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This is a survey of work on applications of pairings in cryptography. I
will present the work of various researchers, including some joint work with J.
McKee, V. Rotger and P. Valença.
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2 The elliptic curve decision Diffie-Hellman prob-
lem (ECDDHP)

Let E be an elliptic curve over a finite field Fq. Let l be a large prime such that
l|#E(Fq). As usual we define

E[l] = {P ∈ E(Fq) : [l]P = 0E}.

Let P = (x, y) ∈ E[l] and let P1 = [a]P , P2 = [b]P and P3 = [c]P be given
points on E. The ECDDH is to decide whether

c ≡ ab (mod l).

Let P1 = [a]P , Q, Q1 = [c]Q ∈ E[l]. The co-ECDDH is to decide whether

c ≡ a (mod l).

1



3 The Weil pairing

With notation as above (i.e., l|#E(Fq)) define k to be the smallest positive
integer such that l|(qk − 1). Note that k depends on q and l. The number
k is sometimes called the embedding degree (or MOV degree or security
multiplier).

Define µl = {ζ ∈ F∗qk : ζl = 1}. The Weil pairing is a function

el : E[l]× E[l] → µl ⊂ F∗qk

which satisfies the following properties:

• (Bilinear) el(P1+P2, Q) = el(P1, Q)el(P2, Q) and el(P,Q1+Q2) = el(P,Q1)el(P,Q2).

• (Non-degenerate) el(P,Q) = 1 for all Q ∈ E[l] implies P = 0E .

• (Alternating) el(P, P ) = 1 for all P ∈ E[l].

4 The Tate-Lichtenbaum pairing (special case)

Let K = Fqk . The Tate-Lichtenbaum pairing is a function

E(K)[l]× (E(K)/lE(K)) −→ K∗/(K∗)l.

For P ∈ E(K)[l] and Q ∈ E(K) we write this equivalence class representative
as

〈P,Q〉 ∈ K∗/(K∗)l.

Note that:

• (K∗ : (K∗)l) = l.

• Denote by ≡ equivalence in K∗/(K∗)l.

• E(K)/lE(K) is a group of exponent l.

The Tate-Lichtenbaum pairing satisfies the following properties:

• (Bilinear) 〈P1+P2, Q〉 ≡ 〈P1, Q〉〈P2, Q〉 and 〈P,Q1+Q2〉 ≡ 〈P,Q1〉〈P,Q2〉.
Hence 〈[n]P,Q〉 ≡ 〈P, [n]Q〉 ≡ 〈P,Q〉n.

• (Non-degenerate) If 〈P,Q〉 ≡ 1 for all Q ∈ E(K) then P = 0E .

• Not necessarily alternating.
But one can show that if P ∈ E(Fq) and l 6 |(q − 1) (i.e., if k > 1) then

〈P, P 〉 ≡ 1.

• A unique value of the Tate-Lichtenbaum pairing can be obtained by raising
to the power

(qk − 1)/l.
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5 MOV/Frey-Rück attack

To solve an elliptic curve discrete logarithm problem Q = [λ]P where P has
order l in E(Fq) do the following:

• Construct the field K = Fqk such that l|(qk − 1).

• Find an auxiliary point S ∈ E(K) such that 〈P, S〉 6≡ 1.

• Compute ζ1 = 〈P, S〉 and ζ2 = 〈Q,S〉.

• Solve the discrete logarithm problem in K∗ (or a subfield) using an index
calculus method (performing linear algebra modulo l).

This strategy is effective when K = Fqk is not too large an extension of Fq.

6 Supersingular curves

An elliptic curve E over Fpn is supersingular if and only if #E(Fpn) ≡
1 (mod p).

Theorem (Menezes-Okamoto-Vanstone): If E is supersingular then k ≤ 6.

Theorem (Galbraith): If A is a supersingular abelian variety of dimension 2
then k ≤ 12.

7 Other curves with small k

Miyaji-Nakabayashi-Takano gave families of ordinary elliptic curve group orders
with k = 3, 4, 6.
Example: Family with k = 6. Let q = 4l2 +1, t = 1± 2l. Then can check that

(q + 1− t) | (q2 − q + 1) = Φ6(q)

where Φk(q) is the k-th cyclotomic polynomial.

These ideas have been extended to the case of cofactors by Galbraith, McKee
and Valença (also by Scott and Barreto). Listed below are some families with
(q + 1− t) = hr where h is a small cofactor and

r | (q2 − q + 1).

3



h q t
2 8l2 + 6l + 3 2 + 2l
2 8l2 + 10l + 5 −2l
2 24l2 + 6l + 1 −6l
2 24l2 + 24l + 19 6 + 6l
3 12l2 + 4l + 3 1− 2l
3 12l2 + 20l + 11 3 + 2l
3 84l2 + 16l + 1 −1− 14l
3 . . . . . .

Families for genus 2

Probabilistic arguments show the existence of genus 2 curves with moder-
ate embedding degree (suitable candidates are k = 5, 8, 10, 12). Experiments
suggest that parameterised families do not exist in general. The only ordinary
family we have found is for k = 10. The family has

q = 11l2 + 10l + 3

and
n = q2 + a1q + a2 + a1 + 1

where a1 = l and a2 = 2l + 1. One can check that

n(l) = 11m(l) where m(l) | (q(l)4 − q(l)3 + q(l)2 − q(l) + 1).

Since, in general, gcd(a1, q) = 1 the curves are not supersingular.

In any case, we have seen that there are a number of ways to obtain curves
over finite fields with small embedding degree k. Hence:

from now on suppose k is small.

8 Pairings solve subgroup membership (Miller)

Lemma: P,Q ∈ E[l] then Q ∈ 〈P 〉 if and only if el(P,Q) = 1.
Proof: Choose S ∈ E[l] such that {P, S} forms an Fl-basis for E[l]. If el(P, S) =
1 then

el(P, [a]P + [b]S) = 1

for all a, b. But this contradicts non-degeneracy. Hence el(P, S) = ζl 6= 1. Now
write Q = [a]P + [b]S. Then el(P,Q) = ζb

l and the result follows. �

Note: The Tate-Lichtenbaum pairing is not necessarily alternating, so the
lemma may not be true for Tate-Lichtenbaum pairing.
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9 Pairings solve co-ECDDH

Suppose that K = Fqk is not too big an extension of Fq and suppose that

〈P,Q〉 6≡ 1.

Then c ≡ a (mod l) if and only if

〈P, [c]Q〉 ≡ 〈[a]P,Q〉.

Hence, all genuine co-ECDDH problems (i.e., where the points P and Q are
independent) are easy when k is small.

10 Some applications of pairings

• Identity-based encryption (Sakai-Ohgishi-Kasahara, Boneh-Franklin)

• Identity-based key exchange (Sakai-Ohgishi-Kasahara, Smart)

• Short signatures (Boneh-Lynn-Shacham)

• Many more . . .

11 Short signatures (Boneh-Lynn-Shacham)

The following public key signature protocol can be applied whenever the decision
Diffie-Hellman problem is easy.

Public key: Q = [a]P .
Sign m: S = [a]H(m) where e(P,H(m)) 6= 1.
Transmit: x-coordinate of S.
Verify: Recover ±S and test whether

e(H(m), Q) ?= e(±S, P ).

Note: Group order is odd so cannot handle ± by computing the square of the
ratio of the pairing values.

Security of short signatures

Security against forgery in the passive case depends on ECDH (sometimes
called Gap-DH in this context).

Security against adaptive adversaries can be proved in the random oracle
model. But adaptive security requires a computable homomorphism (i.e., a
distortion map) ϕ from the subgroup containing public keys to the subgroup
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containing the hash values. This requirement is essential, as the following ex-
ample shows.

Example (BLS)

LetG1 = (Zl,+) andG2 = (〈g〉, ·) of order l. Consider the pairingG1×G2 → G2

given by
e(x, y) = yx.

The co-ECDH problem in G2 ×G1 is: Given (g, h = gx, a) compute xa.
Public key: h = gx.
Sign: s = xH(m) ∈ Zl.
Verify: e(H(m), h) ?= e(s, g).

Problem: A single message-signature pair (m, s) reveals the private key.
Note: In this case the map ϕ : G2 → G1 is the discrete logarithm map.

12 What about ECDDH problems?

We have seen how pairings solve co-ECDDH. The Weil pairing is alternating
so el(P, P ) = 1. Hence we can’t use the Weil pairing directly to solve ECDDH
problems. For the Tate-Lichtenbaum pairing, in general ∃P such that 〈P, P 〉 ≡
1.

13 Non-rational endomorphisms (Verheul)

Let P and Q be points such that 〈P,Q〉 ≡ 1. An endomorphism ϕ of E such
that

〈P,ϕ(Q)〉 6≡ 1.

is called a distortion map. Note that ϕ depends on P and Q. For crypto-
graphic applications, we often use the modified pairing

e(P,Q) = 〈P,ϕ(Q)〉(q
k−1)/l.

As we have seen, these are important in cryptography both as a tool for con-
structing non-degenerate pairings, and as a tool in security proofs.

14 Examples

(I) Consider the elliptic curve

E : y2 = x3 + ax
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which is supersingular over Fp when p ≡ 3 (mod 4). The distortion map is

ϕ(x, y) = (−x, iy)

where i ∈ Fp2 satisfies i2 = −1. In this case #E(Fp) = p+1 and the embedding
degree is k = 2.

(II) The elliptic curves

E : y2 + y = x3 + x+ a

over F2 (where a = 0, 1) have k = 4. Non-rational endomorphism

ϕ(x, y) = (ζ3x+ s2, y + ζ3sx+ s)

where ζ3
3 = 1 and s2 + ζ3s+ 1 = 0. We can work over F2m for certain values of

m.

(III) The elliptic curves
E : y2 = x3 − x± 1

over F3, have k = 6. Non-F3-rational endomorphism

ϕ(x, y) = (α− x, iy)

where i2 = −1 and α3 − α∓ 1 = 0. We can work over F3m for certain values of
m.

(IV) The elliptic curve

E : y2 + xy = x3 − x2 − 2x− 1

has complex multiplication of discriminant −7. Deuring reduction theory im-
plies that E is supersingular over Fp when (−7

p ) = −1. The order Z[(1+
√
−7)/2]

does not have non-trivial units, hence unlike the previous examples we cannot
have a distortion map which is an automorphism of the curve.

Using Vélu’s formulae we can find a 2-isogeny φ : E → E defined over Fp2 .
The x-coordinate of φ(x, y) is

−3 +
√
−7

8
x+

(−63− 35
√
−7)/16

8x+ 5 +
√
−7

+
11−

√
−7

32
.

Note that this example will show that our algorithm is not optimal (since it
would construct the 7-isogeny coming from

√
−7 in this case).

15 Trace map

Denote by π the q-power Frobenius map. Let P ∈ E(Fqk) where k > 1. Define
the trace (where the

∑
represents addition on the elliptic curve E)

Tr(P ) =
k∑

i=1

πi(P ) ∈ E(Fq).

7



The trace map is a group homomorphism.

Lemma: (Boneh) Let P ∈ E(Fqk)[l] such that P 6= 0E . Then el(P,Tr(P )) = 1
if and only if P is an eigenpoint for π.

Note: It is enough to just use π, and this is more efficient to compute than
Tr(P ).

16 Which ECDDH problems are easy?

For elliptic curves with small k, all co-ECDDH problems are easy due to the
Weil pairing. Similarly, the trace map means all ECDDH problems are easy
except for the two π-eigenspaces.

For ordinary (non-supersingular) curves it seems the two Frobenius eigenspaces
give hard ECDDH problems.

Theorem: (Verheul/Schoof) Let E be supersingular and let P ∈ E(Fqk)[l].
Then there is a distortion map ψ which makes the ECDDH problem in 〈P 〉
easy.

Proof: (sketch) Let K = Fqk . If E is supersingular then End(E) ⊗Z Zl is a
4-dimensional Zl-module which is isomorphic to the Zl-module HomK(Tl(E))
of homomorphisms which commute with qk-power Frobenius.

Since E is supersingular the Frobenius over K is an integer and it follows
that

HomK(Tl(E)) ∼= M2(Zl).

Hence End(E)⊗Z Zl
∼= M2(Zl) and, by restriction, we have

End(E)⊗Z Z/lZ ∼= M2(Z/lZ).

For any P ∈ E[l] there is some Ψ ∈ M2(Zl) which maps P outside 〈P 〉, so the
preimage of Ψ under this map suffices. �

17 Constructing distortion maps (1)

Theorem: (Galbraith-Rotger) Let E/F be an elliptic curve with CM of dis-
criminant D in characteristic zero which has supersingular reduction modulo
p to Ẽ/Fpm . Let π be the pm-power Frobenius. Suppose Q(

√
D) 6⊂ F . Let

d ∈ N and Ψ ∈ End(E) such that Ψ2 = −d. Then ψ = Ψ (mod p) is a suitable
distortion map for any π-eigenpoint P ∈ Ẽ(Fp) of order coprime to 4pd.

Proof: (sketch) Let H = F (
√
D), let σ be the non-trivial element of Gal(H/F )

and reduce everything modulo p. Then ψσ = −ψ.
We have End(Ẽ) = B a quaternion algebra. We are in the case k = 2 so

π2 = −pm and so π = −π and ψ = −ψ.
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By the Skolem-Noether theorem, the action of σ on the quaternion algebra
B = End(Ẽ) ⊗ Q is conjugation by some γ ∈ B. Clearly, πγ = γπ and so
γ ∈ Q(π). Also, ψγ = −γψ. Hence,

Tr(πψ) = −Tr(γ)ψ.

and so Tr(γ) = 0. Hence γ = uπ for some u ∈ Q∗. Thus ψπ − πψ = 2ψπ has
degree 4pmd.

Suppose P is an eigenpoint with π(P ) = [m]P of order coprime to 4pd. Then
πψ(P ) 6= ψπ(P ) and in fact π(ψ(P )) = −ψ(π(P )) = [−m]ψ(P ). Hence, ψ maps
P outside 〈P 〉. �

18 Constructing distortion maps (2)

The following algorithm (due to Galbraith and Rotger) constructs a distortion
map for a known CM curve with supersingular reduction. We imagine the
algorithm being used by a builder of a cryptosystem in the case where the
known examples of CM curves (and distortion maps) are not suitable.

Input: Ẽ/Fq with known O ⊆ End(Ẽ).

1. Compute an integer d such that
√
−d ∈ O.

2. Factor d =
∏n

i=1 li (not necessarily distinct primes).

3. Starting from j(Ẽ) construct graph of j-invariants by taking li-isogenies
(factoring li-th modular polynomial) for i = 1, . . . , n.

4. Find a cycle in the graph corresponding to the d-isogeny ψ from Ẽ) to
itself. Hence construct ψ using methods of Elkies and Vélu.

The complexity is roughly O(h6) where h is the class number of the the order
O.

The only known efficient way to construct supersingular curves is using re-
duction of CM curves in characteristic zero. Since these algorithms are of ex-
ponential complexity, we can only construct CM curves whose class number is
bounded by a polynomial function. Hence, when the input is restricted to these
curves then our algorithm has polynomial complexity.

Performance

But the complexity O(h6) is very poor. For example, it is feasible to generate
curves using the CM method with h ≈ 220. Whereas 2120 operations is slower
than Pollard methods to solve the discrete logarithm problem for a 160-bit
elliptic curve.

The algorithm given above usually does not construct a distortion map of
minimal degree (e.g., the example with D = −7 above gave a 2-isogeny whereas
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the algorithm would give a 7-isogeny). Ad-hoc methods can usually be used to
compute a distortion map of lower degree and in much faster time.

Comments on the case of genus two

Let C be a genus 2 curve over Fq. Consider the DDH problem in the divisor
class group of C. Suppose the embedding degree k is small. In general, the
torsion is 4-dimensional and so it does not follow that all co-DDH problems are
easy. Similarly, the trace map is no longer sufficient for divisors which do not
lie in an eigenspace.

The proof of Verheul/Schoof easily generalises. The algorithm for construct-
ing distortion maps does not generalise.
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