
Chapter 16

Lattices

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

The word “lattice” has two different meanings in mathematics. One meaning is related
to the theory of partial orderings on sets (for example, the lattice of subsets of a set).
The other meaning, which is the one relevant to us, is discrete subgroups of Rn.

There are several reasons for presenting lattices in this book. First, there are hard
computational problems on lattices that have been used as a building block for pub-
lic key cryptosystems (e.g., the Goldreich-Goldwasser-Halevi (GGH) cryptosystem, the
NTRU cryptosystem, the Ajtai-Dwork cryptosystem, and the LWE cryptosystem); how-
ever, we do not present these applications in this book. Second, lattices are used as a
fundamental tool for cryptanalysis of public key cryptosystems (e.g., lattice attacks on
knapsack cryptosystems, Coppersmith’s method for finding small solutions to polynomial
equations, attacks on signatures, and attacks on variants of RSA). Third, there are ap-
plications of lattices to efficient implementation of discrete logarithm systems (such as
the GLV method; see Section 11.3.3). Finally, lattices are used as a theoretical tool for
security analysis of cryptosystems, for example the bit security of Diffie-Hellman key ex-
change using the hidden number problem (see Section 21.7) and the security proofs for
RSA-OAEP.

Some good references for lattices, applications of lattices and/or lattice reduction al-
gorithms are: Cassels [122], Siegel [563], Cohen [136], von zur Gathen and Gerhard [238],
Grötschel, Lovász and Schrijver [269], Nguyen and Stern [462, 463], Micciancio and Gold-
wasser [422], Hoffstein, Pipher and Silverman [289], Lenstra’s chapter in [113], Micciancio
and Regev’s chapter in [50] and the proceedings of the conference LLL+25.
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356 CHAPTER 16. LATTICES

Notation used in this part

Z, Q, R Integers, rational, real numbers
b, v, w Row vectors (usually in Rm)
0 Zero vector in Rm

ei i-th unit vector in Rm

In n× n identity matrix
hx, xi Inner product
kxk Euclidean length (ℓ2 norm)
k · ka ℓa-norm for a ∈ N
span{v1, . . . , vn} Span of a set of vectors over R
rank(A) Rank of a matrix A
⌊x⌉ Closest integer to x, ⌊1/2⌉ = 1
B Basis matrix for a lattice
L Lattice
b∗i Gram-Schmidt vector arising from ordered basis {b1, . . . , bn}
µi,j Gram-Schmidt coefficient hbi, b∗j i/hb∗j , b∗j i
Bi kb∗i k2
λi Successive minima of a lattice
det(L) Determinant of a lattice
γn Hermite’s constant
X Bound on the size of the entries in the basis matrix L
B(i) i×m matrix formed by the first i rows of B
di Determinant of matrix of hbj , bki for 1 ≤ j, k ≤ i
D Product of di
P1/2(B) Fundamental domain (parallelepiped) for lattice basis B
F (x), F (x, y) Polynomial with “small” root
G(x), G(x, y) Polynomial with “small” root in common with F (x) (resp., F (x, y))
X,Y Bounds on size of root in Coppersmith’s method
bF Coefficient vector of polynomial F
R(F,G), Rx(F (x), G(x)) Resultant of polynomials
W Bound in Coppersmith’s method
P,R Constants in noisy Chinese remaindering
amp(x) The amplitude gcd(P, x −R) in noisy Chinese remaindering
B,B′ Basis matrices for GGH encryption
In n× n identity matrix
U Invertible matrix disguising the private key in GGH
m Message in McEliece or GGH
e Error vector in McEliece or GGH
c Ciphertext in McEliece or GGH
σ Entry in error vector in GGH
M Size of coefficients in message in GGH
s GGH signature
a1, . . . , an Subset sum weights
b1, . . . , bn Superincreasing sequence
s =

Pn
i=1 xiai The sum in a subset sum instance, with xi ∈ {0, 1}

d Density of a subset sum instance
π Permutation of {1, . . . , n} used in the Merkle-Hellman cryptosystem
σ Vector in Nguyen attack
M Modulus in Merkle-Hellman knapsack
W Multiplier in Merkle-Hellman knapsack
U W−1 (mod M) in Merkle-Hellman
t Number of iterations in iterated Merkle-Hellman knapsack
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16.1 Basic Notions on Lattices

A lattice is a subset of the vector space Rm. We write all vectors as rows; be warned that
many books and papers write lattice vectors as columns. We denote by kvk the Euclidean
norm of a vector v ∈ Rm; though some statements also hold for other norms.

Definition 16.1.1. Let {b1, . . . , bn} be a linearly independent set of (row) vectors in Rm

(m ≥ n). The lattice generated by {b1, . . . , bn} is the set

L =

(
nX

i=1

libi : li ∈ Z

)

of integer linear combinations of the bi. The vectors b1, . . . , bn are called a lattice basis.
The lattice rank is n and the lattice dimension is m. If n = m then L is said to be a
full rank lattice.

Let L ⊂ Rm be a lattice. A sublattice is a subset L′ ⊂ L that is a lattice.

A basis matrix B of a lattice L is an n×m matrix formed by taking the rows to be
basis vectors bi. Thus Bi,j is the j-th entry of the row bi and

L = {xB : x ∈ Zn}.

By assumption the rows of a basis matrix are always linearly independent.

Example 16.1.2. The lattice in R2 generated by {(1, 0), (0, 1)} is L = Z2. The corre-
sponding basis matrix is B = ( 1 0

0 1 ). Any 2 × 2 integer matrix B of determinant ±1 is
also a basis matrix for L.

We will mainly assume that the basis vectors bi for a lattice have integer entries. In
cryptographic applications this is usually the case. We interchangeably use the words
points and vectors for elements of lattices. The vectors in a lattice form an Abelian
group under addition. When n ≥ 2 there are infinitely many choices for the basis of a
lattice.

An alternative approach to lattices is to define L = Zn and to have a general length
function q(v). One finds this approach in books on quadratic forms or optimisation
problems, e.g., Cassels [121] and Schrijver [531]. In particular, Section 6.2 of [531] presents
the LLL algorithm in the context of reducing the lattice L = Zn with respect to a length
function corresponding to a positive-definite rational matrix.

We now give an equivalent definition of lattice, which is suitable for some applications.
A subset L ⊆ Rm is called discrete if, for any real number r > 0, the set {v ∈ L : kvk ≤ r}
is finite. It is clear that a lattice is a subgroup of Rm that is discrete. The following result
shows the converse.

Lemma 16.1.3. Every discrete subgroup of Rm is a lattice.

Proof: (Sketch) Let {v1, . . . , vn} be a linearly independent subset of L of maximal size.
The result is proved by induction. The case n = 1 is easy (since L is discrete there is
an element of minimal non-zero length). When n > 1 consider V = span{v1, . . . , vn−1}
and set L′ = L∩ V . By induction, L′ is a lattice and so has a basis b1, . . . , bn−1. The set

L ∩ {Pn−1
i=1 xibi + xnvn : 0 ≤ xi < 1 for 1 ≤ i ≤ n − 1 and 0 < xn ≤ 1} is finite and so

has an element with smallest xn, call it bn. It can be shown that {b1, . . . , bn} is a basis
for L. For full details see Theorem 6.1 of [586]. �
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Exercise 16.1.4. Given an m×n integer matrix A show that ker(A) = {x ∈ Zm : xA =
0} is a lattice. Show that the rank of the lattice is m− rank(A). Given an m× n integer
matrix A and an integer M show that {x ∈ Zm : xA ≡ 0 (mod M)} is a lattice of rank
m.

In the case m > n it is sometimes convenient to project the lattice L into Rn using
the following construction. The motivation is that a linear map that preserves lengths
preserves volumes. Note that if the initial basis for L consists of vectors in Zn then the
resulting basis does not necessarily have this property.

Lemma 16.1.5. Let B be an n × m basis matrix for a lattice L where m > n. Then
there is a linear map P : Rm → Rn such that P (L) is a rank n lattice and kP (v)k = kvk
for all v ∈ L. Furthermore, hbi, bji = hP (bi), P (bj)i for all 1 ≤ i < j ≤ n.

If the linear map is represented by an m × n matrix P so that P (v) = vP then a
basis matrix for the image of L under the projection P is the n× n matrix BP , which is
invertible.

Proof: Given the n×m basis matrix B with rows bi, define V = span{b1, . . . , bn} ⊂ Rm,
which has dimension n by assumption. Choose (perhaps by running the Gram-Schmidt
algorithm) a basis v1, . . . , vn for V that is orthonormal with respect to the inner product
in Rm. Define the linear map P : V → Rn by P (vi) = ei and P (V ⊥) = {0}. For
v =

Pn
i=1 xivi ∈ V we have kvk =

p
hv, vi =

pPn
i=1 x

2
i = kvPk. Since the vectors bi

form a basis for V , the vectors P (bi) = biP are linearly independent. Hence, BP is an
invertible matrix and P (L) is a lattice of rank n. �

We can now prove the following fundamental result.

Lemma 16.1.6. Two n×m matrices B and B′ generate the same lattice L if and only
if B and B′ are related by a unimodular matrix, i.e., B′ = UB where U is an n × n
matrix with integer entries and determinant ±1.

Proof: (⇒) Every row of B′ is an integer linear combination

b′i =
nX

j=1

ui,jbj

of the rows in B. This can be represented as B′ = UB for an n× n integer matrix U .
Similarly, B = U ′B′ = U ′UB. Now applying the projection P of Lemma 16.1.5 we

have BP = U ′UBP and, since BP is invertible, U ′U = In (the identity matrix). Since
U and U ′ have integer entries it follows that det(U), det(U ′) ∈ Z. From det(U) det(U ′) =
det(In) = 1 it follows that det(U) = ±1.

(⇐) Since U is a permutation of Zn we have {xB′ : x ∈ Zn} = {xB : x ∈ Zn}. �

The Hermite normal form is defined in Section A.11. The following result is a direct
consequence of Lemma 16.1.6 and the remarks in Section A.11.

Lemma 16.1.7. If B is the basis matrix of a lattice L then the Hermite normal form of
B is also a basis matrix for L.

The determinant of a lattice L is the volume of the fundamental parallelepiped of
any basis B for L. When the lattice has full rank then using Definition A.10.7 and
Lemma A.10.8 we have det(L) = | det(B)|. For the case n < m our definition uses
Lemma 16.1.5.

Definition 16.1.8. Let the notation be as above. The determinant (or volume) of a
lattice L with basis matrixB is | det(BP )|, where P is a matrix representing the projection
of Lemma 16.1.5.
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Lemma 16.1.9. The determinant of a lattice is independent of the choice of basis matrix
B and the choice of projection P .

Proof: Let P and P ′ be two projection matrices corresponding to orthogonal bases
{v1, . . . , vn} and {v′1, . . . , v′n} for V = span{b1, . . . , bn}. Then, by Lemma A.10.3, P ′ =
PW for some orthogonal matrix W (hence det(W ) = ±1). It follows that | det(BP )| does
not depend on the choice of P .

Let B and B′ be two basis matrices for a lattice L. Then B′ = UB where U is an n×n
matrix such that det(U) = ±1. Then det(L) = | det(BP )| = | det(UBP )| = | det(B′P )|.
�

We have seen that there are many different choices of basis for a given lattice L. A
fundamental problem is to compute a “nice” lattice basis for L; specifically one where the
vectors are relatively short and close to orthogonal. The following exercise shows that
these properties are intertwined.

Exercise 16.1.10. Let L be a rank 2 lattice in R2 and let {b1, b2} be a basis for L.

1. Show that
det(L) = kb1kkb2k| sin(θ)| (16.1)

where θ is the angle between b1 and b2.

2. Hence deduce that the product kb1kkb2k is minimised over all choices {b1, b2} of
basis for L when the angle θ is closest to ±π/2.

Definition 16.1.11. Let L be a lattice in Rm of rank n with basis matrix B. The Gram
matrix of B is BBT . This is an n× n matrix whose (i, j)th entry is hbi, bji.
Lemma 16.1.12. Let L be a lattice in Rm of rank n with basis matrix B. Then det(L) =p
det(BBT ).

Proof: Consider first the case where m = n. Then det(L)2 = det(B) det(BT ) =
det(BBT ) = det((hbi, bji)i,j). Hence, when m > n and B′ = BP , det(L) = | det(B′)| =p
det(B′(B′)T ). Now, the (i, j)th entry of B′(B′)T = (BP )(BP )T is hbiP, bjP i, which is

equal to the (i, j)th entry of BBT by Lemma 16.1.5. The result follows. �

Note that an integer lattice of non-full rank may not have integer determinant.

Exercise 16.1.13. Find an example of a lattice of rank 1 in Z2 whose determinant is
not an integer.

Lemma 16.1.14. Let b1, . . . , bn be an ordered basis for a lattice L in Rm and let b∗1, . . . , b
∗
n

be the Gram-Schmidt orthogonalisation. Then det(L) =
Qn

i=1 kb∗i k.
Proof: The case m = n is already proved in Lemma A.10.8. For the general case let
vi = b∗i /kb∗i k be the orthonormal basis required for the construction of the projection P .
Then P (b∗i ) = kb∗i kei. Write B and B∗ for the n×m matrices formed by the rows bi and
b∗i respectively. It follows that B∗P is an n × n diagonal matrix with diagonal entries
kb∗i k. Finally, by the Gram-Schmidt construction, B∗ = UB for some n × n matrix U
such that det(U) = 1. Combining these facts gives1

det(L) = | det(BP )| = | det(UBP )| = | det(B∗P )| =
nY

i=1

kb∗i k.

�

1The formula BP = U−1(B∗P ) is the QR decomposition of BP .
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Exercise 16.1.15. Let {b1, . . . , bn} be an ordered lattice basis in Rm and let {b∗1, . . . , b∗n}
be the Gram-Schmidt orthogonalisation. Show that kbik ≥ kb∗i k and hence det(L) ≤Qn

i=1 kbik.

Definition 16.1.16. Let {b1, . . . , bn} be a basis for a lattice L in Rm. The orthogonality
defect of the basis is  

nY

i=1

kbik
!
/ det(L).

Exercise 16.1.17. Show that the orthogonality defect of {b1, . . . , bn} is 1 if and only if
the basis is orthogonal.

Definition 16.1.18. Let L ⊂ Rm be a lattice of rank n. The successive minima of L
are λ1, . . . ,λn ∈ R such that, for 1 ≤ i ≤ n, λi is minimal such that there exist i linearly
independent vectors v1, . . . , vi ∈ L with kvjk ≤ λi for 1 ≤ j ≤ i.

It follows that 0 < λ1 ≤ λ2 · · · ≤ λn. In general there is not a basis consisting
of vectors whose lengths are equal to the successive minima, as the following example
shows.

Example 16.1.19. Let L ⊂ Zn be the set

L = {(x1, . . . , xn) : x1 ≡ x2 ≡ · · · ≡ xn (mod 2)}.

It is easy to check that this is a lattice. The vectors 2ei ∈ L for 1 ≤ i ≤ n are linearly
independent and have length 2. Every other vector x ∈ L with even entries has length
≥ 2. Every vector x ∈ L with odd entries has all xi 6= 0 and so kxk ≥ √

n.
If n = 2 the successive minima are λ1 = λ2 =

√
2 and if n = 3 the successive minima

are λ1 = λ2 = λ3 =
√
3. When n ≥ 4 then λ1 = λ2 = · · · = λn = 2. For n ≤ 4 one can

construct a basis for the lattice with vectors of lengths equal to the successive minima.
When n > 4 there is no basis for L consisting of vectors of length 2, since a basis must
contain at least one vector having odd entries.

Exercise 16.1.20. For n = 2, 3, 4 in Example 16.1.19 write down a basis for the lattice
consisting of vectors of lengths equal to the successive minima.

Exercise 16.1.21. For n > 4 in Example 16.1.19 show there is a basis for the lattice
such that kbik = λi for 1 ≤ i < n and kbnk =

√
n.

Definition 16.1.22. Let L ⊆ Rm be a lattice and write V ⊆ Rm for the R-vector space
spanned by the vectors in L. The dual lattice of L is L∗ = {y ∈ V : hx, yi ∈ Z for all x ∈
L}.

Exercise 16.1.23. Show that the dual lattice is a lattice. Let B be a basis matrix of a
full rank lattice L. Show that (BT )−1 is a basis matrix for the dual lattice. Hence, show
that the determinant of the dual lattice is det(L)−1.

16.2 The Hermite and Minkowski Bounds

We state the following results without rigorously defining the term “volume” and without
giving proofs (see Section 1.3 of Micciancio and Goldwasser [422], Chapter 1 of Siegel [563],
Chapter 6 of Hoffstein, Pipher and Silverman [289] or Chapter 12 of Cassels [121] for
details).
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Theorem 16.2.1. (Blichfeldt) Let L be a lattice in Rm with basis {b1, . . . , bn} and S
any measurable set such that S ⊂ span{bi : 1 ≤ i ≤ n}. If the volume of S exceeds det(L)
then there exist two distinct points v1, v2 ∈ S such that (v1 − v2) ∈ L.

Proof: See Theorem 1.3 of [422] or Section III.2.1 of [121]. �

Theorem 16.2.2. (Minkowski convex body theorem) Let L be a lattice in Rm with basis
{b1, . . . , bn} and let S be any convex set such that S ⊂ span{bi : 1 ≤ i ≤ n}, 0 ∈ S and if
v ∈ S then −v ∈ S. If the volume of S is > 2n det(L) then there exists a non-zero lattice
point v ∈ S ∩ L.

Proof: See Section III.2.2 of Cassels [121], Theorem 6.28 of Hoffstein, Pipher and Silver-
man [289], Theorem 1.4 of Micciancio and Goldwasser [422], or Theorem 6.1 of Stewart
and Tall [586]. �

The convex body theorem is used to prove Theorem 16.2.3. The intuition behind this
result is that if the shortest non-zero vector in a lattice is large then the volume of the
lattice cannot be small.

Theorem 16.2.3. Let n ∈ N. There is a constant 0 < γn ≤ n such that, for any lattice
L of rank n in Rn having first minimum λ1 (for the Euclidean norm),

λ2
1 < γn det(L)

2/n.

Proof: See Theorem 1.5 of [422], Theorem 6.25 of [289], or Theorem 12.2.1 of [121]. �

Exercise 16.2.4. Show that the convex body theorem is tight. In other words find a
lattice L in Rn for some n and a symmetric convex subset S ⊆ Rn such that the volume
of S is 2n det(L) and yet S ∩ L = {0}.

Exercise 16.2.5. Show that, with respect to the ℓ∞ norm, λ1 ≤ det(L)1/n. Show that,
with respect to the ℓ1 norm, λ1 ≤ (n! det(L))1/n ≈ n det(L)1/n/e.

Exercise 16.2.6.⋆ Let a, b ∈ N. Show that there is a solution r, s, t ∈ Z to r = as+ bt
such that s2 + r2 ≤

√
2b.

Definition 16.2.7. Let n ∈ N. The smallest real number γn such that

λ2
1 ≤ γn det(L)

2/n

for all lattices L of rank n is called the Hermite constant.

Exercise 16.2.8. This exercise is to show that γ2 = 2/
√
3.

1. Let {b1, b2} be a Lagrange-Gauss reduced basis (see Definition 17.1.1 of the next
Section) for a dimension 2 lattice in R2. Define the quadratic form N(x, y) =
kxb1+yb2k2. Show that, without loss of generality, N(x, y) = ax2+2bxy+cy2 with
a, b, c ≥ 0 and a ≤ c.

2. UsingN(1,−1) ≥ N(0, 1) (which follows from the property of being Lagrange-Gauss
reduced), show that 2b ≤ a. Hence show that 3ac ≤ 4(ac− b2)

3. Show that det(L)2 = |b2 − ac|. Hence deduce that Hermite’s constant satisfies
γ2 ≤ 2/

√
3.
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4. Show that the lattice L ⊂ R2 with basis {(1, 0), (−1/2,
√
3/2)} satisfies λ2

1 =
(2/

√
3) det(L).

(Optional) Show that L is equal to the ring of algebraic integers of Q(
√
−3). Show

that centering balls of radius 1/2 at each point of L gives the most dense lattice
packing of balls in R2.

Section 6.5.2 of Nguyen [456] lists the first 8 values of γn, gives the bound
n

2πe +o(1) ≤
γn ≤ n

πe(1 + o(1)) and gives further references.

Theorem 16.2.9. (Minkowski) Let L be a lattice of rank n in Rn with successive minima
λ1, . . . ,λn for the Euclidean norm. Then

 
nY

i=1

λi

!1/n

<
√
n det(L)1/n.

Proof: See Theorem 12.2.2 of [121]. (The term
√
n can be replaced by

√
γn.) �

The Gaussian heuristic states that the shortest non-zero vector in a “random”
lattice L of dimension n in Rn is expected to have length approximately

r
n

2πe
det(L)1/n.

We refer to Section 6.5.3 of [456] and Section 6.5.3 of [289] for discussion and references.

16.3 Computational Problems in Lattices

There are several natural computational problems relating to lattices. We start by list-
ing some problems that can be efficiently solved using linear algebra (in particular, the
Hermite normal form).

1. lattice membership: Given an n×m basis matrix B for a lattice L ⊆ Zm and a
vector v ∈ Zm determine whether v ∈ L.

2. lattice basis: Given a set of vectors b1, . . . , bn in Zm (possibly linearly dependent)
find a basis for the lattice generated by them.

3. kernel lattice: Given an m × n integer matrix A compute a basis for the lattice
ker(A) = {x ∈ Zm : xA = 0}.

4. kernel lattice modulo M : Given an m × n integer matrix A and an integer M
compute a basis for the lattice {x ∈ Zm : xA ≡ 0 (mod M)}.

Exercise 16.3.1.⋆ Describe explicit algorithms for the above problems and determine
their complexity.

Now we list some computational problems that seem to be hard in general.

Definition 16.3.2. Let L be a lattice in Zm.

1. The shortest vector problem (SVP) is the computational problem: given a
basis matrix B for L, compute a non-zero vector v ∈ L such that kvk is minimal
(i.e., kvk = λ1).
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2. The closest vector problem (CVP) is the computational problem: given a basis
matrix B for L and a vector w ∈ Qm (one can work with high-precision approxima-
tions in Rm, but this is essentially still working in Qm), compute v ∈ L such that
kw − vk is minimal.

3. The decision closest vector problem (DCVP) is: given a basis matrix B for a
lattice L, a vector w ∈ Qm and a real number r > 0, decide whether or not there is
a vector v ∈ L such that kw − vk ≤ r.

4. The decision shortest vector problem is: given a basis matrix B for a lattice
L and a real number r > 0 to decide whether or not there is a non-zero v ∈ L such
that kvk ≤ r.

5. Fix γ > 1. The approximate SVP problem is: given a basis matrix B for L,
compute a non-zero vector v ∈ L such that kvk ≤ γλ1.

6. Fix γ > 1. The approximate CVP problem is: given a basis matrix B for L and
a vector w ∈ Qm, compute v ∈ L such that kw − vk ≤ γkw − xBk for all x ∈ Zn.

7. Fix 0 < α < 1/
√
2. The bounded distance decoding problem (BDD) is: given

a basis matrix B for a lattice L and a vector w ∈ Qm such that there is a lattice
point v ∈ L with kw − vk ≤ αλ1(L), to compute v. In other words, this is a CVP
instance that is especially close to a lattice point.

In general, these computational problems are known to be hard2 when the rank is
sufficiently large. It is known that CVP is NP-hard (this is shown by relating CVP with
subset-sum; for details see Chapter 3 of [422]). Also, SVP is NP-hard under randomised
reductions and non-uniform reductions (see Chapter 4 of [422] for explanation of these
terms and proofs). Nguyen [456] gives a summary of the complexity results and current
best running times of algorithms for these problems.

On the other hand, if a lattice is sufficiently nice then these problems may be easy.

Example 16.3.3. Let L ⊂ R2 be the lattice with basis matrix

B =

�
1001 0
0 2008

�
.

Then every lattice vector is of the form (1001a, 2008b) where a, b ∈ Z. Hence the shortest
non-zero vectors are clearly (1001, 0) and (−1001, 0). Similarly, the closest vector to
w = (5432, 6000) is clearly (5005, 6024).

Why is this example so easy? The reason is that the basis vectors are orthogonal.
Even in large dimensions, the SVP and CVP problems are easy if one has an orthogonal
basis for a lattice. When given a basis that is not orthogonal it is less obvious whether
there exists a non-trivial linear combination of the basis vectors that gives a vector strictly
shorter than the shortest basis vector. A basis for a lattice that is “as close to orthogonal
as it can be” is therefore convenient for solving some computational problems.

2We do not give details of complexity theory in this book; in particular we do not define the term
“NP-hard”.


