
Appendix A

Background Mathematics

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

For convenience, we summarise some notation, conventions, definitions and results
that will be used in the book. This chapter is for reference only.

A.1 Basic Notation

We write R for the real numbers and define R≥0 = {x ∈ R : x ≥ 0} and similarly for
R>0. We write Z for the integers and N = Z>0 = {n ∈ Z : n > 0} = {1, 2, 3, . . .} for the
natural numbers.

We write #S for the number of elements of a finite set S. If S, T are sets we write
S − T for the set difference {s ∈ S : s 6∈ T }. We denote the empty set by ∅.

We write Z/nZ for the ring of integers modulo n (many authors write Zn). When n is
a prime and we are using the field structure of Z/nZ we prefer to write Fn. The statement
a ≡ b (mod n) means that n | (a − b). We follow a common mis-use of this notation by
writing b (mod n) for the integer a ∈ {0, 1, . . . , n − 1} such that a ≡ b (mod n). Hence,
the statement a = b (mod n) is an assignment of a to the value of the operator b (mod n)
and should not be confused with the predicate a ≡ b (mod n).

The word map f : X → Y means a function on some subset of X . In other words a
map is not necessarily defined everywhere. Usually the word function implicitly means
“defined everywhere on X”, though this usage does not apply in algebraic geometry where
a rational function is actually a rational map. If f : X → Y is a map and U ⊂ X then
we write f |U for the restriction of f to U , which is a map f |U : U → Y .

If P = (xP , yP ) is a point and f is a function on points then we write f(xP , yP )
rather than f((xP , yP )) for f(P ). We write f ◦ g for composition of functions (i.e.,
(f ◦g)(x) = f(g(x))); the notation fg will always mean product (i.e., fg(P ) = f(P )g(P )).
The notation fn usually means exponentiating the value of the function f to the power
n, except when f is an endomorphism of an elliptic curve (or Abelian variety), in which
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context it is standard to write fn for n-fold composition. Hence, we prefer to write f(P )n

than fn(P ) when denoting powering (and so we write log(x)n rather than logn(x)).

A.2 Groups

Let G be a group and g ∈ G. The subgroup generated by g is hgi = {ga : a ∈ Z}.
The order of the element g is the number of elements in the group hgi. The exponent
of a finite group is the smallest positive integer n such that gn = 1 for all g ∈ G.

Let G be a finite Abelian group. The classification of finite Abelian groups (see
Theorem II.2.1 of [301] or Section I.8 of [367]) states that G is isomorphic to a direct sum
of cyclic groups of orders m1,m2, . . . ,mt such that m1 | m2 | · · · | mt.

A.3 Rings

All rings in this book have a multiplicative identity 1. For any ring R, the smallest positive
integer n such that n1 = 0 is called the characteristic of the ring and is denoted char(R).
If there is no such n then we define char(R) = 0.

If R is a ring and n ∈ N then we write Mn(R) for the ring of n × n matrices with
entries in R.

If R is a ring then R∗ is the multiplicative group of invertible elements of R. The
Euler phi function ϕ(n) is the order of (Z/nZ)∗. One has

ϕ(n) = n
Y

p|n

�
1− 1

p

�
.

Theorem A.3.1. There exists N ∈ N such that ϕ(n) > n/(3 log(log(n))) for all n ∈
N>N .

Proof: Theorem 328 of [276] states that

lim inf
n→∞

ϕ(n) log(log(n))

n
= e−γ

where γ ≈ 0.57721566 is the Euler-Mascheroni constant. Since e−γ ≈ 0.56 > 1/3 the
result follows from the definition of lim inf. �

An element a ∈ R is irreducible if a 6∈ R∗ and a = bc for b, c ∈ R implies b ∈ R∗ or
c ∈ R∗. We write a | b for a, b ∈ R if there exists c ∈ R such that b = ac. An element
a ∈ R is prime if a | bc implies a | b or a | c.

An integral domain R is a unique factorisation domain (UFD) if each a ∈ R can be
written uniquely (up to ordering and multiplication by units) as a product of irreducibles.
In a UFD an element is prime if and only if it is irreducible.

A.4 Modules

Let R be a ring. An R-module M is an Abelian group, written additively, with an
operation rm for r ∈ R and m ∈ M , such that (r1+r2)m = r1m+r2m and r(m1+m2) =
rm1 + rm2. An R-module M is finitely generated if there is a set {m1, . . . ,mk} ⊂ M

such that M = {Pk
i=1 rimi : ri ∈ R}.
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A finitely generated R-module M is a free module if there is a set {m1, . . . ,mk}
that generates M and is such that 0 =

Pk
i=1 rimi if and only if ri = 0 for all 1 ≤ i ≤ k.

Such an R-module is said to have rank k.
Let R be a commutative ring, M an R-module and k a field containing R. Consider

the set of all symbols of the form m ⊗ a where m ∈ M , a ∈ k under the equivalence
relation rm ⊗ a ≡ m ⊗ ra for r ∈ R, (m1 + m2) ⊗ a = (m1 ⊗ a) + (m1 ⊗ a) and
m ⊗ (a1 + a2) = (m ⊗ a1) + (m ⊗ a2). The tensor product M ⊗R k is the set of all
equivalence classes of such symbols. If M is a finitely generated free R-module with
generating set {m1, . . . ,mk} then M ⊗R k is a k-vector space of dimension k with basis
{m1 ⊗ 1, . . . ,mk ⊗ 1}.

A.5 Polynomials

Let R be a commutative ring. Denote by R[x] = R[x1, . . . , xn] the set of polynomi-
als over R in n variables. We write degxi

(F (x1, . . . , xn)) to be the degree as a poly-
nomial in xi with coefficients in R[x1, . . . , xi−1, xi+1, . . . , xn]. For polynomials F (x) ∈
R[x] we write deg(F (x)) for degx(F (x)). The total degree of a polynomial F (x) =Pl

i=1 Fix
mi,1

1 · · ·xmi,n
n (with Fi 6= 0) is deg(F ) = max1≤i≤l

Pn
j=1 mi,j .

Let R be a commutative ring with a unit 1. A degree d polynomial in R[x] is monic
if the coefficient of xd is 1.

A polynomial F (x) ∈ R[x] is divisible by G(x) ∈ R[x] if there exists a polynomial
H(x) ∈ R[x] such that F (x) = G(x)H(x). A polynomial F (x) ∈ R[x] is irreducible over
R (also called R-irreducible) if whenever F (x) = G(x)H(x) with G(x), H(x) ∈ R[x] then
either G or H is a constant polynomial.

There are various ways to show that a polynomial is irreducible. Eisenstein’s cri-
teria states that F (x) =

Pn
i=0 Fix

i ∈ R[x], where R is a UFD, is irreducible if there is a
prime p in R such that p ∤ Fn, p | Fi for 0 ≤ i < n, and p2 ∤ F0. We refer to Proposition
III.1.14 of [589], Theorem IV.3.1 of [367] or Theorem III.6.15 of [301] for proofs.

If k is a field then the polynomial ring k[x1, . . . , xn] is a UFD (Theorem III.6.14 of
[301]). Let F (x) ∈ k[x] be a polynomial in one variable of degree d. Then either F = 0
or else F (x) has at most d roots in k.

Lemma A.5.1. Let Nd,q be the number of monic irreducible polynomials of degree d in
Fq[x]. Then qd/2d ≤ Nd,q ≤ qd/d.

Proof: See Theorem 20.11 of [556] or Exercise 3.27 of [388]. A more precise result is
given in Theorem 15.5.12. �

Let F (x) ∈ k[x]. One can define the derivative F ′(x) by using the rule (Fnx
n)′ =

nFnx
n−1 for n ≥ 0 for each monomial. This is a formal algebraic operation and does not

require an interpretation in terms of calculus.

Lemma A.5.2. Let F1(x), F2(x) ∈ k[x]. Then

1. (F1(x) + F2(x))
′ = F ′

1(x) + F ′
2(x).

2. (F1(x)F2(x))
′ = F1(x)F

′
2(x) + F2(x)F

′
1(x).

3. (F1(F2(x))
′ = F ′

1(F2(x))F
′
2(x)

4. If char(k) = p then F ′(x) = 0 if and only F (x) = G(x)p for some G(x) ∈ k[x].

Similarly, the notation ∂F/∂xi is used for polynomials F (x) ∈ k[x] and an analogue
of Lemma A.5.2 holds.
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A.5.1 Homogeneous Polynomials

Definition A.5.3. A non-zero polynomial F (x) ∈ k[x] is homogeneous of degree d if
all its monomials have degree d, i.e.,

F (x0, . . . , xn) =
X

i0,i1,...,in∈Z≥0

i0+i1+···in=d

Fi0,i1,...,inx
i0
0 xi1

1 · · ·xin
n .

Any polynomial F (x) ∈ k[x0, . . . , xn] can be written as a homogeneous decompo-
sition

Pm
i=0 Fi(x) for some m ∈ N where Fi(x) is a homogeneous polynomial of degree i;

see Section II.3 of [367].

Lemma A.5.4. Let R be an integral domain.

1. If F (x) ∈ R[x0, . . . , xn] is homogeneous and λ ∈ R then F (λx0, . . . ,λxn) = λdF (x0, . . . , xn).

2. If F1, F2 ∈ R[x0, . . . , xn] are non-zero and homogeneous of degrees r and s respec-
tively then F1(x)F2(x) is homogeneous of degree r + s.

3. Let F1, F2 ∈ R[x0, . . . , xn] be non-zero. If F1(x)F2(x) is homogeneous then F1(x)
and F2(x) are both homogeneous.

Proof: See Exercise 1-1 (page 6) of Fulton [216]. �

A.5.2 Resultants

Let R be a commutative integral domain. Let F (x) = Fnx
n + Fn−1x

n−1 + · · ·+ F0 and
G(x) = Gmxm+Gn−1x

n−1+· · ·+G0 be two polynomials over R with F0, Fn, G0, Gm 6= 0.
The polynomials F, xF, . . . , xm−1F,G, xG, . . . , xn−1G can be written as n+m linear com-
binations of the n+m variables 1, x, . . . , xn+m−1 and so the variable x may be eliminated
to compute the resultant (there should be no confusion between the use of the symbol
R for both the ring and the resultant)

R(F,G) = Rx(F,G) = det




F0 F1 · · · Fn 0 0 · · · 0
0 F0 · · · Fn−1 Fn 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 · · · 0 F0 F1 · · · Fn

G0 · · · Gm 0 · · · · · · · · · 0
0 G0 · · · Gm 0 · · · · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...
0 0 · · · 0 0 G0 · · · Gm




.

Theorem A.5.5. Let k be a field and F (x), G(x) ∈ k[x]. Write F (x) =
Pn

i=0 Fix
i and

G(x) =
Pm

i=0 Gix
i. Suppose F0G0 6= 0. Then R(F (x), G(x)) = 0 if and only if F (x) and

G(x) have a common root in k.

Proof: See Proposition IV.8.1 and Corollary IV.8.4 of Lang [367] or Proposition 3.5.8 of
Cox, Little and O’Shea [158]. �

Theorem A.5.5 is generalised to polynomials in R[x] where R is a UFD in Lemma 2.6
on page 41 of Lorenzini [394]. Section IV.2.7 of [394] also describes the relation between
R(F,G) and the norm of G(α) in the number ring generated by a root α of F (x).

If F (x, y), G(x, y) ∈ Z[x, y] then write Rx(F,G) ∈ Z[y] for the resultant, which is a
polynomial in y, obtained by treating F and G as polynomials in x over the ring R = Z[y].
If F and G have total degree d in x and y then the degree in y of Rx(F,G) is O(d2).
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A.6 Field Extensions

General references for fields and their extensions are Chapter II of Artin [14], Chapter V
of Hungerford [301] or Chapter V of Lang [367].

Let k be a field. An extension of k is any field k′ such that k ⊆ k′, in which case
we write k′/k. Then k′ is a vector space over k. If this vector space has finite dimension
then the degree of k′/k, denoted [k′ : k], is the vector space dimension of k′ over k.

An element θ ∈ k′ is algebraic over k if there is some polynomial F (x) ∈ k[x] such
that F (θ) = 0. An extension k′ of k is algebraic if every θ ∈ k′ is algebraic over k. If
k′/k is algebraic and k ⊆ k′′ ⊆ k′ then k′′/k and k′/k′′ are algebraic. Similarly, if k′/k is
finite then [k′ : k] = [k′ : k′′][k′′ : k].

Lemma A.6.1. Let k be a field. Every finite extension of k is algebraic.

Proof: See Theorem 4 of Section II.3 of [640], Proposition V.1.1 of [367], or Theorem
V.1.11 of [301]. �

The compositum of two fields k and k′ is the smallest field that contains both of
them. We define k(θ) = {a(θ)/b(θ) : a(x), b(x) ∈ k[x], b(θ) 6= 0} for any element θ. This
is the smallest field that contains k and θ. For example, θ may be algebraic over k (e.g.,
k(
√
−1)) or transcendental (e.g., k(x)). More generally, k(θ1, . . . , θn) = k(θ1)(θ2) · · · (θn)

is the field generated over k by θ1, . . . , θn. A field extension k′/k is finitely generated
if k′ = k(θ1, . . . , θn) for some θ1, . . . , θn ∈ k′.

Theorem A.6.2. Let k be a field. Suppose K is field that is finitely generated as a ring
over k. Then K is an algebraic extension of k.

Proof: See pages 31-33 of Fulton [216]. �

An algebraic closure of a field k is a field k such that every non-constant polynomial
in k[x] has a root in k. For details see Section V.2 of [367]. We always assume that there
is a fixed algebraic closure of k and we assume that every algebraic extension k′/k is
chosen such that k′ ⊂ k and that k′ = k. Since the main case of interest is k = Fq this
assumption is quite natural.

We recall the notions of separable and purely inseparable extensions (see Sections
V.4 and V.6 of Lang [367], Section V.6 of Hungerford [301] or Sections A.7 and A.8 of
Stichtenoth [589]). An element α, algebraic over a field k, is separable (respectively,
purely inseparable) if the minimal polynomial of α over k has distinct roots (respec-
tively, one root) in k. Hence, α is separable over k if its minimal polynomial has non-zero
derivative. If char(k) = p then α is purely inseparable if the minimal polynomial of α is
of the form xpm − a for some a ∈ k.

Let k′/k be a finite extension of fields and let α ∈ k′. One can define the norm
and trace of α in terms of the matrix representation of multiplication by α as a linear
map on the vector space k′/k (see Section A.14 of [589] or Section IV.2 of [394]). When
k′/k is separable then an equivalent definition is to let σi : k′ → k be the n = [k′ : k]
distinct embeddings (i.e., injective field homomorphisms), then the norm of α ∈ k′ is
Nk′/k(α) =

Qn
i=1 σi(α) and the trace is Trk′/k(α) =

Pn
i=1 σi(α).

An element x ∈ K is transcendental over k if x is not algebraic over k. Unless there
is an implicit algebraic relation between x1, . . . , xn we write k(x1, . . . , xn) to mean the
field k(x1)(x2) · · · (xn) where each xi is transcendental over k(x1, . . . , xi−1).

Definition A.6.3. Let K be a finitely generated field extension of k. The transcen-
dence degree of K/k, denoted trdeg(K/k), is the smallest integer n such that there are
x1, . . . , xn ∈ K with K algebraic over k(x1, . . . , xn) (by definition xi is transcendental
over k(x1, . . . , xi−1)). Such a set {x1, . . . , xn} is called a transcendence basis for K/k.
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Theorem A.6.4. Let K/k be a finitely generated field extension. Then the transcendence
degree is well-defined (i.e., all transcendence bases have the same number of elements).

Proof: See Theorem 25 of Section II.12 of [640], Theorem VI.1.8 of [301] or Theorem
1.6.13 of [635]. �

Theorem A.6.5. Let K/k and F/K be finitely generated field extensions. Then trdeg(F/k) =
trdeg(F/K) + trdeg(K/k).

Proof: See Theorem 26 of Section II.12 of [640]. �

Corollary A.6.6. Let K/k be finitely generated with transcendence degree 1 and let
x ∈ K be transcendental over k. Then K is a finite algebraic extension of k(x).

A perfect field is one for which every algebraic extension is separable. A convenient
equivalent definition is that a field k of characteristic p is perfect if {xp : x ∈ k} = k
(see Section V.6 of Lang [367]). We restrict to perfect fields for a number of reasons, one
of which is that the primitive element theorem does not hold for non-perfect fields, and
another is due to issues with fields of definition (see Remark 5.3.7). Finite fields, fields of
characteristic 0, and algebraic closures of finite fields are perfect (see Exercise V.7.13 of
[301] or Section V.6 of [367]).

Theorem A.6.7. (Primitive element theorem) Let k be a perfect field. If k′/k is a
finite, separable extension then there is some α ∈ k′ such that k′ = k(α).

Proof: Theorem V.6.15 of [301], Theorem 27 of [14], Theorem V.4.6 of [367]. �

A.7 Galois Theory

For an introduction to Galois theory see Chapter V of Hungerford [301], Chapter 6 of
Lang [367] or Stewart [585]. An algebraic extension k′/k is Galois if it is normal (i.e.,
every irreducible polynomial F (x) ∈ k[x] with a root in k′ splits completely over k′) and
separable. The Galois group of k′/k is

Gal(k′/k) = {σ : k′ → k′ : σ is a field automorphism, and σ(x) = x for all x ∈ k}.

Theorem A.7.1. Let k′/k be a finite Galois extension. Then there is a one-to-one
correspondence between the set of subfields {k′′ : k ⊆ k′′ ⊆ k′} and the set of normal
subgroups H of Gal(k′/k), via

k′′ = {x ∈ k′ : σ(x) = x for all σ ∈ H}.

Proof: See Theorem V.2.5 of [301]. �

If k is a perfect field then k is a separable extension and hence a Galois extension of
k. If k′ is any algebraic extension of k (not necessarily Galois) then k/k′ is Galois. The
Galois group Gal(k/k) can be defined using the notion of an inverse limit (see Chapter 5
of [124]). Topological aspects of Gal(k/k) are important, but we do not discuss them.

A.7.1 Galois Cohomology

One finds brief summaries of Galois cohomology in Appendix B of Silverman [564] and
Chapter 19 of Cassels [122]. More detailed references are Serre [542] and Cassels and
Frölich [124].
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Let K/k be Galois (we include K = k). Let G = Gal(K/k). Unlike most references
we write our Galois groups acting on the left (i.e., as σ(f) rather than fσ). A 1-cocyle in
the additive group K is a function1 ξ : G → K such that ξ(στ) = σ(ξ(τ)) + ξ(σ). A 1-
coboundary in K is the function ξ(σ) = σ(γ)−γ for some γ ∈ K. The group of 1-cocycles
modulo 1-coboundaries (the group operation is addition (ξ1 + ξ2)(τ) = ξ1(τ) + ξ2(τ)) is
denoted H1(G,K). Similarly, for the multiplicative groupK∗, a 1-cocyle satisfies ξ(στ) =
σ(ξ(τ))ξ(σ), a 1-coboundary is σ(γ)/γ and the quotient group is denoted H1(G,K∗).

Theorem A.7.2. Let K/k be Galois. Then H1(Gal(K/k),K) = {0} and (Hilbert 90)
H1(Gal(K/k),K∗) = {1} (i.e., both groups are trivial).

Proof: The case of finite extensions K/k is given in Exercise 20.5 of Cassels [122] or
Propositions 1 and 2 of Chapter 10 of [542]. For a proof in the infinite case see Propositions
2 and 3 (Sections 2.6 and 2.7) of Chapter 5 of [124]. �

A.8 Finite Fields

Let p be a prime. Denote by Fp = Z/pZ the finite field of p elements. The multiplicative
group of non-zero elements is F∗

p. Recall that F
∗
p is a cyclic group. A generator for F∗

q is
called a primitive root. The number of primitive roots in F∗

q is ϕ(q − 1).

Theorem A.8.1. Let p be a prime and m ∈ N. Then there exists a field Fpm having
pm elements. All such fields are isomorphic. Every finite field can be represented as
Fp[x]/(F (x)) where F (x) ∈ Fp[x] is a monic irreducible polynomial of degree m; the cor-
responding vector space basis {1, x, . . . , xm−1} for Fpm/Fp is called a polynomial basis.

Proof: See Corollary V.5.7 of [301] or Section 20.2 of [556]. �

If p is a prime and q = pm then Fpnm may be viewed as a degree n algebraic extension
of Fq.

Theorem A.8.2. Every finite field Fpm has a vector space basis over Fp of the form

{θ, θp, . . . , θpm−1}; this is called a normal basis.

Proof: See Theorem 2.35 or Theorem 3.73 of [388, 389] or Exercise 20.14 of [556] (the
latter proof works for extensions of Fp, but not for all fields). �

We discuss methods to construct a normal basis in Section 2.14.1.

Theorem A.8.3. Let q be a prime power and m ∈ N. Then Fqm is an algebraic extension
of Fq that is Galois. The Galois group is cyclic of order m and generated by the q-power
Frobenius automorphism π : x 7→ xq.

Let α ∈ Fqm . The trace and norm with respect to Fqm/Fq are

TrFqm/Fq
(α) =

m−1X

i=0

αqi and NFqm/Fq
(α) =

m−1Y

i=0

αqi .

The characteristic polynomial over Fq of α ∈ Fqm is F (x) =
Qm−1

i=0 (x − αqi ) ∈ Fq[x].
The trace and norm of α ∈ Fqm are (up to sign) the coefficients of xm−1 and x0 in the
characteristic polynomial.

An element α ∈ Fq is a square or quadratic residue if the equation x2 = α has a
solution x ∈ Fq. If g is a primitive root for Fq then ga is a square if and only if a is even.
Hence α is a square in F∗

q if and only if α(q−1)/2 = 1.

1It is also necessary that ξ satisfy some topological requirements, but we do not explain these here.
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Lemma A.8.4. Let g ∈ Fqm , where m > 1, be chosen uniformly at random. The
probability that g lies in a proper subfield K ⊂ Fqm such that Fq ⊆ K is at most 1/q.

Proof: If m = 2 then the probability is q/q2 = 1/q so the result is tight in this case.
When m = li is a power of a prime l ≥ 2 then all proper subfields of Fqm that contain Fq

are contained in Fqli−1 so the probability is ql
i−1

/ql
i

= 1/ql
i−1(l−1) ≤ 1/q. Finally, write

m = nli where l ≥ 2 is prime, i ≥ 1, n ≥ 2 and gcd(n, l) = 1. Then every proper subfield
containing Fq lies in Fqli or Fqnli−1 . The probability that a random element lies in either
of these fields is

≤ ql
i

/qnl
i

+ qnl
i−1

/qnl
i

= 1/ql
i(n−1) + 1/qnl

i−1(l−1) ≤ 1/q2 + 1/q2 ≤ 1/q.

�

A.9 Ideals

If R is a commutative ring then an R-ideal is a subset I ⊂ R that is an additive group
and is such that for all a ∈ I and r ∈ R then ar ∈ I. An R-ideal I is proper if I 6= R
and is non-trivial if I 6= {0}. A principal ideal is (a) = {ar : r ∈ R} for some a ∈ R. If
S ⊂ R then (S) is the R-ideal {Pn

i=1 siri : n ∈ N, si ∈ S, ri ∈ R}. An ideal I is finitely
generated if I = (S) for a finite subset S ⊂ R. The radical of an ideal I in a ring R is
radR(I) = {r ∈ R : rn ∈ I for some n ∈ N} (see Definition VIII.2.5 and Theorem VIII.2.6
of Hungerford [301]). If I1 and I2 are ideals of R then

I1I2 =

(
nX

i=1

aibi : n ∈ N, ai ∈ I1, bi ∈ I2

)
.

Note that I1I2 ⊆ I1 ∩ I2. For a, b ∈ R one has (ab) = (a)(b).
Let I1, . . . , In be ideals in a ring R such that the ideal (Ii∪Ij) = R for all 1 ≤ i < j ≤ n

(we call such ideals pairwise-coprime). If a1, . . . , an ∈ R then there exists an element
a ∈ R such that a ≡ ai (mod Ii) (in other words, a − ai ∈ Ii) for all 1 ≤ i ≤ n. This is
the Chinese remainder theorem for rings; see Theorem III.2.25 of [301] or Theorem
II.2.1 of [367].

The following result gives three equivalent conditions for an ideal to be prime.

Lemma A.9.1. Let I be an ideal of R. The following conditions are equivalent and, if
they hold, I is called a prime ideal.

1. If a, b ∈ R are such that ab ∈ I then a ∈ I or b ∈ I.

2. R/I is an integral domain (i.e., has no zero divisors).

3. If I1 and I2 are ideals of R such that I1I2 ⊆ I then I1 ⊆ I or I2 ⊆ I.

If F (x) ∈ k[x] is irreducible then the k[x]-ideal (F (x)) = {F (x)G(x) : G(x) ∈ k[x]} is
a prime ideal.

An R-ideal I is maximal if every R-ideal J such that I ⊆ J ⊆ R is such that either
J = I or J = R.

Lemma A.9.2. An R-ideal I is maximal if and only if R/I is a field (hence, a maximal
R-ideal is prime). If I is a maximal R-ideal and S ⊂ R is a subring then I ∩S is a prime
S-ideal.
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Proof: For the first statement see Theorem III.2.20 of [301] or Section II.2 of [367].
The second statement is proved as follows: Let I be maximal and consider the injection
S → R inducing S → R/I with kernel J = S ∩ I. Then S/J → R/I is is an injective ring
homomorphism into a field, so J is a prime S-ideal. �

Let R be a commutative ring. A sequence I1 ⊂ I2 ⊂ · · · of R-ideals is called an
ascending chain. A commutative ring R is Noetherian if every ascending chain of
R-ideals is finite. Equivalently, a ring is Noetherian if every ideal is finitely generated.
For more details see Section VIII.1 of [301] or Section X.1 of [367].

Theorem A.9.3. (Hilbert basis theorem) If R is a Noetherian ring then R[x] is a Noethe-
rian ring.

Proof: See Theorem 1 page 13 of [216], Theorem VIII.4.9 of [301] Section IV.4 of [367],
or Theorem 7.5 of [15]. �

Corollary A.9.4. k[x1, . . . , xn] is Noetherian.

Amultiplicative subset of a ring R is a set S such that 1 ∈ S, s1, s2 ∈ S ⇒ s1s2 ∈ S.
The localisation of a ring R with respect to a multiplicative subset S is the set

S−1R = {r/s : r ∈ R, s ∈ S}

with the equivalence relation r1/s1 ≡ r2/s2 if r1s2 − r2s1 = 0. For more details see
Chapter 3 of [15], Section 1.3 of [542], Section I.1 of [365], Section II.4 of [367] or Section
III.4 of [301]. In the case S = R∗ we call S−1R the field of fractions of R. If p is a
prime ideal of R then S = R − p is a multiplicative subset and the localisation S−1R is
denote Rp.

Lemma A.9.5. If R is Noetherian and S is a multiplicative subset of R then the locali-
sation S−1R is Noetherian.

Proof: See Proposition 7.3 of [15] or Proposition 1.6 of Section X.1 of [367]. �

A ring R is local if it has a unique maximal ideal. If m is a maximal idea of a ring R
then the localisation Rm is a local ring. It follows that Rm is Noetherian.

A.10 Vector Spaces and Linear Algebra

The results of this section are mainly used when we discuss lattices in Chapter 16. A
good basic reference is Curtis [163].

Let k be a field. We write vectors in kn as row vectors. We interchangeably use the
words points and vectors for elements of kn. The zero vector is 0 = (0, . . . , 0). For
1 ≤ i ≤ n the i-th unit vector is ei = (ei,1, . . . , ei,n) such that ei,i = 1 and ei,j = 0 for
1 ≤ j ≤ n and j 6= i.

A linear map is a function A : kn → km such that A(λx + µy) = λA(x) + µA(y)
for all λ, µ ∈ k and x, y ∈ kn. Given a basis for kn any linear map can be represented
as an n × m matrix A, such that A(x) = xA. We denote the entries of A by Ai,j for
1 ≤ i ≤ n, 1 ≤ j ≤ m. Denote by In the n× n identity matrix. We denote by AT the
transpose, which is an m×n matrix such that (AT )i,j = Aj,i. We have (AB)T = BTAT .

A fundamental computational problem is to solve the linear system of equations xA =
y and it is well known that this can be done using Gaussian elimination (see Section 6 of
Curtis [163] or Chapter 3 of Schrijver [531]).

The rank of an m × n matrix A (denoted rank(A)) is the maximum number of lin-
early independent rows of A (equivalently, the maximum number of linearly independent
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columns). If A is an n× n matrix then the inverse of A, if it exists, is the matrix such
that AA−1 = A−1A = In. If A and B are invertible then (AB)−1 = B−1A−1. One can
compute A−1 using Gaussian elimination.

A.10.1 Inner Products and Norms

Definition A.10.1. The inner product of two vectors v = (v1, . . . , vn) and w =
(w1, . . . , wn) ∈ kn is

hv, wi =
nX

i=1

viwi.

The Euclidean norm or ℓ2-norm of a vector v ∈ Rn is

kvk =
p
hv, vi.

More generally for Rn one can define the ℓa-norm of a vector v for any a ∈ N as

kvka = (
Pn

i=1 |vi|a)
1/a

. Important special cases are the ℓ1-norm kvik =
Pn

i=1 |vi| and
the ℓ∞-norm kvk∞ = max{|v1|, . . . , |vn|}. (The reader should not confuse the notion of
norm in Galois theory with the notion of norm on vector spaces.)

Lemma A.10.2. Let v ∈ Rn. Then

kvk∞ ≤ kvk2 ≤ √
nkvk∞ and kvk∞ ≤ kvk1 ≤ nkvk∞.

Lemma A.10.3. Let v, w ∈ Rn and let kvk be the Euclidean norm.

1. kv + wk ≤ kvk+ kwk.

2. hv, wi = hw, vi.

3. kvk = 0 implies v = 0.

4. |hv, wi| ≤ kvkkwk.

5. Let A be an n× n matrix over R. The following are equivalent:

(a) kxAk = kxk for all x ∈ Rn;

(b) hxA, yAi = hx, yi for all x, y ∈ Rn;

(c) AAT = In (which implies det(A)2 = 1).

Such a matrix is called an orthogonal matrix.

Definition A.10.4. A basis {v1, . . . , vn} for a vector space is orthogonal if

hvi, vji = 0

for all 1 ≤ i < j ≤ n. If we also have the condition hvi, vii = 1 then the basis is called
orthonormal.

Lemma A.10.5. Let {v1, . . . , vn} be an orthogonal basis for Rn. If v =
Pn

j=1 λjvj then

kvk2 =
Pn

j=1 λ
2
jkvjk2.
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If one has an orthogonal basis {v1, . . . , vn} then it is extremely easy to decompose an
arbitrary vector w over the basis. The representation is

w =

nX

i=1

hw, vii
hvi, vii

vi.

This is simpler and faster than solving the linear system using Gaussian elimination.
If V ⊆ Rn is a subspace then the orthogonal complement is V ⊥ = {w ∈ Rn :

hw, vi = 0 for all v ∈ V }. The dimension of V ⊥ is n−dim(V ). Given a basis {v1, . . . , vm}
for V (where m = dim(V ) < n) one can compute a basis {vm+1, . . . , vn} for V ⊥. The
orthogonal projection of Rn to a subspace V is a linear map P : Rn → V that is
the identity on V and is such that P (V ⊥) = {0}. In other words, if v ∈ Rn then
v − P (v) ∈ V ⊥.

A.10.2 Gram-Schmidt Orthogonalisation

Given a basis v1, . . . , vn for a vector space, the Gram-Schmidt algorithm iteratively com-
putes an orthogonal basis v∗1, . . . , v

∗
n (called the Gram-Schmidt orthogonalisation or

GSO). The idea is to set v∗1 = v1 and then, for 2 ≤ i ≤ n, to compute

v∗i = vi −
i−1X

j=1

µi,jv
∗
j where µi,j =

hvi, v∗j i
hv∗j , v∗j i

.

We discuss this algorithm further in Section 17.3.

A.10.3 Determinants

Let b1, . . . , bn be n vectors in kn. One can define the determinant of the sequence
b1, . . . , bn (or of the matrix B whose rows are b1, . . . , bn) in the usual way (see Chapter 5
of Curtis [163] or Section VII.3 of Hungerford [301]).

Lemma A.10.6. Let b1, . . . , bn ∈ kn.

1. Let B be the matrix whose rows are b1, . . . , bn. Then B is invertible if and only if
det(b1, . . . , bn) 6= 0.

2. For λ ∈ k, det(b1, . . . , bi−1,λbi, bi+1, . . . , bn) = λdet(b1, . . . , bn).

3. det(b1, . . . , bi−1, bi + bj , bi+1, . . . , bn) = det(b1, . . . , bn) for i 6= j.

4. If {e1, . . . , en} are the standard unit vectors in kn then det(e1, . . . , en) = 1.

5. If B1, B2 are square matrices then det(B1B2) = det(B1) det(B2).

6. det(B) = det(BT ).

7. (Hadamard inequality) | det(b1, . . . , bn)| ≤ Qn
i=1 kbik (where kbk is the Euclidean

norm).

Proof: See Theorems 16.6, 17.6, 17.15, 18.3 and 19.13 of Curtis [163]. �

Definition A.10.7. Let b1, . . . , bn be a set of vectors in Rn. The fundamental paral-
lelepiped of the set is (

nX

i=0

λibi : 0 ≤ λi < 1

)
.
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Lemma A.10.8. Let the notation be as above.

1. The volume of the fundamental parallelepiped of {b1, . . . , bn} is | det(b1, . . . , bn)|.
2. | det(b1, . . . , bn)| =

Qn
i=1 kb∗i k where b∗i are the Gram-Schmidt vectors.

Proof: The first claim is Theorem 19.12 of Curtis [163]. The second claim is Exercise
19.11 (also see Theorem 19.13) of [163]. �

There are two methods to compute the determinant for vectors in Rn. The first is to
perform Gaussian elimination to diagonalise and then take the product of the diagonal
elements. The second is to apply Gram-Schmidt (using floating point arithmetic) and then
the determinant is just the product of the norms. Over R both methods only give an
approximation to the determinant. To compute the determinant for vectors with entries
in Z or Q one can use Gaussian elimination or Gram-Schmidt with exact arithmetic in
Q (this gives an exact solution but suffers from coefficient explosion). Alternatively, one
can compute the determinant modulo pi for many small or medium sized primes pi and
use the Chinese remainder theorem.

A.11 Hermite Normal Form

Definition A.11.1. An n×m integer matrix A = (Ai,j) is in (row) Hermite normal
form (HNF) if there is some integer 1 ≤ r ≤ n and a strictly increasing map f :
{1, . . . , n− r} → {1, . . . ,m} (i.e., f(i+ 1) > f(i)) such that

1. the last r rows of A are zero

2. 0 ≤ Aj,f(i) < Ai,f(i) for 1 ≤ j < i and Aj,f(i) = 0 for i < j ≤ n.

In particular, an n×n matrix that is upper triangular and that satisfies the condition
0 ≤ Aj,i < Ai,i for 1 ≤ j < i ≤ n is in Hermite normal form. The reader is warned that
there are many variations on the definition of the Hermite normal form.

The HNF A′ of an integer matrix A is unique and there is an n × n unimodular
matrix U (i.e., U is a matrix with integer entries and determinant±1) such thatA′ = UA.
For more details of the Hermite normal form see Section 2.4.2 of Cohen [136] or Section
4.1 of Schrijver [531] (though note that both books use columns rather than rows).

A.12 Orders in Quadratic Fields

A quadratic field is Q(
√
d) where d 6= 0, 1 is a square-free integer. If d < 0 then the field

is called an imaginary quadratic field. The discriminant of K = Q(
√
d) is D = d

if d ≡ 1 (mod 4) or D = 4d otherwise. The ring of integers of a quadratic field of
discriminant D is is OK = Z[(D +

√
D)/2].

An order in a field k containing Q is a subring R of k that is finitely generated as
a Z-module and is such that R ⊗Z Q = k. Every order in a quadratic field is of the
form Z[c(D +

√
D)/2] for some c ∈ N. The integer c is called the conductor and the

discriminant of the order is c2D.

A.13 Binary Strings

The binary representation of an integer a =
Pl−1

i=0 ai2
i is written as

(al−1 . . . a1a0)2 or al−1 . . . a1a0 (A.1)
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where ai ∈ {0, 1} and al−1 = 1. We say that the bit-length of a is l. An integer a ∈ N is
represented by a binary string of bit-length ⌊log2(a)⌋+1. The least significant bit of a
is LSB(a) = a0 = a (mod 2). We call ai the i-th bit or bit i of a. The “most significant
bit” is trivially always one, but in certain contexts one uses different notions of MSB; for
example see Definition 21.7.1.

Binary strings of length l are sequences a1a2 . . . al with ai ∈ {0, 1}. Such a sequence
is also called an l-bit string. The i-th bit is ai. There is an ambiguity when one wants
to interpret a binary string as an integer; our convention is that al is the least significant
bit.2

We denote by {0, 1}l the set of all length l binary strings and {0, 1}∗ the set of all
binary strings of arbitrary finite length. If a and b are binary strings then the exclusive-or
(i.e., XOR) a⊕ b is the binary string whose i-th bit is ai + bi (mod 2) for 1 ≤ i ≤ l.

A.14 Probability and Combinatorics

We briefly recall some ideas from probability. Good references are Ross [502], Woodroofe [636]
and Chapter 6 of Shoup [556].

The number of ways to choose t items from n without replacement, and where the
ordering matters, is n(n− 1)(n− 2) · · · (n− t+ 1) = n!/(n− t)!. The number of ways to
choose t items from n without replacement, and where the ordering does not matter, is�
n
t

�
= n!/(t!(n− t)!). The number of ways to choose t items from n with replacement and

where the ordering doesn’t matter is
�
n+t−1
t−1

�
. We have

� n

m

�m

≤
�
n

m

�
≤

�ne
m

�m

Stirling’s approximation to the factorial is n! ≈
√
2πne−nnn or log(n!) ≈

n(log(n) − 1) (where log denotes the natural logarithm). For proof see Section 5.4.1
of [636].

Let [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. A distribution on a set S is a function Pr mapping
“nice”3 subsets of S to [0, 1], with the properties that Pr(∅) = 0, Pr(S) = 1 and if
A,B ⊆ S are disjoint and “nice” then Pr(A ∪ B) = Pr(A) + Pr(B). For s ∈ S we define
Pr(s) = Pr({s}) if {s} is “nice”. The uniform distribution on a finite set S is given by
Pr(s) = 1/#S.

An event is a “nice” subset E ⊆ S, and Pr(E) is called the probability of the event.
We define ¬E to be S−E, so that Pr(¬E) = 1−Pr(E). We have Pr(E1) ≤ Pr(E1∪E2) ≤
Pr(E1) + Pr(E2). We define Pr(E1 and E2) = Pr(E1 ∩ E2).

Let S be a finite set with an implicit distribution on it (usually the uniform distribu-
tion). In an algorithm we write s ← S to mean that s ∈ S is randomly selected from S
according to the distribution, i.e., s is chosen with probability Pr(s).

If A,E ⊆ S and Pr(E) > 0 then the conditional probability is

Pr(A | E) =
Pr(A ∩ E)

Pr(E)
.

If Pr(A ∩ E) = Pr(A) Pr(E) then A and E are independent events (equivalently, if
Pr(E) > 0 then Pr(A | E) = Pr(A)). If S is the disjoint union E1 ∪ E2 ∪ · · · ∪ En then
Pr(A) =

Pn
i=1 Pr(A | Ei) Pr(Ei).

2This means that the i-th bit of a binary string is not the i-th bit of the corresponding integer. This
inconsistency will not cause confusion in the book.

3Technically, S must be a set with a measure and the “nice” subsets are the measurable ones. When
S is finite or countable then every subset is “nice”.
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Let S be a set. A random variable is a function4 X : S → R. Write X ⊆ R for the
image of X (our applications will always have X either finite or N). Then X induces a
distribution on X , defined for x ∈ X by Pr(X = x) is the measure of X−1({x}) (in the
case where S is finite or countable, Pr(X = x) =

P
s∈X−1(x) Pr(s)). Random variablesX1

and X2 are independent random variables if Pr(X1 = x1 and X2 = x2) = Pr(X1 =
x1) Pr(X2 = x2) for all x1 ∈ X1 and x2 ∈ X2.

The expectation of a random variable X taking values in a finite or countable set
X ⊆ R is

E(X) =
X

x∈X
xPr(X = x).

If X = N then E(X) =
P∞

n=0 Pr(X > n) (this is shown in the proof of Theorem 14.1.1).
Note that if X is finite then E(X) exists, but for X countable then the expectation only
exists if the sum is convergent. IfX1 andX2 are random variables on S then E(X1+X2) =
E(X1) + E(X2). If X1 and X2 are independent then E(X1X2) = E(X1)E(X2).

Example A.14.1. Consider flipping a coin, with probability p of “heads” and probability
1 − p of “tails” (where 0 < p < 1). Assume the coin flips are independent events. What
is the expected number of trials until the coin lands “heads”?

Let X be the random variable with values in N where Pr(X = n) is the probability
that the first head is on the n-th throw. Then Pr(X > n) = (1 − p)n and Pr(X =
n) = (1 − p)n−1p. This gives the geometric distribution on N. One can check thatP∞

n=1 Pr(X = n) = 1.
The expectation of X is E(X) =

P∞
n=1 nPr(X = n) (the ratio test shows that this

sum is absolutely convergent). Write T =
P∞

n=1 n(1 − p)n−1. Then

E(X) = pT = T−(1−p)T =

∞X

n=1

n(1−p)n−1−
∞X

n=1

(n−1)(1−p)n−1 = 1+

∞X

n=2

(1−p)n−1 =
1

p
.

To define this problem formally, one should define the geometric random variable
X : S → N, where S is the (uncountable) set of countable length sequences of bits, such
that X(s1s2 . . . ) > n if and only if s1 = · · · sn = “tails”. This leads to measure-theoretic
technicalities that are beyond the scope of this book, but which are well understood in
probability theory.

Example A.14.2. Suppose one has a set S of N items and one chooses elements of S
(with replacement) uniformly and independently at random. Let X be a random variable
taking values in N such that Pr(X = n) is the probability that, after sampling n elements
from S, the first n − 1 elements are distinct and the n-th element is equal to one of the
previously sampled elements. In other words, X is the number of samples from S until
some element is sampled twice. A version of the birthday paradox states that the
expected value of X is approximately

p
πN/2. We discuss this in detail in Section 14.1.

Example A.14.3. A version of the coupon collector problem is the following: Suppose
S is a set of N items and one chooses elements of S (with replacement) uniformly at
random.

Let X be a random variable taking values in N such that Pr(X ≥ n) is the probability
that after choosing n − 1 elements (sampled uniformly and independently at random
from S) one has not yet chosen some element of S. In other words, X is the number of
“coupons” to be collected until one has a full set of all N types. The expected value of
X is N(1 + 1/2 + · · ·+ 1/(N − 1) + 1/N) ≈ N log(N) (see Example 7.2j of Ross [502]).

4Technically, a random variable is defined on a probability space, not an arbitrary set, and is a
measurable function; we refer to Woodroofe [636] for the details.
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The statistical distance (also called the total variation) of two distributions Pr1
and Pr2 on a finite or countable set S is ∆(Pr1,Pr2) = 1

2

P
x∈S |Pr1(s) − Pr2(s)|. It

is easy to see that ∆(Pr1,Pr1) = 0 and 0 ≤ ∆(Pr1,Pr2) ≤ 1 (see Theorem 6.14 of
Shoup [556]). Two distributions are statistically close if their statistical distance is
“negligible” in some appropriate sense (typically, in cryptographic applications, this will
mean “negligible in terms of the security parameter”).

We end with a result that is often used in the analysis of algorithms.

Theorem A.14.4. The probability that two uniformly and independently chosen integers
1 ≤ n1, n2 < N satisfy gcd(n1, n2) = 1 tends to 1/ζ(2) = 6/π2 ≈ 0.608 as N tends to
infinity.

Proof: See Theorem 332 of [276]. �


