
Chapter 13

Basic Discrete Logarithm
Algorithms

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter is about algorithms to solve the discrete logarithm problem (DLP) and
some variants of it. We focus mainly on deterministic methods that work in any group;
later chapters will present the Pollard rho and kangaroo methods, and index calculus
algorithms. In this chapter we also present the concept of generic algorithms and prove
lower bounds on the running time of a generic algorithm for the DLP. The starting point
is the following definition (already given as Definition 2.1.1).

Definition 13.0.1. Let G be a group written in multiplicative notation. The discrete

logarithm problem (DLP) is: Given g, h ∈ G to find a, if it exists, such that h = ga.
We sometimes denote a by logg(h).

As discussed after Definition 2.1.1, we intentionally do not specify a distribution on g
or h or a above, although it is common to assume that g is sampled uniformly at random
in G and a is sampled uniformly from {1, . . . ,#G}.

Typically G will be an algebraic group over a finite field Fq and the order of g will be
known. If one is considering cryptography in an algebraic group quotient then we assume
that the DLP has been lifted to the covering group G. A solution to the DLP exists if and
only if h ∈ 〈g〉 (i.e., h lies in the subgroup generated by g). We have discussed methods
to test this in Section 11.6.

Exercise 13.0.2. Consider the discrete logarithm problem in the group of integers mod-
ulo p under addition. Show that the discrete logarithm problem in this case can be
solved in polynomial-time.

Exercise 13.0.2 shows there are groups for which the DLP is easy. The focus in this
book is on algebraic groups for which the DLP seems to be hard.

269

270 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

Exercise 13.0.3. Let N be composite. Define the discrete logarithm problem DLP-
MOD-N in the multiplicative group of integers modulo N . Show that FACTOR ≤R

DLP-MOD-N.

Exercise 13.0.3 gives some evidence that cryptosystems based on the DLP should be
at least as secure as cryptosystems based on factoring.

13.1 Exhaustive Search

The simplest algorithm for the DLP is to sequentially compute ga for 0 ≤ a < r and
test equality of each value with h. This requires at most r − 2 group operations and r
comparisons.

Exercise 13.1.1. Write pseudocode for the exhaustive search algorithm for the DLP and
verify the claims about the worst-case number of group operations and comparisons.

If the cost of testing equality of group elements is O(1) group operations then the
worst-case running time of the algorithm is O(r) group operations. It is natural to
assume that testing equality is always O(1) group operations, and this will always be true
for the algebraic groups considered in this book. However, as Exercise 13.1.2 shows, such
an assumption is not entirely trivial.

Exercise 13.1.2. Suppose projective coordinates are used for elliptic curves E(Fq) to
speed up the group operations in the exhaustive search algorithm. Show that testing
equality between a point in projective coordinates and a point in affine or projective
coordinates requires at least one multiplication in Fq (and so this cost is not linear).
Show that, nevertheless, the cost of testing equality is less than the cost of a group
operation.

For the rest of this chapter we assume that groups are represented in a compact way
and that operations involving the representation of the group (e.g., testing equality) all
cost less than the cost of one group operation. This assumption is satisfied for all the
algebraic groups studied in this book.

13.2 The Pohlig-Hellman Method

Let g have order N and let h = ga, so that h lies in the cyclic group generated by g.
Suppose N =

∏n
i=1 l

ei
i . The idea of the Pohlig-Hellman1 method [482] is to compute a

modulo the prime powers leii and then recover the solution using the Chinese remainder
theorem. The main ingredient is the following group homomorphism, which reduces the
discrete logarithm problem to subgroups of prime power order.

Lemma 13.2.1. Suppose g has order N and le | N . The function

Φle(g) = gN/le

is a group homomorphism from 〈g〉 to the unique cyclic subgroup of 〈g〉 of order le. Hence,
if h = ga then

Φle(h) = Φle(g)
a (mod le).

1The paper [482] is authored by Pohlig and Hellman and so the method is usually referred to by this
name, although R. Silver, R. Schroeppel, H. Block, and V. Nechaev also discovered it.

13.2. THE POHLIG-HELLMAN METHOD 271

Exercise 13.2.2. Prove Lemma 13.2.1.

Using Φle one can reduce the DLP to subgroups of prime power order. To reduce the
problem to subgroups of prime order we do the following: Suppose g0 has order le and
h0 = ga0 then we can write a = a0 + a1l + · · ·ae−1l

e−1 where 0 ≤ ai < l. Let g1 = gl
e−1

0 .
Raising to the power le−1 gives

hl
e−1

0 = ga0

1

from which one can find a0 by trying all possibilities (or using baby-step-giant-step or
other methods).

To compute a1 we define h1 = h0g
−a0

0 so that

h1 = g
a1l+a2l

2+···ae−1l
e−1

0 .

Then a1 is obtained by solving

hl
e−2

1 = ga1

1

To obtain the next value we set h2 = h1g
−la1

0 and repeat. Continuing gives the full
solution modulo le. Once a is known modulo leii for all leii ‖N one computes a using the
Chinese remainder theorem. The full algorithm (in a slightly more efficient variant) is
given in Algorithm 13.

Algorithm 13 Pohlig-Hellman algorithm

Input: g, h = ga, {(li, ei) : 1 ≤ i ≤ n} such that order of g is N =
∏n

i=1 l
ei
i

Output: a
1: Compute {gN/l

fi
i , hN/l

fi
i : 1 ≤ i ≤ n, 1 ≤ fi ≤ ei}

2: for i = 1 to n do

3: ai = 0
4: for j = 1 to ei do ⊲ Reducing DLP of order leii to cyclic groups

5: Let g0 = gN/lj
i and h0 = hN/lj

i ⊲ These were already computed in line 1
6: Compute u = g−ai

0 and h0 = h0u
7: if h0 6= 1 then

8: Let g0 = gN/li , b = 1, T = g0 ⊲ Already computed in line 1
9: while h0 6= T do ⊲ Exhaustive search

10: b = b+ 1, T = Tg0
11: end while

12: ai = ai + blj−1
i

13: end if

14: end for

15: end for

16: Use Chinese remainder theorem to compute a ≡ ai (mod leii) for 1 ≤ i ≤ n
17: return a

Example 13.2.3. Let p = 19, g = 2 and h = 5. The aim is to find an integer a such
that h ≡ ga (mod p). Note that p − 1 = 2 · 32. We first find a modulo 2. We have
(p− 1)/2 = 9 so define g0 = g9 ≡ −1 (mod 19) and h0 = h9 ≡ 1 (mod 19). It follows that
a ≡ 0 (mod 2).

Now we find a modulo 9. Since (p− 1)/9 = 2 we first compute g0 = g2 ≡ 4 (mod 19)
and h0 ≡ h2 ≡ 6 (mod 19). To get information modulo 3 we compute (this is a slight
change of notation from Algorithm 13)

g1 = g30 ≡ 7 (mod 19) and h30 ≡ 7 (mod 19).

272 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

It follows that a ≡ 1 (mod 3). To get information modulo 9 we remove the modulo 3 part
by setting h1 = h0/g0 = 6/4 ≡ 11 (mod 19). We now solve h1 ≡ ga1

1 (mod 19), which has
the solution a1 ≡ 2 (mod 3). It follows that a ≡ 1 + 3 · 2 ≡ 7 (mod 9).

Finally, by the Chinese remainder theorem we obtain a ≡ 16 (mod 18).

Exercise 13.2.4. Let p = 31, g = 3 and h = 22. Solve the discrete logarithm problem
of h to the base g using the Pohlig-Hellman method.

We recall that an integer is B-smooth if all its prime factors are at most B.

Theorem 13.2.5. Let g ∈ G have order N . Let B ∈ N be such that N is B-smooth Then

Algorithm 13 solves the DLP in G using O(log(N)2 +B log(N)) group operations.2

Proof: One can factor N using trial division in O(BM(log(N))) bit operations, where
M(n) is the cost of multiplying n-bit integers. We assume that M(log(N)) is O(1) group
operations (this is true for all the algebraic groups of interest in this book). Hence, we
may assume that the factorisation of N is known.

Computing all Φl
ei
i
(g) and Φl

ei
i
(h) can be done naively inO(log(N)2) group operations,

but we prefer to do it in O(log(N) log log(N)) group operations using the method of
Section 2.15.1.

Lines 5 to 13 run
∑n

i=1 ei = O(log(N)) times and, since each li ≥ 2, we have
∑n

i=1 ei ≤
log2(N). The computation of u in line 6 requires O(ei log(li)) group operations. Together
this gives a bound of O(log(N)2) group operations to the running time. (Note that when
N = 2e then the cost of these lines is e2 log(2) = O(log(N)2) group operations.)

Solving each DLP in a cyclic group of order li using naive methods requires O(li)
group operations (this can be improved using the baby-step-giant-step method). There
are ≤ log2(N) such computations to perform, giving O(log(N)B) group operations.

The final step is to use the Chinese remainder theorem to compute a, requiring
O(log(N)M(log(N))) bit operations, which is again assumed to cost at most O(log(N))
group operations. �

Due to this method, small primes give no added security in discrete logarithm systems.
Hence one generally uses elements of prime order r for cryptography.

Exercise 13.2.6. Recall the Tonelli-Shanks algorithm for computing square roots modulo
p from Section 2.9. A key step of the algorithm is to find a solution j to the equation
b = y2j (mod p) where y has order 2e. Write down the Pohlig-Hellman method to solve
this problem. Show that the complexity is O(log(p)2M(log(p))) bit operations.

Exercise 13.2.7. Let B ∈ N>3. Let N =
∏n

i=1 xi where 2 ≤ xi ≤ B. Prove that
∑n

i=1 xi ≤ B log(N)/ log(B).
Hence, show that the Pohlig-Hellman method performs O(log(N)2+B log(N)/ log(B))

group operations.

Remark 13.2.8. As we will see, replacing exhaustive search by the baby-step-giant-step
algorithm improves the complexity to O(log(N)2+

√
B log(N)/ log(B)) group operations

(at the cost of more storage).
Algorithm 13 can be improved, when there is a prime power le dividing N with e large,

by structuring it differently. Section 11.2.3 of Shoup [556] gives a method to compute
the DLP in a group of order le in O(e

√
l+ e log(e) log(l)) group operations (this is using

baby-step-giant-step rather than exhaustive search). Algorithm 1 and Corollary 1 of
Sutherland [598] give an algorithm that requires

O(e
√
l + e log(l) log(e)/ log(log(e))) (13.1)

2By this we mean that the constant implicit in the O(·) is independent of B and N .

13.3. BABY-STEP-GIANT-STEP (BSGS) METHOD 273

group operations. Sutherland also considers non-cyclic groups.
If N is B-smooth then summing the improved complexity statements over the prime

powers dividing N gives

O(log(N)
√
B/ log(B) + log(N) log(log(N))) (13.2)

group operations for the DLP (it is not possible to have a denominator of log(log(log(N)))
since not all the primes dividing N necessarily appear with high multiplicity).

13.3 Baby-Step-Giant-Step (BSGS) Method

This algorithm, usually credited to Shanks3, exploits an idea called the time/memory
tradeoff. Suppose g has prime order r and that h = ga for some 0 ≤ a < r. Let
m = ⌈√r⌉. Then there are integers a0, a1 such that a = a0 +ma1 and 0 ≤ a0, a1 < m. It
follows that

ga0 = h(g−m)a1

and this observation leads to Algorithm 14. The algorithm requires storing a large list of
values and it is important, in the second stage of the algorithm, to be able to efficiently
determine whether or not an element lies in the list. There are a number of standard
solutions to this problem including using binary trees, hash tables, or sorting the list after
line 7 of the algorithm (see, for example, parts II and III of [146] or Section 6.3 of [317]).

Algorithm 14 Baby-step-giant-step (BSGS) algorithm

Input: g, h ∈ G of order r
Output: a such that h = ga, or ⊥
1: m = ⌈√r⌉
2: Initialise an easily searched structure (such as a binary tree or a hash table) L
3: x = 1
4: for i = 0 to m do ⊲ Compute baby steps
5: store (x, i) in L, easily searchable on the first coordinate
6: x = xg
7: end for

8: u = g−m

9: y = h, j = 0
10: while (y, ⋆) 6∈ L do ⊲ Compute giant steps
11: y = yu, j = j + 1
12: end while

13: if ∃(x, i) ∈ L such that x = y then

14: return i+mj
15: else

16: return ⊥
17: end if

Note that the BSGS algorithm is deterministic. The algorithm also solves the decision
problem (is h ∈ 〈g〉?) though, as discussed in Section 11.6, there are usually faster
solutions to the decision problem.

Theorem 13.3.1. Let G be a group of order r. Suppose that elements of G are represented

using O(log(r)) bits and that the group operations can be performed in O(log(r)2) bit

3Nechaev [452] states it was known to Gel’fond in 1962.

274 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

operations. The BSGS algorithm for the DLP in G has running time O(
√
r log(r)2) bit

operations. The algorithm requires O(
√
r log(r)) bits of storage.

Proof: The algorithm computes
√
r group operations for the baby steps. The cost of

inserting each group element into the easily searched structure isO(log(r)2) bit operations,
since comparisons require O(log(r)) bit operations (this is where the assumption on the
size of element representations appears). The structure requires O(

√
r log(r)) bits of

storage.
The computation of u = g−m in line 8 requires O(log(r)) group operations.
The algorithm needs one group operation to compute each giant step. Searching the

structure takes O(log(r)2) bit operations. In the worst case one has to compute m giant
steps. The total running time is therefore O(

√
r log(r)2) bit operations. �

The storage requirement of the BSGS algorithm quickly becomes prohibitive. For ex-
ample, one can work with primes r such that

√
r is more than the number of fundamental

particles in the universe!

Remark 13.3.2. When solving the DLP it is natural to implement the group operations
as efficiently as possible. For example, when using elliptic curves it would be tempting
to use a projective representation for group elements (see Exercise 13.1.2). However this
is not suitable for the BSGS method (or the rho and kangaroo methods) as one cannot
efficiently detect a match y ∈ L when there is a non-unique representation for the group
element y.

Exercise 13.3.3. On average, the baby-step-giant-step algorithm finds a match after half
the giant steps have been performed. The average-case running time of the algorithm as
presented is therefore approximately 1.5

√
r group operations. Show how to obtain an

algorithm that requires, in the average case, approximately
√
2r group operations and

√

r/2 group elements of storage.

Exercise 13.3.4. (Pollard [488]) A variant of the baby-step-giant-step algorithm is to
compute the baby steps and giant steps in parallel, storing the points together in a single
structure. Show that if x and y are chosen uniformly in the interval [0, r] ∩ Z then
the expected value of max{x, y} is approximately 2

3r. Hence, show that the average-
case running time of this variant of the baby-step-giant-step algorithm is 4

3

√
r group

operations.

Chateauneuf, Ling and Stinson [129] have studied a combinatorial abstraction that
would lead to an optimal baby-step-giant-step algorithm. However their model minimises
the total number of exponentiations in the group, rather than the total number of group
operations, and so is not faster in practice than the methods in this section.

Exercise 13.3.5. Design a variant of the BSGS method that requires O(r/M) group
operations if the available storage is only for M <

√
r group elements.

Exercise 13.3.6. (DLP in an interval) Suppose one is given g of order r in a group G
and integers 0 ≤ b, w < r. The DLP in an interval of length w is: Given h ∈ 〈g〉 such
that h = ga for some b ≤ a < b + w, to find a. Give a baby-step-giant-step algorithm to
find a in average-case

√
2w group operations and

√

w/2 group elements of storage.

Exercise 13.3.7. Suppose one considers the DLP in a group G where computing the
inverse g−1 is much faster than multiplication in the group. Show how to solve the DLP
in an interval of length w using a baby-step-giant-step algorithm in approximately

√
w

group operations in the average case.

13.4. LOWER BOUNDS ON THE DLP 275

Exercise 13.3.8. Suppose one is given g, h ∈ G and w, b,m ∈ N such that h = ga for
some integer a satisfying 0 ≤ a < w and a ≡ b (mod m). Show how to reduce this
problem to the problem of solving a DLP in an interval of length ⌈w/m⌉.

Exercise 13.3.9. Let g ∈ G have order N = mr where r is prime and m is log(N)-
smooth. Suppose h = gx and w are given such that 0 ≤ x < w. Show how one
can compute x by combining the Pohlig-Hellman method and the BSGS algorithm in
O(log(N)2 +

√

w/m) group operations.

Exercise 13.3.10. Suppose one is given g, h ∈ G and b1, b2, w ∈ Z (w > 0) such that
b1 + w < b2 and h = ga for some integer a satisfying either b1 ≤ a < b1 + w or b2 ≤ a <
b2 + w. Give an efficient BSGS algorithm for this problem.

Exercise 13.3.11. Let g ∈ G where the order of g and G are not known. Suppose one
is given integers b, w such that the order of g lies in the interval [b, b + w). Explain how
to use the BSGS method to compute the order of g.

Exercise 13.3.12.⋆ Suppose one is given an element g of order r and h1, . . . , hn ∈ 〈g〉.
Show that one can solve the DLP of all n elements hi to the base g in approximately
2
√
nr group operations (optimised for the worst case) or approximately

√
2nr (optimised

for the average case).

Exercise 13.3.13.⋆ Suppose one is given g ∈ G of order r, an integer w, and an instance
generator for the discrete logarithm problem that outputs h = ga ∈ G such that 0 ≤ a < w
according to some known distribution on {0, 1, . . . , w−1}. Assume that the distribution is
symmetric with mean value w/2. Determine the optimal baby-step-giant-step algorithm
to solve such a problem.

Exercise 13.3.14.⋆ Suppose one is given g, h ∈ G and n ∈ N such that h = ga

where a has a representation as a non-adjacent form NAF (see Section 11.1.1) of length
n < log2(r). Give an efficient BSGS algorithm to find a. What is the running time?

13.4 Lower Bound on Complexity of Generic Algo-

rithms for the DLP

This section presents a lower bound for the complexity of the discrete logarithm problem
in groups of prime order for algorithms that do not exploit the representation of the
group; such algorithms are called generic algorithms. The main challenge is to formally
model such algorithms. Babai and Szemerédi [19] defined a black box group to be a
group with elements represented (not necessarily uniquely) as binary strings and where
multiplication, inversion and testing whether an element is the identity are all performed
using oracles. Nechaev [452] used a different model (for which equality testing does not
require an oracle query) and obtained Ω(

√
r) time and space complexity.

Nechaev’s paper concerns deterministic algorithms, and so his result does not cover
the Pollard algorithms. Shoup [553] gave yet another model for generic algorithms (his
model allows randomised algorithms) and proved Ω(

√
r) time complexity for the DLP

and some related problems. This lower bound is often called the birthday bound on
the DLP.

Shoup’s formulation has proven to be very popular with other authors and so we
present it in detail. We also describe the model of generic algorithms by Maurer [404].
Further results in this area, and extensions of the generic algorithm model (such as work-
ing with groups of composite order, working with groups endowed with pairings, providing

276 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

access to decision oracles etc), have been given by Maurer and Wolf [407], Maurer [404],
Boneh and Boyen [76, 77], Boyen [95], Rupp, Leander, Bangerter, Dent and Sadeghi [507].

13.4.1 Shoup’s Model for Generic Algorithms

Fix a constant t ∈ R>0. When G is the group of points on an elliptic curve of prime order
(and log means log2 as usual) one can take t = 2.

Definition 13.4.1. An encoding of a group G of order r is an injective function σ :
G→ {0, 1}⌈t log(r)⌉.

A generic algorithm for a computational problem in a group G of order r is a
probabilistic algorithm that takes as input r and (σ(g1), . . . , σ(gk)) such that g1, . . . , gk ∈
G and returns a sequence (a1, . . . , al, σ(h1), . . . , σ(hm)) for some a1, . . . , al ∈ Z/rZ and
h1, . . . , hm ∈ G (depending on the computational problem in question). The generic
algorithm is given access to a perfect oracle O such that O(σ(g1), σ(g2)) returns σ(g1g

−1
2).

Note that one can obtain the encoding σ(1) of the identity element by O(σ(g1), σ(g1)).
One can then compute the encoding of g−1 from the encoding of g as O(σ(1), σ(g)).
Defining O′(σ(g1), σ(g2)) = O(σ(g1), O(σ(1), σ(g2))) gives an oracle for multiplication in
G.

Example 13.4.2. A generic algorithm for the DLP in 〈g〉 where g has order r takes
input (r, σ(g), σ(h)) and outputs a such that h = ga. A generic algorithm for CDH (see
Definition 20.2.1) takes input (σ(g), σ(ga), σ(gb)) and outputs σ(gab).

In Definition 13.4.1 we insisted that a generic algorithm take as input the order of
the group, but this is not essential. Indeed, it is necessary to relax this condition if one
wants to consider generic algorithms for, say, (Z/NZ)∗ when N is an integer of unknown
factorisation. To do this one considers an encoding function to {0, 1}l and it follows that
the order r of the group is at most 2l. If the order is not given then one can consider
a generic algorithm whose goal is to compute the order of a group. Theorem 2.3 and
Corollary 2.4 of Sutherland [596] prove an Ω(r1/3) lower bound on the complexity of
a generic algorithm to compute the order r of a group, given a bound M such that√
M < r < M .

13.4.2 Maurer’s Model for Generic Algorithms

Maurer’s formulation of generic algorithms [404] does not use any external representa-
tion of group elements (in particular, there are no randomly chosen encodings). Maurer
considers a black box containing registers, specified by indices i ∈ N, that store group
elements. The model considers a set of operations and a set of relations. An oracle query
O(op, i1, . . . , it+1) causes register it+1 to be assigned the value of the t-ary operation op
on the values in registers i1, . . . , it. Similarly, an oracle query O(R, i1, . . . , it) returns the
value of the t-ary relation R on the values in registers i1, . . . , it.

A generic algorithm in Maurer’s model is an algorithm that takes as input the order
of the group (as with Shoup’s model, the order of the group can be omitted), makes oracle
queries, and outputs the value of some function of the registers (for example, the value
of one of the registers; Maurer calls such an algorithm an “extraction algorithm”).

Example 13.4.3. To define a generic algorithm for the DLP in Maurer’s model one
imagines a black box that contains in the first register the value 1 (corresponding to g)
and in the second register the value a (corresponding to h = ga). Note that the black
box contains is viewed as containing the additive group Z/rZ. The algorithm has access

13.4. LOWER BOUNDS ON THE DLP 277

to an oracle O(+, i, j, k) that assigns register k the sum of the elements in registers i and
j, an oracle O(−, i, j) that assigns register j the inverse of the element in register i, and
an oracle O(=, i, j) that returns ‘true’ if and only if registers i and j contain the same
group element. The goal of the generic algorithm for the DLP is to output the value of
the second register.

To implement the baby-step-giant-step algorithm or Pollard rho algorithm in Maurer’s
model it is necessary to allow a further oracle that computes a well-ordering relation on
the group elements.

We remark that the Shoup and Maurer models have been used to prove the security
of cryptographic protocols against adversaries that behave like generic algorithms. Jager
and Schwenk [308] have shown that both models are equivalent for this purpose.

13.4.3 The Lower Bound

We present the main result of this section using Shoup’s model. A similar result can be
obtained using Maurer’s model (except that it is necessary to either ignore the cost of
equality queries or else allow a total order relation on the registers).

We start with a result attributed by Shoup to Schwarz. In this section we only use
the result when k = 1, but the more general case is used later in the book.

Lemma 13.4.4. Let F (x1, . . . , xk) ∈ Fr[x1, . . . , xk] be a non-zero polynomial of total

degree d. Then for P = (P1, . . . , Pk) chosen uniformly at random in F
k
r the probability

that F (P1, . . . , Pk) = 0 is at most d/r.

Proof: If k = 1 then the result is standard. We prove the result by induction on k. Write

F (x1, . . . , xk) = Fe(x1, . . . , xk−1)x
e
k + Fe−1(x1, . . . , xk−1)x

e−1
k + · · ·+ F0(x1, . . . , xk−1)

where Fi(x1, . . . , xk−1) ∈ Fr[x1, . . . , xk−1] has total degree ≤ d − i for 0 ≤ i ≤ e and
e ≤ d. If P = (P1, . . . , Pk−1) ∈ F

k−1
r is such that all Fi(P) = 0 then all r choices for

Pk lead to a solution. The probability of this happening is at most (d− e)/r (this is the
probability that Fe(P) = 0). On the other hand, if some Fi(P) 6= 0 then there are at
most e choices for Pk that give a root of the polynomial. The total probability is therefore
≤ (d− e)/r + e/r = d/r. �

Theorem 13.4.5. Let G be a cyclic group of prime order r. Let A be a generic al-

gorithm for the DLP in G that makes at most m <
√
r − 2 oracle queries. Then the

probability, over uniformly chosen a ∈ Z/rZ and uniformly chosen encoding function

σ : G→ {0, 1}⌈t log(r)⌉, that A(σ(g), σ(ga)) = a is at most (m+ 2)2/(2r).

Proof: Instead of choosing a random encoding function in advance, the method of proof
is to create the encodings “on the fly”. The algorithm to produce the encodings is called
the simulator. We also do not choose the instance of the DLP until the end of the game.
The simulation will be perfect unless a certain bad event happens, and we will analyse
the probability of this event.

Let S = {0, 1}⌈t log(r)⌉. The simulator begins by uniformly choosing two distinct σ1, σ2
in S and running A(σ1, σ2). Algorithm A treats σ1 = σ(g) and σ2 = σ(h) as an instance
of the discrete logarithm problem for some g, h ∈ G and some encoding function σ, but
it is not necessary for the simulator to fix in advance the values for g and h.

It is necessary to ensure that the encodings are consistent with the group operations.
This cannot be done perfectly without choosing g and h, but the following idea takes
care of “trivial” consistency. From now on we use additive notation; one can think of

278 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

this either as writing G as the additive group (Z/rZ,+), or writing group elements as
gF (x). The simulator maintains a list of pairs (σi, Fi) where σi ∈ S and Fi ∈ Fr[x]. The
initial values are (σ1, 1) and (σ2, x). Whenever A makes an oracle query on (σi, σj) the
simulator computes F = Fi−Fj . If F appears as Fk in the list of pairs then the simulator
replies with σk and does not change the list. Otherwise, a value σ ∈ S distinct from the
previously used values is chosen uniformly at random, (σ, F) is added to the simulator’s
list, and σ is returned to A.

After making at most m oracle queries A outputs b ∈ Z/rZ. The simulator now
chooses a uniformly at random in Z/rZ. Algorithm A wins if b = a.

Let the simulator’s list contain precisely k polynomials {F1(x), . . . , Fk(x)} for some
k ≤ m+ 2. Let E be the event that Fi(a) = Fj(a) for some pair 1 ≤ i < j ≤ k. If event
E occurs then the simulation has not been consistent with the initial values σ1 = σ(g)
and σ2 = σ(ga). On the other hand, if event E does not occur then the simulation has
been consistent and valid.

The probability that A wins is

Pr(A wins |E) Pr(E) + Pr(A wins |¬E) Pr(¬E). (13.3)

For each pair 1 ≤ i < j ≤ k ≤ m+ 2 the probability that (Fi − Fj)(a) = 0 is at most 1/r
by Lemma 13.4.4. Hence, the probability of event E is at most k(k − 1)/(2r). On the
other hand, if event E does not occur then a must have been sampled from the set X of
values for a for which Fi(a) 6= Fj(a) for all 1 ≤ i < j ≤ k. Let N = #X and note that
N ≥ r−k(k−1)/2 and Pr(¬E) = 1−Pr(E) = N/r. Since the simulation is perfect when
event E does not occur, we suppose that A outputs a guess for the discrete logarithm
that is consistent with the queries it made. This means Pr(A wins |¬E) ≤ 1/N .

Putting it all together, the probability that A wins is at most

Pr(E) + Pr(A wins |¬E) Pr(¬E) ≤ (m+ 1)(m+ 2)

2r
+

1

N

N

r
=
m2 + 3m+ 4

2r
.

This gives the result. �

Exercise 13.4.6. Prove Theorem 13.4.5 using Maurer’s model for generic algorithms.
[Hint: The basic method of proof is exactly the same. The difference is in formulation
and analysis of the success probability.]

Corollary 13.4.7. Let A be a generic algorithm for the DLP. If A succeeds with noticeable

probability 1/ log(r)c for some c > 0 then A must make Ω(
√

r/ log(r)c) oracle queries.

13.5 Generalised Discrete Logarithm Problems

A number of generalisations of the discrete logarithm problem have been proposed over
the years. The motivation for such problems varies: sometimes the aim is to enable new
cryptographic functionalities; other times the aim is to generate hard instances of the
DLP more quickly than previous methods.

Definition 13.5.1. LetG be a finitely generated Abelian group. Themultidimensional

discrete logarithm problem or representation problem4 is: given g1, g2, . . . , gl, h ∈
G and S1,S2, . . . ,Sl ⊆ Z to find aj ∈ Sj for 1 ≤ j ≤ l, if they exist, such that

h = ga1

1 ga2

2 · · · gal

l .

4This computational problem seems to be first explicitly stated in the work of Brands [97] from 1993,
in the case Si = Z.

13.5. GENERALISED DISCRETE LOGARITHM PROBLEMS 279

The product discrete logarithm problem5 is: given g, h ∈ G and S1,S2, . . . ,Sl ⊆
Z to find aj ∈ Sj for 1 ≤ j ≤ l, if they exist, such that

h = ga1a2···al .

Remark 13.5.2. A natural variant of the product DLP is to compute only the product
a1a2 · · · al rather than the l-tuple (a1, . . . , al). This is just the DLP with respect to a
specific instance generator (see the discussion in Section 2.1.2). Precisely, consider an
instance generator that, on input a security parameter κ, outputs a group element g of
prime order r and then chooses aj ∈ Sj for 1 ≤ j ≤ l and computes h = ga1a2···al . The
stated variant of the product DLP is the DLP with respect to this instance generator.

Note that the representation problem can be defined whether or not G = 〈g1, . . . , gl〉
is cyclic. The solution to Exercise 13.5.4 applies in all cases. However, there may be
other ways to tackle the non-cyclic case (e.g., exploiting efficiently computable group
homomorphisms, see [231] for example), so the main interest is the case when G is cyclic
of prime order r.

Example 13.5.3. The representation problem can arise when using the GLV method
(see Section 11.3.3) with intentionally small coefficients. In this case, g2 = ψ(g1), 〈g1, g2〉
is a cyclic group of order r, and h = ga1

1 ga2

2 where 0 ≤ a1, a2 < w ≤ √r).
The number of possible choices for h in both the representation problem and product

DLP is at most
∏l

j=1 #Sj (it could be smaller if the same h can arise from many different
combinations of (a1, . . . , al)). If l is even and #Sj = #S1 for all j then there is an easy

time/memory tradeoff algorithm requiring O(#Sl/21) group operations.

Exercise 13.5.4. Write down an efficient BSGS algorithm to solve the representation
problem. What is the running time and storage requirement?

Exercise 13.5.5. Give an efficient BSGS algorithm to solve the product DLP. What is
the running time and storage requirement?

It is natural to ask whether one can do better than the naive baby-step-giant-step
algorithms for these problems, at least for certain values of l. The following result shows
that the answer in general turns out to be “no”.

Lemma 13.5.6. Assume l is even and #Sj = #S1 for all 2 ≤ j ≤ l. A generic

algorithm for the representation problem with noticeable success probability 1/ log(#S1)c
needs Ω(#Sl/21 / log(#S1)c/2) group operations.

Proof: Suppose A is a generic algorithm for the representation problem. Let G be a
group of order r and let g, h ∈ G. Set m = ⌈r1/l⌉, Sj = {a ∈ Z : 0 ≤ a < m} and

let gj = gm
j

for 0 ≤ j ≤ l − 1. If h = ga for some a ∈ Z then the base m-expansion
a0 + a1m+ · · ·+ al−1m

l−1 is such that

h = ga =

l−1
∏

j=0

g
aj

j .

Hence, if A solves the representation problem then we have solved the DLP using a
generic algorithm. Since we have shown that a generic algorithm for the DLP with
success probability 1/ log(#S1)c needs Ω(

√

r/ log(#S1)c) group operations, the result is
proved. �

5The idea of using product exponents for improved efficiency appears in Knuth [343] where it is called
the “factor method”.

280 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

13.6 Low Hamming Weight DLP

Recall that the Hamming weight of an integer is the number of ones in its binary
expansion.

Definition 13.6.1. Let G be a group and let g ∈ G have prime order r. The low

Hamming weight DLP is: Given h ∈ 〈g〉 and integers n,w to find a integer a (if
it exists) whose binary expansion has length ≤ n and Hamming weight ≤ w such that
h = ga.

This definition makes sense even for n > log2(r). For example, squaring is faster than
multiplication in most representations of algebraic groups, so it could be more efficient to
compute ga by taking longer strings with fewer ones in their binary expansion.

Coppersmith developed a time/memory tradeoff algorithm to solve this problem. A
thorough treatment of these ideas was given by Stinson in [591]. Without loss of generality
we assume that n and w are even (just add one to them if not).

The idea of the algorithm is to reduce solving h = ga where a has length n and
Hamming weight w to solving hg−a2 = ga1 where a1 and a2 have Hamming weight w/2.
One does this by choosing a set B ⊂ I = {0, 1, . . . , n−1} of size n/2. The set B is the set
of possible bit positions for the bits of a1 and (I −B) is the possible bit positions for the
bits of a2. The detailed algorithm is given in Algorithm 15. Note that one can compactly
represent subsets Y ⊆ I as n-bit strings.

Algorithm 15 Coppersmith’s baby-step-giant-step algorithm for the low Hamming
weight DLP

Input: g, h ∈ G of order r, n and w
Output: a of bit-length n and Hamming weight w such that h = ga, or ⊥
1: Choose B ⊂ {0, . . . , n− 1} such that #B = n/2
2: Initialise an easily searched structure (such as a binary tree, a heap, or a hash table)

L
3: for Y ⊆ B : #Y = w/2 do

4: Compute b =
∑

j∈Y 2j and x = gb

5: store (x, Y) in L ordered according to first coordinate
6: end for

7: for Y ⊆ (I −B) : #Y = w/2 do

8: Compute b =
∑

j∈Y 2j and y = hg−b

9: if y = x for some (x, Y1) ∈ L then

10: a =
∑

j∈Y ∪Y1
2j

11: return a
12: end if

13: end for

14: return ⊥

Exercise 13.6.2. Write down an algorithm, to enumerate all Y ⊂ B such that #Y =
w/2, which requires O(

(n/2
w/2

)

n) bit operations.

Lemma 13.6.3. The running time of Algorithm 15 is O(
(n/2
w/2

)

) group operations and the

algorithm requires O(
(n/2
w/2

)

) group elements of storage.

Exercise 13.6.4. Prove Lemma 13.6.3.

13.6. LOW HAMMING WEIGHT DLP 281

Algorithm 15 is not guaranteed to succeed, since the set B might not exactly corre-
spond to a splitting of the bit positions of the integer a into two sets of Hamming weight
≤ w/2. We now give a collection of subsets of I that is guaranteed to contain a suitable
B.

Definition 13.6.5. Fix even integers n and w. Let I = {0, . . . , n − 1}. A splitting

system is a set B of subsets of I of size n/2 such that for every Y ⊂ I such that #Y = w
there is a set B ∈ B such that #(B ∩ Y) = w/2.

Lemma 13.6.6. For any even integers n and w there exists a splitting system B of size

n/2.

Proof: For 0 ≤ i ≤ n− 1 define

Bi = {i+ j (mod n) : 0 ≤ j ≤ n/2− 1}

and let B = {Bi : 0 ≤ i ≤ n/2− 1}.
To show B is a splitting system, fix any Y ⊂ I of size w. Define ν(i) = #(Y ∩

Bi) − #(Y ∩ (I − Bi)) ∈ Z for 0 ≤ i ≤ n/2 − 1. One can check that ν(i) is even, that
ν(n/2) = −ν(0) and that ν(i + 1)− ν(i) ∈ {−2, 0, 2}. Hence, either ν(0) = 0, or else the
values ν(i) change sign at least once as i goes from 0 to n/2. It follows that there exists
some 0 ≤ i ≤ n/2 such that ν(i) = 0, in which case #(Y ∩Bi) = w/2. �

One can run Algorithm 15 for all n/2 sets B in the splitting system B of Lemma 13.6.6.

This gives a deterministic algorithm with running time O(n
(n/2
w/2

)

) group operations.

Stinson proposes different splitting systems giving a deterministic algorithm requiring
O(w3/2

(n/2
w/2

)

) group operations. A more efficient randomised algorithm (originally pro-

posed by Coppersmith) is to randomly choose sets B from the
(

n
n/2

)

possible subsets of

{0, . . . , n− 1} of size n/2. Theorem 13.6.9 determines the expected running time in this
case.

Lemma 13.6.7. Fix a set Y ⊂ {0, . . . , n− 1} such that #Y = w. The probability that a

randomly chosen B ⊆ {0, . . . , n− 1} having #B = n/2 satisfies #(Y ∩B) = w/2 is

pY,B =

(

w

w/2

)(

(n− w)
(n− w)/2

)

/

(

n

n/2

)

.

Exercise 13.6.8. Prove Lemma 13.6.7.

Theorem 13.6.9. The expected running time for the low Hamming weight DLP when

running Algorithm 15 on randomly chosen sets B is O(
√
w
(n/2
w/2

)

) exponentiations. The

storage is O(
(n/2
w/2

)

) group elements.

Proof: We expect to repeat the algorithm 1/pY,B times. One can show, using the fact

2k/
√
2k ≤

(

k
k/2

)

≤ 2k
√

2/πk, that 1/pY,B ≤ c
√
w for some constant (see Stinson [591]).

The result follows. �

Exercise 13.6.10. As with all baby-step-giant-step methods, the bottleneck for this
method is the storage requirement. Show how to modify the algorithm for the case where
only M group elements of storage are available.

Exercise 13.6.11. Adapt Coppersmith’s algorithm to the DLP for low weight signed
expansions (for example, NAFs, see Section 11.1.1).

All the algorithms in this section have large storage requirements. An approach due
to van Oorschot and Wiener for solving such problems using less storage is presented in
Section 14.8.1.

282 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

13.7 Low Hamming Weight Product Exponents

Let G be an algebraic group (or algebraic group quotient) over Fp (p small) and let
g ∈ G(Fpn) with n > 1. Let πp be the p-power Frobenius on G, acting on G as g 7→ gp.
Hoffstein and Silverman [290] proposed computing random powers of g efficiently by
taking products of low Hamming weight Frobenius expansions.

In particular, for Koblitz elliptic curves (i.e., p = 2) they suggested using three sets
and taking Sj for 1 ≤ j ≤ 3 to be the set of Frobenius expansions of length n and weight
7. The baby-step-giant-step algorithm in Section 13.5 applies to this problem, but the
running time is not necessarily optimal since #S1#S2 6= #S3. Kim and Cheon [338]
generalised the results of Section 13.6 to allow a more balanced time/memory tradeoff.
This gives a small improvement to the running time.

Cheon and Kim [134] give a further improvement to the attack, which is similar to
the use of equivalence classes in Pollard rho (see Section 14.4). They noted that the sets
Sj in the Hoffstein-Silverman proposal have the property that for every a ∈ Sj there is

some a′ ∈ Sj such that ga
′

= πp(g
a). In other words, πp permutes Sj and each element

a ∈ Sj lies in an orbit of size n under this permutation. Cheon and Kim define a unique
representative of each orbit of πp in Sj and show how to speed up the BSGS algorithm
in this case by a factor of n.

Exercise 13.7.1.⋆ Give the details of the Cheon-Kim algorithm. How many group
operations does the algorithm perform when n = 163 and three sets with w = 7 are used?

13.8 Wagner’s Generalised Birthday Algorithm

This section presents an algorithm due to Wagner [625] (though a special case was discov-
ered earlier by Camion and Patarin), which has a similar form to the baby-step-giant-step
algorithm. This algorithm is not useful for solving the DLP in groups of relevance to
public key cryptography, but it is an example of how a non-generic algorithm can beat
the birthday bound. Further examples of non-generic algorithms that beat the birthday
bound are given in Chapter 15. For reasons of space we do not present all the details.

Definition 13.8.1. Suppose one is given large sets Lj of n-bit strings, for 1 ≤ j ≤ l.
The l-sum problem is to find xj ∈ Lj for 1 ≤ j ≤ l such that

x1 ⊕ x2 ⊕ · · · ⊕ xl = 0, (13.4)

where 0 denotes the n-bit all zero string.

The l-sum problem is easy if 0 ∈ Li for all 0 ≤ i ≤ l. Another relatively easy case is if l
is even and L2i−1∩L2i 6= ∅ for all 1 ≤ i ≤ l/2. Hence, the l-sum problem is of most interest
when the sets Li are chosen independently and at random. By the coupon collector
theorem (Example A.14.3) one expects a solution to exist when #L1 · · ·#Ll > 2n log(n)
if the Lj are sufficiently random.

Exercise 13.8.2. Give a baby-step-giant-step algorithm to solve this problem when l = 2.

Exercise 13.8.3. Give an example of sets L1, L2 of n-bit strings such that #L1,#L2 >
2⌈n/2⌉ but there is no solution to the 2-sum problem.

We now sketch the method in the case l = 4. Let m = ⌈n/3⌉. It will be necessary
to assume that #Lj#Lj+1 ≥ 22m (e.g., #Lj ≥ 2m) for each j = 1, 3, so this method is

13.8. WAGNER’S GENERALISED BIRTHDAY ALGORITHM 283

not expected to work if #Lj ≈ 2n/4 for all 1 ≤ j ≤ 4. Define LSBm(x) = the m-least
significant bits of the bit-string x.

The first step is to form the sets

Lj,j+1 = {(xj , xj+1) ∈ Lj × Lj+1 : LSBm(xj ⊕ xj+1) = 0}

for j = 1, 3. These sets can be formed efficiently. For example, to build L1,2: sort the
list L1 (at least, sort with respect to the m least significant bits of each string), then for
each x2 ∈ L2 test whether there exists x1 ∈ L2 such that LSBm(x1) = LSBm(x2). If the
sets Li are sufficiently random then it is reasonable to suppose that the size of Lj,j+1 is
#Lj#Lj+1/2

m ≥ 2m. To each pair (xj , xj+1) ∈ Lj,j+1 we can associate the (n−m)-bit
string obtained by removing the m least significant bits of xj ⊕ xj+1.

The second step is to find (x1, x2) ∈ L1,2 and (x3, x4) ∈ L3,4 such that x1 ⊕ x2 ⊕
x3 ⊕ x4 = 0. This is done by sorting the (n −m)-bit truncated x1 ⊕ x2 corresponding
to (x1, x2) ∈ L1,2 and then, for each (x3, x4) ∈ L3,4 testing whether the (n − m)-bit
truncated x3 ⊕ x4 is in the list. Since #L1,2,#L3,4 ≥ 2m and n −m ≈ 2m then, if the
sets Lj,j+1 are sufficiently random, there is a good chance that a solution will exist.

The above arguments lead to the following heuristic result.

Heuristic 13.8.4. Let n ∈ N andm = ⌈n/3⌉. Suppose the sets Li ⊂ {0, 1}n for 1 ≤ i ≤ 4
are randomly chosen and that #Lj#Lj+1 ≥ 22m for j = 1, 3. Then Wagner’s algorithm
should find a solution (x1, . . . , x4) to equation (13.4) in the case l = 4. The running time
is Õ(2m) = Õ(2n/3) bit operations and the algorithm requires Õ(2m) = Õ(2n/3) bits of
storage.

The algorithm has “cube root” complexity, which beats the usual square-root com-
plexity bound for such problems. The reason is that we are working in the group (Fn

2 ,+)
and the algorithm is not a generic algorithm: it exploits the fact that the group operation
and group representation satisfy the property LSBm(x) = LSBm(y)⇔ LSBm(x⊕ y) = 0.

The algorithm is not expected to succeed in the case when #Lj ≈ 2n/4 since it is
finding a solution to equation (13.4) of a very special form (namely, that LSBm(x1⊕x2) =
LSBm(x3 ⊕ x4) = 0).

Exercise 13.8.5. Generalise this algorithm to the case l = 2k. Show that the algorithm
is heuristically expected to require time and space Õ(l2n/(1+k)). What is the minimum
size for the Lj (assuming they are all of equal size)?

Exercise 13.8.6. Wagner’s algorithm is deterministic, but it is not guaranteed to succeed
on a given input. How can one “randomise”Wagner’s algorithm so that any instance (with
large enough lists) can be solved efficiently with high probability?

The 4-sum problem can be put into a more general framework: Let S,S ′ and S ′′ be
sets such that #S ′ = N , fix an element 0 ∈ S ′′, let f1, f2 : S×S → S ′ and f : S ′×S ′ → S ′′
be functions. Let L1, L2, L3, L4 ⊂ S be randomly chosen subsets of size #Li ≈ N1/3 and
suppose one wants to find xj ∈ Lj for 1 ≤ j ≤ 4 such that

f(f1(x1, x2), f2(x3, x4)) = 0.

Wagner’s algorithm can be applied to solve this problem if there is a distinguished set
D ⊂ S ′ such that the following five conditions hold:

1. #D ≈ N2/3.

2. Pr(f(y1, y2) = 0 : y1, y2 ← D) ≈ N−2/3.

284 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

3. Pr(f1(x1, x2) ∈ D : x1 ← L1, x2 ← L2) ≈ Pr(f2(x3, x4) ∈ D : x3 ← L3, x4 ← L4) ≈
N−1/3.

4. For j = 1, 2 one can determine, in Õ(N1/3) bit operations, lists

LJ,J+1 = {(xJ , xJ+1) ∈ LJ × LJ+1 : fj(xJ , xJ+1) ∈ D}

where J = 2j − 1.

5. Given L1,2 and L3,4 as above one can determine, in Õ(N1/3) bit operations,

{((x1, x2), (x3, x4)) ∈ L1,2 × L3,4 : f(f1(x1, x2), f2(x3, x4)) = 0}.

Exercise 13.8.7. Show that the original Wagner algorithm for S = S ′ = S ′′ = {0, 1}n
fits this formulation. What is the set D?

Exercise 13.8.8. Describe Wagner’s algorithm in the more general formulation.

Exercise 13.8.9. Let S = S ′ = S ′′ be the additive group (Z/NZ,+) of integers modulo
N . Let L1, L2, L3, L4 ⊂ Z/NZ be such that #Li ≈ N1/3. Let f1(x1, x2) = f2(x1, x2) =
f(x1, x2) = x1 + x2 (mod N). Let D = {y ∈ Z : −N2/3/2 ≤ y ≤ N2/3/2}. Show that the
above 5 properties hold in this setting. Can you think of any better method to solve the
problem in this setting?

Exercise 13.8.10. Let S ⊆ Z and S ′ = S ′′ = Fp. Let (g1, g2, g3, g4, h) be an instance of
the representation problem in F

∗
p. Consider the functions

f1(x1, x2) = gx1

1 gx2

2 (mod p), f2(x3, x4) = hg−x3

3 g−x4

4 (mod p)

and f(y1, y2) = y1− y2 (mod p). Finding a solution to f(f1(x1, x2), f2(x3, x4)) = 0 solves
the representation problem.

Let m = log2(p)/3 and define LSBm(y) for y ∈ Fp by representing y as an integer
in the range 0 ≤ y < p and outputting the m least significant bits. Let D = {y ∈ F

∗
p :

LSBm(y) = 0}. Explain that the property 4 of the above list does not seem to hold for
this example.

