
Chapter 12

Primality Testing and Integer
Factorisation using Algebraic
Groups

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

There are numerous books about primality testing and integer factorisation, of which
the most notable is Crandall and Pomerance [162]. There is no need to reproduce all the
details of these topics. Hence, the purpose of this chapter is simply to sketch a few basic
ideas that will be used later. In particular, we describe methods for primality testing and
integer factorisation that exploit the structure of algebraic groups.

Definition 12.0.1. A primality test is a randomised algorithm that, on input N ∈ N,
outputs a single bit b such that if N is prime then b = 1. A composite integer that passes
a primality test is called a pseudoprime. An algorithm splits N ∈ N if it outputs a
pair (a, b) of integers such that 1 < a, b < N and N = ab.

12.1 Primality Testing

The simplest primality test is trial division (namely, testing whether N is divisible by
any integer up to

√
N). This algorithm is not useful for factoring numbers chosen for

cryptography, but the first step of most general purpose factoring algorithms is to run trial
division to remove all ‘small’ prime factors of N before trying more elaborate methods.
Hence, for the remainder of this section we may assume that N is odd (and usually that
it is not divisible by any primes less than, say, 106).

261



262 CHAPTER 12. PRIMALITY AND FACTORING USING ALGEBRAIC GROUPS

12.1.1 Fermat Test

Let N ∈ N. If N is prime then the algebraic group Gm(Z/NZ) = (Z/NZ)∗ over the ring
Z/NZ has N − 1 elements. In other words, if a is an integer such that gcd(a,N) = 1 and

aN−1 6≡ 1 (mod N)

then N is not prime. Such a number a is called a compositeness witness for N . The
hope is that if N is not prime then the order of the group Gm(Z/NZ) is not a divisor of
N − 1 and so a compositeness witness exists. Hence, the Fermat test is to choose random
1 < a < N and compute aN−1 (mod N).

As is well-known, there are composite numbers N that are pseudoprimes for the
Fermat test.

Definition 12.1.1. An integer N ∈ N is a Carmichael number if N is composite and

aN−1 ≡ 1 (mod N)

for all a ∈ N such that gcd(a,N) = 1.

If N =
Ql

i=1 p
ei
i is composite then Gm(Z/NZ) ∼=

Ql
i=1 Gm(Z/peii Z) and has order

ϕ(N) and exponent λ(N) = lcm{pei−1
i (pi − 1) : 1 ≤ i ≤ l}.

Exercise 12.1.2. Show that all Carmichael numbers are odd. Show thatN is a Carmichael
number if and only if λ(N) | (N − 1). Show that a composite number N ∈ N is a

Carmichael number if and only if N =
Ql

i=1 pi is a product of distinct primes such that
(pi − 1) | (N − 1) for i = 1, . . . , l.

Exercise 12.1.3. Show that 561 = 3 · 11 · 17 is a Carmichael number.

It was shown by Alford, Granville and Pomerance [10] in 1992 that there are infinitely
many Carmichael numbers.

It is natural to replace Gm(Z/NZ) with any algebraic group or algebraic group quo-
tient, such as the torus T2, the algebraic group quotient corresponding to Lucas sequences
(this gives rise to the p+ 1 test) or an elliptic curve of predictable group order.

Exercise 12.1.4. Design a primality test based on the algebraic group T2(Z/NZ), which
has order N + 1 if N is prime. Also show to use Lucas sequences to test N for primality
using the algebraic group quotient.

Exercise 12.1.5. Design a primality test for integers N ≡ 3 (mod 4) based on the
algebraic group E(Z/NZ) where E is a suitably chosen supersingular elliptic curve.

Exercise 12.1.6. Design a primality test for integers N ≡ 1 (mod 4) based on the
algebraic group E(Z/NZ) where E is a suitably chosen elliptic curve.

12.1.2 The Miller-Rabin Test

This primality test is also called the Selfridge-Miller-Rabin test or the strong prime test. It
is a refinement of the Fermat test, and works very well in practice. Rather than changing
the algebraic group, the idea is to make better use of the available information. It is based
on the following trivial lemma, which is false if p is replaced by a composite number N
(except for N = pa where p is odd).

Lemma 12.1.7. Let p be prime. If x2 ≡ 1 (mod p) then x ≡ ±1 (mod p).



12.2. GENERATING RANDOM PRIMES 263

For the Miller-Rabin test write N−1 = 2bm where m is odd and consider the sequence
a0 = am (mod N), a1 = a20 = a2m (mod N), . . . , ab = a2b−1 = aN−1 (mod N) where
gcd(a,N) = 1. IfN is prime then this sequence must have the form (∗, ∗, . . . , ∗,−1, 1, . . . , 1)
or (−1, 1, . . . , 1) or (1, . . . , 1) (where ∗ denotes numbers whose values are not relevant).
Any deviation from this form means that the number N is composite.

An integer N is called a base-a probable prime if the Miller-Rabin sequence has
the good form and is called a base-a pseudoprime if it is a base-a probable prime that
is actually composite.

Exercise 12.1.8. Let N = 561. Note that gcd(2, N) = 1 and 2N−1 ≡ 1 (mod N). Show
that the Miller-Rabin method with a = 2 demonstrates that N is composite. Show that
this failure allows one to immediately split N .

Theorem 12.1.9. Let n > 9 be an odd composite integer. Then N is a base-a pseudo-
prime for at most ϕ(N)/4 bases between 1 and N .

Proof: See Theorem 3.5.4 of [162] or Theorem 10.6 of Shoup [556]. �

Hence, if a number N passes several Miller-Rabin tests for several randomly chosen
bases a then one can believe that with high probability N is prime (Section 5.4.2 of
Stinson [592] gives a careful analysis of the probability of success of a closely related
algorithm using Bayes’ theorem). Such an integer is called a probable prime. In
practice one chooses O(log(N)) random bases a and runs the Miller-Rabin test for each.
The total complexity is therefore O(log(N)4) bit operations (which can be improved to
O(log(N)2M(log(N))), where M(m) is the cost of multiplying two m-bit integers).

12.1.3 Primality Proving

Agrawal, Kayal and Saxena [6] (AKS) discovered a deterministic algorithm that runs in
polynomial-time and determines whether or not N is prime. We refer to Section 4.5 of
[162] for details. The original AKS test has been improved significantly. A variant due to
Bernstein requires O(log(N)4+o(1)) bit operations using fast arithmetic (see Section 4.5.4
of [162]).

There is also a large literature on primality proving using Gauss and Jacobi sums, and
using elliptic curves. We refer to Sections 4.4 and 7.6 of [162].

In practice the Miller-Rabin test is still widely used for cryptographic applications.

12.2 Generating Random Primes

Definition 12.2.1. Let X ∈ N, then π(X) is defined to be the number of primes 1 <
p < X .

The famous prime number theorem states that π(X) is asymptotically equal to
X/ log(X) (as always log denotes the natural logarithm). In other words, primes are
rather common among the integers. If one choose a random integer 1 < p < X then the
probability that p is prime is therefore about 1/ log(X) (equivalently, about log(X) trials
are required to find a prime between 1 and X). In practice, this probability increases
significantly if one choose p to be odd and not divisible by 3.

Theorem 12.2.2. Random (probable) prime numbers of a given size X can be generated
using the Miller-Rabin algorithm in expected O(log(X)5) bit operations (or O(log(X)3M(log(X)))
using fast arithmetic).



264 CHAPTER 12. PRIMALITY AND FACTORING USING ALGEBRAIC GROUPS

Exercise 12.2.3. For certain cryptosystems based on the discrete logarithm problem it
is required to produce a k1-bit prime p such that p− 1 has a k2-bit prime factor q. Give
a method that takes integers k1, k2 such that k2 < k1 and outputs p and q such that p is
a k1-bit prime, q is a k2-bit prime and q | (p− 1).

Exercise 12.2.4. For certain cryptosystems based on the discrete logarithm problem
(see Chapter 6) it is required to produce a k1-bit prime p such that Φk(p) has a k2-bit
prime factor q (where Φk(x) is the k-th cyclotomic polynomial). Give a method that
takes integers k, k1, k2 such that k2 < ϕ(k)k1 and outputs p and q such that p is a k1-bit
prime, q is a k2-bit prime and q | Φk(p).

Exercise 12.2.5. A strong prime is defined to be a prime p such that q = (p − 1)/2
is prime, (p+ 1)/2 is prime and (q − 1)/2 is prime (it is conjectured that infinitely many
such primes exist). Some RSA systems require the RSA moduli to be a product of strong
primes. Give an algorithm to generate strong primes.

12.2.1 Primality Certificates

For cryptographic applications it may be required to provide a primality certificate.
This is a mathematical proof that can be checked in polynomial-time and that establishes
the primality of a number n. Pratt [490] showed that there exists a short primality cer-
tificate for every prime. Primality certificates are not so important since the discovery of
the AKS test, but primes together with certificates can be generated (and the certificates
verified) more quickly than using the AKS test, so this subject could still be of interest.
We refer to Section 4.1.3 of Crandall and Pomerance [162] and Maurer [403] for further
details.

One basic tool for primality certificates is Lucas’ converse of Fermat’s little theorem.

Theorem 12.2.6. (Lucas) Let N ∈ N. If there is an integer a such that gcd(a,N) = 1,
aN−1 ≡ 1 (mod N) and a(N−1)/l 6≡ 1 (mod N) for all primes l | (N − 1) then N is prime.

Exercise 12.2.7. Prove Theorem 12.2.6.

In practice one can weaken the hypothesis of Theorem 12.2.6.

Theorem 12.2.8. (Pocklington) Suppose N − 1 = FR where the complete factorisation
of F is known. Suppose there is an integer a such that aN−1 ≡ 1 (mod N) and

a(N−1)/q 6≡ 1 (mod N)

for every prime q | F . Then every prime factor of N is congruent to 1 modulo F . Hence,
if F ≥

√
N then N is prime.

Exercise 12.2.9. Prove Theorem 12.2.8.

Exercise 12.2.10. A Sophie-Germain prime (in cryptography the name safe prime
is commonly used) is a prime p such that (p − 1)/2 is also prime. It is conjectured that
there are infinitely many Sophie-Germain primes. Give a method to generate a k-bit
Sophie-Germain prime together with a certificate of primality, such that the output is
close to uniform over the set of all k-bit Sophie-Germain primes.



12.3. THE P − 1 FACTORING METHOD 265

12.3 The p− 1 Factoring Method

First we recall the notion of a smooth integer. These are discussed in more detail in
Section 15.1.

Definition 12.3.1. Let N =
Qr

i=1 p
ei
i ∈ N (where we assume the pi are distinct primes

and ei ≥ 1) and let B ∈ N. Then N is B-smooth if all pi ≤ B and N is B-power
smooth (or strongly B-smooth) if all peii ≤ B.

Example 12.3.2. 528 = 24 · 3 · 11 is 14-smooth but is not 14-power smooth.

The p − 1 method was published by Pollard [485].1 The idea is to suppose that N
has prime factors p and q where p − 1 is B-power smooth but q − 1 is not B-power
smooth. Then if 1 < a < N is randomly chosen we have aB! ≡ 1 (mod p) and, with high
probability, aB! 6≡ 1 (mod q). Hence gcd(aB! − 1, N) splits N . Algorithm 11 gives the
Pollard p− 1 algorithm.

Example 12.3.3. Let N = 124639 and let B = 8. Choose a = 2. One can check that

gcd(aB! (mod N)− 1, N) = 113

from which one deduces that N = 113 · 1103.
This example worked because the prime p = 113 satisfies p − 1 = 24 · 7 | 8! and so

28! ≡ 1 (mod p) while the other prime satisfies q − 1 = 2 · 19 · 29, which is not 8-smooth.

Of course, the “factor” returned from the gcd may be 1 or N . If the factor is not 1 or
N then we have split N as N = ab. We now test each factor for primality and attempt
to split any composite factors further.

Algorithm 11 Pollard p− 1 algorithm

Input: N ∈ N
Output: Factor of N
1: Choose a suitable value for B
2: Choose a random 1 < a < N
3: b = a
4: for i = 2 to B do
5: b = bi (mod N)
6: end for
7: return gcd(b− 1, N)

Exercise 12.3.4. Factor N = 10028219737 using the p− 1 method.

Lemma 12.3.5. The complexity of Algorithm 11 is O(B log(B)M(log(N))) bit opera-
tions.

Proof: The main loop is repeated B times and contains an exponentiation modulo N to
a power i < B. The cost of the exponentiation is O(log(B)M(log(N))) bit operations. �

The algorithm is therefore exponential in B and so is only practical if B is relatively
small. If B = O(log(N)i) then the algorithm is polynomial-time. Unfortunately, the
algorithm only splits numbers of a special form (namely those for which there is a factor
p such that p− 1 is very smooth).

1According to [634] the first stage of the method was also known to D. N. and D. H. Lehmer, though
they never published it.



266 CHAPTER 12. PRIMALITY AND FACTORING USING ALGEBRAIC GROUPS

Exercise 12.3.6. Show that searching only over prime power values for i in Algorithm 11
lowers the complexity to O(BM(log(N))) bit operations.

It is usual to have a second stage or continuation to the Pollard p − 1 method.
Suppose that Algorithm 11 terminates with gcd(b− 1, N) = 1. If there is a prime p | N
such that p− 1 = SQ where S is B-smooth and Q is prime then the order of b modulo p
is Q. One will therefore expect to split N by computing gcd(bQ (mod N) − 1, N). The
second stage is to find Q if it is not too big. One therefore chooses a bound B′ > B and
wants to compute gcd(bQ (mod N)− 1, N) for all primes B < Q ≤ B′.

We give two methods to do this: the standard continuation (Exercise 12.3.7) has the
same complexity as the first stage of the p−1 method, but the constants are much better;
the FFT continuation (Exercise 12.3.8) has better complexity and shows that if sufficient
storage is available then one can take B′ to be considerably bigger than B. Further
improvements are given in Sections 4.1 and 4.2 of Montgomery [436].

Exercise 12.3.7. (Standard continuation) Show that one can compute gcd(bQ (mod N)−
1, N) for all primes B < Q ≤ B′ in O((B′ −B)M(log(N))) bit operations.

Exercise 12.3.8. (Pollard’s FFT continuation) Let w = ⌈
√
B′ −B⌉. We will exploit

the fact that Q = B + vw − u for some 0 ≤ u < w and some 1 ≤ v ≤ w (this is very

similar to the baby-step-giant-step algorithm; see Section 13.3). Let P (x) =
Qw−1

i=0 (x −
bi) (mod N), computed as in Section 2.16. Now compute gcd(P (gB+vw) (mod N), N) for
v = 1, 2, . . . , w. For the correct value v we have

P (gB+vw) =
Y

i

(gB+vw − gi) = (gB+vw − gu)
Y

i6=u

(gB+vw − gi)

= gu(gB+vw−u − 1)
Y

i6=u

(gB+vw − gi).

Since gB+vw−u = gQ ≡ 1 (mod p) then gcd(P (gB+vw) (mod N), N) is divisible by p.
Show that the time complexity of this continutation is O(M(w) log(w)M(log(N)), which
asymptotically is O(

√
B′ log(B′)2 log(log(B′))M(log(N))), bit operations. Show that the

storage required is O(w log(w)) = O(
√
B′ log(B′)) bits.

Exercise 12.3.9. The p+ 1 factoring method uses the same idea as the p − 1 method,
but in the algebraic group T2 or the algebraic group quotient corresponding to Lucas
sequences. Write down the details of the p+ 1 factoring method using Lucas sequences.

12.4 Elliptic Curve Method

Let N be an integer to be factored and let p | N be prime. One can view Pollard’s p− 1
method as using an auxiliary group (namely, Gm(Fp)) that may have smooth order. The
idea is then to obtain an element modulo N (namely, aB!) that is congruent modulo p
(but not modulo some other prime q | N) to the identity element of the auxiliary group.

Lenstra’s idea was to replace the group Gm in the Pollard p−1 method with the group
of points on an elliptic curve. The motivation was that even if p− 1 is not smooth, it is
reasonable to expect that there is an elliptic curve E over Fp such that #E(Fp) is rather
smooth. Furthermore, since there are lots of different elliptic curves over the field Fp we
have a chance to split N by trying the method with lots of different elliptic curves. We
refer to Section 9.14 for some remarks on elliptic curves modulo N .

If E is a “randomly chosen” elliptic curve modulo N with a point P on E modulo
N then one hopes that the point Q = [B!]P is congruent modulo p (but not modulo



12.5. POLLARD-STRASSEN METHOD 267

some other prime q) to the identity element. One constructs E and P together, for
example choosing 1 < xP , yP , a4 < N and setting a6 = y2P − x3

P − a4xP (mod N). If one
computes Q = (x : y : z) using inversion-free arithmetic and projective coordinates (as
in Exercise 9.1.5) then Q ≡ OE (mod p) is equivalent to p | z. Here we are performing
elliptic curve arithmetic over the ring Z/NZ (see Section 9.14).

The resulting algorithm is known as the elliptic curve method or ECM and it
is very widely used, both as a general-purpose factoring algorithm in computer algebra
packages, and as a subroutine of the number field sieve. An important consequence of
Lenstra’s suggestion of replacing the group F∗

p by E(Fp) is that it motivated Miller and
Koblitz to suggest using E(Fp) instead of F∗

p for public key cryptography.
Algorithm 12 gives a sketch of one round of the ECM algorithm. If the algorithm fails

then one should repeat it, possibly increasing the size of B. Note that it can be more
efficient to compute [B!]P as a single exponentiation rather than a loop as in line 5 of
Algorithm 12; see [49].

Algorithm 12 Elliptic curve factoring algorithm

Input: N ∈ N
Output: Factor of N
1: Choose a suitable value for B
2: Choose random elements 0 ≤ x, y, a4 < N
3: Set a6 = y2 − x3 − a4x (mod N)
4: Set P = (x : y : 1)
5: for i = 2 to B do
6: Compute P = [i]P
7: end for
8: return gcd(N, z) where P = (x : y : z)

Exercise 12.4.1. Show that the complexity of Algorithm 12 is O(B log(B)M(log(N)))
bit operations.

Exercise 12.4.2. Show that the complexity of Algorithm 12 can be lowered toO(BM(log(N)))
bit operations using the method of Exercise 12.3.6.

Many of the techniques used to improve the Pollard p−1 method (such as the standard
continuation, though not Pollard’s FFT continuation) also apply directly to the elliptic
curve method. We refer to Section 7.4 of [162] for details. One can also employ all
known techniques to speed up elliptic curve arithmetic. Indeed, the Montgomery model
for elliptic curves (Section 9.12.1) was discovered in the context of ECM rather than ECC.

In practice, we repeat the algorithm a number of times for random choices of B, x, y
and a4. The difficult problems are to determine a good choice for B and to analyse the
probability of success. We discuss these issues in Section 15.3 where we state Lenstra’s
conjecture that the elliptic curve method factors integers in subexponential time.

12.5 Pollard-Strassen Method

Pollard [485] and, independently, Strassen gave a deterministic algorithm to factor an
integer N in Õ(N1/4) bit operations. It is based on the idea2 of Section 2.16, namely that

2Despite the title of this chapter, the Pollard-Strassen algorithm does not use algebraic groups, or any
group-theoretic property of the integers modulo N .



268 CHAPTER 12. PRIMALITY AND FACTORING USING ALGEBRAIC GROUPS

one can evaluate a polynomial of degree n in (Z/NZ)[x] at n values in O(M(n) log(n))
operations in Z/NZ. A different factoring algorithm with this complexity is given in
Exercise 19.4.7.

The trick to let B = ⌈N1/4⌉, F (x) = x(x − 1) · · · (x − B + 1) (which has degree
B) and to compute F (jB) (mod N) for 1 ≤ j ≤ B. Computing these values requires
O(M(B) log(B)M(log(N))) = O(N1/4 log(N)3 log(log(N))2 log(log(log(N)))) bit opera-
tions. Once this list of values has been computed one computes gcd(N,F (jB) (mod N))
until one finds a value that is not 1. This will happen, for some j, since the smallest
prime factor of N is of the form jB − i for some 1 ≤ j ≤ B and some 0 ≤ i < B. Note
that M = gcd(N,F (jB) (mod N)) may not be prime, but one can find the prime factors
of it in Õ(N1/4) bit operations by computing gcd(M, jB − i) for that value of j and all
0 ≤ i < B. Indeed, one can find all prime factors of N that are less than N1/2 (and
hence factor N completely) using this method. The overall complexity is Õ(N1/4) bit
operations.

Exercise 12.5.1.⋆ Show that one can determine all primes p such that p2 | N in Õ(N1/6)
bit operations.


