
Chapter 1

Introduction

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Cryptography is an interdisciplinary field of great practical importance. The sub-
field of public key cryptography has notable applications, such as digital signatures. The
security of a public key cryptosystem depends on the difficulty of certain computational
problems in mathematics. A deep understanding of the security and efficient implementa-
tion of public key cryptography requires significant background in algebra, number theory
and geometry.

This book gives a rigorous presentation of most of the mathematics underlying public
key cryptography. Our main focus is mathematics. We put mathematical precision and
rigour ahead of generality, practical issues in real-world cryptography, or algorithmic
optimality. It is infeasible to cover all the mathematics of public key cryptography in one
book. Hence we primarily discuss the mathematics most relevant to cryptosystems that
are currently in use, or that are expected to be used in the near future. More precisely, we
focus on discrete logarithms (especially on elliptic curves), factoring based cryptography
(e.g., RSA and Rabin), lattices and pairings. We cover many topics that have never had
a detailed presentation in any textbook.

Due to lack of space, some topics are not covered in as much detail as others. For ex-
ample, we do not give a complete presentation of algorithms for integer factorisation, pri-
mality testing, and discrete logarithms in finite fields, as there are several good references
for these subjects. Some other topics that are not covered in the book include hardware
implementation, side-channel attacks, lattice-based cryptography, cryptosystems based
on coding theory, multivariate cryptosystems and cryptography in non-Abelian groups.
In the future, quantum cryptography or post-quantum cryptography (see the book [50]
by Bernstein, Buchmann and Dahmen) may be used in practice, but these topics are also
not discussed in the book.

The reader is assumed to have at least a standard undergraduate background in groups,
rings, fields and cryptography. Some experience with algorithms and complexity is also as-
sumed. For a basic introduction to public key cryptography and the relevant mathematics
the reader is recommended to consult Smart [572], Stinson [592] or Vaudenay [616].

27

28 CHAPTER 1. INTRODUCTION

An aim of the present book is to collect in one place all the necessary background
and results for a deep understanding of public key cryptography. Ultimately, the text
presents what I believe is the “core” mathematics required for current research in public
key cryptography and it is what I would want my PhD students to know.

The remainder of this chapter states some fundamental definitions in public key cryp-
tography and illustrates them using the RSA cryptosystem.

1.1 Public Key Cryptography

Two fundamental goals of cryptography are to provide privacy of communication between
two entities and to provide authentication of one entity to another. Both goals can be
achieved with symmetric cryptography. However, symmetric cryptography is not conve-
nient in some applications for the following reasons. First, each pair of communicating
entities needs to have a shared key. Second, these keys must be transmitted securely.
Third, it is difficult to obtain signatures with non-repudiation (e.g., suitable for signing
contracts).

In the mid 1970s, Merkle, Diffie and Hellman proposed the idea of public key cryp-
tography (also sometimes called asymmetric cryptography). This idea was also
proposed by Ellis at GCHQ, under the name “non-secret encryption”. One of the earliest
and most important public key cryptosystems is RSA, invented by Adleman, Rivest and
Shamir in 1977 (essentially the same scheme was also invented by Cocks at GCHQ in
1973).

As noted above, a major application of public key cryptography is to provide authenti-
cation. An extremely important example of this in the real world is digital signatures for
authenticating automatic software updates. The public key of the software developer is
stored in the application or operating system and the software update is only performed if
the digital signature on the update is verified for that public key (see Section 12.1 of Katz
and Lindell [334] for more details). Signature schemes also provide message integrity,
message authentication and non-repudiation (see Section 10.2 of Smart [572]). Other im-
portant applications of public key cryptography are key exchange and key transport for
secure communication (e.g., in SSL or TLS).

1.2 The Textbook RSA Cryptosystem

We briefly describe the “textbook” RSA cryptosystem. The word “textbook” indicates
that, although the RSA cryptosystem as presented below appears in many papers and
books, this is definitely not how it should be used in the real world. In particular, public
key encryption is most commonly used to transmit keys (the functionality is often called
key transport or key encapsulation), rather than to encrypt data. Chapter 24 gives many
more details about RSA including, in Section 24.7, a very brief discussion of padding
schemes for use in real applications.

Alice chooses two large primes p and q of similar size and computes N = pq. Alice
also chooses e ∈ N coprime to ϕ(N) = (p− 1)(q − 1) and computes d ∈ N such that

ed ≡ 1 (mod ϕ(N)).

Alice’s RSA public key is the pair of integers (N, e) and her private key is the integer
d. To encrypt a message to Alice, Bob does the following:

1. Obtain an authentic copy of Alice’s public key (N, e). This step may require trusted
third parties and public key infrastructures, which are outside the scope of this book;

1.2. THE TEXTBOOK RSA CRYPTOSYSTEM 29

see Chapter 12 of Smart [572] or Chapter 12 of Stinson [592]. We suppress this issue
in the book.

2. Encode the message as an integer 1 ≤ m < N .

Note that m does not necessarily lie in (Z/NZ)∗. However, if p, q ≈
√
N then the

probability that gcd(m, N) > 1 is (p+ q − 1)/(N − 1) ≈ 2/
√
N . Hence, in practice

one may assume that m ∈ (Z/NZ)∗.1

3. Compute and transmit the ciphertext

c = me (mod N).

To decrypt the ciphertext, Alice computes m = cd (mod N) and decodes this to obtain
the original message.

Exercise 1.2.1. Show that if gcd(m, N) = 1 then (me)d ≡ m (mod N). Show that if
gcd(m, N) 6= 1 then (me)d ≡ m (mod N).

The RSA system can also be used as a digital signature algorithm. When sending a
message m to Bob, Alice computes the signature s = md (mod N). When Bob receives
(m, s) he obtains an authentic copy of Alice’s public key and then verifies that m ≡
se (mod N). If the verification equation holds then Bob believes that the message m

does come from Alice. The value m is not usually an actual message or document (which
might be huge) but a short integer that is the output of some (non-injective) compression
function (such as a hash function). We sometimes call m a message digest.

The idea is that exponentiation to the power e modulo N is a one-way function: a
function that is easy to compute but such that it is hard to compute pre-images. Indeed,
exponentiation modulo N is a one-way permutation on (Z/NZ)∗ when e is co-prime to
ϕ(N). The private key d allows the permutation to be efficiently inverted and is known as
a trapdoor. Therefore RSA is often described as a trapdoor one-way permutation.

A number of practical issues must be considered:

1. Can public keys be efficiently generated?

2. Is the cryptosystem efficient in the sense of computation time and ciphertext size?

3. How does Bob know that Alice’s public key is authentic?

4. Is the scheme secure?

5. What does “security” mean anyway?

One aim of this book is to explore the above issues in depth. We will study RSA (and
some other cryptosystems based on integer factorisation) as well as cryptosystems based
on the discrete logarithm problem.

To indicate some of the potential problems with the “textbook” RSA cryptosystem
as described above, we present a three simple attacks.

1. Suppose the RSA cryptosystem is being used for an online election to provide privacy
of an individual’s vote to everyone outside the electoral office.2 Each voter encrypts

1If N is a product of two 150 digit primes (which is the minimum size for an RSA modulus) then the
expected number of trials to find 1 ≤ m < N with gcd(m, N) > 1 is therefore ≈ 10150. Note that the age
of the universe is believed to be less than 1018 seconds.

2Much more interesting electronic voting schemes have been invented. This unnatural example is
chosen purely for pedagogical purposes.

30 CHAPTER 1. INTRODUCTION

their vote under the public key of the electoral office and then sends their vote by
email. Voters don’t want any other member of the public to know who they voted
for.

Suppose the eavesdropper Eve is monitoring internet traffic from Alice’s computer
and makes a copy of the ciphertext corresponding to her vote. Since encryption is
deterministic and there is only a short list of possible candidates, it is possible for
Eve to compute each possible vote by encrypting each candidate’s name under the
public key. Hence, Eve can deduce who Alice voted for.

2. To speed up encryption it is tempting to use small encryption exponents, such as
e = 3 (assuming that N = pq where p ≡ q ≡ 2 (mod 3)). Now suppose Bob is
only sending a very small message 0 < m < N1/3 to Alice; this is quite likely, since
public key cryptography is most often used to securely transmit symmetric keys.
Then c = m3 in N, i.e., no modular reduction has taken place. An adversary can
therefore compute the message m from the ciphertext c by taking cube roots in N
(using numerical analysis techniques).

3. A good encryption scheme should allow an adversary to learn absolutely nothing
about a message from the ciphertext. But with the RSA cryptosystem one can
compute the Jacobi symbol (m

N) of the message by computing (c

N) (this can be
computed efficiently without knowing the factorisation of N ; see Section 2.4). The
details are Exercise 24.1.11.

The above three attacks may be serious attacks for some applications, but not for
others. However, a cryptosystem designer often has little control over the applications
in which their system is to be used. Hence it is preferable to have systems that are not
vulnerable to attacks of the above form. In Section 24.7 we will explain how to secure
RSA against these sorts of attacks, by making the encryption process randomised and by
using padding schemes that encode short messages as sufficiently large integers and that
destroy algebraic relationships between messages.

1.3 Formal Definition of Public Key Cryptography

To study public key cryptography using mathematical techniques it is necessary to give
a precise definition of an encryption scheme. The following definition uses terminology
about algorithms that is recalled in Section 2.1. Note that the problem of obtaining an
authentic copy of the public key is not covered by this definition; the public key is an
input to the encryption function.

Definition 1.3.1. Let κ ∈ N be a security parameter (note that κ is not necessarily
the same as the “key length”; see Example 1.3.2). An encryption scheme is defined by
the following spaces (all depending on the security parameter κ) and algorithms.

Mκ the space of all possible messages;
PKκ the space of all possible public keys;
SKκ the space of all possible private keys;
Cκ the space of all possible ciphertexts;
KeyGen a randomised algorithm that takes the security parameter κ, runs in

expected polynomial-time (i.e., O(κc) bit operations for some constant
c ∈ N) and outputs a public key pk ∈ PKκ and a private key sk ∈ SKκ;

Encrypt a randomised algorithm that takes as input m ∈ Mκ and pk, runs in
expected polynomial-time (i.e., O(κc) bit operations for some constant

1.3. FORMAL DEFINITION OF PUBLIC KEY CRYPTOGRAPHY 31

c ∈ N) and outputs a ciphertext c ∈ Cκ;
Decrypt an algorithm (not usually randomised) that takes c ∈ Cκ and sk,

runs in polynomial-time and outputs either m ∈ Mκ or the
invalid ciphertext symbol ⊥.

It is required that
Decrypt(Encrypt(m, pk), sk) = m

if (pk, sk) is a matching key pair. Typically we require that the fastest known attack on
the system requires at least 2κ bit operations.

Example 1.3.2. We sketch how to write “textbook” RSA encryption in the format of
Definition 1.3.1. The KeyGen algorithm takes input κ and outputs a modulus N that is
a product of two randomly chosen primes of a certain length, as well as an encryption
exponent e.

Giving a precise recipe for the bit-length of the primes as a function of the security
parameter is non-trivial for RSA. The complexity of the best factoring algorithms implies
that we need 2κ ≈ LN(1/3, c) for some constant c (see Chapter 15 for this notation and
an explantion of factoring algorithms). This implies that log(N) = O(κ3) and so the
bit-length of the public key is bounded by a polynomial in κ. A typical benchmark is
that if κ = 128 (i.e., so that there is no known attack on the system performing fewer
than 2128 bit operations) then N is a product of two 1536-bit primes.

As we will discuss in Chapter 12, one can generate primes in expected polynomial-time
and hence KeyGen is a randomised algorithm with expected polynomial-time complexity.

The message space Mκ depends on the randomised padding scheme being used. The
ciphertext space Cκ in this case is (Z/NZ)∗, which does not agree with Definition 1.3.1 as
it does not depend only on κ. Instead one usually takes Cκ to be the set of ⌈log2(N)⌉-bit
strings.

The Encrypt and Decrypt algorithms are straightforward (though the details depend
on the padding scheme). The correctness condition is easily checked.

1.3.1 Security of Encryption

We now give precise definitions for the security of public key encryption. An adversary
is a randomised polynomial-time algorithm that interacts with the cryptosystem in some
way. It is necessary to define the attack model, which specifies the way the adversary
can interact with the cryptosystem. It is also necessary to define the attack goal of
the adversary. For further details of these issues see Sections 10.2 and 10.6 of Katz and
Lindell [334], Section 1.13 of Menezes, van Oorschot and Vanstone [418], or Section 15.1
of Smart [572].

We first list the attack goals for public key encryption. The most severe one
is the total break, where the adversary computes a private key. There are three other
commonly studied attacks, and they are usually formulated as security properties (the
security property is the failure of an adversary to achieve its attack goal).

The word oracle is used below. This is just a fancy name for a magic box that takes
some input and then outputs the correct answer in constant time. Precise definitions are
given in Section 2.1.3.

• One way encryption (OWE): Given a challenge ciphertext c the adversary can-
not compute the corresponding message m.

• Semantic security: An adversary learns no information at all about a message
from its ciphertext, apart from possibly the length of the message.

32 CHAPTER 1. INTRODUCTION

This concept is made precise as follows: Assume all messages in Mκ have the same
length. A semantic security adversary is a randomised polynomial-time algo-
rithm A that first chooses a function f : Mκ → {0, 1} such that the probability, over
uniformly chosen m ∈ Mκ, that f(m) = 1 is 1/2. The adversary A then takes as
input a challenge (c, pk), where c is the encryption of a random message m ∈ Mκ,
and outputs a bit b. The adversary is successful if b = f(m).

Note that the standard definition of semantic security allows messages m ∈ Mκ to
be drawn according to any probability distribution. We have simplified to the case
of the uniform distribution on Mκ.

• Indistinguishability (IND): An adversary cannot distinguish the encryption of
any two messages m0 and m1, chosen by the adversary, of the same length.

This concept is made precise by defining an indistinguishability adversary to
be a randomised polynomial-time algorithm A that plays the following game with a
challenger: First the challenger generates a public key and gives it to A. Then (this is
the “first phase” of the attack) A performs some computations (and possibly queries
to oracles) and outputs two equal length messages m0 and m1. The challenger
computes the challenge ciphertext c (which is an encryption of mb where b ∈
{0, 1} is randomly chosen) and gives it to A. In the “second phase” the adversary A
performs more calculations (and possibly oracle queries) and outputs a bit b′. The
adversary is successful if b = b′.

For a fixed value κ one can consider the probability that an adversary is successful over
all public keys pk output by KeyGen, and (except when studying a total break adversary)
all challenge ciphertexts c output by Encrypt, and over all random choices made by the
adversary. The adversary breaks the security property if the success probability of the
adversary is noticeable as a function of κ (see Definition 2.1.10 for the terms noticeable
and negligible). The cryptosystem achieves the security property if every polynomial-time
adversary has negligible success probability as a function of κ. An adversary that works
with probability 1 is called a perfect adversary.

We now list the three main attack models for public key cryptography.

• Passive attack/chosen plaintext attack (CPA): The adversary is given the
public key.

• Lunchtime attack (CCA1):3 The adversary has the public key and can also ask
for decryptions of ciphertexts of its choosing during the first stage of the attack
(i.e., before the challenge ciphertext is received).

• Adaptive chosen-ciphertext attack (CCA): (Also denoted CCA2.) The ad-
versary has the public key and is given access to a decryption oracle O that will
provide decryptions of any ciphertext of its choosing, with the restriction that O
outputs ⊥ in the second phase of the attack if the challenge ciphertext is submitted
to O.

One can consider an adversary against any of the above security properties in any of
the above attack models. For example, the strongest security notion is indistinguishability
under an adaptive chosen ciphertext attack. A cryptosystem that achieves this security
level is said to have IND-CCA security. It has become standard in theoretical cryp-
tography to insist that all cryptosystems have IND-CCA security. This is not because

3The name comes from an adversary who breaks into someone’s office during their lunch break,
interacts with their private key in some way, and then later in the day tries to decrypt a ciphertext.

1.3. FORMAL DEFINITION OF PUBLIC KEY CRYPTOGRAPHY 33

CCA attacks occur frequently in the real world, but because a scheme that has IND-CCA
security should also be secure against any real-world attacker.4

Exercise 1.3.3. Show that the “textbook” RSA cryptosystem does not have IND-CPA
security.

Exercise 1.3.4. Show that the “textbook” RSA cryptosystem does not have OWE-CCA
security.

Exercise 1.3.5. Prove that if a cryptosystem has IND security under some attack model
then it has semantic security under the same attack model.

1.3.2 Security of Signatures

Definition 1.3.6. A signature scheme is defined, analogously to encryption, by mes-
sage, signature and key spaces depending on a security parameter κ. There is a KeyGen
algorithm and algorithms:

Sign A randomised algorithm that runs in polynomial-time (i.e., O(κc) bit
operations for some constant c ∈ N), takes as input a message m and a
private key sk, and outputs a signature s.

Verify An algorithm (usually deterministic) that runs in polynomial-time, takes
as input a message m, a signature s and a public key pk, and
outputs “valid” or “invalid”.

We require that Verify(m, Sign(m, sk), pk) = “valid”. Typically, we require that all known
algorithms to break the signature scheme require at least 2κ bit operations.

The main attack goals for signatures are the following (for more discussion see
Goldwasser, Micali and Rivest [258], Section 12.2 of Katz and Lindell [334], Section 15.4
of Smart [572], or Section 7.2 of Stinson [592]):

• Total break: An adversary can obtain the private key for the given public key.

• Selective forgery: (Also called target message forgery.) An adversary can
generate a valid signature for the given public key on any message.

• Existential forgery: An adversary can generate a pair (m, s) where m is a message
and s is a signature for the given public key on that message.

The acronym UF stands for the security property “unforgeable”. In other words,
a signature scheme has UF security if every polynomial-time existential forgery
algorithm succeeds with only negligible probability. Be warned that some authors
use UF to denote “universal forgery”, which is another name for selective forgery.

As with encryption there are various attack models.

• Passive attack: The adversary is given the public key only. This is also called a
“public key only” attack.

• Known message attack: The adversary is given various sample message-signature
pairs for the public key.

4Of course, there are attacks that lie outside the attack model we are considering, such as side-channel
attacks or attacks by dishonest system administrators.

34 CHAPTER 1. INTRODUCTION

• Adaptive chosen-message attack (CMA): The adversary is given a signing
oracle that generates signatures for the public key on messages of their choosing.

In this case, signature forgery usually means producing a valid signature s for the
public key pk on a message m such that m was not already queried to the signing
oracle for key pk. Another notion, which we do not consider further in this book, is
strong forgery; namely to output a valid signature s on m for public key pk such
that s is not equal to any of the outputs of the signing oracle on m.

As with encryption, one says the signature scheme has the stated security property
under the stated attack model if there is no polynomial-time algorithm A that solves the
problem with noticeable success probability under the appropriate game. The standard
notion of security for digital signatures is UF-CMA security.

Exercise 1.3.7. Give a precise definition for UF-CMA security.

Exercise 1.3.8. Do “textbook” RSA signatures have selective forgery security under a
passive attack?

Exercise 1.3.9. Show that there is a passive existential forgery attack on “textbook”
RSA signatures.

Exercise 1.3.10. Show that, under a chosen-message attack, one can selective forge
“textbook” RSA signatures.

