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Menu

Aperitivo: Pohlig-Hellman

Antipasto: Baby-step-giant-step

Primo: Pollard rho and kangaroo

Secondo: Summation polynomials and the ECDLP

Please interrupt me and ask questions. This will aid digestion.

Steven Galbraith The University of Auckland
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Pohlig-Hellman

Pohlig-Hellman

Let G be a group and H a normal subgroup. Let
φ : G → G/H be the quotient map φ(g) = gH.
If h = ga in G then φ(h) = φ(g)a in G/H.

Everyone knows that one can use this idea to reduce the DLP
in a cyclic group G to the DLP in subgroups.

Combining Chinese remainder theorem and Hensel lifting
allows to solve DLP by reducing to DLPs in groups of prime
order.

Hence, we usually work in subgroup of prime order.

Steven Galbraith The University of Auckland
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Pohlig-Hellman

Computational Diffie-Hellman problem and Pohlig-Hellman

The Computational Diffie-Hellman problem (CDH) is: Given
g , ga, gb to compute gab.

Suppose G is a group of order pq where p and q are distinct
primes.

Then can solve CDH by reducing to CDH in cyclic subgroups
of order p and q respectively:

CDH(gp, gap, gbp) = gabp and CDH(gq, gaq, gbq) = gabq

from which we can deduce gab using integers s and t with
sp + tq = 1.

Question: What about a cyclic group G of order p2?

Steven Galbraith The University of Auckland
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Baby-step-giant-step

Textbook Baby-step-giant-step (BSGS)

Let P have order r and Q = aP.
Let N = d

√
re. Then a = a0 + Na1 with 0 ≤ a0, a1 < N.

BSGS is to compute sorted list of all “baby steps” (aP, a) for
0 ≤ a < N.
Let P ′ = NP. Compute “giant steps” Q − bP ′ for
b = 0, 1, 2, . . . until get a match.

The worst-case running time is 2
√
N group operations, and

average case is 1.5
√
N group operations.

What more needs to be said?

Steven Galbraith The University of Auckland
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Baby-step-giant-step

Baby-step-giant-step
NOTE: Some of the numbers in this table will likely change!

Algorithm Average-case Worst-case

Textbook BSGS 1.5 2.0
Textbook BSGS for av. case 1.414 2.121
Pollard BSGS 1.333 2.0
Bernstein-Lange grumpy giants 1.2∗ 1.73?

Rho 1.253 ∞
BSGS with negation 1.0 1.5
Pollard BSGS with negation 0.943 1.414
Grumpy giants with negation 0.84? ?

New 0.666− 0.748 1.06
Grumpy giants + new 0.6− 0.678? ?

(Joint with Ping Wang and Fangguo Zhang)
Steven Galbraith The University of Auckland

Degustazione of the ECDLP



Menu Aperitivo Antipasto Primo Secondo Dolce

Baby-step-giant-step

New method

Computing P1 + P2 on an elliptic curve using affine
coordinates requires I + 2M + S .

Computing P1 + P2 and P1 − P2 together requires
I + 4M + 2S .

So organise BSGS to store x-coordinates only and to compute
the giant steps in blocks.

For example: Let P ′ = NP and P ′′ = 3P ′. Let S = Q.
At each iteration compute S ± P ′ and then S = S + P ′′.
In other words, at iteration i have S = Q + (3i)P ′ and we
consider
{S−P ′,S ,S+P ′} = {Q+(3i−1)P ′,Q+(3i)P ′,Q+(3i+1)P ′}.
Question: Can we do this trick with Pollard rho?

Steven Galbraith The University of Auckland
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Pollard rho and kangaroo, and Gaudry-Schost

Some (not very) recent work

S. D. Galbraith and R. S. Ruprai, An improvement to the
Gaudry-Schost algorithm for multidimensional discrete
logarithm problems, IMA International Conference on
Cryptography and Coding 2009.

S. D. Galbraith and R. S. Ruprai, Using equivalence classes to
speed up the discrete logarithm problem in a short interval,
PKC 2010.

S. D. Galbraith and M. Holmes, A non-uniform birthday
problem with applications to discrete logarithms, Discrete
Applied Mathematics 2012.

S. D. Galbraith, J. M. Pollard and R. S. Ruprai, Computing
discrete logarithms in an interval, Math. Comp. 2013.

Steven Galbraith The University of Auckland
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Pollard rho and kangaroo, and Gaudry-Schost

Random walk algorithms

DLP: Given g , h in group of order r , find a such that h = ga.

Idea: If can find integers a1, a2, b1, b2 such that

ga1hb1 = ga2hb2 .

then solve the DLP as a = (a2 − a1)(b1 − b2)−1 (mod r).

Generate pseudorandom sequences

xi = gaihbi

such that (ai , bi ) are known.

A collision is when xi = xj .

Pollard’s big idea: use pseudorandom walks where the next
step only depends on the current position.
Hence, if xi = xj then xi+1 = xj+1.

Detect collisions without storing all points.

Steven Galbraith The University of Auckland
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Pollard rho and kangaroo, and Gaudry-Schost

Two basic types of walk

DLP: Given g , h, find a such that h = ga.

First type: Elements of walks are

xi = gaihbi

where ai and bi are “pseudorandom”.
Any collision xi = xj is potentially useful. Such algorithms are
analysed using the birthday paradox.

Second type: Walks are either tame xi = gai or wild
yj = hgbj .

A collision xi = yj allows to solve the DLP as h = gai−bj .
Collisions xi = xj or yi = yj are useless.
Such algorithms are analysed using several notions in
probability theory.

Steven Galbraith The University of Auckland
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Pollard rho and kangaroo, and Gaudry-Schost

Birthday paradox

Suppose we sample uniformly at random from a set of size N.
The expected number of trials until an element is sampled
twice is

√
πN/2.

When N = 365 this expected number is ≈ 23.94.

Now sample uniformly at random from a set of size N and
record each element in one of two lists.
The expected number of trials until an element appears in
both lists is

√
πN.

The expected number of people in a room before there is a
boy and a girl with the same birthday is ≈ 33.86.

Puzzle: In my hotel there is a meeting of the “boys born in
January” club, and a meeting of the “random girls” club.
What ratio of each should I put in a room to have a boy and
girl with the same birthday? (As 31→∞.)

Steven Galbraith The University of Auckland
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Pollard rho and kangaroo, and Gaudry-Schost

The DLP in an Interval

Given g , h,N find a, if it exists, such that h = ga and
0 ≤ a < N.

Applications: breaking pseudorandom generator by Gennaro,
decryption in the Boneh-Goh-Nissim scheme, analysis of the
static/strong Diffie-Hellman problem, etc.

Pollard kangaroo method using distinguished points (van
Oorschot and Wiener 1996/1999) solves problem in average
case expected (2 + o(1))

√
N group operations.

Important: kangaroo method is not analysed using the
birthday paradox.
Instead, steps in the walk are “short”, meaning xi = gai and
xi+1 = gai+1 is such that ai+1 ≈ ai + m.

Steven Galbraith The University of Auckland
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Pollard rho and kangaroo, and Gaudry-Schost

Pollard kangaroo algorithm

The tame kangaroo starts in the middle of the interval.

Steps in the walk are, on average, distance m.

The rear kangaroo “catches up” with the starting point of the
front kangaroo in average time N/(4m).

After about m steps we expect rear kangaroo to land on a
footstep of the front kangaroo.

Average running time 2(N/(4m) + m + o(
√
N)).

Taking m =
√
N/2 gives (av. case expected) running time

(2 + o(1))
√
N group operations.

Steven Galbraith The University of Auckland
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Pollard rho and kangaroo, and Gaudry-Schost

Improved DLP in an Interval (Math. Comp. 2013)

Two ways to improve:

Three (actually, four) kangaroos method in ≈ 1.71
√
N group

operations.
Idea is to start wild kangaroos at both h and h−1.
Walks are now of three types: xi = gai , yj = hgbj or
zk = h−1g ck .
A collision between walks of any two types solves the DLP.
(Assume group order odd.)

Gaudry-Schost algorithm (cockroaches) in ≈ 1.66
√
N group

operations.

Steven Galbraith The University of Auckland
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Pollard rho and kangaroo, and Gaudry-Schost

Gaudry-Schost Algorithm

A way to tackle constrained problems using a variant of the
birthday paradox.

One has a “tame set” T and a “wild set” W and seeks
collisions in T ∩W .

The random walks are “cockroaches”: staying in an
appropriate-sized neighbourhood of the starting point.

Basic idea for DLP in an interval:

T = {g x : 0 ≤ x < N}, and W = {hg x : −N/2 < x < N/2}.

Then N/2 ≤ #(T ∩W ) ≤ N.

Model cockroaches as pseudorandom sampling from T ∩W .
Apply variant of birthday paradox.
Average case expected run-time (2.08 + o(1))

√
N group ops.

There are some inconvenient aspects.

Steven Galbraith The University of Auckland
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Pollard rho and kangaroo, and Gaudry-Schost

Equivalence Classes

Many groups have efficiently computable automorphisms ψ.
For example, the map ψ : g 7→ g−1 is easy for elliptic curves
and the torus T2.

Gallant-Lambert-Vanstone/Wiener-Zuccherato solve the
ECDLP by defining a random walk on G/ψ (sets of orbits in
the group G under ψ).

For Pollard rho, using equivalence classes with respect to
inversion “should” speed-up the algorithm by a factor of

√
2.

Steven Galbraith The University of Auckland
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Pollard rho and kangaroo, and Gaudry-Schost

DLP in an Interval Using Equivalence Classes

It seems impossible to combine Pollard’s kangaroo algorithm
with equivalence classes.

But Gaudry-Schost comes to the rescue.

Analysis uses a generalisation of the Birthday Paradox that
was worked out with Mark Holmes.
(This answers the “January boys” problem.)

Theorem: (G.-Ruprai, PKC 2010) There is an algorithm to
solve the DLP in an interval of size N in groups with fast
inversion that requires (ignoring troubles with cycles) average
expected (1.36 + o(1))

√
N group operations.

Question: Improve this result, or find an easier-to-implement
algorithm than Gaudry-Schost.

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Index calculus concept for ECDLP

Let P,Q ∈ E (Fqn) be an ECDLP instance.

Define a suitable factor base F ⊆ E (Fqn).

Generate random points R = aP + bQ and try to write

R = P1 + P2 + · · ·+ Pm

where P1, . . . ,Pm ∈ F .

Each successful point decomposition is called a relation.

When enough relations have been computed one can solve the
ECDLP using linear algebra.

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Point decomposition

We wish to solve

R = P1 + P2 + · · ·+ Pm (∗)

where P1, . . . ,Pm ∈ F .

The right hand side is a rational function in the variables
xi , yi ∈ Fqn such that Pi = (xi , yi ) ∈ E (Fqn).

Hence, solving the equation (*) reduces to solving a system of
polynomial equations in 2m variables in Fqn .

It is natural to choose F to reduce the number of variables.

Gaudry and Diem used Weil restriction to provide a natural
definition for F that reduces the number of variables while
increasing the number of equations.

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Semaev’s summation polynomials

Semaev defines, for fixed elliptic curve E , polynomials
Semm+1(x1, . . . , xm+1) such that points
R,P1, . . . ,Pm ∈ E (Fqn) satisfy

R = P1 + P2 + · · ·+ Pm (∗)

if Semm+1(x(P1), x(P2), . . . , x(Pm), x(R)) = 0.

Converse true up to choice of signs.

Semaev explains how to compute these polynomials and
proves they are symmetric and have degree 2m−1 in each
variable.

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Factor base (following Diem)

Let V ⊆ Fqn be an Fq-vector space of dimension `.

Define F = {P ∈ E (Fqn) : x(P) ∈ V }.
Then #F ≈ q`.

We expect approximately #Fm/m! ≈ q`m/m! points of the
form P1 + · · ·+ Pm for Pi ∈ F .

Hence, a relation (*) exists with probability approximately
q`m/(m!qn).

Solving a relation using Semaev’s polynomials and Weil
restriction with respect to Fqn/Fq requires solving a system
with `m variables and n equations.

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Point decomposition revisited

The rational function

R = P1 + P2 + · · ·+ Pm (∗)

where Pi = (xi , yi ) ∈ E (Fqn) has 2m variables and the degree
is determined by the elliptic curve group law and the degree of
the defining equations y2i = f (xi ) of the elliptic curve.

Semaev’s approach is to minimize number of variables at the
expense of exponential degree.

Using projective equations for addition may lead to a larger
number of equations, each of lower degree.

Using elliptic curve equations in higher dimensional spaces
also leads to lower degree (but more variables).

Question: What is the optimal tradeoff of number of
variables versus degree for point decomposition algorithms?

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Other applications of point decomposition

There exist “delayed target one-more discrete log”,
“oracle-assisted static Diffie-Hellman” and “static one-more
Diffie-Hellman” problems.

Given a static (also called “one-sided”) Diffie-Hellman oracle
O(Y ) = aY .

At some later point would like to compute Q = aP given a
random point P.

Granger (ASIACRYPT 2010) noted that summation
polynomials can be used to attack these problems.

Good news is that only need a small number of point
decompositions.

Also O(r1/3) algorithm due to Brown-Gallant/Cheon.

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Using symmetries

Gaudry noted that, since Semm+1(x1, . . . , xm, x(R)) is
invariant under action by symmetric group Sm, one can write
it in terms of elementary symmetric polynomials σj .

This leads to a system of equations of lower degree.

Faugère, Gaudry, Huot and Renault (J. Crypto., 2014) solved
system using Gröbner basis with respect to grevlex order (F4
or F5 algorithm) and then FGLM (Faugère, Gianni, Lazard
and Mora) change of ordering algorithm.

They also use invariants under a larger group, coming from
action of symmetric group and points of small order.

This gives improvement to both point decomposition and
linear algebra. (But don’t forget extra step.)

Also see the F-H-Joux-R-Vitse paper (EUROCRYPT 2014)
and later talks at this meeting.

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Larger values for n

All records done for E (Fqn) where q is medium/large and n is
fairly small.

Then F is defined using the Fq-vector space V = Fq ⊆ Fqn ,
and Weil restriction is defined with respect to Fqn/Fq.
Important fact: x1, x2 ∈ Fq implies x1x2 ∈ Fq.
So if x1, . . . , xm ∈ V then σj(x1, . . . , xm) ∈ V .

No big experiments for the case E (F2n) where n is prime.

Huang, Petit, Shinohara and Takagi (IWSEC 2013) study
large extension degrees.

Define factor base using F2-vector space V ⊂ F2n .
Important fact: x1, x2 ∈ V ⊂ F2n does not imply x1x2 ∈ V .

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Huang, Petit, Shinohara and Takagi

Fix polynomial basis {1, θ, θ2, . . . , θn−1} for F2n/F2.

Choose V to have basis {1, θ, . . . , θ`−1}.
Then if x1, x2 lie in V then x1x2 lies in space V (2) with basis
{1, θ, . . . , θ2(`−1)}.
Hence have σ1 ∈ V , σ2 ∈ V (2), σ3 ∈ V (3) and so on.

From some point onwards we have V (j) = F2n .

Biggest example in their paper: n = 53, m = 3, ` = 6,
computation takes around 30 seconds.

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

New work, joint with Shishay Gebregiyorgis

New choice of invariant variables for binary Edwards curves.

Factor base that “breaks symmetry” and hence significantly
increases the probability that relations exist.

Experiment with SAT solvers rather than Gröbner basis
methods for solving polynomial systems over F2.

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Breaking symmetry

As noted the symmetric group Sm acts on R = P1 + · · ·+ Pm,
and hence acts on Semm+1(x(R), x1, . . . , xm).

Good news: We can write this polynomial in terms of
elementary symmetric variables and this lowers the degree.

Bad news: Probability of a relation goes down by 1/m!.

Counterintuitive: we can evaluate the symmetric variables at
combinations of non-symmetric variables.

So get benefit of lower degree polynomial equations without
the additional m! factor in the running time.

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Breaking symmetry

Precisely: Let V ⊆ F2n be a vector space of dimension `.

Instead of one set F = {P ∈ E (F2n) : x(P) ∈ V } we define m
sets Fi = {P ∈ E (F2n) : x(P) ∈ V + vi} where vi ∈ F2n are
elements of a certain form so that the sets V + vi are all
distinct.

Suppose V has basis {1, θ, . . . , θ`−1}.
Let v1 = 0, v1 = θ`, v2 = θ`+1, v3 = θ` + θ`+1 etc.

Then V + vi are distinct and yet only need a couple more
variables to represent the combination.

Hence, we have σ1 ∈ V ′ spanned by {1, θ, . . . , θ`+1}, σ2 ∈ V ′′

spanned by {1, θ, . . . , θ2(`+1)} etc.

Care needed to pull solutions in the σj back to solutions in xj .

Diem has also used different factor bases Fi .

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Conclusion

SAT solvers are an interesting alternative to Gröbner basis
methods and can be faster in some situations.

But our computations are for small examples (e.g., n = 53,
m = 4 and ` = 9).

ECDLP in E (F2n) for prime n > 160 seems to be completely
immune to point decomposition attacks.

A practical cube-root-time algorithm for ECDLP (the case
m = 3) seems hopeless in E (F2n) when n is prime.

Even meaningful attacks on one-more/oracle-assisted/static
problems seem hopeless since would need to make
exponentially many oracle queries.

Question: Is there any way to speed up using Galois action
e.g., E/F2 but ECDLP in E (F2n)?

Steven Galbraith The University of Auckland
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Dolce

Thanks for your attention.

Steven Galbraith The University of Auckland
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Answers

How to solve CDP in group of order p2 using CDH oracle for
groups of prime order?
Use den Boer/Maurer/Maurer-Wolf reduction to solve DLP.

Boys in January?
Minimum of f (x) = cx(1− x) always at x = 1

2 .

Steven Galbraith The University of Auckland
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