
Taking q-th powers (respectively, q-th roots) is especially fast for normal bases as it is a
rotation; this is the main motivation for considering normal bases. This fact has a number
of important applications, see for example, Exercise 14.4.7.

The Itoh-Tsujii inversion algorithm [307] is appropriate when using a normal
basis representation, though it can be used to compute inverses in any finite field. First
we present a simple inversion algorithm for any field and later we sketch the actual
Itoh-Tsujii algorithm. Let g ∈ F∗

qm . The idea is to exploit the fact that the norm

NFqm/Fq
(g) = g1+q+q2+···+qm−1

lies in Fq and is therefore easier to invert than an element
of Fqm .

Lemma 2.11.2. Let g ∈ F∗
qm . Then

g−1 = NFqm/Fq
(g)−1

m−1Y

i=1

gq
i

.

Exercise 2.11.3. Prove Lemma 2.11.2.

A simple inversion algorithm is to compute h1 =
Qm−1

i=1 gq
i

and h2 = gh using m
multiplications in Fqm , then h−1

2 using one inversion in Fq and finally g−1 = h−1
2 h1

with an Fq × Fqm multiplication. The complexity of the algorithm is O(m3 log(q)2) bit
operations using naive arithmetic, or O(mM(m) log(q)2) using fast arithmetic when m
is large and q is small. This is worse than the complexity O(m2 log(q)2) of the extended
Euclidean algorithm.

In the case where q = 2 we know that NFqm/Fq
(g) = 1 and the algorithm simply

computes g−1 as

g2+22+···+2m−1

=
m−1Y

i=1

g2
i

.

This formula can be derived directly using the fact g2
m−1 = 1 as

g−1 = g2
m−1−1 = g2(2

m−1−1) = g2(1+2+22+···+2m−2).

The Itoh-Tsujii algorithm then follows from a further idea, which is that one can compute
g2

m−1−1 in fewer than m multiplications using an appropriate addition chain. We give

the details only in the special case where m = 2k + 1. Since 2m−1 − 1 = 22
k − 1 =

(22
k−1 − 1)22

k−1

+ (22
k−1 − 1) it is sufficient to compute the sequence g2

2i−1 iteratively
for i = 0, 1, . . . , k, each step taking some shifts and one multiplication in the field. In
other words, the complexity in this case is O(km2 log(q)2) = O(log(m)m2 log(q)2) field
operations. For details of the general case, and further discussion we refer to [307, 270].

See, for example, Fong, Hankerson, Lopez and Menezes [207] for more discussion about
inversion for the fields relevant for elliptic curve cryptography.

Finally we remark that, for some computational devices, it is convenient to use finite
fields Fpm where p ≈ 232 or p ≈ 264. These are called optimal extension fields and we
refer to Section 2.4 of [274] for details.

2.12. FACTORING POLYNOMIALS OVER FINITE FIELDS 63

2.12 Factoring Polynomials over Finite Fields

There is a large literature on polynomial factorisation and we only give a very brief
sketch of the main concepts. The basic ideas go back to Berlekamp and others. For full
discussion, historical background, and extensive references see Chapter 7 of Bach and
Shallit [22] or Chapter 14 of von zur Gathen and Gerhard [238]. One should be aware
that for polynomials over fields of small characteristic the algorithm by Niederreiter [466]
can be useful.

Let F (x) ∈ Fq[x] have degree d. If there exists G(x) ∈ Fq[x] such that G(x)2 | F (x)
then G(x) | F ′(x) where F ′(x) is the derivative of F (x). A polynomial is square-
free if it has no repeated factor. It follows that F (x) is square-free if F ′(x) 6= 0 and
gcd(F (x), F ′(x)) = 1. If F (x) ∈ Fq[x] and S(x) = gcd(F (x), F ′(x)) then F (x)/S(x) is
square-free.

Exercise 2.12.1. Determine the complexity of testing whether a polynomial F (x) ∈ Fq[x]
is square-free.

Exercise 2.12.2. Show that one can reduce polynomial factorisation over finite fields to
the case of factoring square-free polynomials.

Finding Roots of Polynomials in Finite Fields

Let F (x) ∈ Fq[x] have degree d. The roots of F (x) in Fq are precisely the roots of

R1(x) = gcd(F (x), xq − x). (2.3)

If q is much larger than d then the efficient way to compute R1(x) is to compute
xq (mod F (x)) using a square-and-multiply algorithm and then run Euclid’s algorithm.

Exercise 2.12.3. Determine the complexity of computing R1(x) in equation (2.3). Hence
explain why the decision problem “Does F (x) have a root in Fq?” has a polynomial-time
solution.

The basic idea of root-finding algorithms is to note that, if q is odd, xq − x =
x(x(q−1)/2 + 1)(x(q−1)/2 − 1). Hence, one can try to split9 R1(x) by computing

gcd(R1(x), x
(q−1)/2 − 1). (2.4)

Similar ideas can be used when q is even (see Section 2.14.2).

Exercise 2.12.4. Show that the roots of the polynomial in equation (2.4) are precisely
the α ∈ Fq such that F (α) = 0 and α is a square in F∗

q .

To obtain a randomised (Las Vegas) algorithm to factor R1(x) completely when q is
odd one simply chooses a random polynomial u(x) ∈ Fq[x] of degree < d and computes

gcd(R1(x), u(x)
(q−1)/2 − 1).

This computation selects those roots α of R1(x) such that u(α) is a square in Fq. In
practice it suffices to choose u(x) to be linear. Performing this computation sufficiently
many times on the resulting factors of R1(x) and taking gcds eventually leads to the
complete factorisation of R1(x).

9We reserve the word “factor” for giving the full decomposition into irreducibles, whereas we use the
word “split” to mean breaking into two pieces.

64 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Exercise 2.12.5. Write down pseudocode for the above root finding algorithm and show
that its expected complexity (without using a fast Euclidean algorithm) is bounded by
O(log(d)(log(q)M(d) + d2)) = O(log(q) log(d)d2) field operations.

Exercise 2.12.6. Let q be an odd prime power and R(x) = x2 + ax + b ∈ Fq[x]. Show
that the expected complexity of finding roots of R(x) using polynomial factorisation is
O(log(q)M(log(q))) bit operations.

Exercise 2.12.7.⋆ Show, using Kronecker substitution, fast versions of Euclid’s algo-
rithm and other tricks, that one can compute one root in Fq (if any exist) of a degree d
polynomial in Fq[x] in an expected O(log(qd)M(d, q)) bit operations.

When q is even (i.e., q = 2m) then, instead of x(q−1)/2, one considers the trace

polynomial T (x) =
Pm−1

i=0 x2i . (A similar idea can be used over any field of small
characteristic.)

Exercise 2.12.8. Show that the roots of the polynomial gcd(R1(x), T (x)) are precisely
the α ∈ Fq such that R1(α) = 0 and TrF2m/F2

(α) = 0.

Taking random u(x) ∈ F2m [x] of degree < d and then computing gcd(R1(x), T (u(x)))
gives a Las Vegas root finding algorithm as before. See Section 21.3.2 of [556] for details.

Higher Degree Factors

Having found the roots in Fq one can try to find factors of larger degree. The same ideas
can be used. Let

R2(x) = gcd(F (x)/R1(x), x
q2 − x), R3(x) = gcd(F (x)/(R1(x)R2(x)), x

q3 − x),

Exercise 2.12.9. Show that all irreducible factors of Ri(x) over Fq[x] have degree i.

Exercise 2.12.10. Give an algorithm to test whether a polynomial F (x) ∈ Fq[x] of
degree d is irreducible. What is the complexity?

When q is odd one can factor Ri(x) using similar ideas to the above, i.e., by computing

gcd(Ri(x), u(x)
(qi−1)/2 − 1).

These techniques lead to the Cantor-Zassenhaus algorithm. It factors polynomials
of degree d over Fq in an expected O(d log(d) log(q)M(d)) field operations. For many
more details about polynomial factorisation see Section 7.4 of [22], Sections 21.3 and 21.4
of [556], Chapter 14 of [238], [370], Chapter 4 of [388, 389] or Section 4.6.2 of [343].

Exercise 2.12.11. Let d ∈ N and F (x) ∈ Fq[x] of degree d. Given 1 < b < n suppose
we wish to output all irreducible factors of F (x) of degree at most b. Show that the
expected complexity is O(b log(d) log(q)M(d)) operations in Fq. Hence, one can factor
F (x) completely in O(d log(d) log(q)M(d)) operations in Fq.

Exercise 2.12.12.⋆ Using the same methods as Exercise 2.12.7, show that one can find
an irreducible factor of degree 1 < b < d of a degree d polynomial in Fq[x] in an expected
O(b log(dq)M(d, q)) bit operations.

2.13. HENSEL LIFTING 65

2.13 Hensel Lifting

Hensel lifting is a tool for solving polynomial equations of the form F (x) ≡ 0 (mod pe)
where p is prime and e ∈ N>1. One application of Hensel lifting is the Takagi variant of
RSA, see Example 24.1.6. The key idea is given in the following Lemma.

Lemma 2.13.1. Let F (x) ∈ Z[x] be a polynomial and p a prime. Let xk ∈ Z satisfy
F (xk) ≡ 0 (mod pk) where k ∈ N. Suppose F ′(xk) 6≡ 0 (mod p). Then one can compute
xk+1 ∈ Z in polynomial-time such that F (xk+1) ≡ 0 (mod pk+1).

Proof: Write xk+1 = xk + pkz where z is a variable. Note that F (xk+1) ≡ 0 (mod pk).
One has

F (xk+1) ≡ F (xk) + pkF ′(xk)z (mod pk+1).

Setting z = −(F (xk)/p
k)F ′(xk)

−1 (mod p) gives F (xk+1) ≡ 0 (mod pk+1). �

Example 2.13.2. We solve the equation

x2 ≡ 7 (mod 33).

Let f(x) = x2 − 7. First, the equation f(x) ≡ x2 − 1 (mod 3) has solutions x ≡
1, 2 (mod 3). We take x1 = 1. Since f ′(1) = 2 6≡ 0 (mod 3) we can “lift” this to a solution
modulo 32. Write x2 = 1 + 3z. Then

f(x2) = x2
2 − 7 ≡ −6 + 6z (mod 32)

or, in other words, 1− z ≡ 0 (mod 3). This has the solution z = 1 giving x2 = 4.
Now lift to a solution modulo 33. Write x3 = 4+ 9z. Then f(x3) ≡ 9 + 72z (mod 33)

and dividing by 9 yields 1 − z ≡ 0 (mod 3). This has solution z = 1 giving x3 = 13 as
one solution to the original equation.

Exercise 2.13.3. The equation x3 ≡ 3 (mod 5) has the solution x ≡ 2 (mod 5). Use
Hensel lifting to find a solution to the equation x3 ≡ 3 (mod 53).

Exercise 2.13.4. Let F (x) ∈ Z[x] be a polynomial and p a prime. Let xk ∈ Z satisfy
F (xk) ≡ 0 (mod pk) and F ′(xk) 6≡ 0 (mod p). Show that the Hensel iteration can be
written in the form

xk+1 = xk −
F (xk)

F ′(xk)

just like Newton iteration. Show that Hensel lifting has quadratic convergence in this
case (i.e., if F (xk) ≡ 0 (mod pk) then F (xk+1) ≡ 0 (mod p2k)).

2.14 Algorithms in Finite Fields

We present some algorithms for constructing finite fields Fpm when m > 1, solving equa-
tions in them, and transforming between different representations of them.

2.14.1 Constructing Finite Fields

Lemma A.5.1 implies a randomly chosen monic polynomial in Fq[x] of degree m is irre-
ducible with probability ≥ 1/(2m). Hence, using the algorithm of Exercise 2.12.10 one
can generate a random irreducible polynomial F (x) ∈ Fq[x] of degree m, using naive
arithmetic, in O(m4 log(q)) operations in Fq. In other words, one can construct a poly-
nomial basis for Fqm in O(m4 log(q)) operations in Fq. This complexity is not the best
known.

66 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Constructing a Normal Basis

We briefly survey the literature on constructing normal bases for finite fields. We assume
that a polynomial basis for Fqm over Fq has already been computed.

The simplest randomised algorithm is to choose θ ∈ Fqm at random and test whether

the set {θ, θq, . . . , θqm−1} is linearly independent over Fq. Corollary 3.6 of von zur Gathen
and Giesbrecht [239] (also see Theorem 3.73 and Exercise 3.76 of [388, 389]) shows that
a randomly chosen θ is normal with probability at least 1/34 if m < q4 and probability
at least 1/(16 logq(m)) if m ≥ q4.

Exercise 2.14.1. Determine the complexity of constructing a normal basis by randomly
choosing θ.

When q > m(m − 1) there is a better randomised algorithm based on the following
result.

Theorem 2.14.2. Let F (x) ∈ Fq[x] be irreducible of degree m and let α ∈ Fqm be any
root of F (x). Define G(x) = F (x)/((x−α)F ′(α)) ∈ Fqm [x]. Then there are q−m(m− 1)
elements u ∈ Fq such that θ = G(u) generates a normal basis.

Proof: See Theorem 28 of Section II.N of Artin [14] or Section 3.1 of Gao [236]. �

Deterministic algorithms for constructing a normal basis have been given by Lüneburg [399]
and Lenstra [379] (also see Gao [236]).

2.14.2 Solving Quadratic Equations in Finite Fields

This section is about solving quadratic equations x2 + ax + b = 0 over Fq. One can
apply any of the algorithms for polynomial factorisation mentioned earlier. As we saw in
Exercise 2.12.6, when q is odd, the basic method computes roots in O(log(q)M(log(q)))
bit operations. When q is odd it is also natural to use the quadratic formula and a
square-roots algorithm (see Section 2.9).

Exercise 2.14.3. Generalise the Tonelli-Shanks algorithm from Section 2.9 to work
for any finite field Fq where q is odd. Show that the complexity remains an expected
O(log(q)2M(log(q))) bit operations.

Exercise 2.14.4. Suppose Fq2 is represented as Fq(θ) where θ2 ∈ Fq. Show that one
can compute square roots in Fq2 using two square roots in Fq and a small number of
multiplications in Fq.

Since squaring in F2m is a linear operation one can take square roots in F2m using
linear algebra in O(m3) bit operations. The following exercise gives a method that is
more efficient.

Exercise 2.14.5. Suppose one represents F2m using a polynomial basis F2[x]/(F (x)).

Precompute
√
x as a polynomial in x. Let g =

Pm−1
i=0 aix

i. To compute
√
g write

(assuming m is odd; the case of m even is similar)

g =
�
a0 + a2x

2 + · · ·+ am−1x
m−1

�
+ x

�
a1 + a3x

2 + · · ·+ am−2x
m−3

�
.

Show that

√
g =

�
a0 + a2x+ · · ·xm−1x

(m−1)/2
�
+
√
x
�
a1 + a3x+ · · ·+ am−2x

(m−3)/2
�
.

Show that this computation takes roughly half the cost of one field multiplication, and
hence O(m2) bit operations.

2.14. ALGORITHMS IN FINITE FIELDS 67

Exercise 2.14.6. Generalise Exercise 2.14.5 to computing p-th roots in Fpm . Show that
the method requires (p− 1) multiplications in Fpm .

We now consider how to solve quadratic equations of the form

x2 + x = α (2.5)

where α ∈ F2m .

Exercise 2.14.7.⋆ Prove that the equation x2 + x = α has a solution x ∈ F2m if and
only if TrF2m/F2

(α) = 0.

Lemma 2.14.8. If m is odd (we refer to Section II.2.4 of [64] for the case where m is
even) then a solution to equation (2.5) is given by the half trace

x =

(m−1)/2X

i=0

α22i . (2.6)

Exercise 2.14.9. Prove Lemma 2.14.8. Show that the complexity of solving quadratic
equations in Fq when q = 2m and m is odd is an expected O(m3) bit operations (or
O(m2) bit operations when a normal basis is being used).

The expected complexity of solving quadratic equations in F2m when m is even is
O(m4) bit operations, or O(m3) when a normal basis is being used. Hence, we can make
the statement that the complexity of solving a quadratic equation over any field Fq is an
expected O(log(q)4) bit operations.

2.14.3 Isomorphisms Between Finite Fields

Computing the Minimal Polynomial of an Element

Given g ∈ Fqm one can compute the minimal polynomial F (x) of g over Fq using linear
algebra. To do this one considers the set Sn = {1, g, g2, . . . , gn} for n = 1, . . . ,m. Let
n be the smallest integer such that Sn is linearly dependent over Fq. Then there are
a0, . . . , an ∈ Fq such that

Pn
i=0 aig

i = 0. Since Sn−1 is linearly independent it follows
that F (x) =

Pn
i=0 aix

i is the minimal polynomial for g.

Exercise 2.14.10. Show that the above algorithm requires O(m3) operations in Fq.

Computing a Polynomial Basis for a Finite Field

Suppose Fqm is given by some basis that is not a polynomial basis. We now give a method
to compute a polynomial basis for Fqm .

If g ∈ Fqm is chosen uniformly at random then, by Lemma A.8.4, with probability
at least 1/q the element g does not lie in a subfield of Fqm that contains Fq. Hence the
minimal polynomal F (x) of g over Fq has degree m and the algorithm of the previous
subsection computes F (x). One therefore has a polynomial basis {1, x, . . . , xm−1} for Fqm

over Fq.

Exercise 2.14.11. Determine the complexity of this algorithm.

68 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Computing Isomorphisms Between Finite Fields

Suppose one has two representations for Fqm as a vector space over Fq and wants to
compute an isomorphism between them. We do this in two stages: first we compute
an isomorphism from any representation to a polynomial basis, and second we compute
isomorphisms between any two polynomial bases. We assume that one already has an
isomorphism between the corresponding representations of the subfield Fq.

Let {θ1, . . . , θm} be the vector space basis over Fq for one of the representations of
Fqm . The first task is to compute an isomorphism from this representation to a polynomial
representation. To do this one computes a polynomial basis for Fqm over Fq using the
method above. One now has a monic irreducible polynomial F (x) ∈ Fq[x] of degreem and
a representation x =

Pm
i=1 aiθi for a root of F (x) in Fqm . Determine the representations of

x2, x3, . . . , xm over the basis {θ1, . . . , θm}. This gives an isomorphism from Fq[x]/(F (x))
to the original representation of Fqm . By solving a system of linear equations, one can
express each of θ1, . . . , θm with respect to the polynomial basis; this gives the isomorphism
from the original representation to Fq[x]/(F (x)). The above ideas appear in a special case
in the work of Zierler [641].

Exercise 2.14.12. Determine the complexity of the above algorithm to give an isomor-
phism between an arbitrary vector space representation of Fqm and a polynomial basis
for Fqm .

Finally, it remains to compute an isomorphism between any two polynomial rep-
resentations Fq[x]/(F1(x)) and Fq[y]/(F2(y)) for Fqm . This is done by finding a root
a(y) ∈ Fq[y]/(F2(y)) of the polynomial F1(x). The function x 7→ a(y) extends to a field
isomorphism from Fq[x]/(F1(x)) to Fq[y]/(F2(y)). The inverse to this isomorphism is
computed by linear algebra.

Exercise 2.14.13. Determine the complexity of the above algorithm to give an isomor-
phism between an arbitrary vector space representation of Fqm and a polynomial basis
for Fqm .

See Lenstra [379] for deterministic algorithms to solve this problem.

Random Sampling of Finite Fields

Let Fpm be represented as a vector space over Fp with basis {θ1, . . . , θm}. Generating
an element g ∈ Fpm uniformly at random can be done by selecting m integers a1, . . . , am
uniformly at random in the range 0 ≤ ai < p and taking g =

Pm
i=1 aiθi. Section 11.4

mentions some methods to get random integers modulo p from random bits.
To sample uniformly from F∗

pm one can use the above method, repeating the process
if ai = 0 for all 1 ≤ i ≤ m. This is much more efficient than choosing 0 ≤ a < pm − 1
uniformly at random and computing g = γa where γ is a primitive root.

2.15 Computing Orders of Elements and Primitive Roots

We first consider how to determine the order of an element g ∈ F∗
q . Assume the factori-

sation q − 1 =
Qm

i=1 l
ei
i is known.10 Then it is sufficient to determine, for each i, the

10As far as I am aware, it has not been proved that computing the order of an element in F∗

q is equivalent
to factoring q− 1; or even that computing the order of an element in Z∗

N is equivalent to factoring ϕ(N).
Yet it seems to be impossible to correctly determine the order of every g ∈ F∗

q without knowing the
factorisation of q − 1.

2.15. COMPUTING ORDERS OF ELEMENTS AND PRIMITIVE ROOTS 69

smallest 0 ≤ f ≤ ei such that

g(q−1)/lfi = 1.

This leads to a simple algorithm for computing the order of g that requires O(log(q)4)
bit operations.

Exercise 2.15.1. Write pseudocode for the basic algorithm for determining the order of
g and determine the complexity.

The next subsection gives an algorithm (also used in other parts of the book) that
leads to an improvement of the basic algorithm.

2.15.1 Sets of Exponentials of Products

We now explain how to compute sets of the form {g(q−1)/l : l | (q − 1)} efficiently. We
generalise the problem as follows. Let N1, . . . , Nm ∈ N and N =

Qm
i=1 Ni (typically the

integers Ni will be coprime, but it is not necessary to assume this). Let k = ⌈log2(m)⌉
and, for m < i ≤ 2k set Ni = 1. Let G be a group and g ∈ G (where g typically has order
≥ N). The goal is to efficiently compute

{gN/Ni : 1 ≤ i ≤ m}.

The naive approach (computing each term separately and not using any window methods
etc) requires at least

mX

i=1

log(N/Ni) = m log(N)−
mX

i=1

log(Ni) = (m− 1) log(N)

operations in G and at most 2m log(N) operations in G.
For the improved solution one re-uses intermediate values. The basic idea can be

seen in the following example. Computing products in such a way is often called using a
product tree.

Example 2.15.2. Let N = N1N2N3N4 and suppose one needs to compute

gN1N2N3 , gN1N2N4 , gN1N3N4 , gN2N3N4 .

We first compute

h1,1 = gN3N4 and h1,2 = gN1N2

in ≤ 2(log2(N1N2) + log2(N3N4)) = 2 log2(N) operations. One can then compute the
result

gN1N2N3 = hN3
1,2, gN1N2N4 = hN4

1,2, gN1N3N4 = hN1
1,1, gN2N3N4 = hN2

1,1.

This final step requires at most 2(log2(N3)+ log2(N4)+ log2(N1)+ log2(N2)) = 2 log2(N)
operations. The total complexity is at most 4 log2(N) operations in the group.

The algorithm has a compact recursive description. Let F be the function that on
input (g,m,N1, . . . , Nm) outputs the list of m values gN/Ni for 1 ≤ i ≤ m where N =
N1 · · ·Nm. Then F (g, 1, N1) = g. For m > 1 one computes F (g,m,N1, . . . , Nm) as fol-
lows: Let l = ⌊m/2⌋ and let h1 = gN1···Nl and h2 = gNl+1···Nm . Then F (g,m,N1, . . . , Nm)
is equal to the concatenation of F (h1, (m− l), Nl+1, . . . , Nm) and F (h2, l, N1, . . . , Nl).

We introduce some notation to express the algorithm in a non-recursive format.

70 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Definition 2.15.3. Define S = {1, 2, 3, . . . , 2k}. For 1 ≤ l ≤ k and 1 ≤ j ≤ 2l define

Sl,j = {i ∈ S : (j − 1)2k−l + 1 ≤ i ≤ j2k−l}

Lemma 2.15.4. Let 1 ≤ l ≤ k and 1 ≤ j ≤ 2l. The sets Sl,j satisfy:

1. #Sl,j = 2k−l;

2. Sl,j ∩ Sl,j′ = ∅ if j 6= j′;

3. ∪2l

j=1Sl,j = S for all 1 ≤ l ≤ k;

4. If l ≥ 2 and 1 ≤ j ≤ 2l−1 then Sl−1,j = Sl,2j−1 ∪ Sl,2j ;

5. Sk,j = {j} for 1 ≤ j ≤ 2k.

Exercise 2.15.5. Prove Lemma 2.15.4.

Definition 2.15.6. For 1 ≤ l ≤ k and 1 ≤ j ≤ 2l define

hl,j = g
�

j∈S−Sl,j
Ni
.

To compute {hk,j : 1 ≤ j ≤ m} efficiently one notes that if l ≥ 2 and 1 ≤ j ≤ 2l then,
writing j1 = ⌈j/2⌉,

hl,j = h

�
i∈Sl−1,j1

−Sl,j
Ni

l−1,j1
.

This leads to Algorithm 4.

Algorithm 4 Computing Set of Exponentials of Products

Input: N1, . . . , Nm

Output: {gN/Ni : 1 ≤ i ≤ m}
1: k = ⌈log2(m)⌉
2: h1,1 = gN2k−1+1

···N
2k , h1,2 = gN1···N2k−1

3: for l = 2 to k do
4: for j = 1 to 2l do
5: j1 = ⌈j/2⌉
6: hl,j = h

�
i∈Sl−1,j1

−Sl,j
Ni

l−1,j1
7: end for
8: end for
9: return {hk,1, . . . , hk,m}

Lemma 2.15.7. Algorithm 4 is correct and requires ≤ 2⌈log2(m)⌉ log(N) group opera-
tions.

Proof: Almost everything is left as an exercise. The important observation is that lines
4 to 7 involve raising to the power Ni for all i ∈ S. Hence the cost for each iteration of

the loop in line 3 is at most 2
P2k

i=1 log2(Ni) = 2 log2(N). �

This method works efficiently in all cases (i.e., it doesn’t require m to be large).
However, Exercise 2.15.8 shows that for small values of m there may be more efficient
solutions.

Exercise 2.15.8. Let N = N1N2N3 where Ni ≈ N1/3 for 1 ≤ i ≤ 3. One can compute
gN/Ni for 1 ≤ i ≤ 3 using Algorithm 4 or in the “naive” way. Suppose one uses the

2.15. COMPUTING ORDERS OF ELEMENTS AND PRIMITIVE ROOTS 71

standard square-and-multiply method for exponentiation and assume that each of N1, N2

and N3 has Hamming weight about half their bit-length.
Note that the exponentiations in the naive solution are all with respect to the fixed

base g. A simple optimisation is therefore to precompute all g2
j

for 1 ≤ j ≤ log2(N
2/3).

Determine the number of group operations for each algorithm if this optimisation is
performed. Which is better?

Remark 2.15.9. Sutherland gives an improved algorithm (which he calls the snowball
algorithm) as Algorithm 7.4 of [596]. Proposition 7.3 of [596] states that the complexity
is

O(log(N) log(m)/ log(log(m))) (2.7)

group operations.

2.15.2 Computing the Order of a Group Element

We can now return to the original problem of computing the order of an element in a
finite field.

Theorem 2.15.10. Let g ∈ F∗
q and assume that the factorisation q − 1 =

Qm
i=1 l

ei
i is

known. Then one can determine the order of g in O(log(q) log log(q)) multiplications in
Fq.

Proof: The idea is to use Algorithm 4 to compute all hi = g(q−1)/l
ei
i . Sincem = O(log(q))

this requires O(log(q) log log(q)) multiplications in Fq. One can then compute all h
lfi
i for

1 ≤ f < ei and, since
Qm

i=1 l
ei
i = q − 1 this requires a further O(log(q)) multiplications.

�

The complexity in Theorem 2.15.10 cannot be improved toO(log(q) log log(q)/ log(log(log(q))))
using the result of equation (2.7) because the value m is not always Θ(log(q)).

2.15.3 Computing Primitive Roots

Recall that F∗
q is a cyclic group and that a primitive root in F∗

q is an element of order
q − 1. We assume in this section that the factorisation of q − 1 is known.

One algorithm to generate primitive roots is to choose g ∈ F∗
q uniformly at random

and to compute the order of g using the method of Theorem 2.15.10 until an element
of order q − 1 is found. The probability that a random g ∈ F∗

q is a primitive root is
ϕ(q−1)/(q−1). Using Theorem A.3.1 this probability is at least 1/(6 log(log(q))). Hence
this gives an algorithm that requires O(log(q)(log(log(q)))2) field multiplications in Fq.

We now present a better algorithm for this problem, which works by considering the
prime powers dividing q − 1 individually. See Exercise 11.2 of Section 11.1 of [556] for
further details.

Theorem 2.15.11. Algorithm 5 outputs a primitive root. The complexity of the algorithm
is O(log(q) log log(q)) multiplications in Fq.

Proof: The values gi are elements of order dividing leii . If g
l
ei−1

i
i 6= 1 then gi has order

exactly leii . One completion of the while loop the value t is the product of m elements of
maximal coprime orders leii . Hence t is a primitive root.

Each iteration of the while loop requires O(log(q) log log(q)) multiplications in Fq. It
remains to bound the number of iterations of the loop. First note that, by the Chinese
remainder theorem, the gi are independent and uniformly at random in subgroups of

72 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Algorithm 5 Computing a primitive root in F∗
q

Input: q,m, {(li, ei)} such that q − 1 =
Qm

i=1 l
ei
i and the li are distinct primes

Output: primitive root g
1: Let S = {1, . . . ,m}
2: t = 1
3: while S 6= ∅ do
4: Choose g ∈ F∗

q uniformly at random

5: Compute gi = g(q−1)/l
ei
i for 1 ≤ i ≤ m using Algorithm 4

6: for i ∈ S do

7: if g
l
ei−1

i

i 6= 1 then
8: t = tgi
9: Remove i from S

10: end if
11: end for
12: end while
13: return t

order leii . Hence, the probability that g
l
ei−1

i

i = 1 is 1/li ≤ 1/2 and the expected number
of trials for any given value gi less than or equal to 2. Hence, the expected number of
iterations of the while loop is less than or equal to 2. This completes the proof. �

2.16 Fast Evaluation of Polynomials at Multiple Points

We have seen that one can evaluate a univariate polynomial at a field element efficiently
using Horner’s rule. For some applications, for example the attack on small CRT expo-
nents for RSA in Section 24.5.2, one must evaluate a fixed polynomial repeatedly at lots
of field elements. Naively repeating Horner’s rule n times would give a total cost of n2

multiplications. This section shows one can solve this problem more efficiently than the
naive method.

Theorem 2.16.1. Let F (x) ∈ k[x] have degree n and let x1, . . . , xn ∈ k. Then one can
compute {F (x1), . . . , F (xn)} in O(M(n) log(n)) field operations. The storage requirement
is O(n log(n)) elements of k .

Proof: (Sketch) Let t = ⌈log2(n)⌉ and set xi = 0 for n < i ≤ 2t. For 0 ≤ i ≤ t and
1 ≤ j ≤ 2t−i define

Gi,j(x) =

j2iY

k=(j−1)2i+1

(x− xk).

One computes theGi,j(x) for i = 0, 1, . . . , t using the formulaGi,j(x) = Gi−1,2j−1(x)Gi−1,2j(x).
(This is essentially the same trick as Section 2.15.1.) For each i one needs to store n el-
ements of k to represent all the polynomials Gi,j(x). Hence, the total storage is n log(n)
elements of k.

Once all the Gi,j(x) have been computed one defines, for 0 ≤ i ≤ t, 1 ≤ j ≤ 2t−i the
polynomials Fi,j(x) = F (x) (mod Gi,j(x)). One computes Ft,0(x) = F (x) (mod Gt,0(x))
and then computes Fi,j(x) efficiently as Fi+1,⌊(j+1)/2⌋(x) (mod Gi,j(x)) for i = t − 1
downto 0. Note that F0,j(x) = F (x) (mod (x− xj)) = F (xj) as required.

One can show that the complexity is O(M(n) log(n)) operations in k. For details see
Theorem 4 of [611], Section 10.1 of [238] or Corollary 4.5.4 of [88]. �

2.17. PSEUDORANDOM GENERATION 73

Exercise 2.16.2. Show that Theorem 2.16.1 also holds when the field k is replaced by a
ring.

The inverse problem (namely, determining F (x) from the n pairs (xj , F (xj))) can also
be solved in O(M(n) log(n)) field operations; see Section 10.2 of [238].

2.17 Pseudorandom Generation

Many of the above algorithms, and also many cryptographic systems, require generation of
random or pseudorandom numbers. The precise definitions for random and pseudorandom
are out of the scope of this book, as is a full discussion of methods to extract almost perfect
randomness from the environment and methods to generate pseudorandom sequences from
a short random seed.

There are pseudorandom number generators related to RSA (the Blum-Blum-Shub
generator) and discrete logarithms. Readers interest to learn more about this topic should
consult Chapter 5 of [418], Chapter 3 of [343], Chapter 30 of [16], or [398].

2.18 Summary

Table 2.18 gives a brief summary of the complexities for the algorithms discussed in this
chapter. The notation used in the table is n ∈ N, a, b ∈ Z, p is a prime, q is a prime
power and k is a field. Recall that M(m) is the number of bit operations to multiply
two m-bit integers (which is also the number of operations in k to multiply two degree-m
polynomials over a field k). Similarly, M(d, q) is the number of bit operations to multiply
two degree-d polynomials in Fq[x].

Table 2.18 gives the asymptotic complexity for the algorithms that are used in crypto-
graphic applications (i.e., for integers of, say, at most 10,000 bits). Many of the algorithms
are randomised and so the complexity in those cases is the expected complexity. The
reader is warned that the best possible asymptotic complexity may be different: some-
times it is sufficient to replace M(m) by m log(m) log(log(m)) to get the best complexity,
but in other cases (such as constructing a polynomial basis for Fqm) there are totally
different methods that have better asymptotic complexity. In cryptographic applications
M(m) typically behaves as M(m) = O(m2) or M(m) = O(m1.585).

The words “k-operations” includes additions, multiplications and inversions in k. If
inversions in k are not required in the algorithm then we say “k multiplications”.

74 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Table 2.1: Expected complexity of basic algorithms for numbers of size relevant for cryp-
tography and related applications. The symbol ∗ indicates that better asymptotic com-
plexities are known.
Computational problem Expected complexity for cryptography
Multiplication of m-bit integers, M(m) O(m2) or O(m1.585) bit operations
Compute ⌊a/n⌋, a (mod n) O((log(|a|) − log(n)) log(n))

or O(M(log(|a|)) bit operations

Compute ⌊
�

|a|⌋ O(M(log(|a|))) bit operations
Extended gcd(a, b) where a and b are m-bit integers O(m2) or O(M(m) log(m)) bit operations
Legendre/Jacobi symbol (a

n
), |a| < n O(log(n)2) or

O(M(log(n)) log(log(n))) bit operations
Multiplication modulo n O(M(log(n))) bit operations
Inversion modulo n O(log(n)2) or O(M(log(n)) log(n)) bit operations
Compute gm (mod n) O(log(m)M(log(n))) bit operations
Compute square roots in F∗

q (q odd) O(log(q)M(log(q))) bit operations
Multiplication of two degree d polys in k[x] O(M(d)) k-multiplications
Multiplication of two degree d polys in Fq[x], M(d, q) O(M(d log(dq))) bit operations
Inversion in k[x]/(F (x)) where deg(F (x)) = d O(d2) or O(M(d) log(d)) k-operations
Multiplication in Fqm O(M(m)) operations in Fq ∗
Evaluate degree d polynomial at α ∈ k O(d) k-operations
Find all roots in Fq of a degree d polynomial in Fq[x] O(log(d) log(q)d2) Fq-operations ∗
Find one root in Fq of a degree d polynomial in Fq[x] O(log(dq)M(d, q)) bit operations
Determine if degree d poly over Fq is irreducible O(d3 log(q)) Fq-operations ∗
Factor degree d polynomial over Fq O(d3 log(q)) Fq-operations ∗
Construct polynomial basis for Fqm O(m4 log(q)) Fq-operations ∗
Construct normal basis for Fqm given a poly basis O(m3 logq(m)) Fq-operations ∗
Solve quadratic equations in Fq O(log(q)4) bit operations ∗
Compute the minimal poly over Fq of α ∈ Fqm O(m3) Fq-operations
Compute an isomorphism between repns of Fqm O(m3) Fq-operations
Compute order of α ∈ F∗

q given factorisation of q − 1 O(log(q) log(log(q))) Fq-multiplications
Compute primitive root in F∗

q given factorisation of q − 1 O(log(q) log(log(q))) Fq-multiplications
Compute f(αj) ∈ k for f ∈ k[x] of degree n O(M(n) log(n)) k-multiplications
and α1, . . . ,αn ∈ k

