
Chapter 14

Factoring and Discrete
Logarithms using
Pseudorandom Walks

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter is devoted to the rho and kangaroo methods for factoring and discrete
logarithms (which were invented by Pollard) and some related algorithms. These meth-
ods use pseudorandom walks and require low storage (typically a polynomial amount of
storage, rather than exponential as in the time/memory tradeoff). Although the rho fac-
toring algorithm was developed earlier than the algorithms for discrete logarithms, the
latter are much more important in practice.1 Hence we focus mainly on the algorithms
for the discrete logarithm problem.

As in the previous chapter, we assume G is an algebraic group over a finite field Fq

written in multiplicative notation. To solve the DLP in an algebraic group quotient using
the methods in this chapter one would first lift the DLP to the covering group (though
see Section 14.4 for a method to speed up the computation of the DLP in an algebraic
group by essentially working in a quotient).

14.1 Birthday Paradox

The algorithms in this chapter rely on results in probability theory. The first tool we need
is the so-called “birthday paradox”. This name comes from the following application,

1Pollard’s paper [487] contains the remark “We are not aware of any particular need for such index
calculations” (i.e., computing discrete logarithms) even though [487] cites the paper of Diffie and Hellman.
Pollard worked on the topic before hearing of the cryptographic applications. Hence Pollard’s work is
an excellent example of research pursued for its intrinsic interest, rather than motivated by practical
applications.

285

286 CHAPTER 14. PSEUDORANDOM WALKS

which surprises most people: among a set of 23 or more randomly chosen people, the
probability that two of them share a birthday is greater than 0.5 (see Example 14.1.4).

Theorem 14.1.1. Let S be a set of N elements. If elements are sampled uniformly at
random from S then the expected number of samples to be taken before some element is
sampled twice is less than

p
πN/2 + 2 ≈ 1.253

√
N .

The element that is sampled twice is variously known as a repeat, match or collision.
For the rest of the chapter, we will ignore the +2 and say that the expected number of
samples is

p
πN/2.

Proof: Let X be the random variable giving the number of elements selected from S
(uniformly at random) before some element is selected twice. After l distinct elements
have been selected then the probability that the next element selected is also distinct
from the previous ones is (1 − l/N). Hence the probability Pr(X > l) is given by

pN,l = 1(1− 1/N)(1− 2/N) · · · (1− (l − 1)/N).

Note that pN,l = 0 when l ≥ N . We now use the standard fact that 1 − x ≤ e−x for
x ≥ 0. Hence,

pN,l ≤ 1 e−1/Ne−2/N · · · e−(l−1)/N = e−
�l−1

j=0 j/N

= e−
1
2 (l−1)l/N

≤ e−(l−1)2/2N .

By definition, the expected value of X is

∞X

l=1

lPr(X = l) =

∞X

l=1

l(Pr(X > l − 1)− Pr(X > l))

=

∞X

l=0

(l + 1− l) Pr(X > l)

=

∞X

l=0

Pr(X > l)

≤ 1 +

∞X

l=1

e−(l−1)2/2N .

We estimate this sum using the integral

1 +

Z ∞

0

e−x2/2Ndx.

Since e−x2/2N is monotonically decreasing and takes values in [0, 1] the difference between
the value of the sum and the value of the integral is at most 1. Making the change of
variable u = x/

√
2N gives

√
2N

Z ∞

0

e−u2

du.

A standard result in analysis (see Section 11.7 of [340] or Section 4.4 of [636]) is that this
integral is

√
π/2. Hence, the expected value for X is ≤

p
πN/2 + 2. �

The proof only gives an upper bound on the probability of a collision after l trials.
A lower bound of e−l2/2N−l3/6N2

for N ≥ 1000 and 0 ≤ l ≤ 2N log(N) is given in

14.2. THE POLLARD RHO METHOD 287

Wiener [631]; it is also shown that the expected value of the number of trials is>
p
πN/2−

0.4. A more precise analysis of the birthday paradox is given in Example II.10 of Flajolet
and Sedgewick [205] and Exercise 3.1.12 of Knuth [343]. The expected number of samples
is
p
πN/2 + 2/3 +O(1/

√
N).

We remind the reader of the meaning of expected value. Suppose the experiment of
sampling elements of a set S of size N until a collision is found is repeated t times and
each time we count the number l of elements sampled. Then the average of l over all
trials tends to

p
πN/2 as t goes to infinity.

Exercise 14.1.2. Show that the number of elements that need to be selected from S to
get a collision with probability 1/2 is

p
2 log(2)N ≈ 1.177

√
N .

Exercise 14.1.3. One may be interested in the number of samples required when one
is particularly unlucky. Determine the number of trials so that with probability 0.99 one
has a collision. Repeat the exercise for probability 0.999.

The name “birthday paradox” arises from the following application of the result.

Example 14.1.4. In a room containing 23 or more randomly chosen people, the prob-
ability is greater than 0.5 that two people have the same birthday. This follows fromp
2 log(2)365 ≈ 22.49. Note also that

p
π365/2 = 23.944

Finally, we mention that the expected number of samples from a set of size N until
k > 1 collisions are found is approximately

√
2kN . A detailed proof of this fact is given

by Kuhn and Struik as Theorem 1 of [355].

14.2 The Pollard Rho Method

Let g be a group element of prime order r and let G = hgi. The discrete logarithm
problem (DLP) is: Given h ∈ G to find a, if it exists, such that h = ga. In this section
we assume (as is usually the case in applications) that one has already determined that
h ∈ hgi.

The starting point of the rho algorithm is the observation that if one can find ai, bi, aj , bj ∈
Z/rZ such that

gaihbi = gajhbj (14.1)

and bi 6≡ bj (mod r) then one can solve the DLP as

h = g(ai−aj)(bj−bi)
−1 (mod r).

The basic idea is to generate pseudorandom sequences xi = gaihbi of elements in
G by iterating a suitable function f : G → G. In other words, one chooses a starting
value x1 and defines the sequence by xi+1 = f(xi). A sequence x1, x2, . . . is called a
deterministic pseudorandom walk. Since G is finite there is eventually a collision
xi = xj for some 1 ≤ i < j as in equation (14.1). This is presented as a collision between
two elements in the same walk, but it could also be a collision between two elements in
different walks. If the elements in the walks look like uniformly and independently chosen
elements of G then, by the birthday paradox (Theorem 14.1.1), the expected value of j
is
p
πr/2.

It is important that the function f be designed so that one can efficiently compute
ai, bi ∈ Z/rZ such that xi = gaihbi . The next step xi+1 depends only on the current
step xi and not on (ai, bi). The algorithms all exploit the fact that when a collision

288 CHAPTER 14. PSEUDORANDOM WALKS

xi = xj occurs then xi+t = xj+t for all t ∈ N. Pollard’s original proposal used a cycle-
finding method due to Floyd to find a self-collision in the sequence; we present this in
Section 14.2.2. A better approach is to use distinguished points to find collisions; we
present this in Section 14.2.4.

14.2.1 The Pseudorandom Walk

A true random walk in a finite set S chooses elements uniformly at random at each stage.
In contrast we are concerned with walks whose next step is determined by the current
position. Such a walk is given by a function f : S → S. Hence, a truly random walk on a
finite set means a uniformly chosen function from the set of all functions from S to itself.

Pollard simulates a random function from G to itself as follows. The first step is
to decompose G into nS disjoint subsets (usually of roughly equal size) so that G =
S0 ∪S1 ∪ · · ·∪SnS−1. Traditional textbook presentations use nS = 3 but, as explained in
Section 14.2.5, it is better to take larger values for nS ; typical values in practice are 32,
256 or 2048.

The sets Si are defined using a selection function S : G → {0, . . . , nS − 1} by Si =
{g ∈ G : S(g) = i}. For example, in any computer implementation of G one represents
an element g ∈ G as a unique2 binary string b(g) and interpreting b(g) as an integer one
could define S(g) = b(g) (mod nS) (taking nS to be a power of 2 makes this computation
especially easy). To obtain different choices for S one could apply an F2-linear map L to
the sequence of bits b(g), so that S(g) = L(b(g)) (mod nS). These simple methods can
be a poor choice in practice, as they are not “sufficiently random”. Some other ways to
determine the partition are suggested in Section 2.3 of Teske [605] and Bai and Brent [24].
The strongest choice is to apply a hash function or randomness extractor to b(g), though
this may lead to an undesirable computational overhead.

Definition 14.2.1. The rho walks are defined as follows. Precompute gj = gujhvj for
0 ≤ j ≤ nS − 1 where 0 ≤ uj, vj < r are chosen uniformly at random. Set x1 = g. The
original rho walk is

xi+1 = f(xi) =

�
x2
i if S(xi) = 0

xigj if S(xi) = j, j ∈ {1, . . . , nS − 1} (14.2)

The additive rho walk is
xi+1 = f(xi) = xigS(xi). (14.3)

An important feature of the walks is that each step requires only one group operation.
Once the selection function S and the values uj and vj are chosen, the walk is de-

terministic. Even though these values may be chosen uniformly at random, the function
f itself is not a random function as it has a compact description. Hence, the rho walks
can only be described as pseudorandom. To analyse the algorithm we will consider the
expectation of the running time over different choices for the pseudorandom walk. Many
authors consider the expectation of the running time over all problem instances and ran-
dom choices of the pseudorandom walk; they therefore write “expected running time” for
what we are calling “average-case expected running time”.

It is necessary to keep track of the decomposition

xi = gaihbi .

2One often uses projective coordinates to speed up elliptic curve arithmetic, so it is natural to use
projective coordinates when implementing these algorithms. But to define the pseudorandom walk one
needs a unique representation for points, so projective coordinates are not appropriate. See Remark 13.3.2.

14.2. THE POLLARD RHO METHOD 289

The values ai, bi ∈ Z/rZ are obtained by setting a1 = 1, b1 = 0 and updating (for the
original rho walk)

ai+1 =

�
2ai (mod r) if S(xi) = 0
ai + uS(xi) (mod r) if S(xi) > 0

and bi+1 =

�
2bi (mod r) if S(xi) = 0
bi + vS(xi) (mod r) if S(xi) > 0.

(14.4)
Putting everything together, we write

(xi+1, ai+1, bi+1) = walk(xi, ai, bi)

for the random walk function. But it is important to remember that xi+1 only depends
on xi and not on (xi, ai, bi).

Exercise 14.2.2. Give the analogue of equation (14.4) for the additive walk.

14.2.2 Pollard Rho Using Floyd Cycle Finding

We present the original version of Pollard rho. A single sequence x1, x2, . . . of group
elements is computed. Eventually there is a collision xi = xj with 0 ≤ i < j. One pictures
the walk as having a tail (which is the part x1, . . . , xi of the walk that is not cyclic)
followed by the cycle or head (which is the part xi+1, . . . , xj). Drawn appropriately this
resembles the shape of the greek letter ρ. The tail and cycle (or head) of such a random
walk have expected length

p
πN/8 (see Flajolet and Odlyzko [204] for proofs of these,

and many other, facts).
The goal is to find integers i and j such that xi = xj . It might seem that the only

approach is to store all the xi and, for each new value xj , to check if it appears in the list.
This approach would use more memory and time than the baby-step-giant-step algorithm.
If one were using a truly random walk then one would have to use this approach. The
whole point of using a deterministic walk which eventually becomes cyclic is to enable
better methods to find a collision.

Let lt be the length of the tail of the “rho” and lh be the length of the cycle of the
“rho”. In other words the first collision is

xlt+lh = xlt . (14.5)

Floyd’s cycle finding algorithm3 is to compare xi and x2i. Lemma 14.2.3 shows that
this will find a collision in at most lt + lh steps. The crucial advantage of comparing x2i

and xi is that it only requires storing two group elements. The rho algorithm with Floyd
cycle finding is given in Algorithm 16.

Lemma 14.2.3. Let the notation be as above. Then x2i = xi if and only if lh | i and
i ≥ lt. Further, there is some lt ≤ i < lt + lh such that x2i = xi.

Proof: If xi = xj then we must have lh | (i− j). Hence the first statement of the Lemma
is clear. The second statement follows since there is some multiple of lh between lt and
lt + lh. �

Exercise 14.2.4. Let p = 347, r = 173, g = 3, h = 11 ∈ F∗
p. Let nS = 3. Determine lt

and lh for the values (u1, v1) = (1, 1), (u2, v2) = (13, 17). What is the smallest of i for
which x2i = xi?

Exercise 14.2.5. Repeat Exercise 14.2.4 for g = 11, h = 3 (u1, v1) = (4, 7) and (u2, v2) =
(23, 5).

3Apparently this algorithm first appears in print in Knuth [343], but is credited there to Floyd.

290 CHAPTER 14. PSEUDORANDOM WALKS

Algorithm 16 The rho algorithm

Input: g, h ∈ G
Output: a such that h = ga, or ⊥
1: Choose randomly the function walk as explained above
2: x1 = g, a1 = 1, b1 = 0
3: (x2, a2, b2) = walk(x1, a1, b1)
4: while (x1 6= x2) do
5: (x1, a1, b1) = walk(x1, a1, b1)
6: (x2, a2, b2) = walk(walk(x2, a2, b2))
7: end while
8: if b1 ≡ b2 (mod r) then
9: return ⊥

10: else
11: return (a2 − a1)(b1 − b2)

−1 (mod r)
12: end if

The smallest index i such that x2i = xi is called the epact. The expected value of
the epact is conjectured to be approximately 0.823

p
πr/2; see Heuristic 14.2.9.

Example 14.2.6. Let p = 809 and consider g = 89 which has prime order 101 in F∗
p.

Let h = 799 which lies in the subgroup generated by g.
Let nS = 4. To define S(g) write g in the range 1 ≤ g < 809, represent this

integer in its usual binary expansion and then reduce modulo 4. Choose (u1, v1) =
(37, 34), (u2, v2) = (71, 69), (u3, v3) = (76, 18) so that g1 = 343, g2 = 676, g3 = 627. One
computes the table of values (xi, ai, bi) as follows:

i xi ai bi S(xi)
1 89 1 0 1
2 594 38 34 2
3 280 8 2 0
4 736 16 4 0
5 475 32 8 3
6 113 7 26 1
7 736 44 60 0

It follows that lt = 4 and lh = 3 and so the first collision detected by Floyd’s method
is x6 = x12. We leave as an exercise to verify that the discrete logarithm in this case is
50.

Exercise 14.2.7. Let p = 569 and let g = 262 and h = 5 which can be checked to have
order 71 modulo p. Use the rho algorithm to compute the discrete logarithm of h to the
base g modulo p.

Exercise 14.2.8. One can simplify Definition 14.2.1 and equation (14.4) by replacing gj
by either guj or hvj (independently for each j). Show that this saves one modular addition
in each iteration of the algorithm. Explain why this optimisation should not affect the
success of the algorithm, as long as the walk uses all values for S(xi) with roughly equal
probability.

Algorithm 16 always terminates, but there are several things that can go wrong:

• The value (b1 − b2) may not be invertible modulo r.

14.2. THE POLLARD RHO METHOD 291

Hence, we can only expect to prove that the algorithm succeeds with a certain
probability (extremely close to 1).

• The cycle may be very long (as big as r) in which case the algorithm is slower than
brute force search.

Hence, we can only expect to prove an expected running time for the algorithm. We
recall that the expected running time in this case is the average, over all choices for
the function walk, of the worst-case running time of the algorithm over all problem
instances.

Note that the algorithm always halts, but it may fail to output a solution to the DLP.
Hence, this is a Monte Carlo algorithm.

It is an open problem to give a rigorous running time analysis for the rho algorithm.
Instead it is traditional to make the heuristic assumption that the pseudorandom walk
defined above behaves sufficiently close to a random walk. The rest of this section is
devoted to showing that the heuristic running time of the rho algorithm with Floyd cycle
finding is (3.093 + o(1))

√
r group operations (asymptotic as r → ∞).

Before stating a precise heuristic we determine an approximation to the expected value
of the epact in the case of a truly random walk.4

Heuristic 14.2.9. Let xi be a sequence of elements of a group G of order r obtained as
above by iterating a random function f : G → G. Then the expected value of the epact
(i.e., the smallest positive integer i such that x2i = xi) is approximately (ζ(2)/2)

p
πr/2 ≈

0.823
p
πr/2, where ζ(2) = π2/6 is the value of the Riemann zeta function at 2.

Argument: Fix a specific sequence xi and let l be the length of the rho, so that xl+1

lies in {x1, x2, . . . , xl}. Since xl+1 can be any one of the xi, the cycle length lh can be
any value 1 ≤ lh ≤ l and each possibility happens with probability 1/l.

The epact is the smallest multiple of lh which is bigger than lt = l − lh. Hence, if
l/2 ≤ lh ≤ l then the epact is lh, if l/3 ≤ lh < l/2 then the epact is 2lh. In general, if
l/(k+1) ≤ lh < l/k then the epact is klh. The largest possible value of the epact is l− 1,
which occurs when lh = 1.

The expected value of the epact when the rho has length l is therefore

El =

∞X

k=1

lX

lh=1

klhPl(k, lh)

where Pl(k, lh) is the probability that klh is the epact. By the above discussion, P (k, lh) =
1/l if l/(k + 1) ≤ lh < l/k or (k, lh) = (1, l) and zero otherwise. Hence

El =
1
l

l−1X

k=1

k
X

l/(k+1)≤lh<l/k
or (k,lh)=(1,l)

lh

Approximating the inner sum as 1
2

�
(l/k)2 − (l/(k + 1))2

�
gives

El ≈ l
2

∞X

k=1

k
�

1
k2 − 1

(k+1)2

�
.

4I thank John Pollard for showing me this argument.

292 CHAPTER 14. PSEUDORANDOM WALKS

Now, k(1/k2 − 1/(k + 1)2) = 1/k − 1/(k + 1) + 1/(k + 1)2 and

∞X

k=1

(1/k − 1/(k + 1)) = 1 and

∞X

k=1

1/(k + 1)2 = ζ(2)− 1.

Hence El ≈ l/2(1+ ζ(2)− 1). It is well-known that ζ(2) ≈ 1.645. Finally, write Pr(e) for
the probability the epact is e, Pr(l) for the probability the rho length is l, and Pr(e | l)
for the conditional probability that the epact is e given that the rho has length l. The
expectation of e is then

E(e) =

∞X

e=1

ePr(e) =

∞X

e=1

e

∞X

l=1

Pr(e | l) Pr(l)

=
∞X

l=1

Pr(l)

 ∞X

e=1

ePr(e | l)
!

=

∞X

l=1

Pr(l)El ≈ (ζ(2)/2)E(l)

which completes the argument. �

We can now give a heuristic analysis of the running time of the algorithm. We make
the following assumption, which we believe is reasonable when r is sufficiently large,
nS > log(r) and when the function walk is chosen at random (from the set of all walk
functions specified in Section 14.2.1).

Heuristic 14.2.10.

1. The expected value of the epact is (0.823 + o(1))
p

πr/2.

2. The value
Plt+lh−1

i=lt
vS(xi) (mod r) is uniformly distributed in Z/rZ.

Theorem. Let the notation be as above and assume Heuristic 14.2.10. Then the rho
algorithm with Floyd cycle finding has expected running time of (3.093 + o(1))

√
r group

operations. The probability the algorithm fails is negligible.

Proof: The number of iterations of the main loop in Algorithm 16 is the epact. By
Heuristic 14.2.10 the expected value of the epact is (0.823 + o(1))

p
πr/2.

Algorithm 16 performs three calls to the function walk in each iteration. Each call to
walk results in one group operation and two additions modulo r (we ignore these additions
as they cost significantly less than a group operation). Hence the expected number of
group operations is 3(0.823 + o(1))

p
πr/2 ≈ (3.093 + o(1))

√
r as claimed.

The algorithm fails only if b2i ≡ bi (mod r). We have galthblt = galt+lhhblt+lh from
which it follows that alt+lh = alt + u, blt+lh = blt + v where guhv = 1. Precisely,

v ≡ blt+lh − blt ≡
Plt+lh−1

i=lt
vS(xi) (mod r).

Write i = lt + i′ for some 0 ≤ i′ < lh and bi = blt +w. Assume lh ≥ 2 (the probability
that lh = 1 is negligible). Then 2i = lt+xlh+ i′ for some integer 1 ≤ x < (lt+2lh)/lh < r
and so b2i = blt + xv + w. It follows that b2i ≡ bi (mod r) if and only if r | v.

According to Heuristic 14.2.10 the value v is uniformly distributed in Z/rZ and so the
probability it is zero is 1/r, which is a negligible quantity in the input size of the problem.
�

14.2. THE POLLARD RHO METHOD 293

14.2.3 Other Cycle Finding Methods

Floyd cycle finding is not a very efficient way to find cycles. Though any cycle finding
method requires computing at least lt + lh group operations, Floyd’s method needs on
average 2.47(lt + lh) group operations (2.47 is three times the expected value of the
epact). Also, the “slower” sequence xi is visiting group elements which have already
been computed during the walk of the “faster” sequence x2i. Brent [98] has given an
improved cycle finding method5 that still only requires storage for two group elements
but which requires fewer group operations. Montgomery has given an improvement to
Brent’s method in [436].

One can do even better by using more storage, as was shown by Sedgewick, Szymanski
and Yao [535], Schnorr and Lenstra [527] (also see Teske [603]) and Nivasch [467]. The rho
algorithm using Nivasch cycle finding has the optimal expected running time of

p
πr/2 ≈

1.253
√
r group operations and is expected to require polynomial storage.

Finally, a very efficient way to find cycles is to use distinguished points. More impor-
tantly, distinguished points allow us to think about the rho method in a different way
and this leads to a version of the algorithm that can be parallelised. We discuss this in
the next section. Hence, in practice one always uses distinguished points.

14.2.4 Distinguished Points and Pollard Rho

The idea of using distinguished points in search problems apparently goes back to Rivest.
The first application of this idea to computing discrete logarithms is by van Oorschot and
Wiener [473].

Definition 14.2.11. An element g ∈ G is a distinguished point if its binary rep-
resentation b(g) satisfies some easily checked property. Denote by D ⊂ G the set of
distinguished points. The probability #D/#G that a uniformly chosen group element is
a distinguished point is denoted θ.

A typical example is the following.

Example 14.2.12. Let E be an elliptic curve over Fp. A point P ∈ E(Fp) that is not
the point at infinity is represented by an x-coordinate 0 ≤ xP < p and a y-coordinate
0 ≤ yP < p. Let H be a hash function, whose output is interpreted as being in Z≥0.

Fix an integer nD. Define D to be the points P ∈ E(Fp) such that the nD least
significant bits of H(xP) are zero. Note that OE 6∈ D. In other words

D = {P = (xP , yP) ∈ E(Fp) : H(xP) ≡ 0 (mod 2nD) where 0 ≤ xP < p}.

Then θ ≈ 1/2nD .

The rho algorithm with distinguished points is as follows. First, choose integers 0 ≤
a1, b1 < r uniformly and independently at random, compute the group element x1 =
ga1hb1 and run the usual deterministic pseudorandom walk until a distinguished point
xn = ganhbn is found. Store (xn, an, bn) in some easily searched data structure (searchable
on xn). Then choose a fresh randomly chosen group element x1 = ga1hb1 and repeat.
Eventually two walks will visit the same group element, in which case their paths will
continue to the same distinguished point. Once a distinguished group element is found
twice then the DLP can be solved with high probability.

Exercise 14.2.13. Write down pseudocode for this algorithm.

5This was originally developed to speed up the Pollard rho factoring algorithm.

294 CHAPTER 14. PSEUDORANDOM WALKS

We stress the most significant difference between this method and the method of the
previous section: the previous method had one long walk with a tail and a cycle, whereas
the new method has many short walks. Note that this algorithm does not require self-
collisions in the walk and so there is no ρ shape anymore; the word “rho” in the name of
the algorithm is therefore a historical artifact, not an intuition about how the algorithm
works.

Note that, since the group is finite, collisions must eventually occur, and so the algo-
rithm halts. But the algorithm may fail to solve the DLP (with low probability). Hence,
this is a Monte Carlo algorithm.

In the analysis we assume that we are sampling group elements (we sometimes call
them “points”) uniformly and independently at random. It is important to determine the
expected number of steps before landing on a distinguished point.

Lemma 14.2.14. Let θ be the probability that a randomly chosen group element is a
distinguished point. Then

1. The probability that one chooses α/θ group elements, none of which are distin-
guished, is approximately e−α when 1/θ is large.

2. The expected number of group elements to choose before getting a distinguished point
is 1/θ.

3. If one has already chosen i group elements, none of which are distinguished, then the
expected number of group elements to further choose before getting a distinguished
point is 1/θ.

Proof: The probability that i chosen group elements are not distinguished is (1− θ)i. So
the probability of choosing α/θ points, none of which are distinguished, is

(1− θ)α/θ ≤
�
e−θ

�α/θ
= e−α.

The second statement is the standard formula for the expected value of a geometric
random variable, see Example A.14.1.

For the final statement6, suppose one has already sampled i points without finding a
distinguished point. Since the trials are independent, the probability of choosing a further
j points which are not distinguished remains (1−θ)j. Hence the expected number of extra
points to be chosen is still 1/θ. �

We now make the following assumption. We believe this is reasonable when r is
sufficiently large, nS > log(r), distinguished points are sufficiently common and specified
using a good hash function (and hence, D is well distributed), θ > log(r)/

√
r and when

the function walk is chosen at random.

Heuristic 14.2.15.

1. Walks reach a distinguished point in significantly fewer than
√
r steps (in other

words, there are no cycles in the walks and walks are not excessively longer than
1/θ).7

2. The expected number of group elements sampled before a collision is
p
πr/2.

6This is the “apparent paradox” mentioned in footnote 7 of [473].
7More realistically, one could assume that only a negligibly small proportion of the walks fall into a

cycle before hitting a distinguished point.

14.2. THE POLLARD RHO METHOD 295

Theorem 14.2.16. Let the notation be as above and assume Heuristic 14.2.15. Then the
rho algorithm with distinguished points has expected running time of (

p
π/2+ o(1))

√
r ≈

(1.253 + o(1))
√
r group operations. The probability the algorithm fails is negligible.

Proof: Heuristic 14.2.15 states there are no cycles or “wasted” walks (in the sense that
their steps do not contribute to potential collisions). Hence, before the first collision,
after N steps of the algorithm we have visited N group elements. By Heuristic 14.2.15,
the expected number of group elements to be sampled before the first collision is

p
πr/2.

The collision is not detected until walks hit a distinguished point, which adds a further
2/θ to the number of steps. Hence, the total number of steps (calls to the function walk)
in the algorithm is

p
πr/2 + 2/θ. Since 2/θ < 2

√
r/ log(r) = o(1)

√
r, the result follows.

Let x = gaihbi = gajhbj be the collision. Since the starting values ga0hb0 are chosen
uniformly and independently at random, the values bi and bj are uniformly and indepen-
dently random. It follows that bi ≡ bj (mod r) with probability 1/r, which is a negligible
quantity in the input size of the problem. �

Exercise 14.2.17. Show that if θ = log(r)/
√
r then the expected storage of the rho

algorithm, assuming it takes O(
√
r) steps, is O(log(r)) group elements (which is typically

O(log(r)2) bits).

Exercise 14.2.18. The algorithm requires storing a triple (xn, an, bn) for each distin-
guished point. Give some strategies to reduce the number of bits that need to be stored.

Exercise 14.2.19. Let G = hg1, g2i be a group of order r2 and exponent r. Design a
rho algorithm that, on input h ∈ G outputs (a1, a2) such that h = ga1

1 ga2
2 . Determine the

complexity of this algorithm.

Exercise 14.2.20. Show that the Pollard rho algorithm with distinguished points has
better average-case running time than the baby-step-giant-step algorithm (see Exer-
cises 13.3.3 and 13.3.4).

Exercise 14.2.21. Explain why taking D = G (i.e., all group elements distinguished)
leads to an algorithm that is much slower than the baby-step-giant-step algorithm.

Suppose one is given g, h1, . . . , hL (where 1 < L < r1/4) and is asked to find all ai for
1 ≤ i ≤ L such that hi = gai . Kuhn and Struik [355] propose and analyse a method to
solve all L instances of the DLP, using Pollard rho with distinguished points, in roughly√
2rL group operations. A crucial trick, attributed to Silverman and Stapleton, is that

once the i-th DLP is known one can re-write all distinguished points gahb
i in the form

ga
′

. As noted by Hitchcock, Montague, Carter and Dawson [287] one must be careful to
choose a random walk function that does not depend on the elements hi (however, the
random starting points do depend on the hi).

Exercise 14.2.22. Write down pseudocode for the Kuhn-Struik algorithm for solving L
instances of the DLP, and explain why the algorithm works.

Section 14.2.5 explains why the rho algorithm with distinguished points can be easily
parallelised. That section also discusses a number of practical issues relating to the use
of distinguished points.

Cheon, Hong and Kim [133] sped up Pollard rho in F∗
p by using a “look ahead”

strategy; essentially they determine in which partition the next value of the walk lies,
without performing a full group operation. A similar idea for elliptic curves has been
used by Bos, Kaihara and Kleinjung [89].

296 CHAPTER 14. PSEUDORANDOM WALKS

14.2.5 Towards a Rigorous Analysis of Pollard Rho

Theorem 14.2.16 is not satisfying since Heuristic 14.2.15 is essentially equivalent to the
statement “the rho algorithm has expected running time (1 + o(1))

p
πr/2 group opera-

tions”. The reason for stating the heuristic is to clarify exactly what properties of the
pseudorandom walk are required. The reason for believing Heuristic 14.2.15 is that exper-
iments with the rho algorithm (see Section 14.4.3) confirm the estimate for the running
time.

Since the algorithm is fundamental to an understanding of elliptic curve cryptography
(and torus/trace methods) it is natural to demand a complete and rigorous treatment
of it. Such an analysis is not yet known, but in this section we mention some partial
results on the problem. The methods used to obtain the results are beyond the scope of
this book, so we do not give full details. Note that all existing results are in an idealised
model where the selection function S is a random function.

We stress that, in practice, the algorithm behaves as the heuristics predict. Further-
more, from a cryptographic point of view, it is sufficient for the task of determining key
sizes to have a lower bound on the running time of the algorithm. Hence, in practice, the
absence of proved running time is not necessarily a serious issue.

The main results for the original rho walk (with nS = 3) are due to Horwitz and
Venkatesan [294], Miller and Venkatesan [426], and Kim, Montenegro, Peres and Tetali [337,
336]. The basic idea is to define the rho graph, which is a directed graph with vertex
set hgi and an edge from x1 to x2 if x2 is the next step of the walk when at x1. Fix an
integer n. Define the distribution Dn on hgi obtained by choosing uniformly at random
x1 ∈ hgi, running the walk for n steps, and recording the final point in the walk. The
crucial property to study is the mixing time which, informally, is the smallest integer
n such that Dn is “sufficiently close” to the uniform distribution. For these results, the
squaring operation in the original walk is crucial. We state the main result of Miller and
Venkatesan [426] below.

Theorem 14.2.23. (Theorem 1.1 of [426]) Fix ǫ > 0. Then the rho algorithm using the
original rho walk with nS = 3 finds a collision in Oǫ(

√
r log(r)3) group operations with

probability at least 1− ǫ, where the probability is taken over all partitions of hgi into three
sets S1, S2 and S3. The notation Oǫ means that the implicit constant in the O depends
on ǫ.

Kim, Montenegro, Peres and Tetali improved this result in [336] to the desired Oǫ(
√
r)

group operations. Note that all these works leave the implied constant in the O unspeci-
fied.

Note that the idealised model of S being a random function is not implementable
with constant (or even polynomial) storage. Hence, these results cannot be applied to the
algorithm presented above, since our selection functions S are very far from uniformly
chosen over all possible partitions of the set hgi. The number of possible partitions of hgi
into three subsets of equal size is (for convenience suppose that 3 | r)

�
r

r/3

��
2r/3

r/3

�

which, using
�
a
b

�
≥ (a/b)b, is at least 6r/3. On the other hand, a selection function

parameterised by a “key” of c log2(r) bits (e.g., a selection function obtained from a
keyed hash function) only leads to rc different partitions.

Sattler and Schnorr [513] and Teske [604] have considered the additive rho walk. One
key feature of their work is to discuss the effect of the number of partitions nS. Sattler

14.3. DISTRIBUTED POLLARD RHO 297

and Schnorr show (subject to a conjecture) that if nS ≥ 8 then the expected running
time for the rho algorithm is c

p
πr/2 group operations for an explicit constant c. Teske

shows, using results of Hildebrand, that the additive walk should approximate the uniform
distribution after fewer than

√
r steps once nS ≥ 6. She recommends using the additive

walk with nS ≥ 20 and, when this is done, conjectures that the expected cycle length is
≤ 1.3

√
r (compared with the theoretical ≈ 1.2533

√
r).

Further motivation for using large nS is given by Brent and Pollard [99], Arney and
Bender [13] and Blackburn and Murphy [59]. They present heuristic arguments that the
expected cycle length when using nS partitions is

p
cnSπr/2 where cnS = nS/(nS − 1).

This heuristic is supported by the experimental results of Teske [604]. Let G = hgi. Their
analysis considers the directed graph formed from iterating the function walk : G → G
(i.e., the graph with vertex set G and an edge from g to walk(g)). Then, for a randomly
chosen graph of this type, nS/(nS − 1) is the variance of the in-degree for this graph,
which is the same as the expected value of n(x) = #{y ∈ G : y 6= x, walk(y) = walk(x)}.

Finally, when using equivalence classes (see Section 14.4) there are further advantages
in taking nS to be large.

14.3 Distributed Pollard Rho

In this section we explain how the Pollard rho algorithm can be parallelised. Rather than
a parallel computing model we consider a distributed computing model. In this model
there is a server and NP ≥ 1 clients (we also refer to the clients as processors). There
is no shared storage or direct communication between the clients. Instead, the server can
send messages to clients and each client can send messages to the server. In general we
prefer to minimise the amount of communication between server and clients.8

To solve an instance of the discrete logarithm problem the server will activate a number
of clients, providing each with its own individual initial data. The clients will run the rho
pseudorandom walk and occasionally send data back to the server. Eventually the server
will have collected enough information to solve the problem, in which case it sends all
clients a termination instruction. The rho algorithm with distinguished points can very
naturally be used in this setting.

The best one can expect for any distributed computation is a linear speedup compared
with the serial case (since if the overall total work in the distributed case was less than
the serial case then this would lead to a faster algorithm in the serial case). In other
words, with NP clients we hope to achieve a running time proportional to

√
r/NP .

14.3.1 The Algorithm and its Heuristic Analysis

All processors perform the same pseudorandom walk (xi+1, ai+1, bi+1) = walk(xi, ai, bi)
as in Section 14.2.1, but each processor starts from a different random starting point.
Whenever a processor hits a distinguished point then it sends the triple (xi, ai, bi) to the
server and re-starts its walk at a new random point (x0, a0, b0). If one processor ever visits
a point visited by another processor then the walks from that point agree and both walks
end at the same distinguished point. When the server receives two triples (x, a, b) and
(x, a′, b′) for the same group element x but with b 6≡ b′ (mod r) then it has gahb = ga

′

hb′

and can solve the DLP as in the serial (i.e., non-parallel) case. The server therefore
computes the discrete logarithm problem and sends a terminate signal to all processors.

8There are numerous examples of such distributed computation over the internet. Two notable ex-
amples are the Great Internet Mersenne Primes Search (GIMPS) and the Search for Extraterrestrial
Intelligence (SETI). One observes that the former search has been more successful than the latter.

298 CHAPTER 14. PSEUDORANDOM WALKS

Pseudocode for both server and clients are given by Algorithms 17 and 18. By design, if
the algorithm halts then the answer is correct.

Algorithm 17 The distributed rho algorithm: Server side

Input: g, h ∈ G
Output: c such that h = gc

1: Randomly choose a walk function walk(x, a, b)
2: Initialise an easily searched structure L (sorted list, binary tree etc) to be empty
3: Start all processors with the function walk
4: while DLP not solved do
5: Receive triples (x, a, b) from clients and insert into L
6: if first coordinate of new triple (x, a, b) matches existing triple (x, a′, b′) then
7: if b′ 6≡ b (mod r) then
8: Send terminate signal to all clients
9: return (a− a′)(b′ − b)−1 (mod r)

10: end if
11: end if
12: end while

Algorithm 18 The distributed rho algorithm: Client side

Input: g, h ∈ G, function walk
1: while terminate signal not received do
2: Choose uniformly at random 0 ≤ a, b < r
3: Set x = gahb

4: while x 6∈ D do
5: (x, a, b) = walk(x, a, b)
6: end while
7: Send (x, a, b) to server
8: end while

We now analyse the performance of this algorithm. To get a clean result we assume
that no client ever crashes, that communications between server and client are perfectly
reliable, that all clients have the same computational efficiency and are running continu-
ously (in other words, each processor computes the same number of group operations in
any given time period).

It is appropriate to ignore the computation performed by the server and instead to
focus on the number of group operations performed by each client running Algorithm 18.
Each execution of the function walk(x, a, b) involves a single group operation. We must
also count the number of group operations performed in line 3 of Algorithm 18; though
this term is negligible if walks are long on average (i.e., if D is a sufficiently small subset
of G).

It is an open problem to give a rigorous analysis of the distributed rho method. Hence,
we make the following heuristic assumption. We believe this assumption is reasonable
when r is sufficiently large, nS is sufficiently large, log(r)/

√
r < θ, the set D of dis-

tinguished points is determined by a good hash function, the number NP of clients is
sufficiently small (e.g., NP < θ

p
πr/2/ log(r), see Exercise 14.3.3), the function walk is

chosen at random.

Heuristic 14.3.1.

14.3. DISTRIBUTED POLLARD RHO 299

1. The expected number of group elements to be sampled before the same element is
sampled twice is

p
πr/2.

2. Walks reach a distinguished point in significantly fewer than
√
r/NP steps (in other

words, there are no cycles in the walks and walks are not excessively long). More
realistically, one could assume that only a negligible proportion of the walks fall
into a cycle before hitting a distinguished point.

Theorem 14.3.2. Let the notation be as above, in particular, let NP be the (fixed, in-
dependent of r) number of clients. Let θ the probability that a group element is a dis-
tinguished point and suppose log(r)/

√
r < θ. Assume Heuristic 14.3.1 and the above

assumptions about the the reliability and equal power of the processors hold. Then the ex-
pected number of group operations performed by each client of the distributed rho method
is (1 + 2 log(r)θ)

p
πr/2/NP +1/θ group operations. This is (

p
π/2/NP + o(1))

√
r group

operations when θ < 1/ log(r)2. The storage requirement on the server is θ
p
πr/2 +NP

points.

Proof: Heuristic 14.3.1 states that we expect to sample
p

πr/2 group elements in total
before a collision arises. Since this work is distributed over NP clients of equal speed
it follows that each client is expected to call the function walk about

p
πr/2/NP times.

The total number of group operations is therefore
p
πr/2/NP plus 2 log(r)θ

p
πr/2/NP

for the work of line 3 of Algorithm 18. The server will not detect the collision until the
second client hits a distinguished point, which is expected to take 1/θ further steps by
the heuristic (part 3 of Lemma 14.2.14). Hence each client needs to run an expectedp
πr/2/NP + 1/θ steps of the walk.

Of course, a collision gahb = ga
′

hb′ can be useless in the sense that b′ ≡ b (mod r).
A collision implies a′ + cb′ ≡ a + cb (mod r) where h = gc; there are r such pairs
(a′, b′) for each pair (a, b). Since each walk starts with uniformly random values (a0, b0)
it follows that the values (a, b) are uniformly distributed over the r possibilities. Hence
the probability of a collision being useless is 1/r and the expected number of collisions
required is 1.

Each processor runs for
p
πr/2/NP + 1/θ steps and therefore is expected to send

θ
p

πr/2/NP + 1 distinguished points in its lifetime. The total number of points to store

is therefore θ
p

πr/2 +NP . �

Exercise 14.2.17 shows that the complexity in the case NP = 1 can be taken to be
(1 + o(1))

p
πr/2 group operations with polynomial storage.

Exercise 14.3.3. When distributing the algorithm it is important to ensure that, with
very high probability, each processor finds at least one distinguished point in less than its
total expected running time. Show that this will be the case if 1/θ ≤

p
πr/2/ (NP log(r)).

Schulte-Geers [533] analyses the choice of θ and shows that Heuristics 14.2.15 and 14.3.1
are not valid asymptotically if θ = o(1/

√
r) as r → ∞ (for example, walks in this situation

are more likely to fall into a cycle than to hit a distinguished point). In any case, since
each processor only travels a distance of

p
πr/2/NP it follows we should take θ > NP /

√
r.

In practice one tends to determine the available storage first (say, c group elements where
c > 109) and to set θ = c/

p
πr/2 so that the total number of distinguished points vis-

ited is expected to be c. The results of [533] validate this approach. In particular, it
is extremely unlikely that there is a self-collision (and hence a cycle) before hitting a
distinguished point.

300 CHAPTER 14. PSEUDORANDOM WALKS

14.4 Speeding up the Rho Algorithm using Equiva-

lence Classes

Gallant, Lambert and Vanstone [232] and Wiener and Zuccherato [632] showed that one
can speed up the rho method in certain cases by defining the pseudorandom walk not on
the group hgi but on a set of equivalence classes. This is essentially the same thing as
working in an algebraic group quotient instead of the algebraic group.

Suppose there is an equivalence relation on hgi. Denote by x the equivalence class
of x ∈ hgi. Let NC be the size of a generic equivalence class. We require the following
properties:

1. One can define a unique representative x̂ of each equivalence class x.

2. Given (xi, ai, bi) such that xi = gaihbi then one can efficiently compute (x̂i, âi, b̂i)

such that x̂i = gâihb̂i .

We give some examples in Section 14.4.1 below.

One can implement the rho algorithm on equivalence classes by defining a pseudoran-
dom walk function walk(xi, ai, bi) as in Definition 14.2.1. More precisely, set x1 = g, a1 =
1, b1 = 0 and define the sequence xi by (this is the “original walk”)

xi+1 = f(xi) =

�
x̂2
i if S(x̂i) = 0

x̂igj if S(x̂i) = j, j ∈ {1, . . . , nS − 1} (14.6)

where the selection function S and the values gj = gujhvj are as in Definition 14.2.1.
When using distinguished points one defines an equivalence class to be distinguished if
the unique equivalence class representative has the distinguished property.

There is a very serious problem with cycles that we do not discuss yet; See Sec-
tion 14.4.2 for the details.

Exercise 14.4.1. Write down the formulae for updating the values ai and bi in the
function walk.

Exercise 14.4.2. Write pseudocode for the distributed rho method on equivalence classes.

Theorem 14.4.3. Let G be a group and g ∈ G of order r. Suppose there is an equivalence
relation on hgi as above. Let NC be the generic size of an equivalence class. Let C1 be
the number of bit operations to perform a group operation in hgi and C2 the number of
bit operations to compute a unique equivalence class representative x̂i (and to compute

âi, b̂i).

Consider the rho algorithm as above (ignoring the possibility of useless cycles, see
Section 14.4.2 below). Under a heuristic assumption for equivalence classes analogous to
Heuristic 14.2.15 the expected time to solve the discrete logarithm problem is

�r
π

2NC
+ o(1)

�√
r (C1 + C2)

bit operations. As usual, this becomes (
p

π/2NC + o(1))
√
r/NP (C1 + C2) bit operations

per client when using NP processors of equal computational power.

Exercise 14.4.4. Prove this theorem.

14.4. USING EQUIVALENCE CLASSES 301

Theorem 14.4.3 assumes a perfect random walk. For walks defined on nS partitions of
the set of equivalence classes it is shown in Appendix B of [25] (also see Section 2.2 of [91])
that one predicts a slightly improved constant than the usual factor cnS = nS/(nS − 1)
mentioned at the end of Section 14.2.5.

We mention a potential “paradox” with this idea. In general, computing a unique
equivalence class representative involves listing all elements of the equivalence class, and
hence needs Õ(NC) bit operations. Hence, naively, the running time is Õ(

p
NCπr/2)

bit operations, which is worse than doing the rho algorithm without equivalence classes.
However, in practice one only uses this method when C2 < C1, in which case the speedup
can be significant.

14.4.1 Examples of Equivalence Classes

We now give some examples of useful equivalence relations on some algebraic groups.

Example 14.4.5. For a group G with efficiently computable inverse (e.g., elliptic curves
E(Fq) or algebraic tori Tn with n > 1 (e.g., see Section 6.3)) one can define the equivalence
relation x ≡ x−1. We have NC = 2 (though note that some elements, namely the
identity and elements of order 2, are equal to their inverse so these classes have size 1).
If xi = gaihbi then clearly x−1 = g−aih−bi . One defines a unique representative x̂ for
the equivalence class by, for example, imposing a lexicographical ordering on the binary
representation of the elements in the class.

We can generalise this example as follows.

Example 14.4.6. Let G be an algebraic group over Fq with an automorphism group
Aut(G) of size NC (see examples in Sections 9.4 and 11.3.3). Suppose that for g ∈ G
of order r one has ψ(g) ∈ hgi for each ψ ∈ Aut(G). Furthermore, assume that for each
ψ ∈ Aut(G) one can efficiently compute the eigenvalue λψ ∈ Z such that ψ(g) = gλψ .
Then for x ∈ G one can define x = {ψ(x) : ψ ∈ Aut(G)}.

Again, one defines x̂ by listing the elements of x as bitstrings and choosing the first
one under lexicographical ordering.

Another important class of examples comes from orbits under the Frobenius map.

Example 14.4.7. Let G be an algebraic group defined over Fq but with group considered
over Fqd (for examples see Sections 11.3.2 and 11.3.3). Let πq be the q-power Frobenius
map on G(Fqd). Let g ∈ G(Fqd) and suppose that πq(g) = gλ ∈ hgi for some known
λ ∈ Z.

Define the equivalence relation on G(Fqd) so that the equivalence class of x ∈ G(Fqd)
is the set x = {πi

q(x) : 0 ≤ i < d}. We assume that, for elements x of interest, x ⊆ hgi.
Then NC = d, though there can be elements defined over proper subfields for which the
equivalence class is smaller.

If one uses a normal basis for Fqd over Fq then one can efficiently compute the elements
πi
q(x) and select a unique representative of each equivalence class using a lexicographical

ordering of binary strings.

Example 14.4.8. For some groups (e.g., Koblitz elliptic curves E/F2 considered as a
group over F2m ; see Exercise 9.10.11) we can combine both equivalence classes above. Let
m be prime, #E(F2m) = hr for some small cofactor h, and P ∈ E(F2m) of order r. Then
π2(P) ∈ hP i and we define the equivalence class P = {±πi

2(P) : 0 ≤ i < m} of size 2m.
Since m is odd, this class can be considered as the orbit of P under the map −π2. The
distributed rho algorithm on equivalence classes for such curves is expected to require
approximately

p
π2m/(4m) group operations.

302 CHAPTER 14. PSEUDORANDOM WALKS

14.4.2 Dealing with Cycles

One problem that can arise is walks that fall into a cycle before they reach a distinguished
point. We call these useless cycles.

Exercise 14.4.9. Suppose the equivalence relation is such that x ≡ x−1. Fix xi = x̂i

and let xi+1 = x̂ig. Suppose x̂i+1 = x−1
i+1 and that S(x̂i+1) = S(x̂i). Show that xi+2 ≡ xi

and so there is a cycle of order 2. Suppose the equivalence classes generically have size
NC . Show, under the assumptions that the function S is perfectly random and that x̂ is
a randomly chosen element of the equivalence class, that the probability that a randomly
chosen xi leads to a cycle of order 2 is 1/(NCnS).

A theoretical discussion of cycles was given in [232] and by Duursma, Gaudry and
Morain [186]. An obvious way to reduce the probability of cycles is to take nS to be
very large compared with the average length 1/θ of walks. However, as argued by Bos,
Kleinjung and Lenstra [91], large values for nS can lead to slower algorithms (for example,
due to the fact that the precomputed steps do not all fit in cache memory). Hence, as
Exercise 14.4.9 shows, useless cycles will be regularly encountered in the algorithm. There
are several possible ways to deal with this issue. One approach is to use a “look-ahead”
technique to avoid falling in 2-cycles. Another approach is to detect small cycles (e.g.,
by storing a fixed number of previous values of the walk or, at regular intervals, using
a cycle-finding algorithm for a small number of steps) and to design a well-defined exit
strategy for short cycles; Gallant, Lambert and Vanstone call this collapsing the cycle;
see Section 6 of [232]. To collapse a cycle one must be able to determine a well-defined
element in it; from there one can take a step (different to the steps used in the cycle from
that point) or use squaring to exit the cycle. All these methods require small amounts
of extra computation and storage, though Bernstein, Lange and Schwabe [56] argue that
the additional overhead can be made negligible. We refer to [56, 91] for further discussion
of these issues.

Gallant, Lambert and Vanstone [232] presented a different walk that does not, in
general, lead to short cycles. Let G be an algebraic group with an efficiently computable
endomorphism ψ of order m (i.e., ψm = ψ ◦ · · · ◦ ψ is the identity map). Let g ∈ G of
order r be such that ψ(g) = gλ so that ψ(x) = xλ for all x ∈ hgi. Define the equivalence
classes x = {ψj(x) : 0 ≤ j < m}. We define a pseudorandom sequence xi = gaihbi by
using x̂ to select an endomorphism (1 + ψj) and then acting on xi with this map. More
precisely, j is some function of x̂ (e.g., the function S in Section 14.2.1) and

xi+1 = (1 + ψj)xi = xiψ
j(xi) = x1+λj

i

(the above equation looks more plausible when the group operation is written additively:
xi+1 = xi + ψj(xi) = (1 + λj)xi). One can check that the map is well-defined on
equivalence classes and that xi+1 = gai+1hbi+1 where ai+1 = (1 + λj)ai (mod r) and
bi+1 = (1 + λj)bi (mod r).

We stress that this approach still requires finding a unique representative of each
equivalence class in order to define the steps of the walk in a well-defined way. Hence, one
can still use distinguished points by defining a class to be distinguished if its representative
is distinguished. One suggestion, originally due to Harley, is to use the Hamming weight
of the x-coordinate to derive the selection function.

One drawback of the Gallant, Lambert, Vanstone idea is that there is less flexibility
in the design of the pseudorandom walk.

Exercise 14.4.10. Generalise the Gallant-Lambert-Vanstone walk to use (c + ψj) for
any c ∈ Z. Why do we prefer to only use c = 1?

14.5. THE KANGAROO METHOD 303

Exercise 14.4.11. Show that taking nS = log(r) means the total overhead from handling
cycles is o(

√
r), while the additional storage (group elements for the random walks) is

O(log(r)) group elements.

Exercise 14.4.11 together with Exercise 14.2.17 shows that (as long as computing
equivalence class representatives is fast) one can solve the discrete logarithm problem
using equivalence classes of generic size NC in (1 + o(1))

p
πr/(2NC) group operations

and O(log(r)) group elements storage.

14.4.3 Practical Experience with the Distributed Rho Algorithm

Real computations are not as simple as the idealised analysis above: one doesn’t know
in advance how many clients will volunteer for the computation; not all clients have the
same performance or reliability; clients may decide to withdraw from the computation at
any time; the communications between client and server may be unreliable etc. Hence, in
practice one needs to choose the distinguished points to be sufficiently common that even
the weakest client in the computation can hit a distinguished point within a reasonable
time (perhaps after just one or two days). This may mean that the stronger clients are
finding many distinguished points every hour.

The largest discrete logarithm problems solved using the distributed rho method are
mainly the Certicom challenge elliptic curve discrete logarithm problems. The current
records are for the groups E(Fp) where p ≈ 2108 + 2107 (by a team coordinated by Chris
Monico in 2002) and where p = (2128 − 3)/76439 ≈ 2111 + 2110 (by Bos, Kaihara and
Montgomery in 2009) and for E(F2109) (again by Monico’s team in 2004). None of these
computations used the equivalence class {P,−P}.

We briefly summarise the parameters used for these large computations. For the 2002
result the curve E(Fp) has prime order so r ≈ 2108 + 2107. The number of processors
was over 10,000 and they used θ = 2−29. The number of distinguished points found
was 68228567 which is roughly 1.32 times the expected number θ

p
πr/2 of points to be

collected. Hence, this computation was unlucky in that it ran about 1.3 times longer than
the expected time. The computation ran for about 18 months.

The 2004 result is for a curve over F2109 with group order 2r where r ≈ 2108. The
computation used roughly 2000 processors, θ = 2−30 and the number of distinguished
points found was 16531676. This is about 0.79 times the expected number θ

p
π2108/2.

This computation took about 17 months.
The computation by Bos, Kaihara and Montgomery [90] was innovative in that the

work was done using a cluster of 200 computer game consoles. The random walk used
nS = 16 and θ = 1/224. The total number of group operations performed was 8.5× 1016

(which is 1.02 times the expected value) and 5× 109 distinguished points were stored.

Exercise 14.4.12. Verify that the parameters above satisfy the requirements that θ is
much larger than 1/

√
r and NP is much smaller than θ

√
r.

There is a close fit between the actual running time for these examples and the the-
oretical estimates. This is evidence that the heuristic analysis of the running time is not
too far from the performance in practice.

14.5 The Kangaroo Method

This algorithm is designed for the case where the discrete logarithm is known to lie in a
short interval. Suppose g ∈ G has order r and that h = ga where a lies in a short interval

304 CHAPTER 14. PSEUDORANDOM WALKS

b ≤ a < b + w of width w. We assume that the values of b and w are known. Of course,
one can solve this problem using the rho algorithm, but if w is much smaller than the
order of g then this will not necessarily be optimal.

The kangaroo method was originally proposed by Pollard [487]. Van Oorschot and
Wiener [473] greatly improved it by using distinguished points. We present the improved
version in this section.

For simplicity, compute h′ = hg−b. Then h′ ≡ gx (mod p) where 0 ≤ x < w. Hence,
there is no loss of generality by assuming that b = 0. Thus, from now on our problem is:
Given g, h, w to find a such that h = ga and 0 ≤ a < w.

As with the rho method, the kangaroo method relies on a deterministic pseudorandom
walk. The steps in the walk are pictured as the “jumps” of the kangaroo, and the group
elements visited are the kangaroo’s “footprints”. The idea, as explained by Pollard, is
to “catch a wild kangaroo using a tame kangaroo”. The “tame kangaroo” is a sequence
xi = gai where ai is known. The “wild kangaroo” is a sequence yj = hgbj where bj is
known. Eventually, a footprint of the tame kangaroo will be the same as a footprint of
the wild kangaroo (this is called the “collision”). After this point, the tame and wild
footprints are the same.9 The tame kangaroo lays “traps” at regular intervals (i.e., at
distinguished points) and, eventually, the wild kangaroo falls in one of the traps.10 More
precisely, at the first distinguished point after the collision, one finds ai and bj such that
gai = hgbj and the DLP is solved as h = gai−bj .

There are two main differences between the kangaroo method and the rho algorithm.

• Jumps are “small”. This is natural since we want to stay within (or at least, not
too far outside) the interval.

• When a kangaroo lands on a distinguished point one continues the pseudorandom
walk (rather than restarting the walk at a new randomly chosen position).

14.5.1 The Pseudorandom Walk

The pseudorandom walk for the kangaroo method has some significant differences to
the rho walk: steps in the walk correspond to known small increments in the exponent
(in other words, kangaroos make small jumps of known distance in the exponent). We
therefore do not include the squaring operation xi+1 = x2

i (as the jumps would be too
big) or multiplication by h (we would not know the length of the jump in the exponent).
We now describe the walk precisely.

• As in Section 14.2.1 we use a function S : G → {0, . . . , nS − 1} which partitions G
into sets Si = {g ∈ G : S(g) = i} of roughly similar size.

• For 0 ≤ j < nS choose exponents 1 ≤ uj ≤ √
w Define m = (

PnS−1
j=0 uj)/nS to be

the mean step size. As explained below we will take m ≈ √
w/2.

Pollard [487, 488] suggested taking uj = 2j as this minimises the chance that two
different short sequences of jumps add to the same value. This seems to give good
results in practice. An alternative is to choose most of the values ui to be random
and the last few to ensure that m is very close to c1

√
w.

9A collision between two different walks can be drawn in the shape of the letter λ. Hence Pollard
also suggested this be called the “lambda method”. However, other algorithms (such as the distributed
rho method) have collisions between different walks, so this naming is ambiguous. The name “kangaroo
method” emphasises the fact that the jumps are small. Hence, as encouraged by Pollard, we do not use
the name “lambda method” in this book.

10Actually, the wild kangaroo can be in front of the tame kangaroo, in which case it is better to think
of each kangaroo trying to catch the other.

14.5. THE KANGAROO METHOD 305

Figure 14.1: Kangaroo walk. Tame kangaroo walk pictured above the axis and wild
kangaroo walk pictured below. The dot indicates the first collision.

• The pseudorandom walk is a sequence x0, x1, . . . of elements of G defined by an
initial value x0 (to be specified later) and the formula

xi+1 = xigS(xi).

The algorithm is not based on the birthday paradox, but instead on the following
observations. Footprints are spaced, on average, distance m apart, so along a region
traversed by a kangaroo there is, on average, one footprint in any interval of length m.
Now, if a second kangaroo jumps along the same region and if the jumps of the second
kangaroo are independent of the jumps from the first kangaroo, then the probability of
a collision is roughly 1/m. Hence, one expects a collision between the two walks after
about m steps.

14.5.2 The Kangaroo Algorithm

We need to specify where to start the tame and wild kangaroos, and what the mean
step size should be. The wild kangaroo starts at y0 = h = ga with 0 ≤ a < w. To
minimise the distance between the tame and wild kangaroos at the start of the algorithm,
we start the tame kangaroo at x0 = g⌊w/2⌋, which is the middle of the interval. We take
alternate jumps and store the values (xi, ai) and (yi, bi) as above (i.e., so that xi = gai

and yi = hgbi). Whenever xi (respectively, yi) is distinguished we store (xi, ai) (resp.,
(yi, bi)) in an easily searched structure. The storage can be reduced by using the ideas of
Exercise 14.2.18.

When the same distinguished point is visited twice then we have two entries (x, a)
and (x, b) in the structure and so either hga = gb or ga = hgb. The ambiguity is resolved
by seeing which of a− b and b− a lies in the interval (or just testing if h = ga−b or not).

As we will explain in Section 14.5.3, the optimal choice for the mean step size is
m =

√
w/2.

Exercise 14.5.1. Write this algorithm in pseudocode.

We visualise the algorithm not in the group G but on a line representing exponents.
The tame kangaroo starts at ⌊w/2⌋. The wild kangaroo starts somewhere in the interval
[0, w). Kangaroo jumps are small steps to the right. See Figure 14.1 for the picture.

Example 14.5.2. Let g = 3 ∈ F∗
263 which has prime order 131. Let h = 181 ∈ hgi and

suppose we are told that h = ga with 0 ≤ a < w = 53. The kangaroo method can be
used in this case.

306 CHAPTER 14. PSEUDORANDOM WALKS

Since
√
w/2 ≈ 3.64 it is appropriate to take nS = 4 and choose steps {1, 2, 4, 8}.

The mean step size is 3.75. The function S(x) is x (mod 4) (where elements of F∗
263 are

represented by integers in the set {1, . . . , 262}).
The tame kangaroo starts at (x1, a1) = (g26, 26) = (26, 26). The sequence of points

visited in the walk is listed below. A point is distinguished if its representation as an
integer is divisible by 3; the distinguished points are written in bold face in the table.

i 0 1 2 3 4
xi 26 2 162 235 129
ai 26 30 34 38 46

S(xi) 2 2 2 3 1
yi 181 51 75 2 162
bi 0 2 10 18 22

S(yi) 1 3 3 2 2

The collision is detected when the distinguished point 162 is visited twice. The solution
to the discrete logarithm problem is therefore 34− 22 = 12.

Exercise 14.5.3. Using the same parameters as Example 14.5.2, solve the DLP for
h = 78.

14.5.3 Heuristic Analysis of the Kangaroo Method

The analysis of the algorithm does not rely on the birthday paradox; instead, the mean
step size is the crucial quantity. We sketch the basic probabilistic argument now. A more
precise analysis is given in Section 14.5.6. The following heuristic assumption seems to be
reasonable when w is sufficiently large, nS > log(w), distinguished points are sufficiently
common and specified using a good hash function (and hence are well distributed), θ >
log(w)/

√
w and when the function walk is chosen at random.

Heuristic 14.5.4.

1. Walks reach a distinguished point in significantly fewer than
√
w steps (in other

words, there are no cycles in the walks and walks are not excessively longer than
1/θ).

2. The footprints of a kangaroo are uniformly distributed in the region over which it
has walked with, on average, one footprint in each interval of length m.

3. The footsteps of tame and wild kangaroos are independent of one another before
the time when the walks collide.

Theorem 14.5.5. Let the notation be as above and assume Heuristic 14.5.4. Then the
kangaroo algorithm with distinguished points has average case expected running time of
(2 + o(1))

√
w group operations. The probability the algorithm fails is negligible.

Proof: We don’t know whether the discrete logarithm of h is greater or less than w/2.
So, rather than speaking of “tame” and “wild” kangaroos we will speak of the “front” and
“rear” kangaroos. Since one kangaroo starts in the middle of the interval, the distance
between the starting point of the rear kangaroo and the starting point of the front kan-
garoo is between 0 and w/2 and is, on average, w/4. Hence, on average, w/(4m) jumps
are required for the rear kangaro to pass the starting point of the front kangaroo.

After this point, the rear kangaroo is travelling over a region that has already been
jumped over by the front kangaroo. By our heuristic assumption, the footprints of the

14.5. THE KANGAROO METHOD 307

tame kangaroo are uniformly distributed over the region with, on average, one footprint
in each interval of length m. Also, the footprints of the wild kangaroo are independent,
and with one footprint in each interval of length m. The probability, at each step, that
the wild kangaroo does not land on any of the footprints of the tame kangaroo is therefore
heuristically 1 − 1/m. By exactly the same arguments as Lemma 14.2.14 it follows that
the expected number of jumps until a collision is m.

Note that there is a miniscule possibility that the walks never meet (this does not
require working in an infinite group, it can even happen in a finite group if the “orbits”
of the tame and wild walks are disjoint subsets of the group). If this happens then the
algorithm never halts. Since the walk function is chosen at random, the probability of
this eventuality is negligible. On the other hand, if the algorithm halts then its result is
correct. Hence, this is a Las Vegas algorithm.

The overall number of jumps made by the rear kangaroo until the first collision is
therefore, on average, w/(4m)+m. One can easily check that this is minimised by taking
m =

√
w/2. The kangaroo is also expected to perform a further 1/θ steps to the next

distinguished point. Since there are two kangaroos the expected total number of group
operations performed is 2

√
w + 2/θ = (2 + o(1))

√
w. �

This result is proved by Montenegro and Tetali [434] under the assumption that S is
a random function and that the distinguished points are well-distributed. Pollard [488]
shows it is valid when the o(1) is replaced by ǫ for some 0 ≤ ǫ < 0.06.

Note that the expected distance, on average, travelled by a kangaroo is w/4+m2 = w/2
steps. Hence, since the order of the group is greater than w, we do not expect any self-
collisions in the kangaroo walk.

We stress that, as with the rho method, the probability of success is considered over
the random choice of pseudorandom walk, not over the space of problem instances. Ex-
ercise 14.5.6 considers a different way to optimise the expected running time.

Exercise 14.5.6. Show that, with the above choice of m, the expected number of group
operations performed for the worst-case of problem instances is (3+ o(1))

√
w. Determine

the optimal choice of m to minimise the expected worst-case running time. What is the
expected worst-case complexity?

Exercise 14.5.7. A card trick known as Kruskal’s principle is as follows. Shuffle a
deck of 52 playing cards and deal face up in a row. Define the following walk along the
row of cards: If the number of the current card is i then step forward i cards (if the card
is a King, Queen or Jack then step 5 cards). The magicican runs this walk (in their mind)
from the first card and puts a coin on the last card visited by the walk. The magician
invites their audience to choose a number j between 1 and 10, then runs the walk from the
j-th card. The magician wins if the walk also lands on the card with the coin. Determine
the probability of success of this trick.

Exercise 14.5.8. Show how to use the kangaroo method to solve Exercises 13.3.8, 13.3.10
and 13.3.11 of Chapter 13.

Pollard’s original proposal did not use distinguished points and the algorithm only
had a fixed probability of success. In contrast, the method we have described keeps on
running until it succeeds (indeed, if the DLP is insoluble then the algorithm would never
terminate). Van Oorschot and Wiener (see page 12 of [473]) have shown that repeating
Pollard’s original method until it succeeds leads to a method with expected running time
of approximately 3.28

√
w group operations.

Exercise 14.5.9. Suppose one is given g ∈ G of order r, an integer w, and an instance
generator for the discrete logarithm problem that outputs h = ga ∈ G such that 0 ≤ a < w

308 CHAPTER 14. PSEUDORANDOM WALKS

according to some known distribution on {0, 1, . . . , w − 1}. Assume that the distribution
is symmetric with mean value w/2. How should one modify the kangaroo method to take
account of this extra information? What is the running time?

14.5.4 Comparison with the Rho Algorithm

We now consider whether one should use the rho or kangaroo algorithm when solving a
general discrete logarithm problem (i.e., where the width w of the interval is equal to, or
close to, r). If w = r then the rho method requires roughly 1.25

√
r group operations while

the kangaroo method requires roughly 2
√
r group operations. The heuristic assumptions

underlying both methods are similar, and in practice they work as well as the theory
predicts. Hence, it is clear that the rho method is preferable, unless w is much smaller
than r.

Exercise 14.5.10. Determine the interval size below which it is preferable to use the
kangaroo algorithm over the rho algorithm.

14.5.5 Using Inversion

Galbraith, Ruprai and Pollard [226] showed that one can improve the kangaroo method
by exploiting inversion in the group.11 Suppose one is given g, h, w and told that h = ga

with 0 ≤ a < w. We also require that the order r of g is odd (this will always be the case,
due to the Pohlig-Hellman algorithm). Suppose, for simplicity, that w is even. Replacing
h by hg−w/2 we have h = ga with −w/2 ≤ a < w/2. One can perform a version of
the kangaroo method with three kangaroos: One tame kangaroo starting from gu for an
appropriate value of u and two wild kangaroos starting from h and h−1 respectively.

The algorithm uses the usual kangaroo walk (with mean step size to be determined
later) to generate three sequences (xi, ai), (yi, bi), (zi, ci) such that xi = gai , yi = hgbi

and zi = h−1gci. The crucial observation is that a collision between any two sequences
leads to a solution to the DLP. For example, if xi = yj then h = gai−bj and if yi = zj then

hgbi = h−1gcj and so, since g has odd order r, h = g(cj−bi)2
−1 (mod r). The algorithm uses

distinguished points to detect a collison. We call this the three-kangaroo algorithm.

Exercise 14.5.11. Write down pseudocode for the three-kangaroo algorithm using dis-
tinguished points.

We now give a brief heuristic analysis of the three-kangaroo algorithm. Without loss
of generality we assume 0 ≤ a ≤ w/2 (taking negative a simply swaps h and h−1, so does
not affect the running time). The distance between the starting points of the tame and
wild kangaroos is 2a. The distance between the starting points of the tame and right-most
wild kangaroo is |a−u|. The extreme cases (in the sense that the closest pair of kangaroos
are as far apart as possible) are when 2a = u−a or when a = w/2. Making all these cases
equal leads to the equation 2a = u − a = w/2 − u. Calling this distance l it follows that
w/2 = 5l/2 and u = 3w/10. The average distance between the closest pair of kangaroos is
then w/10 and the closest pair of kangaroos can be thought of as performing the standard
kangaroo method in an interval of length 2w/5. Following the analysis of the standard
kangaroo method it is natural to take the mean step size to be m = 1

2

p
2w/5 =

p
w/10 ≈

0.316
√
w. The average-case expected number of group operations (only considering the

closest pair of kangaroos) would be 3
22
p
2w/5 ≈ 1.897

√
w. A more careful analysis takes

into account the possibility of collisions between any pair of kangaroos. We refer to [226]

11This research actually grew out of writing this chapter. Sometimes it pays to work slowly.

14.5. THE KANGAROO METHOD 309

for the details and merely remark that the correct mean step size is m ≈ 0.375
√
w and

the average-case expected number of group operations is approximately 1.818
√
w.

Exercise 14.5.12. The distance between −a and a is even, so a natural trick is to use
jumps of even length. Since we don’t know whether a is even or odd, if this is done
we don’t know whether to start the tame kangaroo at gu or gu+1. However, one can
consider a variant of the algorithm with two wild kangaroos (one starting from h and one
from h−1) and two tame kangaroos (one starting from gu and one from gu+1) and with
jumps of even length. This is called the four-kangaroo algorithm. Explain why the
correct choice for the mean step size is m = 0.375

√
2w and why the heuristic average-case

expected number of group operations is approximately 1.714
√
w = 2

√
2

3 1.818
√
w.

Galbraith, Pollard and Ruprai [226] have combined the idea of Exercise 14.5.12 and
the Gaudry-Schost algorithm (see Section 14.7) to obtain an algorithm for the discrete
logarithm problem in an interval of length w that performs (1.660 + o(1))

√
w group

operations.

14.5.6 Towards a Rigorous Analysis of the Kangaroo Method

Montenegro and Tetali [434] have analysed the kangaroo method using jumps which are
powers of 2, under the assumption that the selection function S is random and that
the distinguished points are well-distributed. They prove that the average-case expected
number of group operations is (2 + o(1))

√
w group operations. It is beyond the scope of

this book to present their methods.
We now present Pollard’s analysis of the kangaroo method from his paper [488], though

these results have been superseded by [434]. We restrict to the case where the selection
function S maps G to {0, 1, . . . , nS−1} and the kangaroo jumps are taken to be 2S(x) (i.e.,
the set of jumps is {1, 2, 4, . . . , 2nS−1} and the mean of the jumps is m = (2nS − 1)/nS).
We assume nS > 2. Pollard argues in [488] that if one only uses two jumps {1, 2n} (for
some n) then the best one can hope for is an algorithm with running time O(w2/3) group
operations.

Pollard also makes the usual assumption that S is a truly random function.
As always we visualise the kangaroos in terms of their exponents, and so we study

a pseudorandom walk on Z. The tame kangaroo starts at w. The wild kangaroo starts
somewhere in [0, w). We begin the analysis when the wild kangaroo first lands at a point
≥ w. Let w+ i be the first wild kangaroo footprint ≥ w. Define q(i) to be the probability
(over all possible starting positions for the wild kangaroo) that this first footstep is at w+i.
Clearly q(i) = 0 when i ≥ 2nS−1. The wild kangaroo footprints are chosen uniformly at
random with mean m, hence q(0) = 1/m. For i > 0 then only jumps of length > i could
be useful, so the probability is

q(i) = #{0 ≤ j < nS : 2j > i}/mnS.

To summarise q(1) = (nS − 1)/mnS, q(2) = (nS − 2)/mnS and for i > 2, q(i) = (nS −
1− ⌊log2(i)⌋)/mnS.

We now want to analyse how many further steps the wild kangaroo makes before
landing on a footprint of the tame kangaroo. We abstract the problem to the following:
Suppose the front kangaroo is at i and the rear kangaroo is at 0 and run the pseudorandom
walk. Define F (i) to be the expected number of steps made by the front kangaroo to the
collision and B(i) the expected number of steps made by the rear kangaroo to the collision.

We can extend the functions to F and B to i = 0 by taking a truly random and
independent step from {1, 2, 4, . . . , 2nS−1} (i.e., not using the deterministic pseudorandom
walk function).

310 CHAPTER 14. PSEUDORANDOM WALKS

We can now obtain formulae relating the functions F (i) and B(i). Consider one jump
by the rear kangaroo. Suppose the jump has distance s where s < i. Then the rear
kangaroo remains the rear kangaroo, but the front kangaroo is now only i − s ahead. If
F (i − s) = n1 and B(i − s) = n2 then we have F (i) = n1 and B(i) = 1 + n2. On the
other hand, suppose the jump has distance s ≥ i. Then the front and rear kangaroo
swap roles and the front kangaroo is now s− i ahead. We have B(i) = 1 + F (s− i) and
F (i) = B(s− i). Since the steps are chosen uniformly with probability 1/nS we get

F (i) = 1
nS

nS−1X

j=0,2j<i

F (i − 2j) +

nS−1X

j=0,2j≥i

B(2j − i)

and

B(i) = 1 + 1
nS

nS−1X

j=0,2j<i

B(i− 2j) +

nS−1X

j=0,2j≥i

F (2j − i)

Pollard then considers the expected value of the number of steps of the wild kangaroo to
a collision, namely

2(nS−1)−1X

i=1

q(i)F (i)

which we write as mC(nS) for some C(nS) ∈ R. In [488] one finds numerical data for
C(nS) which suggest that it is between 1 and 1.06 when nS ≥ 12. Pollard also conjectures
that limnS→∞ C(nS) = 1.

Given an interval of size w one chooses nS such that the mean m = (2nS − 1)/nS is
as close as possible to

√
w/2. One runs the tame Kangaroo, starting at w, for mC(nS)

steps and sets the trap. The wild kangaroo is expected to need w/2m steps to pass the
start of the tame kangaroo followed by mC(nS) steps to fall into the trap. Hence, the
expected number of group operations for the kangaroo algorithm (for a random function
S) is

w/2m+ 2mC(nS).

Taking m =
√
w/2 gives expected running time

(1 + C(nS))
√
w

group operations.
In practice one would slightly adjust the jumps {1, 2, 4, . . . , 2nS−1} (while hoping that

this does not significantly change the value of C(nS)) to arrange that m =
p
w/C(nS)/2.

14.6 Distributed Kangaroo Algorithm

Let NP be the number of processors or clients. A naive way to parallelise the the kangaroo
algorithm is to divide the interval [0, w) into NP sub-intervals of size w/NP and then run
the kangaroo algorithm in parallel on each sub-interval. This gives an algorithm with
running time O(

p
w/NP) group operations per client, which is not a linear speedup.

Since we are using distinguished points one should be able to do better. But the
kangaroo method is not as straightforward to parallelise as the rho method (a good
exercise is to stop reading now and think about it for a few minutes). The solution is
to use a herd of NP /2 tame kangaroos and a herd of NP /2 wild kangaroos. These are
super-kangaroos in the sense that they take much bigger jumps (roughly NP /2 times

14.6. DISTRIBUTED KANGAROO ALGORITHM 311

Figure 14.2: Distributed kangaroo walk (van Oorschot and Wiener version). The herd
of tame kangaroos is pictured above the axis and the herd of wild kangaroos is pictured
below. The dot marks the collision.

longer) than in the serial case. The goal is to have a collision between one of the wild
kangaroos and one of the tame kangaroos. We imagine that both herds are setting traps,
each trying to catch a kangaroo from the other herd (regrettably, they may sometimes
catch one of their own kind).

When a kangaroo lands on a distinguished point one continues the pseudorandom walk
(rather than restarting the walk at a new randomly chosen position). In other words, the
herds march ever onwards with an occasional individual hitting a distinguished point and
sending information back to the server. See Figure 14.2 for a picture of the herds in
action.

There are two versions of the distributed algorithm, one by van Oorschot andWiener [473]
and another by Pollard [488]. The difference is how they handle the possibility of col-
lisions between kangaroos of the same herd. The former has a mechanism to deal with
this, which we will explain later. The latter paper elegantly ensures that there will not
be collisions between individuals of the same herd.

14.6.1 Van Oorschot and Wiener Version

We first present the algorithm of van Oorschot and Wiener. The herd of tame kangaroos
starts around the midpoint of the interval [0, w), and the kangaroos are spaced a (small)
distance s apart (as always, we describe kangaroos by their exponent). Similarly, the wild
kangaroos start near a = logg(h), again spaced a distance s apart. As we will explain
later, the mean step size of the jumps should be m ≈ NP

√
w/4.

Here walk(xi, ai) is the function which returns xi+1 = xigS(xi) and ai+1 = ai+uS(xi).
Each client has a variable type which takes the value ‘tame’ or ‘wild’.

If there is a collision between two kangaroos of the same herd then it will eventually be
detected when the second one lands on the same distinguished point as the first. In [473]
it is suggested that in this case the server should instruct the second kangaroo to take a
jump of random length so that it no longer follows the path of the front kangaroo. Note
that Teske [606] has shown that the expected number of collisions within the same herd
is 2, so this issue can probably be ignored in practice.

We now give a very brief heuristic analysis of the running time. The following as-
sumption seems to be reasonable when w is sufficiently large, nS is sufficiently large,
log(w)/

√
w < θ, the set D of distinguished points is determined by a good hash func-

tion, the number NP of clients is sufficiently small (e.g., NP < θ
p
πr/2/ log(r), see

Exercise 14.3.3), the spacing s is independent of the steps in the random walk and is
sufficiently large, the function walk is chosen at random.

312 CHAPTER 14. PSEUDORANDOM WALKS

Algorithm 19 The distributed kangaroo algorithm (van Oorschot and Wiener version):
Server side
Input: g, h ∈ G, interval length w, number of clients NP

Output: a such that h = ga

1: Choose nS , a random function S : G → {0, . . . , nS − 1}, m = NP
√
w/4, jumps

{u0, . . . , unS−1} with mean m, spacing s
2: for i = 1 to NP /2 do ⊲ Start NP /2 tame kangaroo clients
3: Set ai = ⌊w/2⌋+ is
4: Initiate client on (gai , ai, ‘tame’) with function walk

5: end for
6: for j = 1 to NP /2 do ⊲ Start NP /2 wild kangaroo clients
7: Set aj = js
8: Initiate client on (hgaj , aj, ‘wild’) with function walk

9: end for
10: Initialise an easily sorted structure L (sorted list, binary tree etc) to be empty
11: while DLP not solved do
12: Receive triples (xi, ai, typei) from clients and insert into L
13: if first coordinate of new triple (x, a2, type2) matches existing triple (x, a1, type1)

then
14: if type2 = type1 then
15: Send message to the sender of (x, a2, type2) to take a random jump
16: else
17: Send terminate signal to all clients
18: if type1 =‘tame’ then
19: return (a1 − a2) (mod r)
20: else
21: return (a2 − a1) (mod r)
22: end if
23: end if
24: end if
25: end while

Algorithm 20 The distributed kangaroo algorithm (van Oorschot and Wiener version):
Client side
Input: (x1, a1, type) ∈ G× Z/rZ, function walk
1: while terminate signal not received do
2: (x1, a1) = walk(x1, a1)
3: if x1 ∈ D then
4: Send (x1, a1, type) to server
5: if Receive jump instruction then
6: Choose random 1 < u < 2m (where m is the mean step size)
7: Set a1 = a1 + u, x1 = x1g

u

8: end if
9: end if

10: end while

14.6. DISTRIBUTED KANGAROO ALGORITHM 313

Heuristic 14.6.1.

1. Walks reach a distinguished point in significantly fewer than
√
w steps (in other

words, there are no cycles in the walks and walks are not excessively longer than
1/θ).

2. When two kangaroos with mean step size m walk over the same interval, the ex-
pected number of group elements sampled before a collision is m.

3. Walks of kangaroos in the same herd are independent.12

Theorem 14.6.2. Let NP be the number of clients (fixed, independent of w). Assume
Heuristic 14.6.1 and that all clients are reliable and have the same computing power. The
average-case expected number of group operations performed by the distributed kangaroo
method for each client is (2 + o(1))

√
w/NP .

Proof: Since we don’t know where the wild kangaroo is, we speak of the front herd and
the rear herd. The distance (in the exponent) between the front herd and the rear herd
is, on average, w/4. So it takes w/(4m) steps for the rear herd to reach the starting point
of the front herd.

We now consider the footsteps of the rear herd in the region already visited by the front
herd of kangaroos. Assuming the NP /2 kangaroos of the front herd are independent, the
region already covered by these kangaroos is expected to have NP /2 footprints in each
interval of length m. Hence, under our heuristic assumptions, the probability that a
random footprint of one of the rear kangaroos lands on a footprint of one of the front
kangaroos is NP /(2m). Since there are NP /2 rear kangaroos, all mutually independent,
the probability of one of the rear kangaroos landing on a tame footprint is N2

P /(4m). By
the heuristic assumption, the expected number of footprints to be made before a collision
occurs is 4m/N2

P .
Finally, the collision will not be detected until a distinguished point is visited. Hence,

one expects a further 1/θ steps to be made.
The expected number of group operations made by each client in the average case is

therefore w/(4m) + 4m/N2
P + 1/θ. Ignoring the 1/θ term, this expression is minimised

by taking m = NP
√
w/4. The result follows. �

The remarks made in Section 14.3.1 about parallelisation (for example, Exercise 14.3.3)
apply equally for the distributed kangaroo algorithm.

Exercise 14.6.3. The above analysis is optimised for the average-case running time.
Determine the mean step size to optimise the worst-case expected running time. Show
that the heuristic optimal running time is (3 + o(1))

√
w/NP group operations.

Exercise 14.6.4. Give distributed versions of the three-kangaroo and four-kangaroo
algorithms of Section 14.5.5.

14.6.2 Pollard Version

Pollard’s version reduces the computation to essentially a collection of serial versions, but
in a clever way so that a linear speed-up is still obtained. One merit of this approach is

12This assumption is very strong, and indeed is false in general (since there is a chance that walks
collide). The assumption is used for only two purposes. First, to “amplify” the second assumption in the
heuristic from any pair of kangaroos to the level of herds. Second, to allow us to ignore collisions between
kangaroos in the same herd (Teske, in Section 7 of [606], has argued that such collisions are rare). One
could replace the assumption of independence by these two consequences.

314 CHAPTER 14. PSEUDORANDOM WALKS

that the analysis of the serial kangaroo algorithm can be applied; we no longer need the
strong heuristic assumption that kangaroos in the same herd are mutually independent.

Let NP be the number of processors and suppose we can write NP = U + V where
gcd(U, V) = 1 and U, V ≈ NP /2. The number of tame kangaroos is U and the number of
wild kangaroos is V . The (super) kangaroos perform the usual pseudorandom walk with
steps {UV u0, . . . , UV un−1} having mean m ≈ NP

√
w/4 (this is UV times the mean step

size for solving the DLP in an interval of length w/UV ≈ 4w/N2
P). As usual we choose

either uj ≈ 2j or else random values between 0 and 2m/UV .
The U tame kangaroos start at

g⌊w/2⌋+iV

for 0 ≤ i < U . The V wild kangaroos start at hgjU for 0 ≤ j < V . Each kangaroo then
uses the pseudorandom walk to generate a sequence of values (xn, an) where xn = gan or
xn = hgan . Whenever a distinguished point is hit the kangaroo sends data to the server
and continues the same walk.

Lemma 14.6.5. Suppose the walks do not cover the whole group, i.e., 0 ≤ an < r. Then
there is no collision between two tame kangaroos or two wild kangaroos. There is a unique
pair of tame and wild kangaroos who can collide.

Proof: Each element of the sequence generated by the ith tame kangaroo is of the form

g⌊w/2⌋+iV +lUV

for some l ∈ Z. To have a collision between two different tame kangaroos one would need

⌊w/2⌋+ i1V + l1UV = ⌊w/2⌋+ i2V + l2UV

and reducing modulo U implies i1 ≡ i2 (mod U) which is a contradiction. To summarise,
the values an for the tame kangaroos all lie in disjoint equivalence classes modulo U . A
similar argument shows that wild kangaroos do not collide.

Finally, if h = ga then i = (⌊w/2⌋−a)V −1 (mod U) and j = (a−⌊w/2⌋)U−1 (mod V)
are the unique pair of indices such that the ith tame kangaroo and the jth wild kangaroo
can collide. �

The analysis of the algorithm therefore reduces to the serial case, since we have one
tame kangaroo and one wild kangaroo who can collide. This makes the heuristic analysis
simple and immediate.

Theorem 14.6.6. Let the notation be as above. Assume Heuristic 14.5.4 and that all
clients are reliable and have the same computational power. Then the average-case ex-
pected running time for each client is (1 + o(1))

p
w/UV = (2 + o(1))

√
w/NP group

operations.

Proof: The action is now constrained to an equivalence class modulo UV , so the clients
behave like the serial kangaroo method in an interval of size w/UV (see Exercise 14.5.8
for reducing a DLP in a congruence class to a DLP in a smaller interval). The mean step
size is therefore m ≈ UV

p
w/UV /2 ≈ NP

√
w/4. Applying Theorem 14.5.5 gives the

result. �

14.6.3 Comparison of the Two Versions

Both versions of the distributed kangaroo method have the same heuristic running time
of (2 + o(1))

√
w/NP group operations.13 So which is to be preferred in practice? The

13Though the analysis by van Oorschot and Wiener needs the stronger assumption that the kangaroos
in the same herd are mutually independent.

14.7. THE GAUDRY-SCHOST ALGORITHM 315

answer depends on the context of the computation. For genuine parallel computation in
a closed system (e.g., using special-purpose hardware) then either could be used.

In distributed environments then both methods have drawbacks. For example, the
van Oorschot-Wiener method needs a communication from server to client in response
to uploads of distinguished point information (the “take a random jump” instruction);
though Teske [606] has remarked that this can probably be ignored.

More significantly, both methods require knowing the number NP of processors at
the start of the computation, since this value is used to specify the mean step size. This
causes problems if a large number of new clients join the computation after it has begun.

With the van Oorschot and Wiener method, if further clients want to join the com-
putation after it has begun, then they can be easily added (half the new clients tame and
half wild) by starting them at further shifts from the original starting points of the herds.
With Pollard’s method it is less clear how to add new clients. Even worse, since only one
pair of “lucky” clients has the potential to solve the problem, if either of them crashes or
withdraws from the computation then the problem will not be solved. As mentioned in
Section 14.4.3 these are serious issues which do arise in practice.

On the other hand, these issues can be resolved by over-estimating NP and by issuing
clients with fresh problem instances once they have produced sufficiently many distin-
guished points from their current instance. Note that this also requires communication
from server to client.

14.7 The Gaudry-Schost Algorithm

Gaudry and Schost [249] give a different approach to solving discrete logarithm problems
using pseudorandom walks. As we see in Exercise 14.7.6, this method is slower than the
rho method when applied to the whole group. However, the approach leads to low-storage
algorithms for the multi-dimensional discrete logarithm problems (see Definition 13.5.1);
and the discrete logarithm problem in an interval using equivalence classes. This is
interesting since, for both problems, it is not known how to adapt the rho or kangaroo
methods to give a low-memory algorithm with the desired running time.

The basic idea of the Gaudry-Schost algorithm is as follows. One has pseudorandom
walks in two (or more) subsets of the group such that a collision between walks of different
types leads to a solution to the discrete logarithm problem. The sets are smaller than the
whole group, but they must overlap (otherwise, there is no chance of a collision). Typi-
cally, one of the sets is called a “tame set” and the other a “wild set”. The pseudorandom
walks are deterministic, so that when two walks collide they continue along the same path
until they hit a distinguished point and stop. Data from distinguished points is held in
an easily searched database held by the server. After reaching a distinguished point, the
walks re-start at a freshly chosen point.

14.7.1 Two-Dimensional Discrete Logarithm Problem

Suppose we are given g1, g2, h ∈ G and N ∈ N (where we assume N is even) and asked to
find integers 0 ≤ a1, a2 < N such that h = ga1

1 ga2

2 . Note that the size of the solution space
is N2, so we seek a low-storage algorithm with number of group operations proportional
to N . The basic Gaudry-Schost algorithm for this problem is as follows.

Define the tame set

T = {(x, y) ∈ Z2 : 0 ≤ x, y < N}

316 CHAPTER 14. PSEUDORANDOM WALKS

and the wild set

W = (a1 −N/2, a2 −N/2) + T = {(a1 −N/2 + x, a2 −N/2 + y) ∈ Z2 : 0 ≤ x, y < N}.

In other words, T and W are N ×N boxes centered on (N/2− 1, N/2− 1) and (a1, a2)
respectively. It follows that #W = #T = N2 and if (a1, a2) = (N/2 − 1, N/2− 1) then
T = W , otherwise T ∩W is a proper non-empty subset of T .

Define a pseudorandom walk as follows: First choose nS > log(N) random pairs
of integers −M < mi, ni < M where M is an integer to be chosen later (typically,
M ≈ N/(1000 log(N))) and precompute elements of the form wi = gmi

1 gni
2 for 0 ≤ i < nS .

Then choose a selection function S : G → {0, 1, . . . , nS − 1}. The walk is given by the
function

walk(g, x, y) = (gwS(g), x+mS(g), y + nS(g)).

Tame walks are started at (gx1 g
y
2 , x, y) for random elements (x, y) ∈ T and wild walks are

started at (hg
x−N/2+1
1 g

y−N/2+1
2 , x−N/2+1, y−N/2+1) for random elements (x, y) ∈ T .

Walks proceed by iterating the function walk until a distinguished element of G is visited;
at which time the data (g, x, y), together with the type of walk, is stored in a central
database. When a distinguished point is visited, the walk is re-started at a uniformly
chosen group element (this is like the rho method, but different from the behaviour of
kangaroos). Once two walks of different types visit the same distinguished group element
we have a collision of the form

gx1g
y
2 = hgx

′

1 gy
′

2

and the two-dimensional DLP is solved.

Exercise 14.7.1. Write pseudocode, for both the client and server, for the distributed
Gaudry-Schost algorithm.

Exercise 14.7.2. Explain why the algorithm can be modified to omit storing the the
type of walk in the database. Show that the methods of Exercise 14.2.18 to reduce storage
can also be used in the Gaudry-Schost algorithm.

Exercise 14.7.3. What modifications are required to solve the problem h = ga1
1 ga2

2 such
that 0 ≤ a1 < N1 and 0 ≤ a2 < N2 for 0 < N1 < N2?

An important practical consideration is that walks will sometimes go outside the tame
or wild regions. One might think that this issue can be solved by simply taking the values
x and y into account and altering the walk when close to the boundary, but then the
crucial property of the walk function (that once two walks collide, they follow the same
path) would be lost. By taking distinguished points to be quite common (i.e., increasing
the storage) and making M relatively small one can minimise the impact of this problem.
Hence, we ignore it in our analysis.

We now briefly explain the heuristic complexity of the algorithm. The key observation
is that a collision can only occur in the region where the two sets overlap. Let A = T ∩W .
If one samples uniformly at random in A, alternately writing elements down on a “tame”
and “wild” list, the expected number of samples until the two lists have an element in
common is

√
π#A+O(1) (see, for example, Selivanov [536] or [223]).

The following heuristic assumption seems to be reasonable when N is sufficiently
large, nS > log(N), distinguished points are sufficiently common and specified using a
good hash function (and hence are well-distributed), θ > log(N)/N , walks are sufficiently
“local” that they do not go outside T (respectively, W) but also not too local, and when
the function walk is chosen at random.

14.7. THE GAUDRY-SCHOST ALGORITHM 317

Heuristic 14.7.4.

1. Walks reach a distinguished point in significantly fewer than N steps (in other
words, there are no cycles in the walks and walks are not excessively longer than
1/θ).

2. Walks are uniformly distributed in T (respectively, W).

Theorem 14.7.5. Let the notation be as above, and assume Heuristic 14.7.4. Then
the average-case expected number of group operations performed by the Gaudry-Schost
algorithm is (

√
π(2(2 −

√
2))2 + o(1))N ≈ (2.43 + o(1))N .

Proof: We first compute #(T ∩W). When (a1, a2) = (N/2, N/2) then W = T and so
#(T ∩ W) = N2. In all other cases the intersection is less. The extreme case is when
(a1, a2) = (0, 0) (similar cases are (a1, a2) = (N − 1, N − 1) etc). Then W = {(x, y) ∈
Z2 : −N/2 ≤ x, y < N/2} and #(T ∩W) = N2/4. By symmetry it suffices to consider
the case 0 ≤ a1, a2 < N/2 in which case we have #(T ∩W) ≈ (N/2+a1)(N/2+a2) (here
we are approximating the number of integer points in a set by its area).

Let A = T ∩W . To sample
√
π#A elements in A it is necessary to sample #T/#A

elements in T and W . Hence, the number of group elements to be selected overall is

#T

#A

�p
π#A+O(1)

�
= (#T + o(1))

√
π(#A)−1/2.

The average-case number of group operations is

(N2 + o(1))
√
π
�

2
N

�2 Z N/2

0

Z N/2

0

(N − x)−1/2(N − y)−1/2dxdy.

Note that Z N/2

0

(N − x)−1/2dx =
√
N(2−

√
2).

The average-case expected number of group operations is therefore

�√
π(2(2−

√
2))2 + o(1)

�
N

as stated. �

The Gaudry-Schost algorithm has a number of parameters that can be adjusted (such
as the type of walks, the sizes of the tame and wild regions etc). This gives it a lot of
flexibility and makes it suitable for a wide range of variants of the DLP. Indeed, Galbraith
and Ruprai [227] have improved the running time to (2.36+ o(1))N group operations by
using smaller tame and wild sets (also, the wild set is a different shape). One drawback
is that it is hard to fine-tune all these parameters to get an implementation that achieves
the theoretically optimal running time.

Exercise 14.7.6. Determine the complexity of the Gaudry-Schost algorithm for the
standard DLP in G, when one takes T = W = G.

Exercise 14.7.7. Generalise the Gaudry-Schost algorithm to the n-dimensional DLP
(see Definition 13.5.1). What is the heuristic average-case expected number of group
operations?

318 CHAPTER 14. PSEUDORANDOM WALKS

14.7.2 Discrete Logarithm Problem in an Interval using Equiva-
lence Classes

Galbraith and Ruprai [228] used the Gaudry-Schost algorithm to solve the DLP in an
interval of length N < r faster than is possible using the kangaroo method when the
group has an efficiently computable inverse (e.g., elliptic curves or tori). First, shift the
discrete logarithm problem so that it is of the form h = ga with −N/2 < a ≤ N/2. Define
the equivalence relation u ≡ u−1 for u ∈ G as in Section 14.4 and determine a rule that
leads to a unique representative of each equivalence class. Design a pseudorandom walk
on the set of equivalence classes. The tame set is the set of equivalence classes coming
from elements of the form gx with −N/2 < x ≤ N/2. Note that the tame set has 1+N/2
elements and every equivalence class {gx, g−x} arises in two ways, except the singleton
class {1} and the class {−N/2, N/2}.

A natural choice for the wild set is the set of equivalence classes coming from elements
of the form hgx with −N/2 < x ≤ N/2. Note that the size of the wild set now depends
on the discrete logarithm problem: if h = g0 = 1 then the wild set has 1 +N/2 elements
while if h = gN/2 then the wild set has N elements. Even more confusingly, sampling
from the wild set by uniformly choosing x does not, in general, lead to uniform sampling
from the wild set. This is because the equivalence class {hgx, (hgx)−1} can arise in either
one or two ways, depending on h. To analyse the algorithm it is necessary to use a non-
uniform version of the birthday paradox (see, for example, Galbraith and Holmes [223]).
The main result of [228] is an algorithm that solves the DLP in heuristic average-case
expected (1.36 + o(1))

√
N group operations.

14.8 Parallel Collision Search in Other Contexts

Van Oorschot and Wiener [473] propose a general method, motivated by Pollard’s rho
algorithm, for finding collisions of functions using distinguished points and parallelisation.
They give applications to cryptanalysis of hash functions and block ciphers that are
beyond the scope of this book. But they also give applications of their method for
algebraic meet-in-the-middle attacks, so we briefly give the details here.

First we sketch the parallel collision search method. Let f : S → S be a function
mapping some set S of size N to itself. Define a set D of distinguished points in S.
Each client chooses a random starting point x1 ∈ S, iterates xn+1 = f(xn) until it hits
a distinguished point, and sends (x1, xn, n) to the server. The client then restarts with a
new random starting point. Eventually the server gets two triples (x1, x, n) and (x′

1, x, n
′)

for the same distinguished point. As long as we don’t have a “Robin Hood”14 (i.e., one
walk is a subsequence of another) the server can use the values (x1, n) and (x′

1, n
′) to

efficiently find a collision f(x) = f(y) with x 6= y. The expected running time for each
client is

p
πN/2/NP + 1/θ, using the notation of this chapter. The storage requirement

depends on the choice of θ.
We now consider the application to meet-in-the-middle attacks. A general meet-in-

the-middle attack has two sets S1 and S2 and functions fi : Si → R for i = 1, 2. The
goal is to find a1 ∈ S1 and a2 ∈ S2 such that f1(a1) = f2(a2). The standard solution
(as in baby-step-giant-step) is to compute and store all (f1(a1), a1) in an easily searched
structure and then test for each a2 ∈ S2 whether f2(a2) is in the structure. The running
time is #S1 +#S2 function evaluations and the storage is proportional to #S1.

14Robin Hood is a character of English folklore who is expert in archery. His prowess allows him to
shoot a second arrow on exactly the same trajectory as the first, so that the second arrow splits the first.
Chinese readers may substitute the name Houyi.

14.9. POLLARD RHO FACTORING METHOD 319

The idea of [473] is to phrase this as a collision search problem for a single function
f . For simplicity we assume that #S1 = #S2 = N . We write I = {0, 1, . . . , N − 1}
and assume one can construct bijective functions σi : I → Si for i = 1, 2. One defines a
surjective map

ρ : R → I × {1, 2}
and a set S = I × {1, 2}. Finally, define f : S → S as f(x, i) = ρ(fi(σi(x))). Clearly,
the desired collision f1(a1) = f2(a2) can arise from f(σ−1

1 (a1), 1) = f(σ−1
2 (a2), 2), but

collisions can also arise in other ways (for example, due to collisions in ρ). Indeed, since
#S = 2N one expects there to be roughly 2N pairs (a1, a2) ∈ S2 such that a1 6= a2
but f(a1) = f(a2). In many applications there is only one collision (van Oorschot and
Wiener call it the “golden collision”) that actually leads to a solution of the problem. It
is therefore necessary to analyse the algorithm carefully to determine the expected time
until the problem is solved.

Let NP be the number of clients and let NM be the total number of group elements
that can be stored on the server. Van Oorschot and Wiener give a heuristic argument
that the algorithm finds a useful collision after 2.5

p
(2N)3/NM/NP group operations per

client. This is taking θ = 2.25
p
NM/2N for the probability of a distinguished point. We

refer to [473] for the details.

14.8.1 The Low Hamming Weight DLP

Recall the low Hamming weight DLP: Given g, h, n, w find x of bit-length n and Hamming
weight w such that h = gx. The number of values for x is M =

�
n
w

�
and there is a naive

low storage algorithm running in time Õ(M). We stress that the symbol w here means
the Hamming weight; rather than its meaning earlier in this chapter.

Section 13.6 gave baby-step-giant-step algorithms for the low Hamming weight DLP
that perform O(

√
w
�n/2
w/2

�
) group operations. Hence these methods require time and space

roughly proportional to
√
wM .

To solve the low Hamming weight DLP using parallel collision search one sets R = hgi
and S1,S2 to be sets of integers of binary length n/2 and Hamming weight roughly w/2.

Define the functions f1(a) = ga and f2(a) = hg−2n/2a so that a collision f1(a1) = f2(a2)
solves the problem. Note that there is a unique choice of (a1, a2) such that f1(a1) = f2(a2)
but when one uses the construction of van Oorschot and Wiener to get a single function f
then there will be many useless collisions in f . We have N = #S1 = #S2 ≈

�n/2
w/2

�
≈

√
M

and so get an algorithm whose number of group operations is proportional toN3/2 = M3/4

yet requires low storage. This is a significant improvement over the naive low-storage
method, but still slower than baby-step-giant-step.

Exercise 14.8.1. Write this algorithm in pseudocode and give a more careful analysis
of the running time.

It remains an open problem to give a low memory algorithm for the low Hamming
weight DLP with complexity proportional to

√
wM as with the BSGS methods.

14.9 Pollard Rho Factoring Method

This algorithm was proposed in [486] and was the first algorithm invented by Pollard that
exploited pseudorandom walks. As more powerful factoring algorithms exist, we keep the
presentation brief. For further details see Section 5.6.2 of Stinson [592] or Section 5.2.1
of Crandall and Pomerance [162].

320 CHAPTER 14. PSEUDORANDOM WALKS

Let N be a composite integer to be factored and let p | N be a prime (usually p is
the smallest prime divisor of N). We try to find a relation that holds modulo p but not
modulo other primes dividing N .

The basic idea of the rho factoring algorithm is to consider the pseudorandom walk
x1 = 2 and

xi+1 = f(xi) (mod N)

where the usual choice for f(x) is x2 + 1 (or f(x) = x2 + a for some small integer a).
Consider the values xi (mod p) where p | N . The sequence xi (mod p) is a pseudorandom
sequence of residues modulo p, and so after about

p
πp/2 steps we expect there to be

indicies i and j such that xi ≡ xj (mod p). We call this a collision. If xi 6≡ xj (mod N)
then we can split N as gcd(xi − xj , N).

Example 14.9.1. Let p = 11. Then the rho iteration modulo p is

2, 5, 4, 6, 4, 6, 4, . . .

Let p = 19. Then the sequence is

2, 5, 7, 12, 12, 12, . . .

As with the discrete logarithm algorithms, the walk is deterministic in the sense that
a collision leads to a cycle. Let lt be the length of the tail and lh be the length of the
cycle. Then the first collision is

xlt+lh ≡ xlt (mod p).

We can use Floyd’s cycle finding algorithm to detect the collision. The details are given
in Algorithm 21. Note that it is not efficient to compute the gcd in line 5 of the algorithm
for each iteration; Pollard [486] gave a solution to reduce the number of gcd computations
and Brent [98] gave another.

Algorithm 21 The rho algorithm for factoring

Input: N
Output: A factor of N
1: x1 = 2, x2 = f(x1) (mod N)
2: repeat
3: x1 = f(x1) (mod N)
4: x2 = f(f(x2)) (mod N)
5: d = gcd(x2 − x1, N)
6: until 1 < d < N
7: return d

We now briefly discuss the complexity of the algorithm. Note that the “algorithm”
may not terminate, for example if the length of the cycle and tail are the same for all
p | N then the gcd will always be either 1 or N . In practice one would stop the algorithm
after a certain number of steps and repeat with a different choice of x1 and/or f(x). Even
if it terminates, the length of the cycle of the rho may be very large. Hence, the usual
approach is to make the heuristic assumption that the rho pseudorandom walk behaves
like a random walk. To have meaningful heuristics one should analyse the algorithm when
the function f(x) is randomly chosen from a large set of possible functions.

Note that the rho method is more general than the p − 1 method (see Section 12.3),
since a random p | N is not very likely to be

√
p-smooth.

14.10. POLLARD KANGAROO FACTORING 321

Theorem 14.9.2. Let N be composite, not a prime power and not “too smooth”. Assume
that the Pollard rho walk modulo p behaves like a pseudorandom walk for all p | N . Then
the rho algorithm factors N in O(N1/4 log(N)2) bit operations.

Proof: (Sketch) Let p be a prime dividing N such that p ≤
√
N . Define the values lt

and lh corresponding to the sequence xi (mod p). If the walk behaves sufficiently like a
random walk then, by the birthday paradox, we will have lh, lt ≈

p
πp/8. Similarly, for

some other prime q | N one expects that the walk modulo q has different values lh and
lt. Hence, after O(

√
p) iterations of the loop one expects to split N . �

Bach [21] has given a rigorous analysis of the rho factoring algorithm. He proves
that if 0 ≤ x, y < N are chosen randomly and the iteration is x1 = x, xi+1 = x2

i + y,
then the probability of finding the smallest prime factor p of N after k steps is at least
k(k − 1)/2p+O(p−3/2) as p goes to infinity, where the constant in the O depends on k.
Bach’s method cannot be used to analyse the rho algorithm for discrete logarithms.

Example 14.9.3. Let N = 144493. The values (xi, x2i) for i = 1, 2, . . . , 7 are

(2, 5), (5, 677), (26, 9120), (677, 81496), (24851, 144003), (9120, 117992), (90926, 94594)

and one can check that gcd(x14 − x7, N) = 131.
The reason for this can be seen by considering the values xi modulo p = 131. The

sequence of values starts

2, 5, 26, 22, 92, 81, 12, 14, 66, 34, 109, 92

and we see that x12 = x5 = 92. The tail has length lt = 5 and the head has length lh = 7.
Clearly, x14 ≡ x7 (mod p).

Exercise 14.9.4. Factor the number 576229 using the rho algorithm.

Exercise 14.9.5. The rho algorithm usually uses the function f(x) = x2 + 1. Why do
you think this function is used? Why are the functions f(x) = x2 and f(x) = x2 − 2 less
suitable?

Exercise 14.9.6. Show that if N is known to have a prime factor p ≡ 1 (mod m) for
m > 2 then it is preferable to use the polynomial f(x) = xm + 1.

Exercise 14.9.7. Floyd’s and Brent’s cycle finding methods are both useful for the
rho factoring algorithm. Explain why one cannot use the other cycle finding meth-
ods listed in Section 14.2.2 (Sedgewick-Szymanski-Yao, Schnorr-Lenstra, Nivasch, dis-
tinguished points) for the rho factoring method.

14.10 Pollard Kangaroo Factoring

One can also use the kangaroo method to obtain a factoring algorithm. This is a much
more direct application of the discrete logarithm algorithm we have already presented.
Let N = pq be a product of two n-bit primes. Then

√
N < p+ q < 3

√
N . Let g ∈ Z∗

N be
chosen at random. Since gϕ(N)/2 ≡ 1 (mod N) we have

g(N+1)/2 ≡ gx (mod N)

for x = (p+ q)/2. In other words, we have a discrete logarithm problem in Z∗
N an interval

of width
√
N . Using the standard kangaroo algorithm in the group Z∗

N one expects to
find x (and hence split N) in time Õ(N1/4).

322 CHAPTER 14. PSEUDORANDOM WALKS

Exercise 14.10.1. The above analysis was for integers N which are a product of two
primes of very similar size. Let N now be a general composite integer and let p | N be
the smallest prime dividing N . Then p <

√
N . Choose g ∈ Z∗

N and let h = gN (mod N).
Then h ≡ gx (mod p) for some 1 ≤ x < p. It is natural to try to use the kangaroo method
to find x in time O(

√
p log(N)2). If x were found then gN−x ≡ 1 (mod p) and so one can

split N as gcd(gN−x − 1 (mod N), N). However, it seems to be impossible to construct
an algorithm based on this idea. Explain why.

