
Cryptosystems Based on
Lattices

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

We present some cryptosystems whose common feature is that they all rely on compu-
tational problems in lattices for their security. The subject of lattice based cryptography
is very active and there have recently been new ideas that revolutionised the field. It is
beyond the scope of this book to survey these recent developments.

19.9 The Goldreich-Goldwasser-Halevi Cryptosystem

and Variants

The Goldreich-Goldwasser-Halevi (GGH) cryptosystem relies on the difficulty of the clos-
est vector problem (CVP) in a lattice. The system is reminiscent of the McEliece cryp-
tosystem, which we briefly recall in the next paragraph. Encryption for both systems is
randomised.

In the McEliece cryptosystem one chooses an error correcting code (some references
for error correcting codes are van Lint [391] and Chapter 18 of [609]) over a finite field
Fq (typically F2) given by a k × n generator matrix G (where k < n) and publishes a
“disguised” version G′ = SGP where S and P are suitable invertible matrices (we refer
to Section 8.5 of Menezes, van Oorschot and Vanstone [418] for details). The public
key is G′ and the private key is (S,G, P). To encrypt a message m ∈ Fk

q one computes
c = mG′ + e where e ∈ Fn

q is a randomly chosen error vector of low Hamming weight;
note that this computation is over Fq. To decrypt one uses the decoding algorithm for
the error correcting code.

The basic GGH public key encryption scheme is similar; we give an informal sketch of
the idea now. One chooses a “nice” basis B for a full rank lattice L ⊂ Zn and publishes
a “disguised” basis B′ = UB for L where U is “random” unimodular matrix. A message
m ∈ Zn is encrypted as c = mB′ + e where e is a randomly chosen short error vector;
note that this computation is over Z. To decrypt one solves the closest vector problem,
using the nice basis B, to obtain the lattice point mB′ close to c; one can then obtain m.

417

418 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

While encryption is superficially the same for the McEliece and GGH cryptosystems,
there are significant differences between the security analysis of these schemes. An ad-
vantage of the lattice approach is that the error vector is required to have less structure:
it is only required to be short, compared with McEliece where the error vector must have
low Hamming weight. Both schemes have ciphertexts larger than the messages but an ad-
vantage of McEliece is that ciphertexts have a fixed size whereas for GGH the coefficients
are integers whose size can vary significantly.

Exercise 19.9.1. Show that any cryptosystem based on the McEliece or GGH idea does
not have indistinguishability security under passive attack.

Exercise 19.9.2. A variant of the McEliece or GGH proposal is to swap the roles of the
message and the randomness. In other words one encodes the message as a valid error
vector m, chooses a random e ∈ Fk

q (respectively, e ∈ Zk) and computes c = eG′ + m
(resp., c = eB′ + m). Show that this variant also does not have indistinguishability
security under passive attacks.

Exercise 19.9.3. Show that any cryptosystem based on the McEliece or GGH idea (and
without any padding scheme) does not have one way encryption security under a CCA
attack.

Exercises 19.9.1 and 19.9.3 show that the ‘textbook’ (i.e., without a padding scheme)
McEliece and GGH cryptosystems should not be used in practice. Using techniques
similar to those presented later for Elgamal and RSA one can prevent such attacks as
long as the basic scheme is OWE-CPA secure (see Section 1.3.1 for the definition of this
security notion). Hence, for the rest of this chapter we focus purely on the textbook
versions and mainly consider security under passive attacks.

Exercise 19.9.4. Given a GGH public key B′ show that there is more than one private
basis matrix B that is suitable for decryption. Show that one can efficiently determine
whether a guess B for a GGH private basis matrix can correspond to a given public basis
B′.

To give a precise definition of the GGH cryptosystem it is necessary to give the fol-
lowing details:

1. What dimension n should be used?

2. How does one choose the “nice” lattice basis B and what properties should it have?

3. How does one choose the “random” unimodular matrix U?

4. What is the message space and how does one encode information into a vector m?

5. How does one choose the error vector e and in what space does it lie?

We briefly sketch the proposal of Goldreich, Goldwasser and Halevi; the reader should
refer to the original paper [256] for complete details. It is suggested to take n ≥ 200. Two
methods to generate the “nice” basis B are given: one is to choose a random matrix B
with entries in, say, {−4,−3,−2,−1, 0, 1, 2, 3, 4} (so that all vectors are relatively short);
another is to choose B = kIn + E where In is the n × n identity matrix, k > 1 is
a “medium sized” integer and E is a random matrix with small entries as in the first
case above. Two methods to generate U are also given; in both cases the issue is to
ensure that the coefficients of B′ = UB do not explode in size (we refer to Section 3.2
of [256] for details). The message space is the set of vectors of length n with entries in

19.9. GOLDREICH-GOLDWASSER-HALEVI CRYPTOSYSTEM 419

{−M,−(M − 1), . . . ,−1, 0, 1, . . . ,M − 1,M} for some M ∈ N ([256] actually suggests
M = n). Finally, the error vector is chosen to be a random vector of length n with entries
in {−σ,σ} for some σ ∈ N (typically, σ = 3).

As mentioned above, to encrypt a messagem one computes the ciphertext c = mB′+e.
To decrypt c one uses the Babai rounding technique with respect to the nice basis B for
the lattice. More precisely, multiply c by B−1 to obtain

cB−1 = (mB′ + e)B−1 = mUBB−1 + eB−1 = mU + eB−1 ∈ Qn.

The Babai rounding will remove the term eB−1 as long as it is small enough. One then
multiplies by U−1 to get the message m.

Exercise 19.9.5. Write down algorithms for KeyGen, Encrypt and Decrypt.

Example 19.9.6. Let L ⊂ R2 be the lattice with basis matrix

B =

�
17 0
0 19

�
.

Let

U =

�
2 3
3 5

�
giving B′ = UB =

�
34 57
51 95

�
.

Let the message be m = (2,−5) and take e = (1,−1) (this is GGH encryption with
σ = 1). Then

c = mB′ + e = (−186,−362).

To decrypt one computes

cB−1 ≈ (−10.94,−19.05)

(note that mU = (−11,−19) and eB−1 ≈ (0.06,−0.05)). We round the above to
(−11,−19) and recover the message as m = (−11,−19)U−1 = (2,−5).

Exercise 19.9.7. Show that GGH decryption gives the correct result as long as the
entries of eB−1 are real numbers of absolute value < 1/2. Let ρ be the maximum, in
the ℓ1-norm, of the columns of B−1. Show that if σ < 1/(2ρ) then decryption gives the
correct result.

Exercise 19.9.8. For the public key in Example 19.9.6 decrypt the ciphertext c =
(220, 400).

As mentioned, the ciphertext in GGH encryption is considerably larger than the mes-
sage. A precise analysis of this depends on the sizes of entries in B′ (which in turns
depends on the specific choices for B and U). We do not give any estimates for the
ciphertext expansion.

Micciancio [421] proposed a variant of the GGH cryptosystem. The first idea is,
instead of choosing the public basis to be B′ = UB for a random matrix U ∈ SL2(Z), one
can choose B′ to be the Hermite normal form (HNF) of B. There is no loss of security by
doing this, since anyone can compute the HNF of UB, and get the same result. The second
idea is to encode the message in the error vector rather than in the lattice point (this
is the same idea as discussed in Exercise 19.9.2) and to reduce it to the orthogonalized
parallelepiped (see Exercise 19.9.9). This results in significantly shorter ciphertexts than
the original GGH system and makes the encryption process deterministic. We refer to
[421] for further details.

420 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Exercise 19.9.9. Let b1, . . . , bn be an ordered basis for a lattice L and let b∗1, . . . , b
∗
n be

the corresponding Gram-Schmidt vectors. Define the orthogonalized parallelepiped

P =

(
nX

i=1

xib
∗
i : 0 ≤ xi ≤ 1

)
.

Given v ∈ Rn show how to compute w ∈ P such that v − w ∈ L. This is called reducing
to the orthogonalized parallelepiped.

19.10 Cryptanalysis of GGH Encryption

We now discuss the one-way encryption (OWE) security of the GGH cryptosystem under
passive attacks. There are three natural ways to attack the GGH cryptosystem:

1. Try to obtain the private key B from the public key B′.

2. Try to obtain information about the message from the ciphertext, given that the
error vector is small.

3. Try to solve the CVP of c with respect to the lattice L defined by B′.

We also present a fourth attack, due to Nguyen, which exploits the particular format of
the error vectors in the GGH cryptosystem. Lattice basis reduction algorithms have a
role to play in the first and third of these attacks.

Computing a Private Key

For the first attack, we simply run a lattice basis reduction algorithm (such as LLL) on
the public basis matrix B′. If we are lucky then it will output a basis B′′ that is good
enough to allow the efficient solution of the required closest vector instances.

Example 19.10.1. Let

B =

7 0 0
0 23 0
0 0 99

and define B′ = UB where

U =

1 0 0
8 1 0

−11 5 1

 .

1 3 −10
0 1 −6
0 0 1

 .

Then B′ is the public basis matrix

B′ =

7 69 −990
56 575 −8514
−77 −644 8019

 .

Let m = (2,−1, 3) be a message and e = (−1, 1, 1) an error vector and define c =
mB′ + e = (−274,−2368, 30592). Running LLL on B′ does yield (up to sign) the matrix
B (and hence U = B′B−1). From this one can recover m.

To prevent such an attack it is necessary that the dimension of the lattice be sufficiently
large.

19.10. CRYPTANALYSIS OF GGH ENCRYPTION 421

Computing Information about the Message

For the second attack we exploit the fact that c = mB′ + e where e is a vector with small
entries. A naive attack is to try all values of the error vector e until c−e lies in the image
of ZnB′. A more subtle idea is to compute c(B′)−1 = m + e(B′)−1 and try to deduce
possible values for some entries of e(B′)−1. For example, if the j-th column of (B′)−1

has particularly small norm then one can deduce that the j-th entry of e(B′)−1 is always
small and hence get an accurate estimate for the j-th entry of m. We refer to Section 4.2
of [256] for further discussion. To defeat this attack one should not naively encode the
message as a vector m ∈ Zn. Instead, one should only use some low-order bits of some
entries of m to carry information, or use an appropriate randomised padding scheme.

Solving the CVP Directly

For the third attack one can consider any of the algorithms listed in Chapter 18 for solving
the CVP. For example, one can use the Babai nearest plane algorithm or the embedding
technique.

Example 19.10.2. We use the public key and ciphertext from Example 19.10.1 and
recover the message using the embedding technique. Construct

A =

7 69 −990 0
56 575 −8514 0
−77 −644 8019 0
−274 −2368 30592 1

 .

Running LLL on A yields the matrix

−1 1 1 1
5 2 2 2
−1 −15 8 8
−1 −2 51 −48

 .

As desired, the first row is (−1, 1, 1, 1) = (e, 1). From this one can compute the message
as m = (c− e)(B′)−1.

Exercise 19.10.3. For the public key from Example 19.10.1 use the embedding technique
to decrypt the ciphertexts c = (120, 1220,−18017) and c = (−83,−714, 9010).

To defeat such attacks it is necessary that the lattice dimension is sufficiently large
and that the solution to the CVP instance is not too special. In particular, the error
vector should not be too short compared with the vectors the lattice.

Nguyen’s Attack

Nguyen noted that the choice of the error vector in the original GGH cryptosystem made
it extremely vulnerable to attack. Write σ = (σ,σ, . . . ,σ) ∈ Zn. The crucial observation
is that if c is a GGH ciphertext then c + σ ≡ mB′ (mod 2σ). If B′ is invertible modulo
2σ (or even modulo a factor of 2σ) then one can already extract significant information
about the message m. Furthermore, if one successfully computes m0 ≡ m (mod 2σ), then
one obtains the simpler closest vector instance

c−m0B
′

2σ
= m′B′ +

e

2σ

422 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

where m = m0 + 2σm′. Since e/(2σ) is a much shorter vector than e it is possible that
algorithms for the closest vector problem that were not successful on the original instance
can succeed on the new instance.

Example 19.10.4. Consider the lattice L and ciphertext c from Example 19.9.6. Since
σ = 1 we can add (1, 1) to c and solve

c+ (1, 1) = (−185,−361)≡ m0B
′ (mod 2)

(note that B′ is invertible over F2). One finds m0 = (0, 1) ≡ (2,−5) (mod 2) as expected.

Exercise 19.10.5. Perform Nguyen’s attack for the ciphertexts of Exercise 19.10.3.

The natural approach to resist Nguyen’s attack is to choose error vectors with a more
general range of entries (e.g., ej ∈ {−σ,−(σ− 1), . . . ,−1, 0, 1, . . . ,σ} for 1 ≤ j ≤ n). It is
then necessary to re-evaluate all the other attacks and parameter choices.

Finally, we remark that none of the above techniques gives an attack with polynomial
asymptotic complexity as the dimension n grows. Hence, the GGH encryption scheme
and its variants are not broken. On the other hand, in practice one needs to use lattices
of rather large dimension and this limits the practicality of the GGH system.

19.11 GGH Signatures

Let B′ be a GGH public key corresponding to a lattice L in Zn. The natural signature
scheme is as follows: Given a message m hash it to a “random” element H(m) ∈ Zn.
Then, using the private key, compute a lattice vector s close to H(m). The signature on
message m is then s. To verify the signature one checks that s lies in the lattice (i.e.,
s(B′)−1 ∈ Zn) and that ks− H(m)k is smaller than some threshold that is specified as
part of the signature verification key.

We remark that signatures for lattice schemes are somewhat easier than for the
McEliece cryptosystem since CVP algorithms work for any point in Rn whereas decoding
algorithms may fail for words that are not within the minimum distance of a code-word
(however, see Courtois, Finiasz and Sendrier [451] for a study of McEliece signatures).

To analyse the security (namely, resistance to forgery) of such a signature scheme one
must consider all the attacks mentioned above on the encryption scheme. One therefore
is required to use lattices of large dimension n ≥ 200.

Furthermore, as usual with signatures, one must also consider the fact that an ad-
versary could obtain signatures on messages and that this might leak information about
the private key. For the GGH signature scheme one sees that s−H(m) is a short vector
in Rn. Indeed, if the CVP algorithm used by the signer is perfect for the basis B then
s−H(m) always lies in the parallelepiped

P1/2(B) = {xB : x = (x1, . . . , xn) ∈ Rn,−1/2 ≤ xi ≤ 1/2 for all 1 ≤ i ≤ n},

which is called a fundamental domain for the lattice (i.e., for every point x ∈ Rn

there is some y in the lattice such that x − y ∈ P1/2(B)). The fundamental domain of
a lattice is a simplex whose sides are determined by the basis vectors in B. Hence, it is
natural to wonder whether seeing a number of random entries in P1/2(B) allows one to
learn something about the vectors in B. Nguyen and Regev [457, 458] have explored this
idea and shown that such an approach can be used to cryptanalyse signatures. Adding
a “perturbation” to the signature seems to prevent the attack of Nguyen and Regev (see
Section 1.3 of [458]). Gentry, Peikert and Vaikuntanathan [253] give a method to sample

19.12. NTRU 423

from a lattice (when given a sufficiently good basis) such that the output is statistically
close to a Gaussian distribution. Hence, their paper gives3 a secure implementation of
the GGH signature concept.

19.12 NTRU

The NTRU4 cryptosystem was invented by Hoffstein, Pipher and Silverman. The original
proposal is phrased in terms of polynomial rings. We refer to Hoffstein, Pipher and
Silverman [288], Section 6.10 of [289] or Section 17.4 of [609] for a description of the
system in these terms.

The NTRU encryption scheme can also be described as a special case of Micciancio’s
variant of the GGH encryption scheme. The public key is a 2n× 2n matrix

B =

�
qIn 0
H In

�

in Hermite normal form, where In is the n× n identity matrix, q is an integer (typically
q = 28 or 210) and H is an n × n matrix with entries in {0, 1, . . . , q − 1}. The crucial
property of NTRU is that the matrix H is a circulant matrix, in other words, the rows
of H are just cyclic rotations of the first row of H . This means that to specify the NTRU
public key one only needs to specify q and the first row of H ; the public key requires
O(n log2(q)) bits.

The matrix H is constructed by the user in a special way so that they know a basis
for the lattice generated by B consisting of short vectors. Encryption proceeds as in the
Micciancio scheme. We refer to Section 5.2 of Micciancio and Regev [423] for further
details.

The details of the NTRU scheme have evolved over time. In particular, earlier pa-
rameter choices for NTRU had a noticeable probability of decryption failures, and this
property was used to develop active (i.e., not passive) attacks [298]. Hence, the currently
recommended parameters for NTRU have negligible probability of decryption failures.

The security of the NTRU cryptosystem relies on the difficulty of computing short
vectors in the NTRU lattice. One remark is that the NTRU lattice has a number of
special properties that can be used to improve the standard algorithms for finding short
vectors. In particular, if v is a short vector in the NTRU lattice then so are the n “cyclic
rotations” of v. As a sample of the literature on special properties of the NTRU lattice
we refer to May and Silverman [412], Gama, Howgrave-Graham and Nguyen [234] and
Gentry [251].

19.13 Knapsack Cryptosystems

Knapsack cryptosystems were proposed by Merkle and Hellman in 1978. As with NTRU,
the original description of knapsack cryptosystems made no reference to lattices. However
there is a general attack on knapsacks using lattices (indeed, this was the first application
of lattice basis reduction to public key cryptanalysis) and so it is natural to consider them
as a lattice-based cryptosystem. Though not used in practice, we briefly present knapsack
cryptosystems as they are an excellent source of exercises in cryptanalysis.

3This is only one of the many contributions of [253].
4The meaning of the acronym NTRU is not explained in the original paper. One interpretation is

that it stands for “Number Theorists are Us”. After various successful attacks were discovered on the
corresponding signature scheme some individuals in the cryptography community started to refer to it
as “Not True”.

424 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Definition 19.13.1. Let b1, . . . , bn be distinct positive (i.e., bi ≥ 1) integers (sometimes
called weights). The subset sum problem is, given an integer s obtained as a sum of
elements bi, to find xi ∈ {0, 1} for i = 1, . . . , n such that

s =

nX

i=1

xibi.

The name knapsack is a mis-use of subset sum. It comes from the idea of finding
out what is in a knapsack (a type of bag) just from its weight. The subset sum problem
is NP-complete.

Exercise 19.13.2. A decisional variant of Definition 19.13.1 is, given {b1, . . . , bn} and
s ∈ N to decide whether or not there are xi ∈ {0, 1} such that s =

Pn
i=1 xibi. Prove that

these two computational problems are equivalent.

Exercise 19.13.3. Let notation be as in Definition 19.13.1 and let B =
Pn

i=1 bi. Give a
time-memory tradeoff algorithm to find the solution xi ∈ {0, 1}, or show none exists, in
O(n2n/2 log(B)2) bit operations and with O(n2n/2 log(B)) bits of storage.

The attack of Exercise 19.13.3 has been greatly improved by Shamir and Schroep-
pel (we do not have space for the details; see Section 8.1.2 of Joux [317]). A further
improvement has been given by Howgrave-Graham and Joux [300]. Wagner’s algorithm
(see Section 13.8) does not seem to be directly applicable to the subset sum problem,
though has been used to solve the modular subset sum problem (i.e., given {bi}, s and
m to find xi ∈ {0, 1} such that

Pn
i=1 xibi ≡ s (mod m)) by Wagner (also see the work of

Lyubashevsky and Shallue).

Exercise 19.13.4. Show that every subset sum instance can be reduced to an instance
where the weights satisfy gcd(b1, . . . , bn) = 1.

The motivating idea of a knapsack cryptosystem is that computing s =
Pn

i=1 xibi is a
one-way function. The remaining problem is to design subset sum instances that can be
efficiently solved using a private key. To do this one first considers easy instances of the
subset sum problem.

Definition 19.13.5. A sequence b1, . . . , bn in N is superincreasing if, for each 2 ≤ i ≤ n

bi >

i−1X

j=1

bj.

There is an efficient greedy algorithm to solve the subset sum problem if the bi are a
superincreasing sequence: Just subtract the largest possible value from s and repeat.

Example 19.13.6. The sequence

1, 2, 4, 8, . . . , 2n−1

is a superincreasing sequence. Decomposing an integer s with respect to this sequence is
the same as writing it in binary.

Exercise 19.13.7. Consider the superincreasing sequence

1, 5, 7, 20, 35, 80, 170.

Decompose s = 112 with respect to this sequence.

19.13. KNAPSACK CRYPTOSYSTEMS 425

Exercise 19.13.8. Show that if b1, . . . , bn is a superincreasing sequence then bi ≥ 2i−1

and bi+j > 2j−1bi for 1 ≤ i ≤ n and 1 ≤ j.

The following definition gives a rough estimate for the “information rate” of a knapsack
cryptosystem (in other words, the ratio of the number of bits to represent the solution of
a subset sum instance versus the number of bits in sum itself). This quantity arises in
the cryptanalysis of knapsack cryptosystems.

Definition 19.13.9. The density of a sequence b1, . . . , bn is

d = n/ log2 max{bi}.

Exercise 19.13.10. What is the density of 1, 2, 4, 8, . . . , 2n−1?

Exercise 19.13.11. What is the density of 3, 7, 11, 27, 50, 107, 210, 430?

Exercise 19.13.12. Show that the density of a superincreasing sequence is at most
1 + 1/(n− 1).

19.13.1 Public Key Encryption Using Knapsacks

The idea of the Merkle-Hellman knapsack cryptosystem is to have a superincreasing se-
quence as the private key but to ‘disguise’ this for the public key. We briefly sketch the
algorithms for the “textbook” Merkle-Hellman knapsack cryptosystem (for more details
see Section 8.6 of [418]). The length n of the sequence is a security parameter.

• KeyGen(n): Generate a superincreasing sequence b1, . . . , bn in N. Choose a modulus
M >

Pn
i=1 bi and a random integer W coprime to M . Select a random permutation

π of the integers {1, . . . , n}. Define ai = Wbπ(i) (mod M). The public key is
a = (a1, . . . , an) and the private key is π,W,M, b = (b1, . . . , bn).

• The message space is Mn = {0, 1}n (i.e., binary strings of length n).

• To Encrypt a message m = (m1, . . . ,mn) where mi ∈ {0, 1} a user computes the
integer

c = m · a =

nX

i=1

miai

and transmits this.

• To Decrypt, the user with the private key multiplies c by W−1 (mod M) to obtain
0 ≤ s < M . The user can solve the subset sum problem for s with respect to the
superincreasing sequence. (If there is no solution then the decryption algorithm out-
puts the invalid ciphertext symbol ⊥.) The message is then obtained by permuting
the sequence xi using π−1.

Exercise 19.13.13. Show that decryption does recover the message.

Example 19.13.14. Consider the superincreasing sequence from Exercise 19.13.7

1, 5, 7, 20, 35, 80, 170.

We disguise using modulus 503 and multiplier 430 (and taking π to be the identity per-
mutation for simplicity) to get the public key

430, 138, 495, 49, 463, 196, 165.

426 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Let the message be the binary sequence 1001100. The ciphertext is

c = 430 + 49 + 463 = 942.

To decrypt we compute 430−1c ≡ 56 (mod 503), which is then easily decomposed as
35 + 20 + 1 giving the message 1001100.

Exercise 19.13.15. Consider the Merkle-Hellman public and private key from Exam-
ple 19.13.14. Decrypt the ciphertext 829.

Exercise 19.13.16. What is the density of the public key in Example 19.13.14.

Exercise 19.13.17. Consider the Merkle-Hellman private key M = 201, W = 77 and
b = (2, 5, 11, 27, 46, 100). What is the public key? What is the encryption of 101011?

Exercise 19.13.18. Show that the “textbook” Merkle-Hellman knapsack does not have
IND-CPA security.

Exercise 19.13.19. Show that the “textbook” Merkle-Hellman knapsack does not have
OWE-CCA security.

Example 19.13.20. One can compute a single bit of information about the message
from the ciphertext in the the “textbook” Merkle-Hellman system. Suppose that not all
a1, . . . , an in the public key are even (if so, divide all ai and the challenge ciphertext c by
2 and try again). Then c ≡ Pn

i=1 xiai (mod 2) and so one obtains

nX

i=1,ai odd

xi (mod 2).

In general one prefers the cipertext to have a similar size to n. Exercise 19.13.21 shows
that it is impossible to have a ciphertext of exactly the same bit-length as the message
when using knapsacks.

Exercise 19.13.21. Show that a ciphertext in the “textbook” Merkle-Hellman scheme
is expected to require at least n+ log2(n)− 2 bits.

Exercise 19.13.22. It is sometimes stated in the literature that a Merkle-Hellman public
key must have density less than 1. Show that this is not the case.

To avoid attacks (to be described in the next section) it was proposed to iterate the
Merkle-Hellman procedure t times. In other words, first choose a superincreasing sequence
b1, . . . , bn, choose (M1,W1) such that M1 >

Pn
i=1 bn and compute a1,i = Wbi (mod M1)

for 1 ≤ i ≤ n. Then choose (M2,W2) such that M2 >
Pn

i=1 a1,i and compute a2,i =
Wa1,i (mod M2) for 1 ≤ i ≤ n and so on. The public key is at,1, . . . , at,n. One can
then apply a permutation to the public key if necessary. The original Merkle-Hellman
cryptosystem is the case t = 1, which is sometimes given the anachronistic name “single-
iterated Merkle-Hellman”.

Exercise 19.13.23. Give the decryption algorithm for the iterated Merkle-Hellman sys-
tem.

Exercise 19.13.24. Show that in iterated Merkle-Hellman one expects Mi+1 > (n/2)Mi

for 1 ≤ i < n. Hence, show that the ciphertext in an iterated Merkle-Hellman system is
at least t(log2(n)−1)+n+log2(n)−2 bits. Determine the expected density of the public
key.

19.13. KNAPSACK CRYPTOSYSTEMS 427

It follows that one cannot iterate the Merkle-Hellman construction too many times.
In the next section we will sometimes assume that b1b2 < M . Exercise 19.13.25 shows

that if this is not the case then ciphertexts are roughly double the length of the message,
and hence are less desirable for practical applications.

Exercise 19.13.25. Let b1, . . . , bn be a superincreasing sequence and suppose M >Pn
i=1 bi is such that b1b2 > M . Show that the average ciphertext size is at least 2n +

log2(n)− 6 bits.

19.13.2 Cryptanalysis of Knapsack Cryptosystems

We now give a number of attacks on the knapsack cryptosystem, some of which are
easy exercises. For a thorough discussion of the history of these attacks see Brickell and
Odlyzko [104] and Odlyzko [470].

We remark that there is not necessarily a unique private key for a given Merkle-
Hellman knapsack public key since {W−1ai (mod M) : 1 ≤ i ≤ n} might be a superin-
creasing sequence for more than one choice of (M,W).

Exercise 19.13.26. Show that, given a Merkle-Hellman knapsack public key (a1, . . . , an),
one can efficiently determine whether a guess for (M,W) provides a useful private key.

We now show that the scheme is insecure if the first elements of the superincreasing
sequence are known.

Example 19.13.27. Let a1, . . . , an be a Merkle-Hellman knapsack public key. Suppose
one knows the first two elements b1 and b2 of the superincreasing sequence. We show how
to recover the private key.

First, suppose no permutation is used. Then a1 ≡ Wb1 (mod M) and a2 ≡ Wb2 (mod M).
It follows that a1b2 ≡ a2b1 (mod M) and so M is a factor of (a1b2−a2b1). Since b1 and b2
are small, ai ≈ 2n (perhaps n = 256) and (a1b2−a2b1) is not expected to have any special
form, it is natural to assume that this factoring problem is fairly easy. Furthermore, since
max{ai : 1 ≤ i ≤ n} < M and we expect M < 2max{ai : 1 ≤ i ≤ n} (i.e., not all
ai < M/2) there are few possible values for M .

For each possible value of M one can compute W = a1b
−1
1 (mod M) and then test

whether the values W−1ai (mod M) look like a superincreasing sequence.
To deal with the permutation just repeat the attack for all triples (ai, aj) with 1 ≤

i, j ≤ n distinct. If (i, j) does not correspond to the correct permutation of (1, 2) then
probably either (aib2−ajb1) does not have a factor of the right size, or the corresponding
W do not yield superincreasing sequences.

Exercise 19.13.28. Perform the attack of Example 19.13.27 for the Merkle-Hellman
public key

8391588, 471287, 8625204, 906027, 8328886

given that b1 = 44899 and b2 = 1048697 (with no permutation used).

In practice, due to Example 19.13.27, one would take b1 and b2 to have around 2κ/2

bits each for security parameter κ.
We now show why M must be kept secret.

Example 19.13.29. Suppose M is known to the attacker, who wants to compute W and
hence the superincreasing sequence b1, . . . , bn.

First, assume no permutation is used. Since

ai ≡ biW (mod M)

428 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

for 1 ≤ i ≤ n one has b2 ≡ b1(a2a
−1
1) (mod M). Let 0 ≤ c < M be such that c ≡

a2a
−1
1 (mod M). Then

b2 = b1c+ zM

where z < b1. Running the extended Euclidean algorithm on (c,M) computes all triples
(b1, z, b2) such that b1b2 < M in polynomial-time (following Exercise 19.13.25 we assume
that the desired solution satisfies this condition). For each candiate pair (b1, b2) one
checks whether a1b

−1
1 ≡ a2b

−1
2 (mod M) and, if so, calls this value W and tests whether

W−1bi (mod N) is “small” (at most M/2, and usually much smaller) for a few randomly
chosen indices i. One expects to easily find the right pair (b1, b2) and hence the correct
value for W .

When the permutation is used one repeats the above attack for all pairs (ai, aj) for
distinct 1 ≤ i, j ≤ n.

Exercise 19.13.30. Show that W must be kept secret.

Shamir’s Attack

We now present an attack using lattices to compute both M and W together (actually,
to compute M and U = W−1 (mod M) where 1 ≤ U < M). This approach originates
with Shamir [546] although we follow the presentation of Lagarias [360]. For clarity, we
first assume that no permutation is used. The starting point is to note that for 1 ≤ i ≤ n
there are integers ki such that

aiU − kiM = bi

and 0 ≤ ki < ai. Hence,

0 ≤ U

M
− ki

ai
=

bi
aiM

. (19.7)

Since the bi are superincreasing we have bi < M/2n−i and so 0 ≤ U/M − ki/ai <
1/(ai2

n−i). In particular, U/M − k1/a1 < 1/(a12
n−1) is very small.

We now observe that to break the Merkle-Hellman knapsack it is sufficient to find
any pair (u,m) of positive integers such that uai (mod m) is a superincreasing sequence
(or at least is similar enough to such a sequence that one can solve the subset sum
problem). We show in the next paragraph that if k1/a1 is close enough to U/M then
taking (u,m) = (k1, a1) will suffice.

Subtracting the case i = 1 of equation (19.7) from the i-th gives

k1
a1

− ki
ai

=
bi

aiM
− b1

a1M
=

a1bi − aib1
a1aiM

and so, for 2 ≤ i ≤ n,

|aik1 − a1ki| = |a1bi − aib1|/M < 2Mbi/M = 2bi < M/2n−i−1. (19.8)

Taking m = a1 and u = k1 we have uai (mod m) being very close to a superincreasing
sequence (in the sense that the numbers grow in a very controlled way).

It remains to compute the integer k1 such that equation (19.8) holds, given only
the integers a1, . . . , an. Another way to write equation (19.8) is |ai/a1 − ki/k1| <
M/(a1k12

n−i−1) and one sees that the problem is precisely simultaneous Diophantine
approximation as considered in Section 19.5. We apply the method of Section 19.5.

19.13. KNAPSACK CRYPTOSYSTEMS 429

Hence, consider the following basis matrix (where 0 < λ < 1 is a parameter analogous to
ǫ/Q in equation (19.5) and where 1 < l ≤ n)

λ a2 a3 · · · al
0 −a1 0 · · · 0
0 0 −a1
...

...
. . .

...
0 0 · · · −a1

. (19.9)

This lattice contains the vector (λk1, k1a2−k2a1, k1a3−k3a1, . . . , k1ad−kda1). Perfoming
lattice basis reduction one obtains a guess for k1. One now sets u = k1 and m = a1 and
computes uai (mod m) for 2 ≤ i ≤ n. Hopefully this is a superincreasing sequence (or, is
at least close enough to one to allow efficient decryption). One then computes uc (mod n)
where c is any challenge ciphertext, decrypts using the superincreasing sequence, and
therefore recovers the message. One might expect to have to take l = n, but the attack
actually works for rather small values of l (see below for more discussion).

Example 19.13.31. Consider the superincreasing sequence

b1 = 7, b2 = 20, b3 = 35, b4 = 71, b5 = 140, b6 = 307, b7 = 651, b8 = 1301.

Choose M = 2609 and W = 2525 (giving U = 528). The Merkle-Hellman public key is

(2021, 929, 2278, 1863, 1285, 302, 105, 294).

The encryption of 10101011 is 5983.
The sequence of values ki such that aiU − kiM = bi are

409, 188, 461, 377, 260, 61, 21, 59

and the values of aik1 − a1ki for i = 2, 3, 4 are 13, 21 and 50.
Take λ = 1/32 and l = 4 and consider the lattice basis as in equation (19.9). LLL

reduction gives

409/32 13 21 50
2021/32 0 0 0
−755/32 −108 −19 51
205/8 −137 556 −216

 .

One recovers k1 = 409 (and the first few values aik1 − a1ki). One can even get the result
using λ = 1/8 and l = 3. The LLL-reduced basis is

−409/8 −13 −21
63/8 −82 23
385/8 −52 −84

 .

To complete the cryptanalysis take u = k1 = 409 and m = a1 = 2021. The sequence
aiu (mod m) for 1 ≤ i ≤ 8 is (0, 13, 21, 50, 105, 237, 504, 1007), which is a superincreasing
sequence. One then computes 5983u ≡ 1637 (mod m), which decomposes with respect
to the superincreasing sequence as 1637 = 1007 + 504 + 105 + 21. The corresponding
message is x10101011 where x1 ∈ {0, 1}. Using the original public key one can determine
that x1 = 1 and confirm that the message does encrypt to the given ciphertext.

Exercise 19.13.32. Using the same public key as Example 19.13.31 decrypt the cipher-
text 5522 using the key (u,m) determined by the cryptanalysis.

430 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Exercise 19.13.33. Consider the Merkle-Hellman public key 1994, 1966, 1889, 822, 640,
1224, 1402, 1492 and ciphertext 6569. Deduce the message using Shamir’s attack.

A formal analysis of this method is given by Lagarias [360]. As with other attacks
on knapsack cryptosystems, the results are heuristic in the sense that they are proved by
considering a “random” knapsack instance. The first issue is the size of l. Shamir [546]
and Lagarias [360] both suggest that one can take l > 1/d+ 1, where d is the density of
the instance. In practice, l = 4 seems to be acceptable. This means the computation is
only for lattices of very small dimensions and is certainly polynomial-time. So far we have
ignored the permutation; in practice the attack is repeated for the n(n−1) · · · (n−(l−1))
choices of l values from (a1, . . . , an). Since l is constant this still gives a polynomial-time
attack. For these reasons the Merkle-Hellman knapsack cryptosystem is considered to be
totally broken.

The iterated Merkle-Hellman system is designed to avoid the above attacks, though
Lagarias [360] showed how to attack the double iterated knapsack (i.e., the case t = 2)
and discussed how to generalise the attack to larger t using exactly the same methods.
Brickell [103] also discusses a heuristic method to attack the general iterated Merkle-
Hellman system.

Direct Lattice Attack on Subset Sum

We now discuss a more direct way to use lattices to solve the subset sum problem and
hence break knapsack cryptosystems. This idea originates in the work of Lagarias and
Odlyzko [362]. These methods do not rely on any properties of the subset sum instance
and so can be applied to iterated Merkle-Hellman. However, they only work when the
density is sufficiently small.

Let (a1, . . . , an) be a sequence of weights and let s =
Pn

i=1 xiai be a subset sum
instance. Note that s′ =

Pn
i=1 ai − s is the subset sum instance of the complement

x̄1 · · · x̄n (where 0̄ = 1 and 1̄ = 0). Since one can repeat any attack on s and s′ in turn
we may always assume that at most half the entries of the solution are non-zero.

The basic method is to consider the lattice L with basis
�

In a
0 −s

�
(19.10)

where In is an n× n identity matrix and a is the list of weights represented as a column
vector. Then

v = (x1, x2, . . . , xn, 0)

is a vector in the lattice. Since kvk ≤ √
n this vector is very short and so one could hope

to find it using lattice basis reduction.

Example 19.13.34. Consider the subset sum instance from Example 19.13.14. Reducing
the basis

1 0 0 0 0 0 0 430
0 1 0 0 0 0 0 138
0 0 1 0 0 0 0 495
0 0 0 1 0 0 0 49
0 0 0 0 1 0 0 463
0 0 0 0 0 1 0 196
0 0 0 0 0 0 1 165
0 0 0 0 0 0 0 −942

19.13. KNAPSACK CRYPTOSYSTEMS 431

using LLL gives

1 0 0 1 1 0 0 0
0 0 1 0 −1 −1 1 1
1 0 1 0 −2 0 0 −1
0 0 2 −1 0 0 0 −1
−1 1 2 1 0 1 0 1
0 −2 1 1 −1 1 0 1
−1 0 1 2 0 0 −1 −2
0 0 1 0 0 0 −3 0

.

One sees that the message (1, 0, 0, 1, 1, 0, 0, 0) appears as the first row (smallest vector) in
the lattice.

Exercise 19.13.35. Consider the knapsack public key

2381, 1094, 2188, 2442, 2280, 1129, 1803, 2259, 1665

and ciphertext 7598. Determine the message using the direct lattice method.

Lagarias and Odlyzko analysed the method for “random” subset sum instances of a
given size. They showed (Theorem 3.3 of [362], also see Section 2 of [154]) that for ran-
domly chosen weights ai of size 2βn with β > 1.54725 (i.e., random subset sum instances
of density at most 0.6463) then with overwhelming probability (as n tends to infinity) the
desired solution vector x is the shortest non-zero vector in the lattice. If one can solve
the shortest vector problem then one therefore can break the cryptosystem.

There are therefore two problems to overcome. First, the statement only holds for
randomly generated weights of a given size and so does not say anything concrete about
specific instances. Second, there is no known efficient algorithm to solve SVP exactly.
This latter point is a serious problem: as seen in Example 19.13.34 there are many
very small vectors in the lattice that do not have entries only in {0, 1} (these are often
called parasitic solutions to the subset sum instance). Hence, for large n, it is quite
possible that LLL outputs a short basis that does not include the desired solution vector.
Nevertheless, the LLL algorithm does work well in practice and can be used to solve
subset sum instances when the density is not too high.

Theorem 3.5 of Lagarias and Odlyzko [362] shows (for randomly chosen weights ai of

size 2(1/2+β)n2

with β > 0) that with overwhelming probability (as n tends to infinity) the
desired solution vector x is computed using the LLL algorithm. This is done by showing
that the parasitic solutions all have significantly larger size. The problem with this result
is that it only applies when the density satisfies d ≤ (1/2 + β)−11/n, which is extremely
low.

Coster, Joux, LaMacchia, Odlyzko, Schnorr and Stern [154] improved the method by
replacing the last row of the lattice in equation (19.10) by (1/2, 1/2, . . . , 1/2, s). Under the
same simplifying assumptions as used by Lagarias and Odlyzko they showed the attack
could be applied for instances with density d < 0.9408. Again, although their method
officially requires an efficient algorithm for SVP, solving the approximate SVP using LLL
works well in practice as long as n is not too large. An alternative formulation of this
method is given in Section 3.2 of Nguyen and Stern [463].

The direct lattice attacks require lattices of dimension n so can be defeated by choos-
ing n sufficiently large. Hence, the high-density subset sum problem remains hard in
general. The problem with knapsack cryptosystems is that one needs to iterate the basic
Merkle-Hellman construction sufficiently many times to avoid the attacks presented ear-
lier. Iterating the Merkle-Hellman method lowers the lattice density and this can make

432 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

the system vulnerable to the direct lattice attack unless n is rather large. To conclude, it
seems that iterated knapsack cryptosystems are completely broken.

