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This is a survey of work on applications of pairings in cryptography. I
will present the work of various researchers, including some joint work with J.
McKee, V. Rotger and P. Valenca.
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2 The elliptic curve decision Diffie-Hellman prob-
lem (ECDDHP)

Let E be an elliptic curve over a finite field ;. Let [ be a large prime such that
l|#E(F,). As usual we define

Ell)={P € E(F,): [P = 0g}.

Let P = (z,y) € E[l] and let P, = [a]P, P, = [b|P and P; = [c]P be given
points on . The ECDDH is to decide whether

¢ = ab (mod 1).

Let P, = [a]P, Q, Q1 = [c]Q € E[l]. The co-ECDDH is to decide whether

¢=a (mod ).



3 The Weil pairing

With notation as above (i.e., l|#E(F,)) define k to be the smallest positive
integer such that [|(¢" — 1). Note that & depends on ¢ and /. The number
k is sometimes called the embedding degree (or MOV degree or security
multiplier).

Define p; = {¢ € F;k : ¢! = 1}. The Weil pairing is a function

er: B[] x E[l] — i C F
which satisfies the following properties:
o (Bilinear) e;(P1+Ps, Q) = e;(P1,Q)e; (P2, Q) and e;(P, Q14+Q2) = (P, Q1)e; (P, Q2).
e (Non-degenerate) e;(P,Q) =1 for all Q € E[l] implies P = 0.
o (Alternating) e;(P, P) = 1 for all P € EJi].

4 The Tate-Lichtenbaum pairing (special case)

Let K = F,:. The Tate-Lichtenbaum pairing is a function
B(K)[l] x (E(K)/IE(K)) — K*/(K*)".

For P € E(K)[l] and Q € E(K) we write this equivalence class representative
as

(P.Q) € K*/(K")"
Note that:
o (K*: (K" =1L
e Denote by = equivalence in K*/(K*).
e E(K)/IE(K) is a group of exponent [.

The Tate-Lichtenbaum pairing satisfies the following properties:
e (Bilinear) (Pi+P2,Q) = (P1,Q){(P2, Q) and (P, Q1+Q2) = (P, Q1){P, Q2).
Hence ([n|P, Q) = (P, [n]Q) = (P,Q)".
e (Non-degenerate) If (P,Q) =1 for all Q € E(K) then P = 0g.
e Not necessarily alternating.
But one can show that if P € E(F,) and [ f(¢ — 1) (i.e., if & > 1) then
(P,P) =1.

e A unique value of the Tate-Lichtenbaum pairing can be obtained by raising
to the power

(¢" = 1)/L.



5 MOV /Frey-Riick attack

To solve an elliptic curve discrete logarithm problem @ = [A]P where P has
order ! in E(F,) do the following:

e Construct the field K = F. such that I|(¢" — 1).
e Find an auxiliary point S € E(K) such that (P,S) # 1.
e Compute ¢; = (P, S) and {; = (@, 5).

e Solve the discrete logarithm problem in K* (or a subfield) using an index
calculus method (performing linear algebra modulo 1).

This strategy is effective when K = [F x is not too large an extension of IF,.

6 Supersingular curves

An elliptic curve E over F,» is supersingular if and only if #E(F,n) =
1 (mod p).

Theorem (Menezes-Okamoto-Vanstone): If E is supersingular then k& < 6.

Theorem (Galbraith): If A is a supersingular abelian variety of dimension 2
then k& < 12.

7 Other curves with small k&

Miyaji-Nakabayashi-Takano gave families of ordinary elliptic curve group orders
with k = 3,4,6.
Example: Family with k = 6. Let ¢ = 41> 4+ 1, ¢t = 1 £ 2. Then can check that

(@+1-1)[(¢*—q+1)=Ps(q)
where @ (q) is the k-th cyclotomic polynomial.

These ideas have been extended to the case of cofactors by Galbraith, McKee
and Valenga (also by Scott and Barreto). Listed below are some families with
(¢+ 1 —1t) = hr where h is a small cofactor and

r|(¢* —q+1).



q t
812+6/+3 2421
8124+ 10l+5 —21
2412 + 61 + 1 —61

2412 +241+19 | 6461
1207 + 41+ 3 1—21
1212 +200+11 | 3421
8412 +161+1 | —1 — 141
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Families for genus 2

Probabilistic arguments show the existence of genus 2 curves with moder-
ate embedding degree (suitable candidates are k = 5,8,10,12). Experiments
suggest that parameterised families do not exist in general. The only ordinary
family we have found is for k = 10. The family has

q=1117+10l+3

and
n=q2+a1q+a2+a1+1

where a; = [ and as = 2] + 1. One can check that
n(l) = 11m(1) where m(l) | (¢(1)* — q(1)® + q(1)*> — q(1) + 1).
Since, in general, gced(aq,q) = 1 the curves are not supersingular.

In any case, we have seen that there are a number of ways to obtain curves
over finite fields with small embedding degree k. Hence:

| from now on suppose £ is small.

8 Pairings solve subgroup membership (Miller)

Lemma: P,Q € E[l] then Q € (P) if and only if ;(P, Q) = 1.
Proof: Choose S € E[l] such that { P, S} forms an F;-basis for E[l]. If ¢;(P,S) =
1 then

ei(P,[alP +[b]S) =1

for all a,b. But this contradicts non-degeneracy. Hence ¢;(P,S) = (; # 1. Now
write @ = [a]P + [b]S. Then ¢;(P,Q) = ¢} and the result follows. O

Note: The Tate-Lichtenbaum pairing is not necessarily alternating, so the
lemma may not be true for Tate-Lichtenbaum pairing.



9 Pairings solve co-ECDDH

Suppose that K = F x is not too big an extension of F, and suppose that

(P,Q) #1.
Then ¢ = a (mod 1) if and only if

(P,[Q) = ([al P, Q).

Hence, all genuine co-ECDDH problems (i.e., where the points P and @ are
independent) are easy when k is small.

10 Some applications of pairings

Identity-based encryption (Sakai-Ohgishi-Kasahara, Boneh-Franklin)

Identity-based key exchange (Sakai-Ohgishi-Kasahara, Smart)

Short signatures (Boneh-Lynn-Shacham)

e Many more . . .

11 Short signatures (Boneh-Lynn-Shacham)

The following public key signature protocol can be applied whenever the decision
Diffie-Hellman problem is easy.

Public key: @Q = [a]P.

Sign m: S = [a]H(m) where e(P, H(m)) # 1.
Transmit: z-coordinate of S.

Verify: Recover +5 and test whether

e(H(m),Q) = e(£S, P).

Note: Group order is odd so cannot handle + by computing the square of the
ratio of the pairing values.

Security of short signatures

Security against forgery in the passive case depends on ECDH (sometimes
called Gap-DH in this context).

Security against adaptive adversaries can be proved in the random oracle
model. But adaptive security requires a computable homomorphism (i.e., a
distortion map) ¢ from the subgroup containing public keys to the subgroup



containing the hash values. This requirement is essential, as the following ex-
ample shows.

Example (BLS)

Let G1 = (Z;,+) and G2 = ({g), -) of order [. Consider the pairing G1 xGy — G»
given by

e(z,y) =y*.
The co-ECDH problem in G x Gy is: Given (g, h = ¢g*,a) compute za.
Public key: h = g*.
Sign: s =xH(m) € Z;.
Verify: e(H(m),h) Z e(s, g).
Problem: A single message-signature pair (m, s) reveals the private key.
Note: In this case the map ¢ : Go — G is the discrete logarithm map.

12 What about ECDDH problems?

We have seen how pairings solve co-ECDDH. The Weil pairing is alternating
so e;(P, P) = 1. Hence we can’t use the Weil pairing directly to solve ECDDH
problems. For the Tate-Lichtenbaum pairing, in general 3P such that (P, P) =
1.

13 Non-rational endomorphisms (Verheul)

Let P and @ be points such that (P,Q) = 1. An endomorphism ¢ of E such
that

(P o(Q)) # 1.

is called a distortion map. Note that ¢ depends on P and Q. For crypto-
graphic applications, we often use the modified pairing

e(P,Q) = (P, (@) I/,

As we have seen, these are important in cryptography both as a tool for con-
structing non-degenerate pairings, and as a tool in security proofs.

14 Examples

(I) Consider the elliptic curve

E:y?=2+ax



which is supersingular over F, when p = 3 (mod 4). The distortion map is
p(e,y) = (—x,iy)
where i € 2 satisfies i = —1. In this case #E(F,) = p+1 and the embedding
degree is k = 2.
(II) The elliptic curves
E:y’+y=23+z+a
over Fy (where a = 0,1) have k = 4. Non-rational endomorphism
p(,y) = (G + 8%,y + (357 + 5)

where (§ = 1 and s? + (35 + 1 = 0. We can work over Fom for certain values of
m.

(III) The elliptic curves
E:y =a2%—z+1

over F3, have k = 6. Non-F3-rational endomorphism

cp(l‘,y) = (a - $>Z’y)

where i2 = —1 and o® — a1 = 0. We can work over Fym for certain values of
m.

(IV) The elliptic curve
E:ytay=a®—2®-20-1

has complex multiplication of discriminant —7. Deuring reduction theory im-
plies that E is supersingular over F), when (_?7) = —1. The order Z[(1++/=7)/2]
does not have non-trivial units, hence unlike the previous examples we cannot
have a distortion map which is an automorphism of the curve.

Using Vélu’s formulae we can find a 2-isogeny ¢ : £ — E defined over F..
The z-coordinate of ¢(z,y) is

-3+ ‘/_7:3 N (—63 — 35v/=T7)/16 N 11— /=7
8 8 +5+ -7 32 '

Note that this example will show that our algorithm is not optimal (since it
would construct the 7-isogeny coming from /—7 in this case).

15 Trace map

Denote by 7 the g-power Frobenius map. Let P € E(F) where k£ > 1. Define
the trace (where the ) represents addition on the elliptic curve E)

k

Tr(P) =Y «'(P) € E(F,).

i=1



The trace map is a group homomorphism.

Lemma: (Boneh) Let P € E(Fx)[l] such that P # 0. Then ¢;(P, Tr(P)) =1
if and only if P is an eigenpoint for .

Note: It is enough to just use m, and this is more efficient to compute than
Tr(P).

16 Which ECDDH problems are easy?

For elliptic curves with small &, all co-ECDDH problems are easy due to the
Weil pairing. Similarly, the trace map means all ECDDH problems are easy
except for the two m-eigenspaces.

For ordinary (non-supersingular) curves it seems the two Frobenius eigenspaces
give hard ECDDH problems.

Theorem: (Verheul/Schoof) Let E be supersingular and let P € E(Fx)[l].
Then there is a distortion map ¢ which makes the ECDDH problem in (P)
easy.

Proof: (sketch) Let K = F.x. If E is supersingular then End(E) ®z Z; is a
4-dimensional Z;-module which is isomorphic to the Z;-module Hom g (T;(E))
of homomorphisms which commute with ¢®-power Frobenius.
Since E is supersingular the Frobenius over K is an integer and it follows
that
HOHlK(Tl(E)) = MQ(Z[)

Hence End(F) ®z Z; & M>(Z,;) and, by restriction, we have
End(F) ®z Z/IZ =2 My (Z/1Z).

For any P € E[l] there is some ¥ € M5(Z;) which maps P outside (P), so the
preimage of ¥ under this map suffices. O

17 Constructing distortion maps (1)

Theorem: (Galbraith-Rotger) Let E/F be an elliptic curve with CM of dis-
criminant D in characteristic zero which has supersingular reduction modulo
p to E/Fpm. Let 7 be the p™-power Frobenius. Suppose Q(vD) ¢ F. Let
d € N and ¥ € End(FE) such that ¥2 = —d. Then ¢ = ¥ (mod p) is a suitable
distortion map for any m-eigenpoint P € E (E;) of order coprime to 4pd.

Proof: (sketch) Let H = F(v/D), let o be the non-trivial element of Gal(H/F)
and reduce everything modulo p. Then ¢7 = —.
We have End(E) = B a quaternion algebra. We are in the case k = 2 so

72 =—p™ and so T = —7 and 1) = —.



By the Skolem-Noether theorem, the action of o on the quaternion algebra
B = End(F) ® Q is conjugation by some v € B. Clearly, 7y = 7 and so
~v € Q(m). Also, 1y = —y9. Hence,

Tr(mp) = —Tr ()9

and so Tr(vy) = 0. Hence v = ur for some v € Q*. Thus ¢ — mp = 2¢7 has
degree 4p™d.

Suppose P is an eigenpoint with w(P) = [m]P of order coprime to 4pd. Then
mp(P) # ¢ (P) and in fact w(p(P)) = —¢(w(P)) = [-m](P). Hence, 1) maps
P outside (P). O

18 Constructing distortion maps (2)

The following algorithm (due to Galbraith and Rotger) constructs a distortion
map for a known CM curve with supersingular reduction. We imagine the
algorithm being used by a builder of a cryptosystem in the case where the
known examples of CM curves (and distortion maps) are not suitable.

Input: E‘/Fq with known O C End(E).
1. Compute an integer d such that +/—d € O.

2. Factor d = []}_, l; (not necessarily distinct primes).

3. Starting from j(E) construct graph of j-invariants by taking [;-isogenies
(factoring [;-th modular polynomial) for i = 1,...,n.

4. Find a cycle in the graph corresponding to the d-isogeny @ from E) to
itself. Hence construct 1 using methods of Elkies and Vélu.

The complexity is roughly O(h%) where h is the class number of the the order
0.

The only known efficient way to construct supersingular curves is using re-
duction of CM curves in characteristic zero. Since these algorithms are of ex-
ponential complexity, we can only construct CM curves whose class number is
bounded by a polynomial function. Hence, when the input is restricted to these
curves then our algorithm has polynomial complexity.

Performance

But the complexity O(h®) is very poor. For example, it is feasible to generate
curves using the CM method with A ~ 220, Whereas 2'2° operations is slower
than Pollard methods to solve the discrete logarithm problem for a 160-bit
elliptic curve.

The algorithm given above usually does not construct a distortion map of
minimal degree (e.g., the example with D = —7 above gave a 2-isogeny whereas



the algorithm would give a 7-isogeny). Ad-hoc methods can usually be used to
compute a distortion map of lower degree and in much faster time.

Comments on the case of genus two

Let C be a genus 2 curve over F,. Consider the DDH problem in the divisor
class group of C. Suppose the embedding degree k is small. In general, the
torsion is 4-dimensional and so it does not follow that all co-DDH problems are
easy. Similarly, the trace map is no longer sufficient for divisors which do not
lie in an eigenspace.

The proof of Verheul/Schoof easily generalises. The algorithm for construct-
ing distortion maps does not generalise.

10



